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Introduction

Loosely speaking, Ramsey Theory is the study of objects for which, at a large enough

scale, contain a certain amount of order. Starting at the basis of Ramsey Theory, we build

a machinery up in the goal of understanding and proving Hindman’s, and Hales and

Jewett’s theorems using the theory of ultrafilters. The latter theorem can be informally

understood as for high enough dimension, a high dimensional generalization of tic-tac-

toe cannot end in a draw. The structure and content of this paper follows the first chapters

of Stevo Todorcevic’s Introduction to Ramsey Spaces [3] quite closely. Finally, it cannot be

overstated that this project was only made possible through the help and guidance of

Prof. Marcin Sabok.
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Ultrafilters

It turns out that many Ramsey theoretic results can be deduce using set theory, specifi-

cally using a set of tools related to ultrafilters. The purpose of this section is to introduce

ultrafilters, and give some intuition behind them. We note that the notion of an ultra-

filter can be built up from the notion of either coideals or from filters. For the sake of

conciseness, we only do the latter. Below we consider some set S with partial order ≤.

Definition 2.1 (Filter). F ⊆ S is a filter if the following hold:

• F is nonempty

• For every x, y ∈ F , there exists some z ∈ F such that z ≤ x and z ≤ y.

• For every x ∈ F and y ∈ S, if x ≤ y, then y is also in F .

We say a filter is proper if it is not equal to the whole set. Together with a notion of

maximal, we obtain the definition of an ultrafilter, namely

Definition 2.2 (Ultrafilter). U ( S is an ultrafilter if U is a filter and if U is not a proper subset

of any other filter F ( S.

We note that an ultrafilter U on S may be considered a finitely additive measure on

S, where every subset of S either has measure 0 or 1 depending on whether it belongs

to U or not. Conversely, a non-trivial 0, 1-valued finitely additive measure on the power

set P (S) of S induces an ultrafilter on S. A simple example of ultrafilters are so called

principal ultrafilters. These ultrafilters are of form {X ⊆ I : k ∈ X} for some k ∈ I , where
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I is some index set, for example, I = N. However, most ultrafilters that we are interested

in are nonprincipal, i.e. are not of this form, and cannot even be described constructively.

To understand this we give the proposition below. Note that for any set of sets, inclusion

is a partial order, and recall the definition of a chain, a totally ordered subset of a partially

ordered set. We use the following lemma due to Kuratowski and Zorn, equivalent to the

axiom of choice [2]:

Lemma 2.3 (Kuratowski-Zorn). If P (together with ≤) is a partially ordered set such that every

chain in P has an upper bound, then P has a maximal element.

Proposition 2.4. For every infinite set I there exists a nonprincipal ultrafilter U ⊂ P (I).

Proof. We use the filter F of all subsets of I whose complement is finite, i.e. F = {X ⊆

I : I \ X is finite}. It is clear that this is a filter (it is often referred to as the Fréchet filter

on I). Consider the set of filters G = {G ⊆ P (I) : G is a filter,F ⊆ G}. This is a partially

ordered set with respect to inclusion. Moreover, noting that the union of a chain of proper

filters is a proper filter, any such chain has this union as an upper bound. Thus, we can

apply the Kuratowski-Zorn lemma (2.3), and obtain a maximal filter U in G, thus U is an

ultrafilter.

A key property is that a given ultrafilter U can be associated with a quantifier (Ux),

where x ranges over elements in S. We mean by this that given a property ϕ(x) of ele-

ments of S, we write (Ux)ϕ(x) to signify {x ∈ S : ϕ(x)} ∈ U . We make extensive use of

this in our section concerning semigroup colorings. We now give some nice properties

of such quantifiers, stating that these quantifiers interact with ∧,∨, and ¬ as one might

wish.

Proposition 2.5.

(1) (Ux)ϕ0(x) ∧ (Ux)ϕ1(x) is equivalent to (Ux)(ϕ0(x) ∧ ϕ1(x)).

(2) (Ux)ϕ0(x) ∨ (Ux)ϕ1(x) is equivalent to (Ux)(ϕ0(x) ∨ ϕ1(x)).
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(3) ¬(Ux)ϕ(x) is equivalent to (Ux)¬ϕ(x).

An interesting concept is the power of an ultrafilter. Let U be an ultrafilter on N. For a

set S we denote by S[k] the set of k-element subsets, borrowing notation from Todorcevic,

as we will for most notation hereinafter. For some positive integer k, Uk is an ultrafilter

on N[k], defined as follows

A ∈ Uk iff (Ux0)(Ux1) . . . (Uxk−1
){x0, x1, . . . , xn} ∈ A.
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Ramsey Theory

A simple and well known example, often seen in a first encounter to Ramsey theory is the

following:

Fact. In any group of six people, either at least three people pairwise know each other, or at least

three people pairwise do not know each other.

A more general question here would be: given integers m,n what is the smallest inte-

ger k for which at least m people pairwise know each other, or at least n people do not?

In other words: what is the smallest integer k such that any 2-coloring of the complete

graph on K vertices Kk either contains an m-clique of color 1, or an n-clique of color 2?

These numbers are usually denoted R(m,n) and are known as Ramsey numbers. R(m,n)

is well defined for all natural numbers. Generalizations of this idea exists to hypergraphs

and to forcing other subgraphs than cliques. We now give a generalization of the above

number to a finite number of colors instead of just two, and the result for an infinite com-

plete graph. The original proof of which was a corollary of the following infinite version

of this, due to Frank Plumpton Ramsey:

Theorem 3.1 (Ramsey). Color the edges of a complete graph on an infinite number of vertices

using a finite number of colors. Then there exists an infinite subset of vertices in which all edges

between vertices in this subset have the same color.

Proof. Note first that a partition of an infinite set into a finite number of sets must contain

a infinite set (this is the statement of Ramsey’s theorem for 1-graphs). Let the graph
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described have vertex set V0, and consider an arbitrary vertex v0 ∈ V0. Clearly, some color

c0 is the color of infinitely many edges incident to v0. Denote by V1 the set of vertices

joined by these edges. We can iterate the process above to obtain a vertex v1 ∈ V1, a color

c1 and another set of vertices V2. Repeating this, we obtain sets an infinite sequence of

sets V0, V1, V2, . . . , observing that V0 ⊃ V1 ⊃ V2 ⊃ . . . , with corresponding vi and ci (with

colors possibly repeated). By construction, for i < j, an edge (v1, vj) is colored ci. In

the sequence of colors c1, c2, . . . there is at least one color, say c, repeated infinitely often.

Define now C = {vi : ci = c}. We are done by applying the previous observation and

noting that C is infinite.

Constructing an analogous sequence of sets for hypergraphs yields a more general

result we state soon. Since the main point of view of this paper is that of set theory,

we note that edges are just pairs of vertices, i.e. 2-element subsets; with the analogous

observation for r-graphs, edges are r-element subsets. Now, theorem (3.1) more generally

and in this new language

Theorem 3.2 (Ramsey). For every positive integer k and every finite coloring of N[k], there is an

infinite subset M of N such that M [k] is monochromatic, i.e. all sets in M are colored the same

color.

This result can be applied to obtain some results on relations, inlcuding the Erdós-

Rado theorem (3.5) we see soon. First, a definition:

Definition 3.3. Fix k a positive integer. For a sequence ρ ∈ {<,=, >}k×k, we define a relation

Rρ ⊆ Nkby

Rρ(x) iff (∀(i, j) ∈ k × k)xiρ(i, j)xj.

Relations on N formed from disjunctions of relations of the above form are called

canonical k-ary relations. With this in mind, Ramsey arrived at the following theorem:

Theorem 3.4. For every positive integer k and every relation S ⊆ Nk there is an infinite subset

M of N and a canonical k-ary relation R on N such that S ∩Mk = R ∩Mk.
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The proof consists of bounding the number of equivalence classes a certain equiva-

lence relation E corresponding to S has, and then applying (3.2). Using this result, Erdós

and Rado proved the following:

Theorem 3.5. For every equivalence relation E on N[k] there is an infinite subset M of N and an

index set I ⊆ {0, 1, . . . , k − 1} such that E|M [k] = EI |M [k] .

Proof. We define a relation RE as follows

RE = {(x0, . . . , x2k−1) ∈ N2k : {x0, . . . , x2k−1}E{x0, . . . , x2k−1}}.

By (3.4), we haveM and infinite subset of N and a sequence of symbols Σ ⊆ {<,=, >}2k×2k

such that RE is equal to the disjunction of relations Rρ with ρ ∈ Σ. Let

I = {i < k : (∀ρ ∈ Σρ(i, k + i) = =}.

Let N ⊂ M such that between every two integers of N there is at least one integer of

M . We show that E|N [k] = EI |N [k]. Suppose s, t ∈ N [k] in increasing order agree on

indices from I . We show that s and t are equivalent with respect to E. We do this done

by induction on the cardinality of the set

D(s, t) = i < k : si 6= ti,

i.e. the number of positions where the two sets or sequences differ. Clearly, if D(s, t), we

are done. Suppose now that D(s, t) = {i} for some i. Since i 6= I , we must have some

ρ ∈ Σ where the relation between i and k + i is not equality. By the choice of N , we can

find u s.t. sEu and tEu. By transitivity, we conclude sEt. The case of |D(s, t)| ≥ 2 is

reduced to a previous case by choosing a minimal i and replacing the ith member of t by

si to obtain t′. By transitivity and the induction hypothesis, the rest follows from the base

case. The converse of the statement has a clear proof with appropriate choice of ρ.
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Results on Semigroup Colorings

In this section we define semigroups and give some nice properties of these. We use

this and the prior notion of ultrafilters to arrive at our final destination: the theorem of

Hindman, and the theorem of Hales and Jewett. First, however, a small tangent into (the

axiomatization of) set theory.

4.1 Semigroup foundations

A semigroup is an algebraic structure; it is a generalization of a group without requiring

the existence of an identity element or inverses. Formally:

Definition 4.1 (Semigroup). A semigroup (S, ·) is a set S together with an associative binary

operation “·”, i.e. the following holds:

∀x, y, z ∈ S, (a · b) · c = a · (b · c).

Recall the notion of a Hausdorff topology: for any two distinct points there exist neigh-

bourhoods of each which are disjoint from each other. For example, any metric space is

Hausdorff with respect to the metric. With this in mind, we have the following definition:

Definition 4.2 (Compact semigroup). A compact semigroup is a non-empty semigroup to-

gether with a Hausdorff topology for which the map

x 7→ xs
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is continuous for all s ∈ S.

Definition 4.3 (Idempotent). An element x of a (compact) semigroup S is idempotent if x2 =

x.

As a consequence of the Kuratowski-Zorn lemma (2.3), we have the following key

result:

Lemma 4.4 (Ellis). Every compact semigroup S has an idempotent.

Proof. By compactness and Zorn’s Lemma, there is a minimal compact subsemigroup of

S, say R. As R is non-empty, take s ∈ R. We have that Rs is a compact semigroup.

Since it is closed under the semigroup operation, and since R is minimal, R = Rs. Let

P = {x ∈ R : xs = s}. Then, since s ∈ Rs, P is non-empty, so P = R. Hence, s ∈ P ,

moreover, s2 = s.

This lemma has some important consequences, as we see now and also later on. Fix a

compact semigroup S.

Definition 4.5 (Left-ideal). A left-ideal of S is a nonempty subset I of S such that SI ⊆ I .

Similarly, when IS ⊆ I , we say I is a right-ideal. In the context of compact semigroups,

left-ideals are of greater interest than their counterpart. For example, note that for every

x ∈ S, Sx is a closed left-ideal, so every minimal left-ideal is closed. If a left-ideal is

minimal among all closed left-ideals, then it is also minimal among all left- ideals. Now,

every closed ideal of S is a compact subsemigroup of S, so by(4.4) it contains idempotents.

As we will now see, idempotents belonging to minimal left-ideals are rather special. We

now define a transitive and antisymmetric order ≤ on S

x ≤ y iff xy = yx = x.

Since x ≤ x occurs if and only if x2 = x, ≤ is a partial order on the idempotents of S.

Here is a consequence of Ellis’s lemma that we will use to prove the Infinite Hales-Jewett

theorem (4.19).
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Lemma 4.6. If y is an idempotent and if I is a closed left-ideal, then the left-ideal Iy contains an

idempotent x such that x ≤ y.

The proof below consist of simple algebraic manipulation and repeated application of

the idempotent definition.

Proof. By (4.4), there is some idemoptent w in Iy. Let v ∈ I satisfy w = vy, and let x = yw.

Using the fact that y and w are idempotents, it follows that

x2 = yvyyw = yvyw = yww = yw = x,

i.e. x is an idempotent. Observe also that

yx = yyw = yw = x,

and

xy = yvyy = yvy = x.

Hence, x ≤ y as desired.

From (4.6) we have two corollaries, noting that an idempotent belonging to a minimal

left ideal is minimal with respect to ≤.

Corollary 4.7. An idempotent is minimal if and only if it belongs to some minimal left-ideal.

Corollary 4.8. Any ideal which is both a left- and right-ideal of S contains all the minimal idem-

potents of S.

4.2 A Connection to Ultrafilters: The Galvin-Glazer Theorem

The following theory can be stated mostly in terms of semigroups; however, it can also

be stated in slightly more general terms without much increase in difficulty. Thus, we

generalize the notion of a semigroup to the notion of a partial semigroup.
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Definition 4.9 (Partial semigroup). A partial semigroup is a set S together with a partial map

∗ : S2 → S satisfying associativity, i.e. whenever one of (x ∗ y) ∗ z and x ∗ (y ∗ z) is defined, so is

the other, and equality holds.

We say that a partial semigroup is directed if for every finite sequence (xi)
n
i=1 of ele-

ments of S there exists y ∈ S such that y and xi are distinct for all i ∈ [n] and such that

xi ∗ y is defined for these i.

We now arrive at a connection to ultrafilters. Given a directed partial semigroup (S, ∗),

define γS to be the space of all ultrafilters cU on S satisfying

(∀x ∈ S){y ∈ S : x ? y} ∈ U .

We can consider γS a nonempty closed subspace of the Čech-Stone compactification1 βS,

i.e. we consider it a compact Hausdorff space with the topology generated by the sets of

form

Ā = {U ∈ γS : A ∈ U}

where A ⊆ S. We can extend the partial semigroup operation ∗ on S to a total operation ∗

on γS defined using ultrafilter quantifiers as

U ∗ V = {A ⊆ S : (Ux)(Vy)x ∗ y ∈ A.

We have the following properties for ∗ on γS:

Lemma 4.10.

(1) U ∗ V whenever U ,V ∈ γS.

(2) (U ∗ V) ∗W = U ∗ (V ∗W)

(3) For every V ∈ γS, the map U 7→ U ∗ V is continuous from γS into γS.

1Čech-Stone compactification is a property that holds in Tychonov spaces, however, the above is every-
thing we need from this notion, and the theory behind it is beyond the scope of this paper, which is why
we do not cover it in more detail.
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The proof of these consist of applying definitions and manipulating ultrafilter quanti-

fiers. Of importance to us are the following corollaries:

Corollary 4.11. The space (γS, ∗) is a compact semigroup for every partial directed semigroup

(S, ∗).

For clarity, we recall a definition from algebra:

Definition 4.12 (Left cancellative). An element a in a semigroup (S, ·) is left cancellative if

a · b = a · c implies b = c for all b, c ∈ S. If every element in S is left cancellative, we say S is left

cancellative.

With this terminology, we have the following:

Corollary 4.13. For every directed partial semigroup(S, ∗) that does not have idempotents itself

or is left cancellative, there is a nonprincipal ultra filter U in S such that U ∗ U = U .

We give a proof of the second corollary (4.13).

Proof. If U ∈ γS idempotent ultrafilter that is principal, then a ∗ a = a. Moreover, if (S, ∗)

is left cancellative, then γS \ S left ideal of γS. We can therefore apply Ellis’s lemma (4.4)

to obtain an idempotent.

Definition 4.14 (Basic sequence). A finite or infinite sequence X = (xn) of elements of a di-

rected partial semigroup (S, ∗) is basic if its elements appear exactly once in the sequence and if

xn0 ∗ xn1 ∗ · · · ∗ xnk
is defined for every n0, . . . , nk in the domain |X| of X .

Accordingly, if X is a basic sequence, we let

[x] = {xn0 ∗ · · · ∗ xnk
: k ∈ N, n0 < · · · < nk < |X|}.

Observe that ([X], ∗) forms a directed partial semigroup whenever X is an infinite basic

sequence of elements of S. With this observation, we are ready for the main theorem of

this section, the Galvin-Glazer theorem.
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Theorem 4.15 (Galvin-Glazer). If (S, ∗) is a partial semigroup that either has no idempotents

or is left cancellative, then for every finite coloring of (S, ∗), there is an infinite basic sequence

X = (xn) of elements of S such that [X] is monochromatic.

Before proving (4.15), we give some of its direct consequences, i.e. Hindman’s theo-

rem, where the set S = N and the operation ∗ is addition. Basic in this context means

simply that the sum (or sequence) has no repeated terms.

Theorem 4.16 (Hindman). For every finite coloring of N there is an infinite sequence X = (xn)

of elements of N such that the set of all finite nonrepeating sums xn0 + · · ·+xnk
is monochromatic.

Hindman’s theorem (4.16) can be seen as a strong generalization of a theorem of

Shur’s, see (4.17). For the sake of curiosity, and for the sake of staying connected with

the origins of Ramsey Theory, we state it and give a brief proof using Ramsey numbers.

Theorem 4.17 (Schur). For every k ≥ 1, there exists n so that in every k-coloring of [n], one can

find a monochromatic solution to x+ y = z.

Proof. Let n = Rk(3, 3, . . . , 3), where Rk denotes the Ramsey number on k colors. Let

G = Kn be the complete graph on [n], i.e. [n][2]. For x, y ∈ [n], color the edge (x, y) using

the color |x − y|. By definition of Ramsey numbers, there exists a, b, c ∈ [n] such that

|a− b|, |a− c|, |b− c| have the same color. We can assume w.l.o.g. that a > b > c. Now, let

x = a− b, y = b− c, z = a− c, then x+ y = z is a monochromatic solution.

The above argument can be slightly generalized, for example, to sums of three terms,

and using Rk(4, 4, . . . , 4). Regardless, we now return to the proof of (4.15).

Proof. Fix some coloring of S. Choose U ∈ γS \ S an idempotent ultrafilter. Fix P0 ∈ U

a monochromatic set relative to the given coloring of S. By definition of ∗ on γS and the

idempotence of U

(Ux)(Uy)x ∗ y ∈ P0,
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hence, we can choose x0 ∈ P0 such that

P1 = {y ∈ P0 : x0 ∗ y ∈ P0} ∈ U .

Repeating this procedure by choosing x1 ∈ P1 we obtain P2. Further repeating this, we

obtain new Pi with the respective xi forming an infinite basic sequence X = (xn) ⊆ S. We

claim that X has the following property

Claim 4.18. We have xn0 ∗xn1 ∗ · · · ∗xnk
∈ Pn0 for every finite sequence of non-negative integers

n0 < n1 < · · · < nk.

Proof. We proceed by induction on k. The base case xn0 ∈ Pn0 holds by construction.

Assume the claim holds for some k, and let x = xn0 ∗ xn1 ∗ · · · ∗ xnk
. By the inductive

hypothesis, x ∈ Pn1 , and since n1 ≥ n0 + 1

x ∈ Pn1 ⊆ Pn0+1 = {y ∈ Pn0 : xn0 ∗ y ∈ Pn0 .

Therefore xn0 ∗ x ∈ Pn0 .

The above claim directly yields [X] ⊆ P0, which concludes the proof.
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4.3 The Hales-Jewett Theorem(s)

We are now ready to tackle the Hales-Jewett theorem. Let L = ∪∞n=0Ln be an alphabet,

which is decomposed into a chain of finite subsets Ln. Further, let v be a variable not

present in L. Denote by WL (or W ) the set of words, i.e. finite strings over L, and denote

by WLv the set of variable-words over L, i.e. words over L ∪ {v} containing V once at

minimum. If s = s[v] ∈ W (v) and a ∈ L ∪ {v}, then we denote by s[a] the (variable-)word

obtained by replacing every occurrence of v in s by a. Observe that s[a] ∈ W if a 6= v, and

s[a] ∈ WLv otherwise.

For a sequence X = (x0, x1, . . . ) over WLv, we let XL, respectively XLv, denote the partial

subsemigroup WL, respectively WLv, generated by X defined in the following way:

[X]L = {xn0 [λ0]
a . . .a xnk

[λk] ∈ WL : n0 < · · · < nk, λi ∈ Lni
, i ≤ k}

[X]Lv = {xn0 [λ0]
a . . .a xnk

[λk] ∈ WLv : n0 < · · · < nk, λi ∈ Lni
∪ {v}, i ≤ k}

We now state the Infinite Hales-Jewett Theorem; the finite version will be a clear corol-

lary.

Theorem 4.19 (Infinite Hales-Jewett Theorem). For every finite coloring of WL ∪WLv , there

is an infinite sequence X = (xn) of elements of WLv such that the partial subsemigroups [X]L and

[X]Lv are both monochromatic.

The proof uses a similar idea to the one of Galvin-Glazer, noting that S = WL ∪WLv is

a semigroup and considering the compactification (βS,a ).

Proof. We have the following subsemigroup of S∗

S∗L = {U ∈ S∗ : WL ∈ U},
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and a two-sided ideal

S∗Lv = {U ∈ S∗ : WLv ∈ U}.

Applying (4.6), we takeW to be a minimal idempotent in S∗L, and V a minimal idempo-

tent in S∗Lv satisfying V ≤ W . Now, for each letter λ ∈ L, we have the corresponding

substitution map x 7→ x[λ] from WL ∪WLv to WL, which is the identity when restricted to

WL. This map extends to a map, a continuous homomorphism, U 7→ U [λ] from S∗L ∪ S∗Lv
to S∗L, which similarly is the identity on S∗L.

Claim 4.20. V [λ] =W for all λ ∈ L.

Proof. As noted above, U 7→ U [λ] is a homomorphism. Thus, V [λ] is an idempotent of S∗L

and V [λ] ≤ W [λ] =W . By definition,W is minimal in S∗L, implying V [λ] =W .

Now, let Pv be the color of the given coloring that belongs to V , and let PW be the color

which belongs toW . Recursing on n, we now construct X = (xk), an infinite sequence of

variable-words, as well as {P n
W} and {P n

v } infinite decreasing sequences of elements ofW

and V , respectively, satisfying for all n the following four properties

(a)n xn ∈ P n
v ,

(b)n ∀λ ∈ Ln∀x ∈ P n
v x[λ] ∈ P n

W ,

(c)n (Vy)(∀λ ∈ Ln ∪ {v}) xn[λ]ay ∈ P n
v ,

(d)n (Wt)xn
at ∈ P n

v .

First, let P 0
W = PW ∩WL, and P 9

v = {x ∈ Pv ∩WLv : ∀λ ∈ L0x[λ] ∈ P 0
W}. By (4.20), noting

that P 0
W ∈ W , P 0

v is a finite intersection of elements of V , whence P 0
v ∈ cV . Thus

(∀y ∈ L0 ∪ {v})P 0
v ∈ V [λ]aV ,

or equivalently

(Vx)(Vy)(∀λ ∈ L0 ∪ {v}) x[λ]ay ∈ P 0
v .
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Similarly, P 0
v ∈ V = VaW , i.e.

(Vx)(Wt)x at ∈ P 0
v .

Then, we can choose x0 ∈ P 0
v satisfying the above four properties for n = 0. Suppose now

the four properties hold up to some n. Consider the (n+ 1)th step; by (d)n

P n+1
W = {t ∈ P n

W : xn
a t ∈ P n

v } ∈ W .

By (c)n

Qn
v = {y ∈ P n

v : (∀λ ∈ Lv ∪ {v})xn[λ]ay ∈ P n
v } ∈ V .

Applying (4.20), we have

P n+1
v = {x ∈ Qn

v : (∀λ ∈ Ln+1x[λ] ∈ P n+1
w }

is in V . Again, for V-almost all choices xn+1 from P n+1
v satisfy (c)n+1 and (d)n+1.

Claim 4.21.

(1) xn0 [λ0]
a . . .a xnk−1[λk−1]

ay ∈ P n0
v for every k > 0, n0 < . . . , nk, λi ∈ Lni

∪ {v}, i <

k, y ∈ P nk
v .

(2) xn0
axn1 [λ1]

a . . .a xnk−1[λk−1] ∈ P n0
v for every k ≥ 0, n0 < . . . , nk, λi ∈ Lni

, o < i ≤ k.

(3) xn0 [λ0]
a . . .a xnk

[λk] ∈ P n0
W for every k ≥ 0, n0 < . . . , nk, λi ∈ Lni

, i ≤ k.

Proof. We proceed by induction on k. When k = 1, (1) follows from the previous claim,

namely when going from n0 to n0 + 1, we have that P n1
v ⊆ P n0+1

v ⊆ Qn0
v . Now, assume (1)

holds for k. In this spirit, let n0 < · · · < nk+1, λi ∈ Lni
∪ {v}, i < k, and y ∈ P nk+1

v . Define

y′ = xn1 [λ1]
a . . .a xnk

[λk]
ay.

By the induction hypothesis, y′ ∈ P n1
v , and by the previous claim, y′ ∈ P n1

v ⊆ P n0+1
v ⊆ Qn0

v .

Thus, y = xn0 [λ0]
ay′ ∈ P n0

v . Letting y = xnk
, we obtain (3) from (1). We have yet to prove
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(2), so let k ≥ 0, n0 < . . . , nk, λi ∈ Lni
, o < i ≤ k, as in its statement. Further, let

t′ = xn1 [λ1]
a . . .a xnk

[λk].

Applying (3), we have t′ ∈ P n1
W , and again according to the stop going from n0 to n0 + 1,

we have

t′ ∈ P n1
W ⊆ P n0+1

W = {t ∈ P n0
W : xn0

at ∈ P n0
v }.

We conclude (2), since xn0
at′ ∈ P n0

v

Having established the above properties, it remains to show that ifX = (xn) is the infinite

sequence produced above, then [X]L ⊆ PW and [X]Lv ⊆ Pv. The former follows from (3)

just proven. To prove the latter, consider

x = xn0 [λ0]
a . . .a xnk

[λk],

with n0 < . . . , nk, λi ∈ Lni
∪{v}, i < k, where at for at least one i, λi = v. Define l to be the

maximum i less than or equal to k for which this is the case. By (2)

y = xnl
[λl]

axnl+1
[λl+1]

a . . .a xnk
[λk] ∈ P nl

v .

From which it follows that

x = xan0
. . .a xnl−1

[λl−1]
ay

satisfies the assumptions in (1). We finally conclude that x ∈ P n0
v ⊆ Pv, completing the

proof.

As a corollary, we have the finite version of the Heales-Jewett theorem.

Theorem 4.22 (Finite Hales-Jewett Theorem). For every finite alphabet L and positive integer

k, there exists a positive integer n such that for every k-coloring of WL(n) of all words over L

having length n, there is a variable-word x of length n such that the set {x[λ] : λ ∈ L} is

17



monochromatic.

We include, for interest of the reader, an alternate proof of (4.22), without using the

machinery developed in this paper. This proof was presented during a graduate course

in combinatorics by Prof. Sergey Norin [1], we do not give all details for the sake of

brevity, but the idea should still be clear. Below we restate the theorem in the language

seen there.

Theorem 4.23. For every r and t, there exists d = HJ(t, r) such that if A is an alphabet with

|A| = t and Ad is colored in r colors, then there exists a monochromatic combinatorial line.

We now see some new definitions that have previously seen analogs.

Definition 4.24 (Root). A root τ is a word of length d in the alphabet A ∪ {?} , where ? is a

symbol not in A, containing at least one ? . The word τ(a) by substitution (analogously to the

previously seen x[λ] notation).

Definition 4.25 (Combinatorial line). A combinatorial line in Ad is a set Lτ = {τ(a) : a ∈ A}

where τ is a root of length d.

Note that the notion of a combinatorial line can be seen in (4.22). We are now ready to

give the proof.

Proof. Let n = HJ(t, r). We will prove its existence by induction on t for fixed r. First,

HJ(1, r) = 1, since combinatorial lines of length 1 are certainly monochromatic. Now,

assume n = HJ(t − 1, r) . Let N1 = rt
n and define iteratively Ni = rt

n+
∑i−1Nj . We will

show that HJ(r, t) ≤ N , i.e. if χ is a coloring of AN using r colors then χ contains a

monochromatic combinatorial line.

We say a, b ∈ An are neighbors if there exists some i ≤ n such that

a = a1a2 . . . ai−10ai+1 . . . an,

and

b = a1a2 . . . ai−11ai+1 . . . an.

18



Let τ be a root of length N such that τ = τ1 . . . τn, and τi of length Ni. Define

τ(a) = τ1(a1) . . . τn(an).

Define χτ by χτ (a) = χ(τ(a)). We are not guaranteed that we have monochromatic com-

binatorial lines in An , but we will try to com- press to An−1 where we do have such

lines. Now, there exists roots τ1, . . . , τn with length as above and for neighbours a, b we

have χτ (a) = χτ (b), which can be seen by a clever application of the pigeonhole princi-

ple, made posible by our choices of Ni. Restrict χτ to (A − {0})n and denote this by χ′τ .

By induction hypothesis, we have a monochromatic combinatorial line, i.e. there exists

v = v1 . . . vn with vi ∈ (A − {0}) ∪ {?} such that v(1), . . . , v(t − 1) have the same color.

We now want that the corresponding τ(v) is monochromatic in the original coloring. It

remains to show that χτ (v(0)) = χτ (v(1)). In each position, v(0) and v(1) have either a 0 or

a 1. Thus, after potentially changing positions iteratively, using the fact that the coloring

acts identically on neighbours, we see they have the same coloring.

The underlying connections between the ultrafilter techniques seen here and Ramsey

theory are captivating, and are worth exploring further.
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