Suggested triple integrals.

- 1. Express the volume of the following regions as triple integrals in rectangular coordinates.
 - (a) R is the region bounded by z = y, $z = 2 y^2$, z = 0, x = 0, and x = 2.
 - (b) R is the region in the first octant bounded by $z = x^2$, $z = y^2$, and z = 1.
 - (c) R is the region bounded by z = x, 2x + z = 2, y = 0, y = 3, and z = 0.
 - (d) R is the region bounded by x + z = 1, z = 2y, y = x, and z = 0.
- 2. Compute the volume of the "ice cream cone" bounded by $x^2 + y^2 + z^2 = 2z$ and $z = \sqrt{x^2 + y^2}$ by using (a) cylindrical coordinates, (b) spherical coordinates.
- 3. Use cylindrical coordinates to solve the following questions.
 - (a) Suppose a behive is shaped like the region R below $z = 4 x^2 y^2$ and inside $x^2 + y^2 + z^2 = 4z$, and the number of bees per unit of volume is f(x, y, x) = 3 in R. Determine the number of bees in the beehive.
 - (b) Compute the volume of the region R inside $x^2 + y^2 + z^2 = 4z$ and below both $z = x^2 + y^2$ and z = 2.
- 4. Use spherical coordinates to solve the following problems.
 - (a) Consider a solid that has the shape of the three-dimensional region R lying inside $x^2 + y^2 + z^2 = 2$, outside $x^2 + y^2 + z^2 = 1$, below $z = \sqrt{3x^2 + 3y^2}$, above z = 0, and with $x \ge 0$. Suppose that the solid has density $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ per unit of volume at every point in R. Find the total mass of the solid.
 - (b) Evaluate $\int \int \int_R z dV$, where *R* is the region inside $x^2 + y^2 + z^2 = 1$ and outside $x^2 + y^2 + z^2 = 2z$.