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The Kawaguchi–Silverman conjecture predicts that if f : X ��� X is a dominant rational-

self map of a projective variety over Q, and P is a Q-point of X with a Zariski dense orbit,

then the dynamical and arithmetic degrees of f coincide: λ1(f ) = αf (P). We prove this

conjecture in several higher-dimensional settings, including all endomorphisms of non-

uniruled smooth projective threefolds with degree larger than 1, and all endomorphisms

of hyper-Kähler manifolds in any dimension. In the latter case, we construct a canonical

height function associated with any automorphism f : X → X of a hyper-Kähler

manifold defined over Q. We additionally obtain results on the periodic subvarieties

of automorphisms for which the dynamical degrees are as large as possible subject to

log concavity.

1 Introduction

Let f : X ��� X be a dominant rational self-map of a smooth projective variety X defined

over Q. There are two natural degree functions, one can associate with the dynamical

system (X, f ). The 1st measures the growth rate of the degrees of the iterates f n. It is
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2 J. Lesieutre and M. Satriano

known as the 1st dynamical degree and is defined as

λ1( f ) = lim
n→∞

(
( f n)∗H · Hdim X−1

)1/n
,

where H is a choice of ample divisor on X; a result of Dinh and Sibony [15] says that this

limit exists and is independent of the choice of ample divisor H.

The 2nd notion is the arithmetic degree, which depends on a choice of Q-point

P, and reflects the growth rate of the heights of the points f n(P). Given an ample divisor

H on X, one can construct a corresponding logarithmic Weil height hH : X(Q) → R

that measures the arithmetic complexity of the point P. For example, if X = Pn,

H = O
Pn(1), and P = [a0 : . . . : an] is a Q-point with the ai coprime integers, then

hH(P) = log(max
{∣∣ai

∣∣}). We refer to Proposition 2.25 for further properties of heights.

Letting hH denote a logarithmic Weil height associated with an ample divisor

H on X, and h+
H = max(hH , 1), if the forward orbit of P is defined (i.e., if no f n(P) is

contained in the indeterminacy locus), then we set

αf (P) = lim inf
n→∞ h+

H( f n(P))1/n, αf (P) = lim sup
n→∞

h+
H( f n(P))1/n.

Both of these quantities are again independent of the choice of ample divisor H [26,

Proposition 12] and it is conjectured that they always coincide. When they do, αf (P) is

defined to be the common value. Whether or not αf (P) and αf (P) are equal remains open

in general, but it is known when f is a morphism [25, Theorem 3], which will always be

the case in this paper. The Kawaguchi–Silverman conjecture is then as follows.

Conjecture 1.1 (Kawaguchi–Silverman [26]). Let X be a smooth projective variety and

let f : X ��� X be a dominant rational map defined over Q. Suppose that P is a Q-point

of X. If the forward orbit of P under f is Zariski dense, then αf (P) exists and is equal

to λ1( f ).

The conjecture is known in many cases; see [37, Remark 1.8] for a comprehensive

list including abelian varieties [25, 48], automorphisms of smooth projective surfaces

[23, 24], as well as certain product varieties [45]. Recently the conjecture was proved for

all regular endomorphisms of smooth projective surfaces [37]; the proof in the case of

surfaces relies heavily on the birational classification.
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Kawaguchi–Silverman for Hyper-Kählers 3

Our aim in this paper is to prove the conjecture in several higher-dimensional

settings. A basic difficulty is that the classification of n-folds (for n ≥ 3) is much more

difficult and less complete than the classification of surfaces: there is no neat analog

of the Enriques–Kodaira classification, and one must instead attempt to understand

the interplay between the geometry of endomorphisms and the classification theory of

higher-dimensional varieties.

We break up our analysis according to Kodaira dimension κ(X). We note that by

[40, Theorem A], if κ(X) > 0, then an iterate of f preserves the Iitaka fibration and so

there is no Q-point P on X with a Zariski dense orbit; as a result Conjecture 1.1 vacuously

holds. Thus, the only remaining cases to consider are those of Kodaira dimension 0

and −∞.

Let us now discuss in detail our main results as well as several consequences.

We say a smooth projective variety X is Calabi–Yau if dim X ≥ 3, OX(KX) is trivial and

h0(�
p
X) = 0 for 0 < p < n. We say X is hyper-Kähler if its complex analytification is

simply connected and H0(X, �2
X) is spanned by a symplectic form.

Theorem 1.2. Conjecture 1.1 is true for automorphisms of hyper-Kähler manifolds.

Remark 1.3. In fact, we prove the following more general result in Theorem 2.28:

Conjecture 1.1 holds for any automorphism of a normal projective variety X for which

h1(X,OX) = 0 and ν+ + ν− is big for some good eigenvector pair (ν+, ν−), as defined

in Definition 2.8. We also note that Theorem 1.2 applies to surjective endomorphisms

since every surjective endomorphism of a hyper-Kähler manifold is an automorphism,

see Lemma 2.6.

The key to proving Theorem 1.2 is to construct a canonical height function

associated with f , following a strategy developed by Silverman [47] and Kawaguchi [23]

in dimension 2. Along the way, we obtain various results on the periodic subvarieties of

automorphisms for which the dynamical degrees are as large as possible (subject to log

concavity). For instance,

Corollary 1.4.

1. Suppose f : X → X is an automorphism satisfying Condition (B) of

Definition 2.10 and for which λ1(f ) = λ1( f −1), for example, f is any

automorphism of a hyper-Kähler manifold. Then the union of the odd-

dimensional f -periodic subvarieties of X is not Zariski dense.
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4 J. Lesieutre and M. Satriano

2. Suppose that f : X → X is an automorphism of a threefold satisfying either

λ1( f ) = λ2( f )2 or λ2( f ) = λ1( f )2. Then f admits only finitely many positive-

dimensional periodic subvarieties. This situation can arise, for example, for

automorphisms of abelian threefolds [33, Example 4.8.6].

As a consequence of Theorem 1.2, combined with the work of Sano [45], we are

able to show that the conjecture holds for automorphisms of all varieties with KX ≡ 0

as long as it holds for automorphisms of Calabi–Yau varieties.

Corollary 1.5. Let n be a positive integer. Then Conjecture 1.1 is true for all

automorphisms of smooth projective varieties X with dimension at most n and KX

numerically trivial if and only if Conjecture 1.1 is true for all automorphisms of smooth

Calabi–Yau varieties with dimension at most n.

Remark 1.6. The abundance conjecture implies that every smooth projective minimal

variety X of Kodaira dimension 0 has KX numerically trivial. Therefore, assuming the

abundance conjecture in dimension at most n, Corollary 1.5 reduces Conjecture 1.1 for

automorphisms of smooth projective minimal varieties of Kodaira dimension 0 to the

special case of smooth Calabi–Yau varieties.

In the case of dimension 3, we obtain more detailed results for endomorphisms

as well as automorphisms. Using results of Fujimoto [19], we show the following.

Proposition 1.7. Conjecture 1.1 holds for all surjective endomorphisms f : X → X of

degree deg(f ) > 1 on smooth projective threefolds X of Kodaira dimension 0.

Since the abundance conjecture is known in dimension 3 [28], by Corollary 1.5

and Remark 1.6, to prove the conjecture for automorphisms of smooth minimal three-

folds of Kodaira dimension 0, it is enough to handle the case of automorphisms of

smooth Calabi–Yau threefolds. As such, we turn to the case of Calabi–Yau threefolds

and prove the following technical result.

Theorem 1.8. Let f be an automorphism of a smooth Calabi–Yau threefold X. Suppose

that either

1. c2(X) is strictly positive on Nef(X), or

2. there is a nonzero semi-ample class D ∈ Nef(X)∩N1(X) such that c2(X)·D = 0.

Then Conjecture 1.1 holds for (X, f ).
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Kawaguchi–Silverman for Hyper-Kählers 5

Remark 1.9 (Understanding the hypotheses of Theorem 1.8). The essential point here

is that Theorem 1.8 applies to all Calabi–Yau threefolds with sufficiently large Picard

number, assuming [42, Question-Conjecture 2.6] and the semi-ampleness conjecture [32,

Conjecture 2.1]. In particular, by Remark 1.6, this would resolve Conjecture 1.1 for all

automorphisms of smooth minimal threefolds of Kodaira dimension 0 and sufficiently

large Picard number.

Let us explain why this is the case. A theorem of Miyaoka [38] shows that either

hypothesis (1) of Theorem 1.8 holds or F := c2(X)⊥ ∩ Nef(X) is a nonzero face of the nef

cone of X. In [42, Question-Conjecture 2.6], Oguiso asks if F must always be rational

when the Picard number ρ(X) is sufficiently large. Provided this is true, there would be

a nonzero rational class D ∈ F, and then the semi-ampleness conjecture [32, Conjecture

2.1] would tell us that after scaling D by a positive integer, we can assume it is semi-

ample, that is, hypothesis (2) holds.

Finally, we turn to the case of Kodaira dimension −∞. Here the closest analog

of a minimal variety is one which has the structure of a Mori fiber space; this includes,

for example, all rational normal scrolls. We prove Conjecture 1.1 in two special cases.

Theorem 1.10. Conjecture 1.1 holds for the following cases:

1. all automorphisms of threefolds that have the structure of a Mori fiber space.

2. all surjective endomorphisms of n-fold rational normal scrolls.

Remark 1.11. In the process of showing Theorem 1.10(2), we in fact prove a stronger

result: if C is a smooth curve, then Conjecture 1.1 holds for all surjective endomorphisms

of all projective bundles PC(E) if and only if it holds in the case, where E is semistable

of degree 0. See Corollary 6.8.

It is worth mentioning that in Section 3, we prove general results concerning

the following set-up: π : X → Y is a surjective morphism of normal projective varieties

over Q, f is a surjective endomorphism of X, g is a surjective endomorphism of Y, and

π ◦ f = g ◦ π . We give several criteria by which one can reduce the conjecture for (X, f )

to that of (Y, g), see Theorem 3.4.

2 Canonical Heights for Hyper-Kähler Automorphisms: Theorem 1.2

In this section, we treat Conjecture 1.1 for hyper-Kähler manifolds. There are many

remarkable automorphisms and birational automorphisms of such varieties, see for
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6 J. Lesieutre and M. Satriano

example, [1] and [43]. In fact, we prove the conjecture for a wider class of varieties,

namely those with trivial Albanese satisfying Condition (B) of Definition 2.10.

We begin by recalling the main definitions. We work throughout over Q, and

where not otherwise stipulated, a variety is assumed to be defined over Q. Given a

projective variety X, we write Nj(X) for the numerical group of codimension-j cycles and

N1(X)
R

= N1(X) ⊗ R for the corresponding finite-dimensional R-vector space. We use ∼
for the relation of linear equivalence of Cartier divisors, ∼

R
for R-linear equivalence,

and ≡ for numerical equivalence. Rational maps are denoted by “���” and morphisms

by “→”.

Suppose that f : X ��� X is a dominant rational map of a smooth projective

variety, and fix an ample divisor H on X. The jth dynamical degree of f is the limit

λj( f ) = lim
n→∞

(
(( f n)∗H)j · Hdim X−j

)1/n
.

As noted in the introduction, the 1st dynamical degree is obtained when j = 1, and this

case occupies a place of particular importance in this note. In general, these limits are

difficult to compute, since ( f n)∗ does not necessarily coincide with ( f ∗)n for rational

maps. However, if f : X → X is a morphism, then ( f n)∗ = ( f ∗)n and

λj( f ) = SpecRad
(

f ∗ : Nj(X)
R

→ Nj(X)
R

)

is simply the spectral radius of f ∗, on the numerical group of codimension-j cycles,

that is, the absolute value of the largest eigenvalue of f ∗ acting on Nj(X)
R

. When f is a

morphism, we may also drop the smoothness hypothesis on X, and it suffices to assume

that X is normal: there is no difficulty in pulling back Cartier divisors.

It will also be convenient to write J( f , j) for the dimension of the largest λj( f )-

Jordan block of f ∗ : Nj(X) → Nj(X) and J̃( f , j) = J( f , j) − 1. Then (( f n)∗H)j · Hdim X−j is

bounded above and below by positive multiples of nJ̃(f ,j)λj(f )n.

Invariant fibrations play an important role in the study of rational maps in

higher dimension, and the product formula of Dinh et al. [13] is useful in dealing with

their dynamical degrees. Suppose that there exists a surjective morphism π : X → Y and

a dominant rational map g : Y ��� Y with g ◦ π = π ◦ f . Let H ′ be an ample divisor on Y.
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Kawaguchi–Silverman for Hyper-Kählers 7

Definition 2.1. The 1st dynamical degree of f relative to π is the limit

λ1(π |f ) = lim
n→∞

(
( f n)∗H · π∗(H ′ dim Y) · Hdim X−dim Y−1

)1/n
.

The definition of relative dynamical degrees can be extended to higher codimen-

sion and to the setting in which π itself is only a dominant rational map; we require

only this simple case. The basic properties of dynamical degrees and their relative

counterparts are worked out in [12–15]; a more algebro-geometric perspective (which,

importantly, works on normal varieties) can be found in [10, 49]. The next theorem

singles out some properties of the dynamical degrees that we will require throughout

the paper.

Theorem 2.2.

1. Suppose that f : X ��� X is birational. Then λ1( f −1) = λdim X−1( f ).

Furthermore, if λ1( f ) > 1, then λ1( f −1) > 1.

2. If f : X ��� X admits an invariant fibration π : X → Y as above, then

λ0( f |π ) = 1 and λ1( f ) = max{λ1(g), λ1( f |π )}.
3. If dim Y = dim X − 1 and f is birational, then g : Y ��� Y is birational and

λ1( f |π ) = 1.

4. Let f (resp. g) be a surjective endomorphism of X (resp. Y) and assume that X

and Y are normal projective varieties. If π : X → Y is a birational morphism

such that π ◦ f = g ◦ π , then λ1( f ) = λ1(g).

Proof. To prove these claims requires using the properties of higher dynamical degrees

λp( f ); since we do not otherwise make use of these degrees, we refer to the above

references for the definitions.

The 1st fact follows from the log-concavity of dynamical degrees, which states

that λp−1( f )λp+1( f ) ≤ λp( f )2 for each 1 ≤ p ≤ dim X − 1. Since λp( f ) ≥ 1 for any p,

the hypothesis that λ1( f ) > 1 implies that λp( f ) > 1 for each 1 ≤ p < dim X. If f is

birational, then λ1( f −1) = λdim X−1( f ) > 1.

The claim in (2) that λ0( f |π ) = 1 follows directly from the definition, while

λ1( f ) = max{λ1(g)λ0( f |π ), λ0(g)λ1( f |π )} = max{λ1(g), λ1( f |π )} is a case of the product

formula of Dinh–Nguyên–Truong.

For (3), another application of the product formula yields λdim X( f ) =
λdim X−1(g)λ1( f |π ). Since f is birational, λdim X( f ) = 1, and so both terms on the right

must be 1 as well.

Finally, (4) follows from [10, Theorem 1.(2)] and the discussion that follows. �
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8 J. Lesieutre and M. Satriano

In contrast to the dynamical degrees, the properties of the arithmetic degrees

αf (P), αf (P), and αf (P) are at present largely conjectural in general. There is nevertheless

a close relationship between the arithmetic and dynamical degrees: it was shown in [37,

Corollary 9.3] that if f : X → X is a surjective endomorphism with λ1(f ) > 1, then there

exist points P with αf (P) = λ1(f ); however, it remains open whether this equality holds

for every point P with a dense orbit.

Remark 2.3. It was proved by Kawaguchi–Silverman [26, Theorem 4] and Matsuzawa

[36, Theorem 1.4] that αf (P) ≤ λ1( f ) in general. As a result, the limit defining αf (P) exists

and is equal to λ1( f ) if and only if λ1( f ) ≤ αf (P); indeed, if this inequality holds, then

λ1( f ) ≤ αf (P) ≤ αf (P) ≤ λ1( f ).

Furthermore, since we always have 1 ≤ αf (P), if λ1( f ) = 1, then λ1( f ) ≤ αf (P),

and so the conjecture holds. Hence, we can always restrict our attention to maps with

λ1( f ) > 1.

Having recalled the main definitions, we collect some facts that will be useful

in our study of hyper-Kähler manifolds.

Proposition 2.4 (The Beauville–Bogomolov–Fujiki form, see, e.g., [21, §23], [21,

Prop. 25.14]). Suppose that X is a hyper-Kähler manifold of dimension 2m. There

exists a quadratic form q(X) on H2(X,R) and a constant cX such that for any divisor D,

we have the following:

D2m = cX qX(D)m.

The form qX(−) has signature (1, ρ(X) − 1) on N1(X)
R

. If φ : X → X is an automorphism,

then the pullback φ∗ preserves the form q(−).

Example 2.5 ([3, §6], [43]). A basic example of a hyper-Kähler manifold is the Hilbert

scheme of configurations of n points on a K3 surface S, which we denote by Hilbn(S).

If f : S → S is an automorphism, then the induced automorphism f [n] : Hilbn(S) →
Hilbn(S) of the Hilbert scheme satisfies λ1( f [n]) = λ1( f ).

To begin, we first note that any surjective endomorphism of a hyper-Kähler

manifold is actually an automorphism.

Lemma 2.6. Every surjective endomorphism of a hyper-Kähler manifold over Q is an

automorphism.
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Kawaguchi–Silverman for Hyper-Kählers 9

Proof. By faithfully flat and quasi-compact descent, it is enough to check this after

base change to C. Now if X is hyper-Kähler manifold over C, we have χ(OX) = 1+ 1
2 dim X

[5, Lemma 14.21]. Next, let f be a surjective endomorphism of X. By [19, Lemma 2.3], f

is a finite étale cover and so χ(OX) = deg( f )χ(OX). Since χ(OX) �= 0, we must have

deg(f ) = 1, that is, f is an automorphism. �

Having now reduced to the case of automorphisms, we roughly follow the

strategy of Kawaguchi’s proof of the conjecture in the case of surfaces. The following

version of the Perron–Frobenius theorem plays an important role.

Lemma 2.7 ([7]). Suppose that V is a finite-dimensional real vector space and that

K ⊂ V is a closed, pointed, and convex cone. If T : V → V is a linear map for which

T(K) ⊆ K, and the spectral radius of T is λ > 1, then there exists a λ-eigenvector for T,

which is contained in K.

In fact, such an eigenvector can be found by choosing H a general element of the

interior of K and taking a limit limn→∞ 1
nJ̃(f ,1)λn

( f ∗)n(H); the normalizing factor ensures

that this limit converges to a nonzero eigenvector.

Definition 2.8. We will say that a class ν+ in N1(X)
R

is a leading eigenvector for f if

it is a nef class that is a λ1( f )-eigenvector for f ∗. We say that ν+ is a good eigenvector

if there exists an ample class H so that limn→∞ 1
nJ̃(f ,1)λ1(f )n

( f ∗)n(H) = ν+ (recall that

we write J̃( f , 1) for one less than the dimension of the λ1( f )-Jordan block of f ∗). In

particular, if ν+ lies in the relative interior of the intersection of Nef(X) with the λ1( f )-

eigenspace of f ∗, then ν+ is a good eigenvector [2].

We say that (ν+, ν−) is an eigenvector pair for f if ν+ is a leading eigenvector

for f and ν− is a leading eigenvector for f −1, and that it is a good eigenvector pair

if there exists an ample divisor H for which limn→∞ 1
nJ̃(f ,1)λ1(f )n

( f ∗)n(H) = ν+ and

limn→∞ 1
nJ̃(f −1,1)λ1( f −1)n

( f ∗)−n(H) = ν−.

We say that (D+, D−) is an eigendivisor pair for f if D+ and D− are R-divisors for

which f ∗(D+) ∼
R

λ1( f )D+ and ( f −1)∗(D−) ∼
R

λ1( f −1)D−. If (D+, D−) is an eigendivisor

pair, then the corresponding pair of numerical classes (ν+, ν−) is an eigenvector pair,

and we say that (D+, D−) is good if (ν+, ν−) is. When h1(X,OX) = 0, each numerical class

has a unique lift to a linear equivalence class and these two notions coincide.

Corollary 2.9. If f is an automorphism of a normal projective variety X that satisfies

λ1( f ) > 1, then a good eigenvector pair (ν+, ν−) exists for f . If moreover h1(X,OX) = 0,

then a good eigendivisor pair (D+, D−) exists for f .
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10 J. Lesieutre and M. Satriano

Proof. Recall that λ1( f −1) = λdim X−1( f ) > 1 by Theorem 2.2(1). We obtain the

result by applying Lemma 2.7 to the case, where V = N1(X)
R

, K = Nef(X), and T

is the pullback f ∗ : N1(X)
R

→ N1(X)
R

or the pullback ( f −1)∗. In fact, the invariant

class is constructed as the limit limn→∞ 1
nJ̃(f ,1)λ1(f )n

( f n)∗(H) for a general ample H,

and so is a good eigenvector. Note in particular that ν+ and ν− belong to the cone

Nef(X).

If h1(X,OX) = 0, then the map Pic(X)
R

→ N1(X)
R

is an isomorphism, and we

may take D± to be the unique lift of ν± to a linear equivalence class. �

We next single out two special properties of hyper-Kähler manifolds and their

automorphisms. We will prove Conjecture 1.1 for any automorphisms satisfying these

properties, which includes some non-hyper-Kähler examples as well.

Definition 2.10. Suppose that f : X → X is an automorphism of a normal projective

variety X. We say that f has property

(A) if h1(X,OX) = 0;

(B) if ν = ν+ + ν− is big for some good eigenvector pair (ν+, ν−).

Recall that by Remark 2.3, the conjecture is known whenever λ1( f ) = 1. So there

is never any harm in assuming λ1( f ) > 1. We next observe some easy cases in which

Condition (B) holds; a more general criterion is presented in Theorem 2.21.

Lemma 2.11. Let f : X → X be an automorphism of a normal projective variety X and

assume that λ1(f ) > 1. Then Condition (B) holds in all of the following cases:

1. the dimension of X is equal to 2;

2. the Picard rank of X is equal to 2;

3. X is a hyper-Kähler manifold.

Proof. In dimension 2, Condition (B) is a well-known consequence of the Hodge index

theorem (see, e.g., [23, Proposition 2.5]).

Suppose instead that ρ(X) = 2. Then ν+ and ν− lie on the two boundary rays of

Nef(X), and their sum is ample, which yields Condition (B).

We come at last to the hyper-Kähler case; the argument is the same as that

in the 2D setting, but with the Beauville–Bogomolov form standing in for the usual

intersection product. Let dim X = 2m and (ν+, ν−) be an eigenvector pair for f , whose

existence is guaranteed by Corollary 2.9; define ν = ν+ + ν−. Since ν is nef, its volume
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Kawaguchi–Silverman for Hyper-Kählers 11

can be computed as the top self-intersection ν2k, and ν is big if and only if this number

is positive. We have

q(ν+) = q( f ∗ν+) = λ1( f )2q(ν+),

and so q(ν+) = 0 since λ1( f ) > 1. The same argument shows that q(ν−) = 0. Since the

form qX(−) has signature (1, ρ(X) − 1) on Pic(X), the maximal dimension of an isotropic

subspace is 1, and so qX(ν) �= 0. Since ν is nef, Vol(ν) = ν2m = cXqX(ν)m > 0, and we

conclude that ν is big. �

Remark 2.12. Notice that if a variety X has Picard rank 2 and an automorphism

f with λ1( f ) > 1, then necessarily KX ≡ 0. Otherwise, KX would provide a nonzero

1-eigenvector, and since f ∗ is invertible and preserves the integral lattice N1(X) ⊂
N1(X)

R
, this would imply that both eigenvalues of f ∗ are equal to 1. However, there

are many interesting examples in this case [44, 54].

We now turn to the proof of the Kawaguchi–Silverman conjecture in this setting.

We do by constructing a canonical height function for the automorphism f .

Definition 2.13. Suppose that D is a Q-divisor on a normal projective variety X. The

stable base locus of D is the Zariski-closed subset of X defined by

B(D) =
⋂

m≥1
mD Cartier

Bs(mD).

It is not hard to show that there exists an integer m0 such that Bs(dm0D) = B(D)

for all sufficiently large integers d [31, Proposition 2.1.21]. It follows that B(D + D′) ⊂
B(D) ∪ B(D′).

Suppose that D is an R-divisor on a normal projective variety X. The augmented

base locus B+(D) is the Zariski-closed subset

B+(D) =
⋂

A ample
D − A Q-divisor

B(D − A).

We refer to [16] for a detailed treatment of the properties of the invariant B+(D),

but single out the following.
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12 J. Lesieutre and M. Satriano

Lemma 2.14 ([16, Prop. 1.4, Examples 1.7–1.9, Prop. 1.5]).

1. B+(D) depends only on the numerical class of D.

2. B+(D) is a proper subset of X if and only if D is big.

3. For any R-divisor D and any real λ > 0, we have B+(D) = B+(λD).

4. For any R-divisors D1 and D2, we have B+(D1 + D2) ⊆ B+(D1) ∪ B+(D2).

5. Fix a norm ‖·‖ on N1(X)
R

. For any R-divisor D, there exists a constant ε such

that for any ample R-divisor A for which ‖A‖ < ε and D − A is a Q-divisor,

we have B+(D) = B(D − A).

In view of (1), we sometimes write B+(ν), where ν is any class in N1(X)
R

; this

denotes B+(D) for any D with numerical class ν.

Lemma 2.15. Suppose that D1 is an R-divisor and D2 is a nef R-divisor. Then

B+(D1 + D2) ⊆ B+(D1).

Proof. First, choose an ample R-divisor A1 so that D1 − A1 is a Q-divisor and

B+(D1) = B(D1 − A1).

Now, choose another ample R-divisor A2 for which D1 + D2 − A2 is a Q-divisor, A1 − A2

is ample, and

B+(D1 + D2) = B(D1 + D2 − A2).

It again follows from Lemma 2.14(5) that A2 may be taken to be any sufficiently

small ample divisor for which D1 + D2 − A2 is a Q-divisor. Note that the divisor D2 +
(A1 − A2) = (D1 + D2 − A2) − (D1 − A1) is again a Q-divisor, and we may then compute

the following:

B+(D1 + D2) = B(D1 + D2 − A2) = B
(
(D1 − A1) + (D2 + (A1 − A2))

)

⊆ B(D1 − A1) ∪ B(D2 + (A1 − A2))

= B+(D1) ∪ B(D2 + (A1 − A2)) = B+(D1),

where B(D2 + (A1 − A2)) is empty since D2 is nef and A1 − A2 is ample. �
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Kawaguchi–Silverman for Hyper-Kählers 13

Lemma 2.16. Suppose that D1 and D2 are nef R-divisors. Then for any a1, a2 > 0, the

locus B+(a1D1 + a2D2) is independent of a1 and a2.

Proof. We show that for any a1, a2 > 0, we have B+(a1D1 + a2D2) = B+(D1 + D2).

Suppose first that a1 ≥ a2. Recalling that B+(D) = B+(λD) according to Lemma 2.14(3),

it follows from Lemma 2.15 that

B+(a1D1 + a2D2) = B+(a2(D1 + D2) + (a1 − a2)D1)

⊆ B+(a2(D1 + D2)) = B+(D1 + D2),

B+(D1 + D2) = B+(a1(D1 + D2)) = B+((a1D1 + a2D2) + (a1 − a2)D2)

⊆ B+(a1D1 + a2D2).

The case when a1 < a2 follows from the same argument, reversing the roles of D1

and D2. �

Corollary 2.17. Suppose that f : X → X is an automorphism of a normal projective

variety with λ1(f ) > 1, and let (ν+, ν−) be an eigenvector pair. Then B+(ν+ + ν−) is

invariant under f . Furthermore, if f satisfies Condition (B) and P is a Q-point of X with

a Zariski dense orbit under f , then P is not contained in B+(ν+ + ν−).

Proof. We have

f
(
B+(ν+ + ν−)

)
= B+

(
( f −1)∗(ν+ + ν−)

)

= B+
(
λ1( f )−1ν+ + λ1(f −1)ν−

)
= B+(ν+ + ν−),

where the final equality follows from Lemma 2.16.

If f satisfies Condition (B), then ν = ν+ + ν− is big, and so B+(ν) is a proper

Zariski-closed subset of X, invariant under f . It follows that a point with a dense orbit

cannot lie in B+(ν). �

In fact, it is possible to give a more explicit description of the locus B+(ν) in

terms of the dynamics of the map f . This relies on the following difficult result.
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14 J. Lesieutre and M. Satriano

Theorem 2.18 (Nakamaye’s theorem [17, Corollary 5.6]). Suppose that D is a nef R-

divisor. Then

B+(D) = Null(D) =
⋃

V⊂X
D|V is not big

V,

where the union runs over all positive dimensional subvarieties V ⊂ X.

Lemma 2.19. Suppose that f : X → X is an automorphism satisfying λ1( f ) > 1 and let

(ν+, ν−) be a good eigenvector pair with ν = ν+ + ν−. If V ⊆ X is an f -periodic subvariety

of dimension at least 1, then V is not contained in B+(ν) if and only if there exists

0 < a < dim V such that we simultaneously have

λa( f |V)2 = λ1( f )a λ1( f −1)dim V−a,

and

J̃( f |V , a) = aJ̃( f , 1) + (dim V − a)J̃( f −1, 1).

Proof. Let i : V → X be the inclusion map. According to Nakamaye’s theorem, V is not

contained in B+(ν) if and only if i∗ν is big, which is equivalent to (ν+ + ν−)dim V · V > 0.

We may assume that V is f -invariant, since the statement is unaffected when replacing

f by an iterate. Since (ν+, ν−) is a good eigenvector pair, we pick a suitable ample class

H and compute the following:

(ν+ + ν−)dim V · V

= lim
n→∞

(
1

nJ̃( f ,1)λ1( f )n
( f ∗)nH + 1

nJ̃(f −1,1)λ1( f −1)n
( f ∗)−nH

)dim V

· V

= lim
n→∞

dim V∑
a=0

(
dim V

a

)
1

naJ̃( f ,1)+(dim V−a)J̃( f −1,1)λ1( f )naλ1( f −1)n(dim V−a)

(
( f ∗)nH)a · (( f ∗)−nH)dim V−a

)
· V

= lim
n→∞

dim V∑
a=0

(
dim V

a

)
1

naJ̃( f ,1)+(dim V−a)J̃( f −1,1)λ1( f )naλ1( f −1)n(dim V−a)

(
(( f ∗)2nH)a · Hn(dim V−a) · V

)
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz067/5424982 by U

niversity of W
aterloo Porter Library, M

atthew
 Satriano on 18 April 2019



Kawaguchi–Silverman for Hyper-Kählers 15

Fig. 1. The function h.

The quantity ((f ∗)2nH)a · Hdim V−a · V is bounded both below and above by positive

multiples of nJ̃(f 2|V ,a)λa(f 2|V)n = nJ̃(f |V ,a)
(
λa(f |V)2

)n
, and so the final expression is

greater than 0 if and only if there is a value of a for which

λa(f |V)2 = λ1(f )a λ1(f −1)dim V−a

J̃(f |V , a) = aJ̃(f , 1) + (dim V − a)J̃(f −1, 1).

�

Used in combination with the log concavity of dynamical degrees, this provides

a useful criterion for computing B+(ν), based on the following easy observation.

Lemma 2.20. Suppose that h : {0, . . . , n} → R≥0 is a concave function with h(0) = 0

and h(n) = 0. Let h(1) = a > 0 and h(n − 1) = b > 0. Then for any m ∈ {0, . . . , n}, we have

h(m) ≤ am and h(m) ≤ b(n − m), so that 2h(m) ≤ am + b(n − m).

Equality is possible only if m0 =
(

b
a+b

)
n is an integer and h(m) = am for

0 ≤ m ≤ m0 and h(m) = b(n−m) for m0 ≤ m ≤ n. In this case, 2h(m0) = am0+b(n−m0).

Theorem 2.21. Suppose that f : X → X is an automorphism with λ1(f ) > 1 and good

eigenvector pair (ν+, ν−), and let ν = ν+ + ν−. Then we have the following:

1. ν is big if and only if

a =
(

log λ1(f −1)

log λ1(f ) + log λ1(f −1)

)
(dim X)

is an integer, λj(f ) = λ1(f )j for 1 ≤ j ≤ a, and λj(f ) = λ1(f −1)dim X−j for

a ≤ j ≤ dim X.

2. Suppose that λ1(f ) = λ1(f −1). Then ν is big if and only if dim X = 2m is even,

λj(f ) = λ1(f )j for 0 ≤ j ≤ m, and λj(f ) = λ1(f )2m−j for m ≤ j ≤ 2m.
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16 J. Lesieutre and M. Satriano

3. Suppose that ν is big and V ⊂ X is f -periodic with dim V ≥ 1. Then V is not

contained in B+(ν) if and only if there exists an integer a such that 0 < a <

dim V and all of the following hold:

1. λ1(f |V) > 1 and a =
(

log λ1(f |−1
V )

log λ1(f |V )+log λ1(f |−1
V )

)
(dim V);

2. λj(f |V) = λ1(f |V)j for 1 ≤ j ≤ a, and λj(f |V) = λ1(f |−1
V )dim X−j for a ≤ j ≤

dim X;

3. λ1(f |V) = λ1(f ) and λ1(f −1|V) = λ1(f −1);

4. J̃(f |V , a) = aJ̃(f , 1) + (dim V − a)J̃(f −1, 1).

Proof. Lemma 2.20 with h(m) = log λm(f ) shows that λa(f )2 ≤ λ1(f )aλ1(f −1)dim X−a for

any a. Since ν is not big if and only if X = B+(ν), parts (1) and (2) follow immediately

from Lemma 2.19 and the condition for equality in Lemma 2.20.

We now turn to the proof of (3). We know from Lemma 2.19 that V is not

contained in B+(ν) if and only if there exists 0 < a < dim V such that (d) and

λa(f |V)2 = λ1(f )a λ1(f −1)dim V−a both hold. Observe that

λa(f |V)2 ≤ λ1(f |V)aλ1(f |−1
V )dim V−a ≤ λ1(f )aλ1(f −1)dim V−a,

where the 1st inequality is an equality if and only if (a) and (b) hold, while the 2nd is an

equality if and only if (c) holds. �

Remark 2.22. In the case dim X = 2, it follows from [23, Proposition 3.1(2)] that ν is

big and the locus B+(ν) is precisely the union of the f -invariant curves. If dim X = 3,

then ν is big if and only if either λ1(f ) = λ2(f )2 or λ1(f )2 = λ2(f ). If ρ(X) = 2, then ν is

necessarily ample and so B+(ν) is empty.

Corollary 2.23.

1. Suppose that f : X → X is an automorphism satisfying Condition (B) and

for which λ1(f ) = λ1(f −1) (e.g., f is an automorphism of a hyper-Kähler

manifold). Then the union of the odd-dimensional f -periodic subvarieties of

X is not Zariski dense.

2. Suppose that f : X → X is an automorphism of a threefold satisfying either

λ1(f ) = λ2(f )2 or λ2(f ) = λ1(f )2. Then f admits only finitely many positive-

dimensional periodic subvarieties.
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Proof. The 1st claim is immediate from Theorem 2.21(3), since Condition (3a) cannot

hold for an odd-dimensional subvariety. In particular any such subvariety is contained

in the Zariski closed subset B+(ν) ⊂ X.

For the 2nd, note that the condition on the dynamical degrees implies that f

satisfies Condition (B). The ratio in part (3a) of Theorem 2.21 is a = 1
3 or a = 2

3

depending on which of the hypotheses holds. Either way, we conclude that any

f -periodic subvariety is contained in B+(ν). In particular, there are only finitely many

f -periodic surfaces in X. An f -periodic curve is either a component of B+(ν) or contained

in one of these surfaces. Since a surface automorphism with λ1(f ) > 1 has only finitely

many periodic curves, we conclude that the number of periodic curves of either type is

finite, completing the proof. �

Example 2.24 ([34, Example 5.2]). Suppose that f : S → S is an automorphism of a

K3 surface with λ1(f ) > 1. Let X = Hilbn(S) be the corresponding Hilbert scheme of

n points on S. There is an induced automorphism f [n] : X → X, and λ1(f [n]) = λ1(f ).

The f -periodic points p on S are Zariski dense [8], giving rise to f -periodic

subvarieties V on X of any even codimension, as the images of p×· · ·×p×S×· · ·×S in X.

These f [n]-periodic subvarieties are Zariski dense, but they satisfy all four conditions of

(3) of Theorem 2.21 and so are not contained in B+(ν). In particular, these subvarieties

have even dimension.

If f : S → S has an invariant curve C, then the image E ⊂ Hilbn(S) of the divisor

S × S × · · · × S × C is contained in B+(ν): Conditions (a) and (b) of Theorem 2.21(3) both

fail. Note that λ1(f |E) = λ1(f ) here, but there is a smaller subvariety V ⊂ E given as the

image of C × · · · × C for which λ1(f [n]|V) = 1.

Proposition 2.25 (The Weil height machine, e.g., [22, Theorem B.3.6]). Let X be a

projective variety defined over Q. There exists a unique map

Pic(X)
R

→
{
functions X(Q) → R

}
{
bounded functions X(Q) → R

}

with the following properties:

1. Normalization: if D is very ample, φD : X → Pn is the associated embedding,

and h is the absolute logarithmic height [22, §B.2], then hD(P) = h(φD(P)) +
O(1).

2. Functoriality: if π : X → Y is a morphism, then hX,π∗D(P) = hY,D(π(P))+ O(1).
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18 J. Lesieutre and M. Satriano

3. Additivity: hX,D1+D2
(P) = hX,D1

(P) + hX,D2
(P) + O(1)

4. Positivity: If D is effective, then hX,D(P) ≥ O(1) for P outside the base locus

of D.

By a height function for an R-divisor class D, we mean a function hD : X(Q) → R

belonging to the class of height functions for D.

The augmented base locus is well suited to working with height functions

associated with big R-divisors. The next two lemmas give extensions of the positivity

property and Northcott’s lemma to this setting.

Lemma 2.26. Let X be a normal, projective variety over Q.

1. Suppose that D is a Q-divisor. Then hX,D(P) ≥ O(1) for P outside B(D).

2. Suppose that D is a R-divisor. Then hX,D(P) ≥ O(1) for P outside B+(D).

3. Suppose that D is a big R-divisor on X. Then for any M and N, there are only

finitely many points P of X(Q) � B+(D) with [Q(P) : Q] < M and hD(P) < N.

Proof. Fix an integer m with Bs(mD) = B(D); then hX,mD = m hX,D + O(1) according to

the additivity property, and (1) follows.

For (2), according to Lemma 2.14(5) there exists an ample R-divisor A so that

D − A is a Q-divisor and B+(D) = B(D − A). According to (1), we have hD−A(P) ≥ O(1)

for P outside B(D − A) = B+(D). Since hD = hD−A + hA + O(1), and since hA ≥ O(1), this

proves (2).

At last we prove (3); let D and A be as before. There is a constant C1 such that

hA(P) ≤ hD(P) − hD−A(P) + C1 for all points P of X(Q). By (1), there is a constant C2 so

that hD−A(P) ≥ C2 for any P in X(Q) � B(D − A) = X(Q) � B+(D). Now, if P is a point of

X(Q) � B+(D) with hD(P) < N, we have

hA(P) ≤ hD(P) − hD−A(P) + C1 ≤ hD(P) + C1 − C2 ≤ N + C1 − C2.

It then follows from the Northcott theorem for the ample divisor A that there

are only finitely many such P with [Q(P) : Q] < M and hD(P) < N, see Theorem B.3.2(g)

and Remark B.3.2.1(i) of [22]. �

With these results in place, we now construct a canonical height function for an

automorphism satisfying Condition (B) and that admits an eigendivisor pair. Suppose

that f : X → X is an automorphism of a normal projective variety satisfying these
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Kawaguchi–Silverman for Hyper-Kählers 19

conditions, with (D+, D−) an eigendivisor pair for f . Define functions ĥD+ : X(Q) → R

and ĥD− : X(Q) → R by

ĥD+(P) = lim
n→∞

1

λ1(f )n hD+(f n(P))

ĥD−(P) = lim
n→∞

1

λ1(f −1)n hD−(f −n(P)).

The functoriality of the height function yields hD±(P) − λ1(f ±1)−1hD±(f (P)) = O(1); it

follows from an argument of Tate (cf. [47, §3]) that both of these limits exist and that

ĥD± is a height function for D±. These functions furthermore satisfy the relations

ĥD+(f (P)) = λ1(f )̂hD+(P), ĥD−(f (P)) = λ1(f −1)−1ĥD−(P),

with no O(1) term. Consider the function ĥ(P) : X(Q) → R given by

ĥ(P) = ĥD+(P) + ĥD−(P).

We next develop the properties of ĥ(P), closely following arguments of Kawaguchi [23,

Theorem 5.2 and Proposition 5.5].

Theorem 2.27. Let X be a normal projective variety over Q. Let f be an automorphism

of X with λ1(f ) > 1 and satisfying Condition (B), and suppose that f admits an

eigendivisor pair (D+, D−). If P ∈ X(Q), then the function ĥ has the following properties:

1. ĥ is a height function for the big and nef divisor D = D+ + D−;

2. if P ∈ X(Q) � B+(D), then ĥ(P) ≥ 0, ĥD+(P) ≥ 0, and ĥD−(P) ≥ 0;

3. ĥ satisfies the Northcott property on X(Q) � B+(D);

4. If P ∈ X(Q) � B+(D), then ĥD+(P) = 0 if and only if ĥD−(P) = 0 if and only if

ĥ(P) = 0 if and only if P is f -periodic.

Proof. Part (1) is immediate from the fact that ĥD+ and ĥD− are height functions for D+
and D−. Since D is big, it follows from Lemma 2.26(2) that there is a constant C such that

ĥ(P) > C for any P not contained in B+(D). Since B+(D) is f -invariant by Corollary 2.17,
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20 J. Lesieutre and M. Satriano

if P is not contained in B+(D) then neither is f n(P) for any integer n. Then

ĥ(f n(P)) + ĥ(f −n(P)) = ĥD+(f n(P)) + ĥD−(f n(P)) + ĥD+(f −n(P)) + ĥD−(f −n(P))

= λ1(f )nĥD+(P) + λ1(f −1)−nĥD−(P) + λ1(f )−nĥD+(P) + λ1(f −1)nĥD−(P)

= (
λ1(f )n + λ1(f )−n)

ĥD+(P) +
(
λ1(f −1)n + λ1(f −1)−n

)
ĥD−(P).

The left side is bounded below by 2C, and so we obtain

2C ≤ (
λ1(f )n + λ1(f )−n)

ĥD+(P) +
(
λ1(f −1)n + λ1(f −1)−n

)
ĥD−(P)

and dividing by λ1(f )n + λ1(f )−n yields

2C

λ1(f )n + λ1(f )−n ≤ ĥD+(P) +
(

λ1(f −1)n + λ1(f −1)−n

λ1(f )n + λ1(f )−n

)
ĥD−(P) ∗

The analysis now depends on the relative sizes of λ1(f ) and λ1(f −1). Suppose

first that λ1(f ) > λ1(f −1); since the lemma is symmetric in f and f −1, the case with the

inequality reversed follows from the same argument. Taking the limit of equation (∗) as

n tends to infinity, we obtain ĥD+(P) ≥ 0. We have

ĥ(f −n(P)) = λ1(f )−nĥD+(P) + λ1(f −1)nĥD−(P).

The left side is again bounded below by C, and so

(
λ1(f )−nλ1(f −1)−n

)
ĥD+(P) + ĥD−(P) ≥ Cλ1(f −1)−n.

Again taking the limit as n goes to infinity, we obtain ĥD−(P) ≥ 0, and so ĥ(P) = ĥD+(P)+
ĥD−(P) ≥ 0.

Suppose instead that λ = λ1(f ) = λ1(f −1). Taking the limit in equation (∗) then

yields 0 ≤ ĥD+(P) + ĥD−(P) = ĥ(P). It follows that ĥD+(P) ≥ −ĥD−(P), and so

ĥD+(P) = λ−nĥD+(f n(P)) ≥ −λ−nĥD−(f n(P)) = −λ−2nĥD−(P).

The non-negativity of ĥD+(P) follows by taking the limit as n tends to infinity; non-

negativity of ĥD−(P) follows from a similar argument. This handles (2).

Lemma 2.26(3) combined with property (1) immediately implies (3).
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Kawaguchi–Silverman for Hyper-Kählers 21

We now turn to (4). First, if P is f -periodic, then f n(P) = P for some n, which

implies directly from the definitions that ĥD+(P) and ĥD−(P) both vanish, and hence

ĥ(P) = 0. On the other hand, suppose that ĥ(P) = 0 for some P in X(Q) � B+(D). By (2), it

must be that ĥD+(P) = 0 and ĥD−(P) = 0. Then ĥD+(f n(P)) = 0 and ĥD−(f n(P)) = 0 for any

integer n as well, so that ĥ(f n(P)) = 0. By Corollary 2.17, the locus B+(D) is f -invariant,

so {f n(P) | n ∈ Z} is contained in X(Q) � B+(D). Since the f n(P) are of bounded degree

over Q and all have height 0, the Northcott property (3) tells us the set of f n(P) is finite,

and so P is f -periodic.

To finish the proof of (4), it remains to show that if P ∈ X(Q) � B+(D) and

ĥD+(P) = 0, then P is f -periodic; the assertion that ĥD−(P) = 0 implies P is f -periodic

will follow similarly. If ĥD+(P) = 0 and n > 0 then, letting λ = λ1(f ), we have

ĥ(f n(P)) = ĥD+(f n(P)) + ĥD−(f n(P)) = λnĥD+(P) + λ−nĥD−(P) = λ−nĥD−(P) ≤ ĥD−(P). Since

we have fixed our point P, we can view ĥD−(P) as a constant and we have bounded

ĥ(f n(P)) for all n. Again, since the set {f n(P)} has a bounded degree and is contained in

X(Q) � B+(D), it follows from (3) that {f n(P)} is finite, and so P is f -periodic. �

Theorem 2.28. Suppose that f : X → X is an automorphism of a normal projective

variety satisfying Conditions (A) and (B). Then the Kawaguchi–Silverman conjecture

holds for f .

Proof. Recall that we can always assume λ1(f ) > 1. Then by Corollary 2.9, there exists

an eigendivisor pair (D+, D−), with D = D+ + D− big. Let P ∈ X(Q) have a dense orbit

under f . By Corollary 2.17, we know P does not lie in B+(D). Since P is not f -periodic,

we know from Theorem 2.27(2) and (4) that ĥD+(P) and ĥD−(P) are both strictly positive.

Then

αf (P) ≥ lim inf
n→∞ h+

D(f n(P))1/n = lim inf
n→∞ (λ1(f )nĥD+(P) + λ1(f )−nĥD−(P))1/n = λ1(f ),

where the inequality follows from [37, Remark 2.2] and the next equality from Theorem

2.27(1), which tells us that hD = ĥ + O(1). �

Remark 2.29. In fact, the proof of Theorem 2.28 shows that αf (P) = λ1(f ) for any P in

X(Q) � B+(D); it is not necessary to assume that P has a dense orbit.

It follows from Lemma 2.11 and Theorem 2.28 that the Kawaguchi–Silverman

conjecture holds for automorphisms of hyper-Kähler manifolds; note that Condition (A)
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22 J. Lesieutre and M. Satriano

holds since a hyper-Kähler manifold is geometrically simply connected. The next lemma

shows that it also holds for automorphisms of smooth varieties of Picard rank 2, slightly

extending [46, Theorem 4.2(ii)].

Theorem 2.30. Suppose that X is a smooth projective variety, ρ(X) = 2, and f : X → X

is an automorphism. Then the Kawaguchi–Silverman conjecture holds for f .

Proof. The map φ induces an automorphism g : Alb(X) → Alb(X) such that the diagram

commutes. The proof of Lemma 2.11 shows that neither eigenvalue of f ∗ : N1(X)
R

→
N1(X)

R
is equal to 1, and so it must be that KX ≡ 0. A form of abundance due to

Nakayama [39] implies that KX is torsion in Pic(X), so that κ(X) = 0. Since κ(X) = 0,

a result of Kawamata (independent of the conjectures of the minimal model program

(MMP)) implies that a is surjective with connected fibers [27].

If dim Alb(X) = 0, then h1(X,OX) = 0, so that Condition (A) is satisfied. In

this case, Conjecture 1.1 follows from Theorem 2.28. If dim Alb(X) = dim X, then a is

generically finite, and it must be birational since a has connected fibers. Then X is

birational to an abelian variety, f descends to an automorphism of the abelian variety,

and the conjecture holds by [48].

Suppose at last that a is not finite and that dim Alb(X) > 0. It must be that

ρ(X) ≥ ρ(Alb(X)) + 1, since for any divisor D on Y, π∗D has intersection 0 with a curve

in the fiber of a. Since ρ(X) = 2, we have ρ(Alb(X)) = 1. Taking H to be a generator of

Pic(Alb(X)), it must be that a∗H is a 1-eigenvector for φ∗, but neither eigenvalue of φ∗ is

equal to 1, so this case is impossible. �

Notice that if ρ(X) = 2 and h1(X,OX) = 0, we have proved something even

stronger; since D = D+ + D− is ample, B+(D) = ∅, and so αf (P) = λ1(f ) for every non-

periodic Q-point P, without assuming the orbit is Zariski-dense.

Lemma 2.31. Let f : X → X be an automorphism of a normal projective variety

satisfying Condition (B), and let (ν+, ν−) be an eigenvector pair. If i : V → X is the

inclusion of an f -periodic subvariety with dim V ≥ 1 and λ1(f |V) < λ1(f ), then i∗ν+ = 0.
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Kawaguchi–Silverman for Hyper-Kählers 23

Proof. The pair (ν+, ν−) is also an eigenvector pair for f n, so without loss of generality

we can assume that n = 1, that is, V is fixed by f . Let i : V → X be the inclusion. Then

(f |V)∗(i∗ν+) = i∗f ∗ν+ = i∗(λ1(f )ν+) = λ1(f )(i∗ν+), so that i∗ν+ is a λ1(f )-eigenvector for

(f |V)∗. Since the spectral radius of (f |V)∗ is λ1(f |V) < λ1(f ), this is impossible unless

i∗ν+ = 0. �

Definition 2.32. Suppose that f : X → X is an automorphism of a normal projective

variety. Then E(f ) is the subset of X defined by

E(f ) =
⋃ {

V : dim V ≥ 1, V is f -periodic, λ1(f |V) < λ1(f ), and λ1(f −1|V) < λ1(f −1)
}

.

Theorem 2.33. Suppose that X is a normal projective variety and that f : X → X is an

automorphism satisfying Condition (B). Then E(f ) is not Zariski dense in X.

Proof. It follows from Theorem 2.21(3c) that E(f ) ⊂ B+(ν), where ν = ν+ + ν− for any

good eigenvector pair. Since ν is big, B+(ν) is a proper Zariski-closed subset of X, and

the claim follows. �

Example 2.34. Let g : S → S be an automorphism of a K3 surface satisfying λ1(g) > 1,

and let f = g×id : S×P1 → S×P1, which satisfies λ1(f ) = λ1(g). If p is any periodic point

of g, then V = p × P1 is f -periodic, and satisfies λ1(f |V) = 1, so that V ⊂ E(f ). Since the

g-periodic points are dense in S (e.g., by [52, Theorem 1.2]), the set E(f ) is Zariski dense.

However, f does not satisfy Condition (B), so Theorem 2.33 is not applicable.

The next result (which applies in particular in the hyper-Kähler case) is a higher-

dimensional analog of a result of Cantat and Kawaguchi [9, Proposition 4.1], the latter

having been shown for surfaces.

Proposition 2.35. Suppose that X has Kawamata log terminal (klt) singularities

(e.g., that X is smooth), that KX ≡ 0, and that f : X → X is an automorphism satisfying

λ1(f ) > 1 and Condition (B). Then there exists a birational morphism π : X → Y such that

f descends to an automorphism g : Y → Y, and π contracts every connected component

of E(f ) to a point.

Proof. Since f satisfies Condition (B), there is an eigenvector pair (ν+, ν−) with

ν = ν+ + ν− big. When ν is represented by a Q-divisor D, the claim follows quickly

from Kawamata’s basepoint-free theorem; D is semi-ample, and we take π to be
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24 J. Lesieutre and M. Satriano

the corresponding contraction. However, since ν does not typically have a Q-divisor

representative, we must resort to other methods, and we realize Y as the log canonical

model of a klt pair (X, �) with � ≡ εν.

Since ν is big, we may find ε > 0 and an effective R-divisor � ≡ εν such that

(X, �) is klt [30, Corollary 2.35]. Note that KX + � = � is nef. It follows from [6] that

there exists a log canonical model π : X ��� Y for the pair (X, �), which means that

1. π is a birational contraction (i.e., π is birational and π−1 does not contract

any divisors);

2. π is (KX + �)-negative (in the sense of [6]);

3. taking 
 = π∗�, we have KY + 
 ample.

We argue now that if KX + � is big and nef, the map π is in fact a morphism (a

standard fact, for which we do not know a convenient reference). Take a resolution of

the rational map π :

Since π is (KX +�)-negative, we have p∗(KX +�) = q∗(KY +
)+E, with E ≥ 0. It follows

from [39] that

E = Nσ (q∗(KY + 
) + E) = Nσ (p∗(KX + �)) = 0,

and so p∗(KX + �) = q∗(KY + 
). It then follows from [6, 3.6.6(2)] that π is a morphism,

and that KX + � = π∗A, where A is ample. Since KX ≡ 0 by assumption, this means that

εν ≡ π∗A.

Suppose that V is an irreducible component of E(f ). Letting i : V → X be the

inclusion map, Lemma 2.31 applied to f and f −1 shows that i∗ν+ = i∗ν− = 0, and so

i∗ν = 0. Since D = π∗A, it follows that all such subvarieties V are contracted to points

by π .

It remains to check that f induces an automorphism g : Y → Y. We claim first

that every subvariety contracted to a point by π is also contracted by π ◦ f . The varieties

contracted by π are precisely those V for which i∗ν = 0, where i : V → X is the inclusion

map. Since ν+ and ν− are nef, this is possible only if i∗ν+ = i∗ν− = 0. The varieties

contracted by f ◦π are those on which (f −1)∗(ν) = λ1(f )−1ν+ +λ1(f −1)−1ν− restricts to 0,

which is the same set of varieties.
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Kawaguchi–Silverman for Hyper-Kählers 25

The map π : X → Y is birational with Y normal and so satisfies π∗OX = OY by

Zariski’s main theorem, and since f ◦ π contracts every fiber of π , it follows from the

rigidity lemma [11, Lemma 1.15(b)] that it factors through π . This yields a map g : S → S

with f ◦ π = π ◦ g. An inverse to g is obtained by applying the same argument to f −1. �

As a consequence of Theorem 1.2, we reduce Conjecture 1.1 for automorphisms

of smooth varieties X with KX ≡ 0 to the case of Calabi–Yau varieties. This is done in

Corollary 1.5.

Proof of Corollary 1.5 Let X be a smooth projective Q-variety with numerically trivial

canonical class, and f : X → X an automorphism. By [4, Proposition 3.1], there is an

abelian variety A, Calabi–Yau varieties Yi, and hyper-Kähler manifolds Zj all defined

over Q, and there is a finite étale cover π : X̃ → X, where X̃ = A × ∏
i Yi × ∏

j Zj. Applying

Condition (3) of [4, Proposition 3.1] to f ◦ π yields a map f̃ making the diagram

commute. Since π is finite étale, by degree considerations, we see f̃ is an automorphism.

By [37, Lemma 3.2], the conjecture for f follows from that of f̃ , so we may assume X itself

is a product A × ∏
i Yi × ∏

j Zj as above.

Recall that Conjecture 1.1 holds for f if and only if it holds for an iterate of f .

Since the Yi and Zj are simply connected, their 1st Betti numbers are trivial, so after

possibly replacing f by an iterate, we may assume by Theorem 4.6 and Lemma 5.1 of

[45] that f = f0 × ∏
i gi × ∏

j hj with f0 an endomorphism of A, gi an endomorphism of

Yi, and hj an endomorphism of Zj. Applying the same argument to f −1, we may assume

f −1 = f ′
0 ×∏

i g′
i ×

∏
j h′

j. Since id = ff −1 = f0f ′
0 ×∏

i gig
′
i ×

∏
j hjh

′
j, it follows that f −1

0 = f ′
0,

g−1
i = g′

i, and h−1
j = h′

j; so, f0, gi, and hj are all automorphisms.

By [45, Lemma 3.2], the conjecture for f then follows from the conjecture for

f0, gi, and hj. Conjecture 1.1 is known for abelian varieties by [48], and we proved in

Theorem 1.2 that the conjecture holds for hyper-Kähler manifolds. Thus, Conjecture 1.1

for f is reduced to that of each gi, that is, automorphisms of Calabi–Yau varieties of

dimension at most n. �
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26 J. Lesieutre and M. Satriano

3 Interplay Between Conjecture 1.1, Fibrations, and Birational Maps

In this section, we collect some results that will be used throughout the rest of the

paper. We consider the following general situation: suppose that f : X → X is surjective,

and there are morphisms π : X → Y and g : Y → Y with π ◦ f = g ◦ π . Under

these circumstances, we are in some cases able to reduce Conjecture 1.1 for f to the

conjecture for g. There are a number of natural fibrations π : X ��� Y to which one might

hope to apply these results on a given variety X, for example, the canonical model, the

albanese map, Mori fiber spaces, and the maximal rationally connected (mrc) quotient.

Such canonically defined fibrations play a fundamental role in the study of self-maps

of higher-dimensional varieties [53]. Recall, as stated in the introduction, that for a

regular morphism f and a point P with a dense orbit, the limit defining αf (P) exists,

that is, αf (P) = αf (P).

Lemma 3.1. Assume that X and Y are normal projective varieties over Q and let f

(resp. g) be a surjective endomorphism of X (resp. Y). If π : X → Y is a surjection such

that π ◦f = g◦π and P ∈ X(Q) has a dense orbit under f , then αf (P) ≥ αg(π(P)). Moreover,

if π is birational and X and Y are Q-factorial, then αf (P) = αg(π(P)).

Proof. We first show αf (P) ≥ αg(π(P)). Let H be an ample Cartier divisor on Y. Since

P has a dense orbit under f , it follows that π(P) has a dense orbit under g. So, the limit

defining αg(π(P)) exists and we have

αg(π(P)) = lim
n→∞ h+

H(gn(π(P)))1/n = lim
n→∞ h+

π∗H(f n(P))1/n.

By [37, Remark 2.2] (cf. the proof of [26, Proposition 12]), we obtain

αf (P) = αf (P) ≥ lim sup
n→∞

h+
π∗H(f n(P))1/n = αg(π(P)).

The cited references are formulated under the hypothesis that X is smooth, so that

a dominant rational map induces a pullback map φ∗ on N1(X). However, since we

assume that f and g are regular morphisms, there are no difficulties associated with

repeatedly pulling back Cartier divisors, and the same arguments go through on any

normal projective variety (see [26, Remarks 8 and 20]).

It remains to handle the case where π is birational. This follows from the

proofs of Lemma 3.3 and Theorem 3.4(ii) in [37]. The statement is again formulated

under a smoothness hypothesis, but it suffices to assume that X and Y are normal and

Q-factorial. The negativity lemma holds as long as X and Y are normal, and the Weil
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Kawaguchi–Silverman for Hyper-Kählers 27

height machine (see [22, Theorem B.3.2] or Proposition 2.25) remains valid for Cartier

divisors on singular varieties by [22, Remark B.3.2.1]. The Q-factoriality assumption is

needed so that the definition of the divisor E in [37, Proof of Lemma 3.3] makes sense;

to form p∗p∗q∗HY , we must be able to pull back a Weil divisor. �

Corollary 3.2. Assume that X and Y are normal, Q-factorial projective varieties over Q,

and let f (resp. g) be a surjective endomorphism of X (resp. Y). If π : X → Y is a birational

morphism such that π ◦ f = g ◦ π , then Conjecture 1.1 holds for (X, f ) if and only if it

holds for (Y, g).

Proof. Let P ∈ X(Q). Then P has a dense orbit under f if and only if π(P) has a dense

orbit under g. Indeed, since π is surjective, it is clear that density of the f -orbit of P

implies density of the g-orbit of π(P). Conversely, suppose the g-orbit of π(P) is dense

and let U ⊂ X be a dense open subset where π |U is an isomorphism. Given any open

V ⊂ X, we see V ∩ U �= ∅ and so π(V ∩ U) contains some gn(π(P)). Thus, V ∩ U contains

f n(P), proving density of the f -orbit of P.

To finish the proof, note that Lemma 3.1 and Theorem 2.2(4) tell us αf (P) =
αg(π(P)) and λ1(f ) = λ1(g). So, αf (P) = λ1(f ) if and only if αg(π(P)) = λ1(g). �

Combining Corollary 3.2 with [24, Theorem 10] yields the following result.

Corollary 3.3. Let X be a normal, Q-factorial projective surface over Q. If f is an

automorphism of X, then Conjecture 1.1 holds for (X, f ).

Proof. Let π : X̃ → X be the minimal resolution. By [35, Theorem 4-6-2(i)], there exists

an automorphism f̃ of X̃ such that η ◦ f̃ = f ◦ η. By [24, Theorem 2(c)], Conjecture 1.1 is

known for (X̃, f̃ ) and hence also known for (X, f ) by Corollary 3.2. �

Theorem 3.4. Let π : X → Y be a surjective morphism of normal projective varieties

over Q. Suppose f (resp. g) is a surjective endomorphism of X (resp. Y) such that g ◦ π =
π ◦ f . If λ1(f |π ) ≤ λ1(g) and Conjecture 1.1 holds for (Y, g), then Conjecture 1.1 also

holds for (X, f ). The condition λ1(f |π ) ≤ λ1(g) holds in particular if f is birational and

dim Y = dim X − 1.

Proof. We begin by showing that λ1(g) = λ1(f ). By Theorem 2.2(2), we have

λ1(f ) = max{λ1(g), λ1(f |π )} = λ1(g).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz067/5424982 by U

niversity of W
aterloo Porter Library, M

atthew
 Satriano on 18 April 2019



28 J. Lesieutre and M. Satriano

Next, let P ∈ X(Q) have a dense orbit under f , so that π(P) has a dense orbit

under g. Then by Lemma 3.1, we obtain

αf (P) ≥ αg(π(P)) = λ1(g) = λ1(f ),

where αg(π(P)) = λ1(g) because the conjecture holds for (Y, g). By Remark 2.3, we then

know that αf (P) = λ1(f ). Therefore, the conjecture holds for (X, f ).

Theorem 2.2(3) tells us that λ1(f |π ) = 1 whenever f is birational and dim Y =
dim X − 1. Since λ1(g) ≥ 1, the inequality follows. �

The following consequence of Theorem 3.4 is applied in the proofs of

Theorem 1.8(2) and Theorem 1.10(1).

Corollary 3.5. Let π : X → Y be a surjective morphism of normal projective varieties

over Q with X a threefold and Y a Q-factorial surface. Suppose f (resp. g) is an

automorphism of X (resp. Y) such that g ◦ π = π ◦ f . Then Conjecture 1.1 holds

for (X, f ).

Proof. By Corollary 3.3, we know Conjecture 1.1 holds for (Y, g). Since f is birational

and dim Y = dim X − 1, Conjecture 1.1 for (X, f ) follows from Theorem 3.4. �

4 Endomorphisms of Kodaira Dimension 0 Threefolds: Proposition 1.7

The goal of this brief section is to prove Conjecture 1.1 for all smooth threefolds X of

Kodaira dimension 0 and surjective endomorphisms f with deg(f ) > 1. The crux of the

argument is a theorem of Fujimoto that it is possible to run the minimal model program

on X while only contracting f -periodic rays.

Proof of Proposition 1.7 By [19, Lemma 2.3], f is a finite étale cover and so χ(OX) =
deg(f )χ(OX). Then χ(OX) = 0 since deg(f ) > 1. By [19, Corollary 4.4] and its proof, we

know that all extremal contractions of X are of type (E1) (the inverse of the blowup along

a smooth curve), so the minimal model of X is smooth, and f descends to a surjective

endomorphism of a minimal model of X. The argument of [19] is based on a run of the

MMP and holds over any algebraically closed field of characteristic 0, so the minimal

model of X is defined over Q. By Theorem 2.2(4), the Kawaguchi–Silverman conjecture

holds for f if and only if it holds for the induced endomorphism of the minimal model

of X. We may therefore assume X itself is minimal.
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Kawaguchi–Silverman for Hyper-Kählers 29

The abundance conjecture is known in dimension 3 by [28], so KX ≡ 0. By [4,

Proposition 3.1], there is a finite étale cover π : X̃ → X with X̃ = A × ∏
i Yi × ∏

j Zj, where

A is an abelian variety, Yi are Calabi–Yau varieties, and Zj are hyper-Kähler manifolds

all defined over Q. Applying Condition (3) of [4, Proposition 3.1] to f ◦ π yields a map f̃

making the diagram

commute. We see f̃ is finite étale with deg(̃f ) = deg(f ). From [19, Main Theorem A] Case

3, we know that X̃ is an abelian threefold or E × Z with E and elliptic curve and Z a

K3 surface; the reason X̃ cannot be a Calabi–Yau threefold is that π1(X) is infinite, see

[19, Claim, pg. 66]. By [45, Theorem 1.3], Conjecture 1.1 is known for products of abelian

varieties and K3 surfaces, so it is known for f̃ . By [37, Lemma 3.2], the conjecture for f

follows. �

5 Automorphisms of Calabi–Yau Threefolds: Theorem 1.8

Proof of Theorem 1.8 We first handle case (1). By [4, Lemma 7.1] we know that

{D ∈ Nef(X) | c2(X) · D ≤ M} is compact for all M ≥ 0. So the function D �→ c2(X) · D

achieves a minimum positive value on N1(X)∩Amp(X) and this value is achieved by only

finitely many Di. Taking the sum of these finitely many Di, we obtain an ample class

A that is fixed by f ∗. It follows that some iterate f n lies in the connected component

of the identity Aut0(X) ⊆ Aut(X). Since X is a Calabi–Yau threefold, dim Aut0(X) =
dim H0(X, TX) = 0, and we conclude that f has finite order, so the conjecture holds

vacuously.

We now turn to case (2). Let π : X → Y be the contraction map associated with D;

since D · c2(X) = 0, this is referred to as a c2-contraction. Oguiso shows in [42, Theorem

4.3] that there are only finitely many c2-contractions, and so after replacing f by a

further iterate, we can assume f ∗[D] = [D]. By [4, Proposition 6.1(a)], we know that f

descends to an automorphism g of Y. Since D �= 0, we see dim Y > 0.

Let us first suppose that dim Y = 1. By hypothesis, there is a rational point

P ∈ X(Q) with a Zariski dense orbit under f , so π(P) ∈ Y has a Zariski dense orbit under

g. As a result, Y must be rational or an elliptic curve; since X has trivial Albanese, we

see Y � P1. Let Z ⊆ P1 be the locus of points t, where the fiber Xt is singular. Then

g(Z) = Z. Since Z is a finite set, after replacing f by a further iterate, we can assume g
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fixes Z point-wise. By [50, Theorem 0.2], we know that Z contains at least three points.

It follows that g is the identity since it fixes at least three points of P1. In other words,

there exists a rational function on X that is invariant under some iterate of f , which

contradicts the fact that X has a point with a dense orbit.

The case in which dim Y = 2 is an immediate consequence of Corollary 3.5; that

Y is normal and Q-factorial is proved in [41, pg. 18].

Finally, we handle the case, where dim Y = 3, that is, D is big. Since contractions

have connected fibers, π is birational. Then D = π∗H for some ample divisor H on

Y. Then π∗(g∗H) = f ∗(π∗H) = f ∗D = D = π∗H, which shows that g∗H = H, and so

λ1(g) = 1. Theorem 2.2 (4) shows that λ1(f ) = λ1(g) = 1, and the conjecture holds for f by

Remark 2.3.

6 Mori Fiber Spaces

6.1 Automorphisms of threefold Mori fiber spaces: Theorem 1.10(1)

We prove Theorem 1.10(1) after a preliminary lemma.

Definition 6.1. A Mori fiber space is a projective morphism π : X → S such that X is

terminal and Q-factorial, −KX is π-ample, and ρ(X/S) = 1.

Lemma 6.2. Let π : X → S be a Mori fiber space. If f is a surjective endomorphism

of X, then after replacing f by a suitable iterate f m, we may assume that there is an

endomorphism g : S → S such that g ◦ π = π ◦ f . If f is an automorphism then g is also

an automorphism.

Proof. We claim first that some iterate of f maps fibers to fibers. This is a consequence

of an observation of Wiśniewski [51, Theorem 2.2] (see also [29, Exercise III.1.19]); on a

given variety, there are only finitely many KX-negative extremal rays on the closed cone

of curves NE(X) yielding Mori fiber space structures.

The existence of the map g is a consequence of the rigidity lemma [11, Lemma

1.15(b)], as in the proof of Proposition 2.35, since a Mori fiber space necessarily satisfies

π∗OX = OS. �

Theorem 6.3. Suppose that π : X → Y is a Mori fiber space. Suppose that f : X → X

and g : Y → Y are automorphisms with π ◦ f = g ◦ π . If Conjecture 1.1 holds for g, then

it holds for f .
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Proof. Recall that the 1st relative dynamical degree is defined by

λ1(π |f ) = lim
n→∞

(
(f n)∗H · π∗(H ′ dim Y) · Hdim X−dim Y−1

)1/n
.

Here π∗(H ′ dim Y) is the class of a fiber of π , and π∗(H ′ dim Y) · Hdim X−dim Y−1 is the class

of some curve in the fiber. Since π is a Mori fiber space, all curves contained in fibers

are proportional in N1(X), and since f is an automorphism defined over π , this class

must be invariant under f . It follows that λ1(π |f ) = 1. The claim is then a consequence

of Theorem 3.4. �

Proof of Theorem 1.10 (1) Let X be a threefold, f an automorphism of X, and π : X → S

a Mori fiber space structure. After replacing f by an iterate, by Lemma 6.2 we may

assume that there is an automorphism g : S → S such that π ◦ f = g ◦ π . Since dim S ≤ 2

and g is an automorphism, Conjecture 1.1 is known for (S, g), and the conjecture for

(X, f ) follows from Theorem 6.3. �

6.2 Endomorphisms of rational normal scrolls: Theorem 1.10 (2)

Let C be a smooth projective curve over Q, E a vector bundle on C of rank n, and

X = PC(E). By [18, Theorem 9.6], the Chow group of X is given by

A∗(X) = A∗(C)[D]/(Dn + c1(E)Dn−1 + c2(E)Dn−2 + · · · + cn(E))

= A∗(C)[D]/(Dn + c1(E)Dn−1F),

where F is the class of a fiber. So A∗(X) is generated by the divisor classes F and D

and we have the relations F2 = 0, FDn−1 = 1, and Dn = −c1(E)Dn−1F = −c1(E); the

2nd relation holds because DF = D|F is the class of a hyperplane on F = Pn−1 and so

FDn−1 = (D|F)n−1 = 1.

The nef cone of X is given by the following, which generalizes a result of Miyaoka

[38, Theorem 3.1]. Recall that the slope μ(E) is defined to be c1(E)/rank(E). We let μmin(E)

and μmax(E) denote the minimum, resp. maximum, slope of the graded pieces appearing

in the Harder–Narasimhan filtration of E .

Lemma 6.4. Nef(X) is the cone generated by F and D − μmin(E)F.

Proof. See, for example, [39, Lemma 4.4.1] or [20, Lemma 2.1]. �
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Given a surjective endomorphism f of X = PC(E), in order to verify Conjecture 1.1

we may replace f by an iterate. Since the structure map π : X → C is a Mori fiber space,

by Lemma 6.2 we can replace f by an iterate and assume that there is an endomorphism

g of C such that π ◦ f = g ◦ π . We assume we are in this situation throughout this

section. Let

δ := deg(f )

deg(g)
.

Lemma 6.5. The action of f ∗ on N1(X) is given by

f ∗(F) = deg(g) F, f ∗(D) = (deg(g) − δ1/(n−1))μmin(E) F + δ1/(n−1) D

and has eigenvalues λ1(g) = deg(g) and δ1/(n−1). Moreover,

λ1(f ) = max(λ1(g), δ1/(n−1)).

Proof. It is clear that F is an eigenvector with eigenvalue deg(g) = λ1(g): since F is a

fiber it is of the form π−1(P0) for a point P0 ∈ C and we have

f ∗F = f ∗π∗P0 = π∗g∗P0 = π∗(deg(g)P0) = deg(g)F.

Next, let f ∗D = cF + dD. Notice that with respect to the basis F, D for N1(X), the matrix

for f ∗ is upper triangular with diagonal entries deg(g) and d. So, the eigenvalues for

(f p)∗ are given by deg(g)p and dp. Since λ1(f ) = limp→∞ SpecRad((f p)∗)1/p, we see λ1(f ) =
SpecRad(f ∗) = max(deg(g), d). So, we need only show d = δ1/(n−1), that is, that deg(f ) =
dn−1 deg(g). Notice that

deg(f ) = deg(f )Dn−1F = f∗f ∗(FDn−1) = f∗(f ∗F · (f ∗D)n−1)

= deg(g)f∗(F · (cF + dD)n−1) = deg(g)f∗(dn−1FDn−1) = dn−1 deg(g).

So, we have now shown that the eigenvalues of f ∗ are λ1(g) = deg(g) and δ1/(n−1), and

that λ1(f ) = max(λ1(g), δ1/(n−1)).

Lastly, we must calculate c. To do so, we use Lemma 6.4. Notice that the

determinant of the action of f ∗ on N1(X) is deg(f ) > 0 so the action is orientation-

preserving. Since f is finite, for all D′ we know D′ is ample if and only if f ∗D′ is ample. As

a result, the boundary rays of Nef(X) are each sent to themselves. Thus, the eigenvectors
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for f ∗ are given by F and D−μmin(E)F. In particular, d(D−μmin(E)F) = f ∗(D−μmin(E)F) =
cF + dD − deg(g)μmin(E)F, and so

c = (deg(g) − d)μmin(E),

proving the lemma. �

Proposition 6.6. One of the following holds: λ1(f ) = λ1(g) or μmin(E) = −μ(E).

Proof. From Lemma 6.5, we know f ∗D = cF + dD, where c = (deg(g) − d)μmin(E) and

d = δ1/(n−1). Recalling that Dn = −c1(E), we have

− deg(f )c1(E) = f∗f ∗(Dn) = f∗(cF + dD)n = ncdn−1 − dnc1(E).

Substituting for c, we have

− deg(f )c1(E) = n(deg(g) − d)μmin(E)dn−1 − dnc1(E) = n(deg(f ) − dn)μmin(E) − dnc1(E)

and so

dn(c1(E) + nμmin(E)) = deg(f )(c1(E) + nμmin(E)).

Thus, μmin(E) = −c1(E)/n =: −μ(E) or dn = deg(f ). This latter equality is equivalent to

d = deg(g) = λ1(g), which by Lemma 6.5, implies λ1(f ) = λ1(g). �

We next need the following basic result concerning the Harder–Narasimhan

filtration.

Lemma 6.7. If E is a vector bundle that is not semistable, then μmax(E) > μ(E) >

μmin(E).

Proof. Let

0 = E0 � E1 � · · · � E�−1 � E� = E

be the Harder–Narasimhan filtration of E , so that μmax(E) = μ(E1) and μmin(E) =
μ(E/E�−1). By construction, E1 is the maximal destabilizing subbundle of E , that is,

for all subbundles 0 �= F ⊆ E we have (1) μ(E1) ≥ μ(F) and (2) if μ(E1) = μ(F), then

F ⊆ E1. So, we see μ(E1) ≥ μ(E) and we cannot have equality since then we would have

E = E1 that is not possible as E1 is semistable and E is not. We have therefore shown

μmax(E) > μ(E).
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To show μ(E) > μmin(E), we induct on �. We first recall the general result that

follows immediately from the definition of slope: if

0 → F ′ → F → F ′′ → 0

is a short exact sequence of nontrivial vector bundles, then μ(F ′) > μ(F) if and only if

μ(F) > μ(F ′′).
Since E is not semistable, we have � ≥ 2. When � = 2 we have a short exact

sequence

0 → E1 → E → E2/E1 → 0

and since we have already shown μ(E1) > μ(E), we know μ(E) > μ(E2/E1) = μmin(E).

Next suppose � ≥ 3. Then

0 �= E2/E1 � · · · � E�−1/E1 � E/E1

is the Harder–Narasimhan filtration of E/E1; it has length � − 1 ≥ 2 and so E/E1 is not

semistable. Then by induction, μ(E/E1) > μmin(E/E1) = μ(E/E�−1) = μmin(E). Since we

have shown μ(E1) > μ(E), we know μ(E) > μ(E/E1) and so μ(E) > μmin(E). �

Corollary 6.8. Let C be a smooth curve. Then the following are equivalent:

1. Conjecture 1.1 holds for all surjective endomorphisms of varieties of the

form PC(E)

2. Conjecture 1.1 holds for all surjective endomorphisms of varieties of the form

PC(E) with E semistable of degree 0.

Proof. By Proposition 6.6, we know λ1(f ) = λ1(g) or μmin(E) = −μ(E). Suppose λ1(f ) =
λ1(g) and P ∈ X(Q) has a dense orbit under f . Then π(P) has a dense orbit under g,

so αg(π(P)) = λ1(g) since the conjecture is known for curves. Then Lemma 3.1 shows

αf (P) ≥ αg(π(P)) = λ1(g) = λ1(f ), and hence αf (P) = λ1(f ) by Remark 2.3.

We next turn to the case where μmin(E) = −μ(E). Since X = P(E ⊗ L) for any

line bundle L, choosing L with sufficiently negative degree, we can assume μ(E) < 0.

If E is not semistable, then by Lemma 6.7 we have μ(E) > μmin(E) = −μ(E) that is

a contradiction. So, E must be semistable, in which case μ(E) = μmin(E) = −μ(E), so

μ(E) = 0, that is, deg E = 0. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz067/5424982 by U

niversity of W
aterloo Porter Library, M

atthew
 Satriano on 18 April 2019



Kawaguchi–Silverman for Hyper-Kählers 35

We are now ready to prove Conjecture 1.1 in the case where C = P1, that is, the

case of rational normal scrolls.

Proof of Theorem 1.10 (2) By Corollary 6.8, we need only prove the conjecture

for semistable degree 0 vector bundles on P1. Such vector bundles are all trivial,

so X = P1 × Pn−1 in which case the conjecture holds by [45, Theorem 1.3]. �
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