Math 237: Suggested problems for the final – Fall 2010.

Graphing.

- Assignment 1, # 1; also describe/sketch/visualise the surface z = f(x, y) in 3-space.
- Problem Set 1: A1 (a), (b).
- To set up the triple integrals, you should be comfortable sketching/visualising basic surfaces such as planes, paraboloids, cylinders, parabolic cylinders, cones, and spheres in 3-space. For example, sketch/visualise the following surfaces.
 - (a) x y + 2z = 4(b) x = 2y(c) 3y + 2z = 1(d) $z = 3 - x^2 - y^2$ (e) $z = \sqrt{x^2 + y^2}$ (f) $x^2 + y^2 + z^2 = 5$ (g) $x^2 + y^2 = 4$ (h) $z = x^2$ (i) $z = -2\sqrt{x^2 + y^2}$
- Sketch the following polar curves.

(a)
$$r = 3\sin\theta$$

(b)
$$r = 1 + \cos \theta$$

(c)
$$r = 2 - \sin \theta$$

(d)
$$r = 1 + 2\cos\theta$$

Limits and continuity.

- State the definition of the limit of a two variable function.
- State the definition of continuity of a two variable function.
- Assignment 1, #2.
- Problem Set 1: A2, A3, B2 (i), (ii), (iii), (iv), (v), (vii).
- Problem Set 1: C1.

Partials, linear approximations, and differentiability.

- State the definition of the first and higher order partials, and of the linear approximation of a function f of two or three variables.
- State the definition of differentiability of a function f of two variables.
- Problem Set 2: A3, A4 (iii).

Also, use the linear approximation found in A3 (b) to approximate f(3.02, -0.99), where f is the function in A3 (i). Similarly, use the linear approximation found in A3 (b) to approximate f(0.99, 1.01, -1.02), where f is the function in A3 (iii).

- For each of the following functions f, determine all the points where f is continuous and all the points where f is differentiable.
 - (a) $f(x,y) = x^2 + (3x-1)e^{y^2}$
 - (b) $f(x,y) = y\cos(x^2y 3x)$
- Assignment 2, #4; Assignment 3, ##2, 3; Assignment 4, #1 (a).

Also, in questions #2 (a), (b), and #3 on Assignment 3, determine all the points where the function f is continuous and and all the points where f is differentiable.

- Problem Set 2: A1, A2, B3 (i), (ii).
- Is the following statement true: "A function of two variables f(x, y) is differentiable at a point (a, b) if and only if its first order partials $f_x(a, b)$ and $f_y(a, b)$ both exist at (a, b)"? Justify your answer.

Hint: See question B3 (ii) on Problem Set 2.

The Chain Rule.

• Problem Set 3: A1, A2, A3, A4, A6, A17, A19.

Directional derivatives and tangent planes.

- State the definition of the directional derivative of a function f of two or three variables.
- State the definition of the tangent plane to the graph of a function of two variables f at the point (a, b, f(a, b)).
- What is the equation of the tangent plane to the level surface f(x, y, z) = k of a function of three variables f at the point (a, b, c)?
- Problem Set 3: A8, A9, A10, A14, A16, B1.
- Consider the function $f(x, y) = xy^2 3e^{x-y}$.
 - (a) What are the maximal and minimal rates of change of f at the point (1,1) and in what directions do they occur?
 - (b) Is there a direction in which the rate of change of f at the point (1,1) is 7? If your answer is yes, find all possible directions.
 - (c) Is there a direction in which the rate of change of f at the point (1,1) is 0? If your answer is yes, find all possible directions.
- The path of a space-craft is given by $(x, y, z) = (e^{2t} \cos t, e^{2t} \sin t, 2t+1)$ where t denotes time. The temperature at position (x, y, z) is given by a function $u : \mathbb{R}^3 \to \mathbb{R}$, and the temperature gradient at (1, 0, 1) is $\nabla u(1, 0, 1) = (\frac{1}{5}, -\frac{1}{3}, -\frac{1}{4})$.
 - (a) Find the velocity of the spacecraft at time t.
 - (b) At t = 0, find the rate of change of temperature experienced by the spacecraft with respect to time.
 - (c) Find the rate of change of temperature per units of distance experienced by the spacecraft if it moves in the direction (4, -1, 2) at time t = 0.

Taylor polynomials and Taylor's Theorem.

• State the definition of second degree Taylor polynomial; also state Taylor's Theorem.

- Problem Set 4: A2, B2, B4.
- Let $f(x, y) = \sin(x+2y)$. Use Taylor's Theorem to show that the error in the linear approximation $L_{(0,0)}(x, y)$ is at most $3(x^2 + y^2)$.
- Let $f(x, y) = \ln(3x 2y)$. Use Taylor's Theorem to show that the error in the linear approximation $L_{(1,1)}(x, y)$ is at most $\frac{15}{2}3^2[(x-1)^2 + (y-1)^2]$ if $1 \le x \le 3, 1 \le y \le \frac{4}{3}$.
- Let $f(x,y) = e^{xy}$. Use Taylor's Theorem to show that the error in the linear approximation $L_{(0,0)}(x,y)$ is at most $\frac{7}{2}(x^2+y^2)$ if $-1 \le x \le 0, 0 \le y \le 2$.

Critical points and optimisation problems.

- State the Second Derivative Test.
- State the Extreme Value Theorem for a function of one variable on an interval.
- State the Extreme Value Theorem for a function of two variables on a subset of \mathbb{R}^2 .
- State the Lagrange Multiplier Method for functions of two variables and for functions of three variables.
- Assignment 7, ##1, 2, 4.
- Problem Set 5: A1 (i), (iii), A3, A4, A5, A8.

Cylindrical and spherical coordinates.

• Change the following equations to cylindrical coordinates:

(a)
$$x^2 + y^2 = 4$$

(b) $z = x^2 + y^2$
(c) $z = -\sqrt{3}\sqrt{x^2 + y^2}$
(d) $z = -\sqrt{1 - x^2 - y^2}$
(e) $x^2 + y^2 + z^2 = 2z$

- Change the following equations to spherical coordinates:
 - (a) $x^{2} + y^{2} + z^{2} = 4$ (b) $x^{2} + y^{2} = 4$ (c) $z = -\sqrt{3}\sqrt{x^{2} + y^{2}}$ (d) $x^{2} + y^{2} + z^{2} = 2z$ (e) z = 5

Mappings.

- State the definition of a derivative matrix and of the Jacobian of a mapping $F : \mathbb{R}^n \to \mathbb{R}^n$ for n = 2, 3.
- State the definition of the inverse of a mapping $F : \mathbb{R}^n \to \mathbb{R}^n$ for n = 2, 3.
- State the Inverse Function Theorem.
- Assignment 8, ##2, 3, 4.
- Problem Set 7: A3, A5, A6, B1, B2.

- Find the inverse of the following mappings:
 - (a) F(x,y) = (2x 3y, x + 2y) = (u, v)
 - (b) $F(x,y) = (y + \ln x, 3y 2\ln x) = (u,v)$
 - (c) F(x,y) = (xy + x, 2xy x) = (u,v)

Moreover, for each of the above mappings, find the image under F of the rectangle $R = \{1 \le x \le 2, 2 \le y \le 4\}$.

Double and triple integrals.

- Assignment 10, ##2, 3.
- Assignment 11, ##2, 3, 8.
- Problem Set 8: A1, A3, A4, A6, A10, A11, A12.
- Problem Set 9: A1, A5, A6, A8, B1, B4.
- A city occupies the region D of the xy-plane bounded by $y = x^2$ and y = 1. The population density in the city (measured as people/unit area) depends on position (x, y), and is given by the function p(x, y) = y. How many people live in the city?
- Express the volume of the following regions as triple integrals in rectangular coordinates.
 - (a) R is the region bounded by z = y, $z = 2 y^2$, z = 0, x = 0, and x = 2.
 - (b) R is the region in the first octant bounded by $z = x^2$, $z = y^2$, and z = 1.
 - (c) R is the region bounded by z = x, 2x + z = 2, y = 0, y = 3, and z = 0.
 - (d) R is the region bounded by x + z = 1, z = 2y, y = x, and z = 0.
- Use cylindrical coordinates to solve the following questions.
 - (a) Suppose a behive is shaped like the region R below $z = 4-x^2-y^2$ and inside $x^2+y^2+z^2 = 4z$, and the number of bees per unit of volume is f(x, y, x) = 3 in R. Determine the number of bees in the hive.
 - (b) Compute the volume of the region R inside $x^2 + y^2 + z^2 = 4z$, outside $z = x^2 + y^2$, and below z = 2.
 - (c) Compute the volume of the region R inside $x^2 + y^2 = 9$, outside $z = 3\sqrt{x^2 + y^2}$, below z = 4, and above the xy-plane.
- Use spherical coordinates to solve the following problems.
 - (a) Consider a solid that has the shape of the three-dimensional region R lying inside $x^2 + y^2 + z^2 = 2$, outside $x^2 + y^2 + z^2 = 1$, below $z = \sqrt{3x^2 + 3y^2}$, above z = 0, and with $x \ge 0$. Suppose that the solid has density $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ per unit of volume at every point in R. Find the total mass of the solid.
 - (b) Compute the volume of the "ice cream cone" bounded by $x^2 + y^2 + z^2 = 2z$ and $z = \sqrt{x^2 + y^2}$.
 - (c) Evaluate $\int \int \int_{R} z dV$, where R is the region inside $x^2 + y^2 + z^2 = 1$ and outside $x^2 + y^2 + z^2 = 2z$.