
Chapter 1

Algebraic Sets

1.1 Affine Space

In elementary geometry, one considered figures with coordinates in some Carte-
sian power of the real numbers. As our starting point in algebraic geometry,
we will consider figures with coordinates in the Cartesian power of some fixed
field k.

1.1.1 Definition. Let k be a field, and let An(k) = {(a1, . . . , an) | a1, . . . , an ∈
k}. When the field is clear, we will shorten An(k) to An. We will refer to An
as affine n-space. In particular, A1 is called the affine line, and A2 is called
the affine plane.

From the algebraic point of view, the most natural functions to consider
on An are those defined by evaluating a polynomial in k[x1, . . . , xn] at a point.
Analogously, the simplest geometric figures in An are the zero sets of a single
polynomial.

1.1.2 Definition. If f ∈ k[x1, . . . , xn], a point p = (a1, . . . , an) ∈ An such
that f(p) = f(a1, . . . , an) = 0 is called a zero of f and

V(f) = {p ∈ An | f(p) = 0}

is called the zero set or zero locus of f . If f is non-constant, V(f) is called
the hypersurface defined by f . A hypersurface in An is also called an affine
surface, in order to distinguish it from hypersurfaces in other ambient spaces.

1.1.3 Examples.
(i) In R1, V(x2 + 1) = ∅, but in C1, V(x2 + 1) = {±i}. Generally, if n = 1

then V(F ) is the set of roots of F in k. If k is algebraically closed and F
is non-constant then V(F ) is non-empty.

(ii) In Z1
p, by Fermat’s Little Theorem, V(xp − x) = Z1

p.
(iii) By Fermat’s Last Theorem, if n > 2 then V(xn + yn − 1) is finite in Q2.
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(iv) In R2, V(x2+y2−1) = the unit circle in R2, and in Q2 it gives the rational
points on the unit circle. Notice the circle admits a parameterization by
rational functions as follows:

(x, y) =

(
1− t2

1 + t2
,

2t

1 + t2

)
, t ∈ R.

When t ∈ Z then we get a point in Q2.

Remark. A rational curve is a curve that admits a parameterization by rational
functions. For example, the curve in the last example is rational.

1.2 Algebraic Sets and Ideals

1.2.1 Definition. If S is any set of polynomials in k[x1, . . . , xn], we define

V(S) = {p ∈ An | f(p) = 0 for all f ∈ S} =
⋂
f∈S

V(f)

If S = {f1, . . . , fn} then we may write V(f1, . . . , fn) for V(S). A subset X ⊆ An
is an (affine) algebraic set if X = V(S) for some S ⊆ k[x1, . . . , xn]

1.2.2 Examples.
(i) For any a, b ∈ k, {(a, b)} is an algebraic set in k2 since {(a, b)} = V(x−

a, y − b).
(ii) In R2, V(y−x2, x−y2) is only 2 points, but in C2 it is 4 points. Generally,

Bézout’s Theorem tells us that the number of intersection points of a
curve of degree m with a curve of degree n is mn in projective space over
an algebraically closed field.

(iii) The twisted cubic is the rational curve {(t, t2, t3) | t ∈ R} ⊆ R3. It is an
algebraic curve; indeed, it is easy to verify that it is V(y − x2, z − x3).

(iv) Not all curves in R2 are algebraic. For example, let

X = {(x, y) | y − sinx = 0}

and suppose that X is algebraic, so that X = V(S) for some S ⊆ R[x, y].
Then there is F ∈ S such that F 6= 0 and so

X = V(S) =
⋂
f∈S

V(f) ⊆ V(F ).

Notice that the intersection of X with any horizontal line y − c = 0 is
infinite for −1 ≤ c ≤ 1. Choose c such that F (x, c) is not the zero
polynomial and notice that the number of solutions to F (x, c) = 0 is
finite, so X cannot be algebraic.

2



Remark. The method used in the last example works in more generality. Sup-
pose that C is an algebraic affine plane curve and L is a line not contained C.
Then L ∩ C is either ∅ or a finite set of points.

1.2.3 Proposition. The algebraic sets in A1 are ∅, finite subsets of A1, and
A1 itself.

Proof: Clearly these sets are all algebraic. Conversely, the zero set of any
non-zero polynomial is finite, so if S contains a non-zero polynomial F then
V(S) ⊆ V(F ) is finite. If S = ∅ or S = {0} then V(S) = A1. �

Before we continue, we recall some notation. If R is a ring and S ⊆ R, then
〈S〉 denotes the ideal generated by S1. If S = {s1, . . . , sn}, then we denote 〈S〉
by 〈s1, . . . , sn〉.

1.2.4 Proposition.
(i) If S ⊆ T ⊆ k[x1, . . . , xn] then V(T ) ⊆ V(S).
(ii) If S ⊆ k[x1, . . . , xn] then V(S) = V(〈S〉), so every algebraic set is equal

to V(I) for some ideal I.

Proof:
(i) Since S ⊆ T ,

V(T ) =
⋂
f∈T

V(f) ⊆
⋂
f∈S

V(f) = V(S).

(ii) From (i), V(〈S〉) ⊆ V(S). If x ∈ V(S) and f ∈ I then we can write f as

f = gqf1 + · · ·+ gmfm,

where fi ∈ S and gi ∈ k[x1, . . . , xn]. Then

f(x) = g1(x)f1(x) + · · ·+ gm(x)fm(x) = 0

since x ∈ V(S). �

Since every algebraic set is the zero set of an ideal of polynomials, we now
turn our attention to ideals in polynomial rings. If a ring R is such that all of
its ideals are finitely generated it is said to be Noetherian2. For example, all
fields are Noetherian. The Hilbert Basis Theorem states that all polynomial
rings with coefficients in a Noetherian ring are Noetherian.

1The ideal generated by S is the intersection of all ideals containing S. More concretely,

〈S〉 =

{
n∑

k=1

aksk : a1, . . . , an ∈ R and s1, . . . , sn ∈ S

}
.

2Some readers may be more familiar with a different definition of Noetherian in terms of
ascending chains of ideals. This definition is equivalent to ours by Proposition A.0.10.
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1.2.5 Theorem (Hilbert Basis Theorem). If R is Noetherian, then R[x1, . . . , xn]
is Noetherian.

Proof: See Appendix A. �

An important geometric consequence of the Hilbert Basis Theorem is that every
algebraic set is the zero set of a finite set of polynomials.

1.2.6 Corollary. Every algebraic set X in An is the zero set of a finite set of
polynomials.

Proof: k[x1, . . . , xn] is Noetherian, so if X = V (S), then X = V (〈S〉) =
V (S′), where S′ is a finite subset of k[x1, . . . , xn] that generates 〈S〉. �

Remark. Since V(f1, . . . , fn) =
⋂n
k=1 V(fk), the preceding corollary shows that

every algebraic set is the intersection of finitely many hypersurfaces.

1.2.7 Proposition.

(i) If {Iα} is a collection of ideals then V(
⋃
α Iα) =

⋂
α V(Iα), so the inter-

section of any collection of algebraic sets is an algebraic set.

(ii) If I and J are ideals then V(IJ) = V (I) ∪ V(J), so the finite union of
algebraic sets is an algebraic set.3

(iii) V(0) = An, V(1) = ∅, and V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)}, so
any finite set of points is algebraic.

Proof:

(i) We have

V

(⋃
α

Iα

)
=

⋂
f∈∪αIα

V(f) =
⋂
α

⋂
f∈Iα

V(f) =
⋂
α

V(Iα).

3Recall that the product of I and J is the ideal generated by products of an element
from I and an element from J . More concretely,

IJ =

{
n∑

k=1

akbk : a1, . . . , an ∈ I and b1, . . . , bn ∈ J

}
.
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(ii) Since (gh)(x) = 0 if and only if g(x) = 0 or h(x) = 0,

V(IJ) =
⋂
f∈IJ

V(f)

=
⋂

g∈I,h∈J

V(gh)

=
⋂

g∈I,h∈J

V(g) ∪V(h)

=
⋂
g∈I

V(g) ∪
⋂
h∈J

V(h)

= V(I) ∪V(J).

(iii) This is clear. �

Remark. Note that finiteness of the union in property (ii) is required; for ex-
ample, consider Z in R. It is not an algebraic set, because a polynomial over a
field can only have finitely many roots, but it is the union of (infinitely many)
algebraic sets, namely V(x− n) for n ∈ Z.

The properties in Proposition 1.2.7 allow us to define a topology4 on An
whose closed sets are precisely the algebraic sets.

1.2.8 Definition. The topology on An whose closed sets are precisely the
algebraic sets is called the Zariski topology .

Remark. When k is one of Q, R, or C, the Zariski topology is weaker than the
usual metric topology, as polynomial functions are continuous, so their zero
sets are closed. However, in each of these cases, the Zariski topology is strictly
weaker than the metric topology. For example, Z is closed in the usual topology
of each of Q, R, or C, but is not algebraic and thus is not closed in the Zariski
topology.

1.2.9 Example. The non-empty open sets in the Zariski topology on the affine
line A1 are precisely the complements of finite sets of points. However, this is
not true for An when k is infinite and n > 1. For example, V(x2 + y2 − 1), the
unit circle in R2, is closed but is not finite. Moreover, note that the Zariski
topology on An is Hausdorff5 if and only if k is finite, in which case it is identical
to the discrete topology.

4A topology on a set X is a collection τ of subsets of X that satisfies the following
properties:

(i) ∅, X ∈ τ ,
(ii) if Gi ∈ τ for every i ∈ I then

⋃
i∈I Gi ∈ τ ,

(iii) if G1, G2 ∈ τ then G1 ∩G2 ∈ τ .

The sets in τ are said to be open, and their complements are said to be closed .
5Recall that a topology is said to be Hausdorff if distinct points always have disjoint

open neighbourhoods.
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We have associated an algebraic subset of An to any ideal in k[x1, . . . , xn]
by taking the common zeros of its members. We would now like to do the
converse and associate an ideal in k[x1, . . . , xn] to any subset of An.

1.2.10 Definition. Given any subset X ⊆ An we define I(X) to be the ideal
of X,

I(X) = {f ∈ k[x1, . . . , xn] | f(p) = 0 for all p ∈ X}.

1.2.11 Examples.
(i) The following ideals of k[x] correspond to the algebraic sets of A1: I(∅) =
〈1〉, I({a1, . . . , an}) = 〈(x− a1) · · · (x− an)〉, and

I(A1) =

{
0 if k is infinite,

〈xpn − x〉 if k has pn elements.

Note that if X ⊆ A1 is infinite then k is infinite and I(X) = 0.
(ii) In A2, I({(a, b)}) = 〈x− a, y − b〉. Clearly

〈x− a, y − b〉 ⊆ I({(a, b)}),

so we need only prove the reverse inequality. Assume that f ∈ I({(a, b)}).
By the division algorithm, there is g(x, y) ∈ k[x, y] and r(y) ∈ k[y] such
that

f(x, y) = (x− a)g(x, y) + r(y).

But 0 = f(a, b) = r(b), so y − b divides r(y) and we can write we can
write r(y) = (y − b)h(y), and hence

f = (x− a)g + (y − b)h ∈ 〈x− a, y − b〉.

1.2.12 Proposition.
(i) If X ⊆ Y ⊆ An then I(Y ) ⊆ I(X).
(ii) I(∅) = k[x1, . . . , xn].

I({(a1, . . . , an)}) = 〈x1−a1, . . . , xn−an〉 for any point (a1, . . . , an) ∈ An.
I(An) = 0 if k is infinite.

(iii) S ⊆ I(V(S)) for any set of polynomials S ⊆ k[x1, . . . , xn].
X ⊆ V(I(X)) for any set of points X ⊆ An.

(iv) V(I(V(S))) = V(S) for any set of polynomials S ⊆ k[x1, . . . , xn].
I(V(I(X))) = I(X) for any set of points X ⊆ An.

Proof:
(i) If f is zero on every point of Y then it is certainly zero on every point of

X.
(ii) See example 1.2.11.
(iii) These follow from the definitions of I and V.
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(iv) From (iii), V(S) ⊆ V(I(V(S))), and by Proposition 1.2.4 (i), V(I(V(S))) ⊆
V(S) since S ⊆ V(I(S)). Therefore V(S) = V(I(V(S))). The proof of
the second part is similar.

Remarks.
(i) As is shown in the proof of part (ii) of the last proposition, the ideal
〈x1 − a1, . . . , xn − an〉 of any point (a1, ..., an) ∈ An is maximal.

(ii) Equality does not always hold in part (iii) of the last proposition, as
shown by the following examples:

(a) Consider I = 〈x2 + 1〉 ⊆ R[x]. Then 1 /∈ I, so I 6= R[x]. But
V(I) = ∅, so I(V(I)) = R[x] % I.

(b) Consider X = [0, 1] ⊆ R. Then I(X) = 0 and V(I(X)) = R % X.

These examples also show that not every ideal of k[x1, . . . , xn] is the ideal
of a set of points and that not every subset of An is algebraic.

We have a correspondence between subsets of An and ideals of k[x1, . . . , xn]
given by

X 7→ I(X) and I 7→ V (I).

By part (iv) of the last proposition, this correspondence is one-to-one when
restricted to algebraic sets and ideals of sets of points. Given that not every
subset of An is algebraic and not every ideal of k[x1, . . . , xn] is the ideal of a
set of points, we would like to examine the smallest algebraic set containing
an arbitary subset of An and the smallest ideal of a set of points containing an
arbitrary ideal of k[x1, . . . , xn].

1.2.13 Definition. Let X ⊆ An and I ⊆ k[x1, . . . , xn] be an ideal. The
closure of X (in the Zariski topology) is the smallest algebraic set containing
X (i.e. the smallest closed set containing X), and is denoted X. The closure
of I is the smallest ideal of a set of points that contains I, and is denoted I. If
I = I, we say that I is closed .

Remark. Note that I is the ideal of a set of points if and only if I = I.

1.2.14 Proposition.
(i) If X ⊆ An, then X = V(I(X)).

(ii) If I ⊆ k[x1, . . . , xn] is an ideal, then I = I(V(I)).

Proof: We will only prove (i), as the proof of (ii) is very similar. By part
(iii) of Proposition 1.2.12, we have X ⊆ V(I(X)) Since V(I(X)) is an algebraic
set, X ⊆ V(I(X)). Conversely, since X ⊆ X, V(I(X)) ⊆ V(I(X)). By part
(ii) of Proposition 1.2.7, we have V(I(X)) = X, because X is an algebraic set.
Therefore, V(I(X)) ⊆ X, showing that X = V(I(X)). �
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1.2.15 Examples.
(i) If X = (0, 1) ⊆ R, then the closure of X in the metric topology is [0, 1],

whereas the closure of X in the Zariski topology is R.

(ii) If k is infinite and X ⊆ A1 is any infinite set of points then X = A1.
In particular, the Zariski closure of any non-empty open set is the whole
line, or every non-empty open set is Zariski dense in the affine line.

(iii) Let I = 〈x2〉. Then I = I(V(I)) = 〈x〉, so that I 6= I and I is not an
ideal of a set of points.

1.3 Radical Ideals and the Nullstellensatz

In the previous section, we examined algebraic sets and ideals of sets of points.
We saw that every algebraic set is the zero set of a finite set of polynomials.
In this section, we will look for an intrinsic description of ideals of sets of
points. We have already seen that not every ideal is the ideal of a set of points.
Intuitively, an ideal I of k[x1, . . . , xn] is the ideal of a set of points whenever its
generators intersect with the smallest possible multiplicity. However, since the
multiplicity of any intersection is lost when we take the zero set of an ideal, as
sets do not have any way of keeping track of multiplicity, we should not expect
to get it back when we again take the ideal of that zero set.

1.3.1 Examples.
(i) Let I = 〈x2+y2−1, x〉 ⊆ R[x, y]. The set V(x2+y2−1) is the unit circle,

and V(x) is the vertical line through the origin. The line intersects the
circle twice, each time with “multiplicity one”. Therefore, our intuition
would lead us to think that I is a closed ideal. This is correct, as

I = I(V(I)) = I({(0,−1), (0, 1)}) = 〈x, y2 − 1〉 = I.

(ii) Let I = 〈x2 + y2 − 1, x− 1〉 ⊆ R[x, y]. The set V(x2 + y2 − 1) is the unit
circle, and V(x − 1) is the vertical line that is tangent to the circle at
(1, 0). Because it only intersects the circle at one point, the intersection is
with “multiplicity two”. Therefore, our intuition would lead us to think
that I is not a closed ideal. This is indeed the case, as

I = I(V(I)) = I({(1, 0)}) = 〈x− 1, y〉 6= I.

The zero sets of the generators of I are a vertical line through (1, 0) and a
horizontal line through the origin, which intersect once at the point (1, 0)
with “multiplicity one”, again confirming our intuition.

Algebraically, if I = I(X) for some X ⊆ An then I is radical. Recall that
an ideal I is radical if I is equal to its radical ideal

√
I,

√
I = {a ∈ R | an ∈ I for some n > 0}.
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Equivalently, I is radical if the following condition holds:

an ∈ I implies that a ∈ I for all a ∈ R and n > 0.

(See Proposition A.0.15.)

1.3.2 Examples.
(i) If X ⊆ An then I(X) is radical, because f(x) = 0 whenever fn(x) = 0.
(ii) Every prime ideal is radical. For a proof, see Proposition A.0.16. How-

ever, not every proper radical ideal is prime. For example, the ideal

〈x(x− 1)〉 = I({0, 1})

of k[x] is radical, but it is not prime.
(iii) Let I = 〈x2 + y2 − 1, x− 1〉 ⊆ R[x, y]. Then y2 ∈ I, because

y2 = (x2 + y2 − 1)− (x + 1)(x− 1),

but y /∈ I, simply because of the degrees of the y terms in the generators.
Hence I is not radical. We already examined this example geometrically
above.

(iv) Let I = 〈y − x2, y − x3〉. If u = x(x− 1), then

u2 = [(y − x2)− (y − x3)](x− 1) ∈ I,

but u /∈ I, because of the degrees of the x terms in the generators. Hence I
is not radical. Geometrically, V(y − x2) is an upwards parabola through
the origin, and V(y − x3) intersects it twice, at the origin and at the
point (1, 1). There are only two points of intersection, yet the degrees
of the polynomials involved imply that there should be three, including
multiplicity. Thus one of the points of intersection (in fact, the origin)
has “multiplicity two”.

We saw in the first of the above examples that if I is the ideal of a set of
points then I is radical. Is the converse true? That is, if I is radical is it true
that I = I?

1.3.3 Proposition. If I is an ideal of k[x1, . . . , xn], then I ⊆
√
I ⊆ I. In

particular, a closed ideal is radical.

Proof: Clearly, I ⊆
√
I. Suppose f ∈

√
I. Then fn ∈ I for some n ≥ 1. Since

fn(x) = 0 if and only if f(x) = 0, we have f ∈ I(V(I)). By Proposition 1.2.14,
I = I(V(I)), so f ∈ I. Therefore,

√
I ⊆ I. �

It follows from the previous proposition that if I =
√
I then I = I if and

only if
√
I = I(V(I)). However, if k is not algebraically closed, it often happens

that
√
I 6= I(V(I)):
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1.3.4 Example. The polynomial x2 + 1 ∈ R[x] is irreducible, so the ideal
〈x2 + 1〉 is maximal. Hence it is radical, and it is obviously proper. However,

I(V(x2 + 1)) = I(∅) = k[x]

so 〈x2 + 1〉 is not an ideal of a set of points. Clearly, x2 + 1 can be replaced by
any irreducible polynomial of degree at least 2 in any non-algebraically closed
field.

However, the lack of algebraic closure in the base field is actually necessary
for a counterexample. If the base field is algebraically closed, I =

√
I. This

result is due to Hilbert and is known as the Nullstellensatz, which is German
for “zero points theorem”.

1.3.5 Theorem (Nullstellensatz). Suppose k is algebraically closed, and let
I ⊆ k[x1, . . . , xn] be an ideal. Then I(V(I)) =

√
I, so I =

√
I and I is the ideal

of a set of points if and only if I =
√
I.

Proof: To come soon. �

A related question is the characterization of maximal ideals of k[x1, . . . , xn].
We have seen that the ideal of a single point (a1, . . . , an) ∈ An is the maximal
ideal 〈x1 − a1, . . . , xn − an〉. Are all maximal ideals of k[x1, . . . , xn] of this
form? Again, the example of 〈x2 + 1〉 in R[x] shows this to be false in general.
However, this is true when k is algebraically closed. Indeed, if I is a maximal
ideal of k[x1, . . . , xn] then I is radical, so by the Nullstellensatz I is the ideal
of a set of points. Since I is a maximal ideal and taking zero sets reverses
inclusions, V(I) is a non-empty minimal algebraic set, which must consist of a
single point (a1, . . . , an) ∈ An.
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Appendix A

Some Ring Theory

A.0.6 Definition. A principal ring is a ring for which every ideal is generated
by a single element. A principal integral domain is called a principal ideal
domain, or PID for short.

A.0.7 Proposition. k[x] is a PID.

Proof: Since k[x] is clearly an integral domain, we only need to show that
it is principal. Let I be an ideal of k[x], and let f be a monic polynomial of
minimum degree in I. First, we show that f is unique, i.e. if g is another monic
polynomial in I such that deg(g) = deg(f), then f = g. Let h = f − g. Then
h ∈ I, and since deg(h) < deg(f) we must have h = 0, so g = f .

We now show that I = 〈f〉. Since f ∈ I, we have 〈f〉 ⊆ I. To establish the
reverse inclusion, fix g ∈ I. By the division algorithm, there exist q, r ∈ k[x]
such that r is monic, g = qf + r, and either r = 0 or deg(r) < deg(f). Since I
is an ideal, r = g − qf ∈ I. By the minimality of the degree of f , we can not
have deg(r) < deg(f), so r = 0. Therefore, g = qf and g ∈ 〈f〉. Since g ∈ I
was arbitrary, this shows that I ⊆ 〈f〉, and thus I = 〈f〉. �

A.0.8 Proposition. If n > 1, k[x1, . . . , xn] is not principal.

Proof: Suppose that I is principal. Let I = 〈x1, . . . , xn〉. Then I = 〈p〉
for some p ∈ k[x1, . . . , xn]. Hence p|q for every q ∈ I. In particular, q|xi
for 1 ≤ i ≤ n. Since the only elements in k[x1, . . . , xn] that divide every
indeterminate are the non-zero scalars, p must be a scalar. However, this a
contradiction, as there are no non-zero scalars in I. Therefore, our assumption
that I is principal is false, and k[x1, . . . , xn] is not principal. �

A.0.9 Definition. We say that a ring R is Noetherian if every ideal of R is
finitely generated.

A.0.10 Proposition. Let R be a ring. Then the following are equivalent:
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(i) R is Noetherian,
(ii) R satisfies the ascending chain condition on ideals, i.e. if

I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · ·

is a chain of ideals of R, there exists a k ∈ N such that

Ik = Ik+1 = · · · = Ik+n = · · · .

Proof: Suppose R is Noetherian, and let

I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · ·

be a chain of ideals of R. Let

I =
⋃
k∈N

Ik.

In general, the union of ideals is not an ideal, but the union of an increasing
chain of ideals can easily be seen to be an ideal. Thus I is an ideal. Since R
is Noetherian, I is finitely generated, i.e. there exist a1, . . . , am ∈ I such that
I = 〈a1, . . . , am〉. Let k ∈ N be such that a1, . . . , am ∈ Ik. Then

I = Ik = Ik+1 = · · · = Ik+n = · · · .

Conversely, suppose R satisfies the ascending chain condition but is not
Noetherian, and let I be an ideal of R that is not finitely generated. Pick
a0 ∈ I, and let I0 = 〈a0〉. Since I is not finitely generated, I0 6= I. Pick
a1 ∈ I \ I0, and let I1 = 〈a0, a1〉. Since I is not finitely generated, I0 ( I1 6= I.
Continuing by induction, we get an increasing chain of ideals

I0 ( I1 ( · · · ( In ( · · · ,

in contradiction to the ascending condition on R. Therefore, our assumption
that R is not Noetherian is false. �

We now establish that polynomial rings over an arbitrary Noetherian ring
are Noetherian.

A.0.11 Theorem (Hilbert Basis Theorem). If R is a Noetherian ring, then
R[x] is Noetherian.

Proof: Suppose R[x] is not Noetherian, and let I is an ideal of R[x] that is not
finitely generated. Let f0 be a polynomial of minimum degree in I. Continuing
by induction, let fk+1 be a polynomial of minimum degree in I \ 〈f0, . . . , fk〉.
For every k ∈ N, let dk = deg(fk), and let ak be the leading coefficient of fk,
and let J = 〈{ak : k ∈ N}〉. Since R is Noetherian and

〈a0〉 ⊆ 〈a0, a1〉 ⊆ · · · 〈a0, . . . , an〉 ⊆ · · ·
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is an increasing chain of ideals whose union is J , there exists an n ∈ N such
that J = 〈a0, . . . , an〉.

Let I0 = 〈f0, . . . , fn〉. By construction, fn+1 /∈ I0. Since J = 〈a0, . . . , an〉
and an+1 ∈ J , there exist b0, . . . , bn ∈ R such that an+1 = b0a0 + · · · + bnan.
Then, as fn+1 ∈ I \ I0, we have

g = mn+1 − xdn+1−d0b0f0 − · · · − xdn+1−dnbnfn ∈ I,

so deg(g) < deg(fn+1). However, g /∈ I0, as fn+1 /∈ I0, contradicting the mini-
mality of deg(fn+1). Therefore, our assumption that R[x] is not Noetherian is
false. �

A.0.12 Corollary. If R is a Noetherian ring, then R[x1, . . . , xn] is Noetherian.

Proof: Since R[x1, . . . , xn+1] ∼= R[x1, . . . , xn][xn+1], the result follows by in-
duction from the Hilbert Basis Theorem. �

A.0.13 Definition. Let R be a ring, and I an ideal in R. The radical of I is
the ideal √

I = {a ∈ R | an ∈ I for some n > 0}.
If I =

√
I, we say that I is radical .

A.0.14 Proposition. Let R be a ring, and I an ideal of R. Then
√
I is an

ideal of R.

Proof: If a ∈ R and b ∈
√
I, then bn ∈ I for some n > 0, so

(ab)n = anbn ∈ I,

and ab ∈
√
I. If a, b ∈

√
I, am ∈ I and bn ∈ I for some m,n > 0. Therefore,

by the Binomial Theorem,

(a + b)m+n+1 =

m+n+1∑
k=0

(
m + n− 1

k

)
akbm+n−1−k.

For every k ∈ N, either k ≥ m, or m−1 ≥ k and m+n−1−k ≥ n. This implies
that for any k ∈ N, either ak ∈ I or bm+n−1−k ∈ I. Therefore, every term of
the series expansion of (a + b)m+n+1 is in I, showing that (a + b)m+n+1 ∈ I,
or a + b ∈

√
I. Therefore,

√
I is an ideal. �

A.0.15 Proposition. Let R be a ring, and I an ideal of R. Then I is radical
if and only if an ∈ I implies that a ∈ I for all a ∈ R and n > 0.

Proof: Suppose I is radical and an ∈ I. Then a ∈
√
I = I. Conversely,

suppose that an ∈ I implies that a ∈ I for all a ∈ R and n > 0. Clearly,
I ⊆
√
I, so we only need to show that

√
I ⊆ I. If a ∈

√
I then an ∈ I for some

n > 0. Thus a ∈ I, showing that
√
I ⊆ I and that I is radical. �
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A.0.16 Proposition. Let R be a ring, and I a prime ideal of R. Then I is
radical.

Proof: Given a ∈ R and n > 0 such that an ∈ I, we will show that a ∈ I by
induction on the n such that an ∈ I. If n = 1 and an ∈ I, then clearly a ∈ I.
Suppose that bn ∈ I implies b ∈ I, and that an+1 ∈ I. Since I is prime, either
a ∈ I or an ∈ I, in which case we also have a ∈ I by our induction hypothesis.
Therefore, by Proposition A.0.15, I is radical. �
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