
1

Preface

This book is about Quadratic Programming (QP), Parametric Quadratic
Programming (PQP), the theory of these two optimization problems, and
solution algorithms for them. Throughout this text, we rely heavily on vector
and matrix notation. Prime (′) will be used to denote matrix transposition.
All unprimed vectors will be column vectors. The i–th component of the vec-
tor x0 will be denoted by (x0)i. In a numerical example, we sometimes use
the symbol times (×) to denote multiplication. For 2–dimensional examples,
we generally use the problem variables x1 and x2 with x = (x1, x2)

′. In
other situations, x1 and x2 may denote two n–vectors. The meaning should
be clear from the context. The end of a proof is signified by an unfilled box
(�) and the end of an example is signified by an unfilled diamond (♢).

In Chapter 1, we consider several 2–dimensional examples of QP’s. We
teach the reader how to draw these problems and how to deduce an optimal
solution using graphical arguments. We also deduce from the graphical rep-
resentation algebraic conditions which are both necessary and sufficient for
optimality.

Chapter 2 is devoted to the development of portfolio optimization. Port-
folio optimization is concerned with combining a number of assets, each with
known expected return and correlation with the other assets into a single
portfolio. For the combined portfolio, with any level of expected return, no
other portfolio should have a smaller variance. Such a portfolio is called effi-
cient. Finding such a portfolio is equivalent to solving a certain QP. Finding
all such portfolios is equivalent to solving a PQP. Thus Chapter 2 provides
many examples of problems which are naturally QP’s or PQP’s.

Chapter 3 begins by looking at the problem of unconstrained quadratic
minimization theory then development of a solution algorithm for it using
conjugate directions (Algorithm 1). Although this problem can be solved
directly, we use a conjugate direction method to solve it because it will be
a building block for full QP algorithms developed subsequently. Chapter 3
continues by addressing the problem of quadratic minimization subject to
linear equality constraints. Theoretical properties and a solution algorithm
(Algorithm 2) are developed as generalizations of those for unconstrained
quadratic minimization.

Whenever we develop an algorithm in Chapter 3 or subsequent chapters,
we first give the informal development of the algorithm. Then we give a com-



2

plete and detailed formulation and prove its properties. We also give several
numerical examples which are illustrated with detailed calculations. Then in
a later section, a Matlab program is given to implement the algorithm. These
programs are included on the accompanying CD. This computer program is
run on the same data as the example to validate its results. In some cases,
we illustrate the computer program by solving some problems which are too
large for hand computation.

Chapter 4 is devoted to the theory of QP. Optimality conditions which are
both necessary and sufficient for optimality are developed. Duality theory
for QP may be regarded as a generalization of duality theory for LP. Indeed,
the two types of duality share many of the same properties. All of the
QP algorithms automatically compute an optimal solution for the dual. In
some situations, obtaining the optimal solution for the dual may be equally
important as finding the optimal solution for the given problem (the primal).

Sometimes the data for a QP or PQP is taken from physical measurements
and is only known to a certain accuracy. In this case it is important to know
how sensitive the (approximate) optimal solution is to small changes in the
problem data. This area is called sensitivity analysis and is also developed
in Chapter 4.

In Chapter 5, we generalize Algorithm 2 to solve a QP having both linear
inequality and equality constraints. The resulting algorithm (Algorithm 3)
will solve a QP provided a certain nondegeneracy assumption is satisfied.
Algorithm 3 will also find an optimal solution for the dual QP. An initial
feasible point is required to start Algorithm 3. We solve this problem by
formulating an initial point problem (an LP) whose optimal solution will be
feasible for the original problem. We also specialize Algorithm 3 to solve an
LP (LP Algorithm 3) and this can be used to efficiently solve the initial point
problem.

Chapter 5 continues by noting that when a new constraint becomes active,
all of the conjugate direction built up by Algorithm 3 are destroyed and must
be rebuilt. A Householder transformation is introduced which when applied
to the existing conjugate directions will result in a new set of conjugate
directions which will not be destroyed (Algorithm 4) and this is a very efficient
and fast QP algorithm.

Both algorithms require a nondegeneracy assumption to guarantee finite
termination. We complete Chapter 5 by giving a generalization of Bland’s
rules which ensures finite termination if degeneracy is encountered. Com-
puter programs for Algorithms 3 and 4 are given.



3

Most QP algorithms are based on satisfying primal feasibility and comple-
mentary slackness at each iteration and iteratively working toward satisfying
dual feasibility. In Chapter 6, we present a dual QP algorithm (Algorithm 5)
which satisfies dual feasibility and complementary slackness at each iteration
and iteratively works to satisfy primal feasibility. An example of where this
is appropriate is the following. Suppose a QP has just been solved. But then
it is realized that additional primal constraints are necessary. So the previ-
ously optimal solution satisfies dual feasibility and complementary slackness
and so can be efficiently solved using a dual QP method.

In Chapter 7, we formulate general QP algorithms (Algorithm 6) and
PQP algorithms (Algorithm 7). These methods are general in the sense
that the method of solving certain linear equations is left unspecified. The
resulting method just contains the QP and PQP logic. The linear equations
may be sparse or contain structure like flow constraints. This structure
may be utilized to formulate a more efficient solution method. One way to
formulate an implementable version of these methods is to solve the relevant
linear equations using the inverse of the coefficient matrix. Then there are 3
possible types of updates: add a row and column, delete a row and column
and exchange a row and column. These 3 symmetric inverse updates are
developed in detail.

The Simplex Method (Algorithm 8) and Parametric Simplex Method (Al-
gorithm 9) are developed in Chapter 8. They both assume that the problem
constraint structures are of the form { x | Ax = b, x ≥ 0}, which is iden-
tical to that of the Simplex Method for LP. The efficiency of this method
is a consequence of that if the intermediate points constructed have many
variables at zero, then the linear equations that must be solved are very small
in number. This would be the case if the Hessian matrix for the problem has
low rank.

In Chapter 9, we consider the problem of nonconvex quadratic program-
ming. This type of problem may possess many local minima, a global min-
imum or be unbounded from below. We show that the first order Karush–
Kuhn–Tucker conditions are necessary for a local minimum but not in general
sufficient. We then develop the second order sufficiency conditions which with
the first order necessary conditions will guarantee that a point is a strong
local minimum.

With additional steps in Algorithm 4, we formulate a new method (Al-
gorithm 10) which will determine a strong or weak local minimum (if such a
point exists), or determine that the problem is unbounded from below.



4

Using the Included Matlab Programs

Every Matlab program shown in this book is included in the accompanying
CD. A good way to access these programs is to first make a new folder and
call it “MYQP”. Then copy the entire contents of the CD into “MYQP”.
The following instructions apply to MATLAB R2016a but other releases of
MATLAB should be similar. Start Matlab and press the “HOME” button
and then the “Set Path” button on the “HOME” page toolbar. This brings
up a window entitled “Set Path”. Press “Add Folder...” and keep browsing
until you locate the “MYQP” folder. Highlight “MYQP” and then press
the “Select Folder”. This will close the “Add Folder...” window and return
you to the “Set Path” window. At the top of this window you will see the
correct path to “MYQP”. Now press “Save” and then “Close”. All of this
sets Matlab’s path pointing to “MYQP”. This only needs to be done once.
Matlab will remember this setting when you restart Matlab.

Next, suppose you want to run eg3p3.m (Figure 3.8). Press the “EDI-
TOR” button to show the drop down menu. Then press the “OPEN” button
and then the second “Open” button. This will produce a new window con-
taining all of the Matlab programs in the book. Scroll through the names
until you come to eg3p3. Highlight this line and press “Open”. The program
eg3p3.m will now appear in the “Editor” window. The program may now be
run by pressing the “EDITOR” button and pressing the “Run” button (green
triangle icon). The output will appear in the “Command Window”. Note
that eg3p3.m references the functions checkdata, Alg1 and checkopt1. These
will be loaded automatically because they are in the “MYQP” directory.

Next suppose we want to modify the data for eg3p3. It is good practice to
make a copy of eg3p3.m. The original version of eg3p3.m thus remains intact
and a copy of it can be made as follows. Press “EDITOR”, then “New” then
“Script”. This will open a new empty window entitled ”Untitledj” where j
is some number. Press the tab eg3p3.m which will open the file eg3p3.m,
highlight the contents (press Ctrl plus a), press Ctrl plus Ins, then open
“Untitledj” and press Shift plus Ins. A copy of eg3p3.m will then appear
in the window “Untitledj”. Suppose we want to see the effect of changing
c(2) from its present value of -8 to +8. In line 3 of the “Untitledj” window,
just change the -8 to 8. Press the “EDITOR” button, choose “Save” then
“Save As...” from the drop down menu. Enter some name like eg3p3mod.m.
Now the modified example can be run by choosing “Editor”, then “Run” as



5

above.
Another useful thing is to show the intermediate calculations of an algo-

rithm. Suppose we wish to see the intermediate values of “x” in the iterations
of Algorithm 1. Open Alg1.m and observe that “x” is updated on line 49.
Remove the semi colon (;) from the end of that line, save the modified Alg1,
open an example for Alg1.m and run it. Every time line 49 is executed, the
new value of “x” will be printed. This can be done for any variable in Alg3.m.


