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APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES

DAVID MCKINNON AND MATTHEW SATRIANO

Abstract. Given a smooth projective variety X over a number field k and
P ∈ X(k), the first author conjectured that in a precise sense, any sequence
that approximates P sufficiently well must lie on a rational curve. We prove
this conjecture for smooth split toric surfaces conditional on Vojta’s conjecture.
More generally, we show that if X is a Q-factorial terminal split toric variety
of arbitrary dimension, then P is better approximated by points on a rational
curve than by any Zariski dense sequence.
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1. Introduction

In Dirichlet’s 1842 Approximation Theorem, he showed that for every irrational
number x, there exist infinitely many rational numbers a

b in reduced form satisfying

the equation |x− a
b | <

1
b2 . His result can be rephrased as follows. For a point x ∈ R

the approximation exponent τx of x is the unique extended real number τx ∈ (0,∞]
such that the inequality ∣∣∣x− a

b

∣∣∣ ≤ 1

bτx+δ

has only finitely many solutions a
b ∈ Q in reduced form whenever δ > 0, and has

infinitely many solutions whenever δ < 0. The approximation exponent measures
a certain tension between our ability to closely approximate x by rational numbers
(the distance term |x− a

b |) and the complexity (the 1
b term) of the number required

to make this approximation. In this notation, Dirichlet’s theorem then states τx ≥ 2
for irrational x. In 1844, Liouville [Li44] proved that if x ∈ R is algebraic of degree d
over Q, then τx ≤ d. This upper bound was subsequently improved by Thue [Th09]
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3558 DAVID MCKINNON AND MATTHEW SATRIANO

in 1909, Siegel [Si21] in 1921, and independently by Dyson [Dy47] and Gelfand
in 1947, leading finally to Roth’s famous 1955 theorem [Ro55] that τx ≤ 2 for all
algebraic x ∈ R. Therefore, Dirichlet’s Theorem and Roth’s Theorem together
show that τx = 2 for all irrational and algebraic x.

McKinnon and Roth [MR15] generalized τx to arbitrary projective varieties X
over a number field k by replacing the function |x − a

b | by a distance function
distv(x, ·) depending on a place v of k, and measuring the complexity of a point
via a height function HD(·) depending on an ample divisor D. An essential change,
however, is that they moved the exponent τx from the height to the distance; this
was done to make their generalized exponents behave better with respect to changes
in D. Given any sequence {xi} approximating x, one then obtains an associated
approximation constant αx,{xi}(D), see Section 2 for the precise definition. The
constant αx(D) is defined to be the infimum of αx,{xi}(D) over all choices of se-
quences {xi}; if one restricts attention only to sequences contained in a subvariety
Z ⊆ X, then the resulting infimum is denoted by αx,Z(D).

The focus of our paper is a conjecture introduced by the first author in 2007:

Conjecture 1.1 ([McK07, Conjecture 2.7]). Let X be an algebraic variety defined
over a number field k, and D any ample divisor on X. Let P ∈ X(k) and assume
that there is a rational curve defined over k passing through P . Then there exists a
curve C ⊆ X (necessarily rational) for which αP,C(D) = αP (D).

This conjecture is known in some special cases, primarily in dimension 2: it was
shown for split rational surfaces of Picard rank at most four in [McK07], cubic
surfaces in [MR16], and blow-ups of the n-th Hirzebruch surface at special config-
urations of at most 2n points in [Ca19]. The conjecture was also verified in [Hu18]
for smooth projective split toric varieties X with torus T when P ∈ T (k) and the
pseudo-effective cone Eff(X) is simplicial. Unfortunately, this is a rather restric-
tive condition: it is equivalent to the combinatorial hypothesis that there exists a
maximal cone σ in the fan of X such that every ray outside σ is a negative linear
combination of the rays of σ, see [Hu18, Lemma 6.2]. In particular, all of the afore-
mentioned results still leave open the case of smooth split toric surfaces even if one
requires P ∈ T (k).

In this work, we considerably extend the list of cases where Conjecture 1.1 is
known: we prove it not only for all smooth split toric surfaces X and arbitrary
P ∈ X(k) conditional on Vojta’s Conjecture, but we also obtain approximation
results more generally for Q-factorial terminal singularities on projective split toric
varieties of arbitrary dimension.

The starting point for our work is a new class of points that we now introduce.

Definition 1.2. Let X be a Q-Gorenstein algebraic variety defined over a number
field k. We say X is canonically bounded at P ∈ X(k) if αP,{xi}(−KX) ≥ dimX
for all Zariski dense sequences {xi}.

Canonical boundedness is a highly natural notion. Indeed, we show that un-
der mild hypotheses, every point on a smooth variety is conjecturally canonically
bounded:

Proposition 1.3. Let X be a smooth projective variety over a number field k,
and let P ∈ X(k) be a k-rational point. Assume that there is an ample divisor A
on X for which αP (A) is finite. Then Vojta’s Main Conjecture implies that X is
canonically bounded at P .
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APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES 3559

Remark 1.4. The condition that αP (A) is finite is a mild hypothesis. For example,
if there exists a rational curve defined over k passing through P , then αP (A) is
finite for every ample divisor A. In particular, the conditions of Proposition 1.3 are
true for every split toric variety over k.

Our first main result is that Conjecture 1.1 holds for split toric surfaces in the
presence of the canonical boundedness condition:

Theorem 1.5. Let X be a split toric surface over a number field k and let P ∈ X(k)
be a smooth point that is canonically bounded in the minimal resolution of X. Then
Conjecture 1.1 holds at P for every nef divisor D on X.

Remark 1.6. Notice that for split toric surfaces, Theorem 1.5 is stronger than
Conjecture 1.1 in the sense that the theorem holds for all nef divisors while the
conjecture is only stated for ample divisors. We do not expect Conjecture 1.1 to
be true in general for nef divisors.

In fact, Theorem 1.5 follows from a much more general theorem which we prove
for all higher dimensional split toric varieties. Given a split toric variety X over a

number field k, we say f : X̃ → X is a terminal resolution if it is a proper birational

toric morphism defined over k and X̃ is Q-factorial, projective, and has at worst
terminal singularities.

Theorem 1.7. Let X be a split toric variety over a number field k and let P ∈
X(k). Suppose f : X̃ → X is a terminal resolution which is an isomorphism at P ,

and that P is canonically bounded in X̃.
Then for all Q-Cartier nef Q-divisors D on X, there exists an irreducible rational

curve C through P such that C is unibranch at P and

αP,C(D) ≤ αP,{xi}(D)

for all Zariski dense sequences {xi}.

Remark 1.8. Theorem 1.7 says there exists a curve C whose α value is smaller than
that of every Zariski dense sequence. Notice that this does not imply Conjecture
1.1 in higher dimensions since it is possible that there exists a subvariety Z with
1 < dimZ < dimX for which αP,Z(D) < αP,C(D). However, when X is a surface,
no such Z can exist. Hence, Theorem 1.7 implies Conjecture 1.1 for surfaces,
i.e. Theorem 1.7 implies Theorem 1.5.

Remark 1.9. A subtle point here is that the curve C we construct in the proof of
Theorem 1.7 need not satisfy αP,C(D) = αP (D), even for surfaces. That is, we show
αP,C(D) ≤ αP,{xi}(D) for all Zariski dense sequences {xi}, and for surfaces, this
is enough to guarantee the existence of some auxiliary curve C ′ with αP,C′(D) =
αP (D), but C ′ may not equal C. Indeed, our construction of C is independent of
the number field k, but in Section 8 we show that for P = [1 : 1 : 1] ∈ P(4, 7, 13),
the value of αP (D) depends on k. In particular, any proof of Theorem 1.7 without
assuming a priori that P is canonically bounded must include an explanation for
the subtle fact that certain curves such as C ′ are contained in the Zariski closed
locus of exceptions to the canonical boundedness condition provided by Vojta’s
Conjecture.
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3560 DAVID MCKINNON AND MATTHEW SATRIANO

Finally, combining Proposition 1.3 and Theorem 1.7 yields:

Theorem 1.10. Let X be a split toric variety over a number field k and assume
Vojta’s Main Conjecture holds for some projective toric (strong) resolution of sin-
gularities of X. Then for all smooth points P ∈ X(k) and all Q-Cartier nef Q-
divisors D on X, there exists an irreducible rational curve C through P such that
C is unibranch at P and

αP,C(D) ≤ αP,{xi}(D)

for all Zariski dense sequences {xi}.

2. Key properties of the approximation constant αP

In this section, we collect the relevant facts we need about the approximation
constant. For a more detailed discussion of α, see [MR15]. Proofs of all of the facts
below can be found in [MR16].

Definition 2.1. Let X be a projective variety over a number field k, let P ∈ X(k),
and let D be a Q-Cartier Q-divisor on X. For any sequence {xi} ⊂ X(k) of distinct
points with distv(P, xi) → 0, which we denote by {xi} → P , we set

A({xi}, D) = {γ ∈ R | distv(P, xi)
γHD(xi) is bounded from above} .

Remark 2.2. It follows immediately from the definition that if A({xi}, D) is non-
empty then it is an interval unbounded to the right, i.e., if γ ∈ A({xi}, D) then
γ + δ ∈ A({xi}, D) for any δ > 0.

Remark 2.3. Note that the height HD(x) is well defined even if D is a Q-divisor,
by HD(x) = HmD(x)1/m.

Definition 2.4. With hypotheses as in Definition 2.1, if A({xi}, D) is empty we
set αP,{xi}(D) = ∞. Otherwise we set αP,{xi}(D) to be the infimum of A({xi}, D).
We call αP,{xi}(D) the approximation constant of {xi} with respect to D.

Remark 2.5. If {x′
i} is a subsequence of {xi} then A({xi}, D) ⊆ A({x′

i}, D). In
particular, αP,{x′

i}(D) ≤ αP,{xi}(D), so we may freely replace a sequence with a
subsequence when trying to establish lower bounds.

As i → ∞ we have distv(P, xi) → 0. We thus expect that distv(P, xi)
γHD(xi)

goes to 0 for large γ and to ∞ for small γ. The number αP,{xi}(D) marks the
transition point between these two behaviours.

Definition 2.6. Let k be a number field, X a projective variety over k, D a Q-
Cartier divisor on X, and P ∈ X(k). Then αP (D) is defined to be the infimum of
all αP,{xi}(D) as we range over sequences of distinct points {xi} ⊂ X(k) converging
to P . If no such sequence exists then set αP (D) = ∞.

To expand upon the connection between αx and the usual approximation ex-
ponent τx as defined in the Introduction, suppose that D is an ample Q-divisor
on X. We may define an approximation constant τP (D) by simply extending the
definition on P1, namely by defining τP (D) to be the unique extended real number
τP (D) ∈ [0,∞] such that the inequality

distv(P,Q) <
1

HD(Q)τP (D)+δ
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APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES 3561

has only finitely many solutions Q ∈ X(k) whenever δ > 0 and has infinitely many
solutions Q ∈ X(k) whenever δ < 0. Then [MR16, Proposition 2.11] implies that
αP (D) = 1

τP (D) . In particular the theorem of Liouville becomes αP (OP1(1)) ≥ 1
d

for P ∈ R of degree d over Q, and it is this type of lower bound that we wish to
generalize to arbitrary varieties. We use the reciprocal of τ because α behaves more
naturally when we vary D (see, for example, Proposition 2.9 of [MR16] for more
details).

We will need one further property of αP . By Theorem 2.8 of [MR16] (see also
Theorem 2.16 of [MR15]), we have:

Theorem 2.7. Let C be an irreducible k-rational curve and ϕ : P1 → C its nor-
malization map. Then for any ample Q-divisor D on C, and any P ∈ C(k) we
have the equality:

αP,C(D) = min
Q∈ϕ−1(P )

d

rQmQ

where d = deg(D), mQ is the multiplicity of the branch of C through Q correspond-
ing to Q, and

rQ =

⎧⎪⎨
⎪⎩
0 if κ(Q) 	⊆ kv

1 if κ(Q) = k

2 otherwise.

We are primarily interested in the case where the curve C is unibranch at P , so
there is only one point Q ∈ ϕ−1(P ) which necessarily has rQ = 1. Thus, we have
the following result.

Theorem 2.8. Let X be a variety defined over a number field k, and let C be an
irreducible rational curve on X, with C also defined over k. Let P be a k-rational,
unibranch point of C, and let D be a Q-Cartier nef Q-divisor on X. Then

αP,C(D) =
1

m
C ·D,

where m is the multiplicity of P on C.

3. Vojta’s Main Conjecture and canonical boundedness

The goal in this section is to show that Vojta’s Main Conjecture implies every
point of a smooth projective variety is canonically bounded, i.e. we prove Propo-
sition 1.3. We turn to the proof after recalling for the reader’s convenience the
statement of the conjecture [Vo87].

Conjecture 3.1 (Vojta’s Main). Let X be a smooth algebraic variety defined over
a number field k, with canonical divisor K. Let S be a finite set of places of k. Let A
be a big divisor on X, and let D be a normal crossings divisor on X. Choose height
functions hK and hA for K and A, respectively, and define a proximity function
mS(D,P ) =

∑
v∈S hD,v(P ) for D with respect to S, where hD,v is a local height

function for D at v. Choose any ε > 0. Then there exists a nonempty Zariski open
set U = U(ε) ⊆ X such that for every k-rational point Q ∈ U(k), we have the
following inequality:

(3.2) mS(D,Q) + hK(Q) ≤ εhA(Q).
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3562 DAVID MCKINNON AND MATTHEW SATRIANO

Remark 3.3. There is often an O(1) included on the right side of (3.2) to account
for the uncertainty in the choice of height functions. We omit this term, preferring
instead to choose the Zariski open set U(ε) small enough to exclude the degenerate
set of points that do not satisfy the inequality as written.

We now turn to Proposition 1.3.

Proof of Proposition 1.3. Let dimX = n and fix a place v of k. Let S = {v}, A
any very ample divisor on X, and D the union of any n normal crossings divisors
that intersect properly and transversely at P . We claim that there is a constant C
such that for all Q ∈ X(k), we have:

(3.4) mS(D,Q) ≥ −n log distv(P,Q) + C

To see this, note that the divisor D has multiplicity at least n at P , by construction.
Thus, if φ : Y → X is the blowup of X at P , the divisor φ∗D − nE is effective,
where E is the exceptional divisor of φ. This implies that mS(φ

∗D − nE,Q) is
bounded below independently of Q (see [Vo87, Lemma 1.3.3.(b)]), and so

mS(φ
∗D,Q) ≥ mS(nE,Q) + C

for some constant C independent of Q. Equation (3.4) then follows from Lemma
1.3.3.(d) of [Vo87].

Fix any ε > 0. If Q satisfies inequality (3.2), then

(3.5) distv(P,Q)nH−KX
(Q) ≥ C ′HA(Q)−ε.

for some positive constant C ′, independent of Q.
By hypothesis, there is some ample divisor A for which αP (A) is finite. Choose

a real number a such that αP (A) < a. By definition of αP (A), for any k-rational
point Q on X, we know that distv(P,Q)aHA(Q) is bounded above, independently
of Q. We therefore deduce that

(3.6) distv(P,Q)aεHA(Q)ε ≤ κ

for some positive constant κ depending on ε but not Q. Therefore if Q satisfies
inequality (3.2), then combining inequalities (3.5) and (3.6), we obtain

(3.7) distv(P,Q)n−aεH−KX
(Q) ≥ C ′κ−1.

In particular, if {xi} is a sequence satisfying αP,{xi}(−KX) < n, then choosing ε
sufficiently small, we see {xi} must be eventually contained in the complement of
the set U(ε) from Vojta’s Main Conjecture. So, {xi} must be contained in a finite
union of proper subvarieties, as desired. �

4. Preliminary reductions in the proof of Theorem 1.7

For the remainder of the paper, we fix a number field k a place v of k, and a
v-adic distance function distv which we will denote by dist. We begin by reducing
Theorem 1.7 to the case where X is Q-factorial with terminal singularities itself.

Proposition 4.1. Let X be a split toric variety defined over a number field k, let

P ∈ X(k), and let D be a Q-Cartier nef Q-divisor on X. Suppose f : X̃ → X
is a toric proper birational map which is an isomorphism at P , and that there is

an irreducible rational curve C ⊆ X̃ through f−1(P ) such that C is unibranch at
f−1(P ) and

αf−1(P ),C(f
∗D) ≤ αf−1(P ),{xi}(f

∗D)
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APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES 3563

for all Zariski dense sequences {xi}. Then the curve f(C) is an irreducible rational
curve that is unibranch at P and satisfies

αP,f(C)(D) ≤ αP,{xi}(D).

for all Zariski dense sequences {xi}.

Proof. Irreducibility of f(C) follows from that of C. Moreover, since f is an iso-
morphism at P , the fact that C is rational and unibranch at f−1(P ) immedi-
ately implies that f(C) is rational and unibranch at P . Lastly, applying Corol-
lary 8.6 of [MR15] to the subset of X on which f is an isomorphism implies that
αP,f(C)(D) ≤ αP,{xi}(D) for all Zariski dense sequences {xi}. �

By Proposition 4.1, to prove Theorem 1.7, we can assume that our split toric
variety X is projective, Q-factorial, and has at worst terminal singularities. Thus,
it remains to prove the following theorem, which is slightly more general.

Theorem 4.2. Let X be a projective terminal Q-factorial split toric variety over a
number field k. Let P ∈ X(k) and D be a nef Q-divisor on X. If P is canonically
bounded, then there exists an irreducible curve C through P which is unibranch at
P and

αP,C(D) ≤ αP,{xi}(D)

for all Zariski dense sequences {xi} on X. Moreover, if X 	
 Pn, then we can
choose C so that −KX · C ≤ dimX.

We prove Theorem 4.2 using an induction argument via the Minimal Model
Program (MMP). In order to explain this, we begin with several preliminary results.

Lemma 4.3. Let X be a Q-factorial algebraic variety over a number field k which
is canonically bounded at P ∈ X(k), Let a ∈ Q≥0 and D be a nef Q-divisor on X
such that D + aKX is also nef. Suppose C is an irreducible rational curve through
P which is unibranch at P , −KX · C ≤ dimX, and

αP,C(D + aKX) ≤ αP,{xi}(D + aKX)

for all Zariski dense sequences {xi} on X. Then for all Zariski dense sequences
{xi} on X, we have

αP,C(D) ≤ αP,{xi}(D)

as well.

Proof. Since C is unibranch at P , Theorem 2.8 gives us that αP,C(F ) = 1
mC · F

for every nef Q-divisor F , where m is the multiplicity of C at P . In particular,

αP,C(D) =
1

m
C ·D =

1

m
C · (D+ aKX)− a

m
KX ·C ≤ αP,C(D+ aKX) + a dimX.

Using the defining property of C and the fact that X is canonically bounded at P ,
we see

αP,C(D) ≤ αP,{xi}(D + aKX) + aαP,{xi}(−KX).

Lastly, concavity of α, shown in [MR15, Proposition 2.14.(b)], yields

αP,C(D) ≤ αP,{xi}(D),

proving the desired result for D. �
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3564 DAVID MCKINNON AND MATTHEW SATRIANO

Now, let X be a projective Q-factorial split toric variety over a number field
k which is canonically bounded at P ∈ X(k), and let D be a nef Q-divisor on
X. Since X is toric, the Mori cone NE(X) is polyhedral. Let C0, . . . , C� be the
torus-invariant curves generating the KX -negative extremal rays, and set

(4.4) a = min
i

D · Ci

−KX · Ci
;

without loss of generality, a = D·C0

−KX ·C0
. By construction, D + aKX intersects non-

negatively with every extremal ray of NE(X), so D + aKX is nef. By Lemma 4.3,
to prove Theorem 4.2 for D, it then suffices to prove the theorem for D + aKX .

The advantage to working withD+aKX as opposed toD is that C0·(D+aKX) =
0. Let π : X → Y be the extremal contraction corresponding to the ray R≥0C0.
If π is either a Mori fiber space or a divisorial contraction, then there is a nef Q-
divisor D′ on Y for which D+ aKX = π∗D′. If π is a flipping contraction, then let
ψ : X ��� X ′ denote the associated elementary flip. By [CLS11, Lemma 15.5.7], we
have a commutative diagram

(4.5)

X∗

Φ′

���
��

��
��

�
Φ

����
��
��
��

X
ψ

���������

π
���

��
��

��
� X ′

π′
����
��
��
��

Y

such that X∗ is a common star subdivision of X, X ′, and Y , the maps Φ and Φ′

are isomorphisms away from the exceptional locus Exc(ψ), and if D∗ denotes the
torus-invariant divisor on X∗ corresponding to the newly inserted ray, then

(4.6) Φ∗F = Φ′∗F ′ − (F · C0)D
∗

for all Q-divisors F on X where F ′ = ψ∗F . Letting D′ := ψ∗(D + aKX), equation
(4.6) tells us Φ∗(D + aKX) = Φ′∗D′. As Φ and Φ′ are proper and surjective, the
fact that D + aKX is nef implies Φ∗(D + aKX) is nef, which in turn implies D′ is
nef.

To unify notation among these three cases, we denote by ψ : X ��� X ′ the
elementary MMP step corresponding to the ray R≥0C0, i.e. if π is a Mori fiber
space or a divisorial contraction, we let X ′ := Y and ψ := π; if on the other hand,
π is a flipping contraction, we let ψ be the associated elementary flip. We have
therefore shown that in all three cases, there is a nef Q-divisor D′ on X ′ for which
D + aKX = ψ∗D′. If P is not in the exceptional locus, then we would like to
apply an inductive strategy to deduce the theorem for (X,P,D + aKX) from that
of (X ′, ψ(P ), D′). Proposition 4.8 will allow us to do so.

Lemma 4.7. Let π : X → Y be a surjective birational morphism of projective Q-
factorial varieties over a number field k. Let P ∈ X(k) be a point which is not in the
exceptional locus Exc(π) and let D′ be a Q-Cartier Q-divisor on Y . Suppose either
that {xi} is a Zariski dense sequence on X converging to P and let x′

i := π(xi),
or suppose {x′

i} is a Zariski dense sequence on X ′ converging to π(P ) and let
xi := π−1(x′

i) whenever x′
i /∈ π(Exc(π)). Then αP,{xi}(π

∗D′) = απ(P ),{x′
i}(D

′).
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APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES 3565

Proof. If {xi} is a Zariski dense sequence on X converging to P , then only finitely
many of the xi ∈ Exc(π); similarly if {x′

i} is a Zariski dense sequence on X ′

converging to π(P ), then only finitely many of the x′
i ∈ π(Exc(π)). Since the

value of α for a sequence is unchanged by removing finitely many elements from
the sequence, we may assume xi /∈ Exc(π) and x′

i /∈ π(Exc(π)) for all i. Then
Hπ∗D(xi) = HD′(x′

i). Moreover, the proof of [MR15, Proposition 2.4] applied to
X � Exc(π) shows that the distance functions dist(P, ·) and dist(π(P ), π(·)) differ
only by a multiplicative factor bounded independently of P ; note that the cited
proposition is stated for only projective varieties, but the proof reduces immediately
to compact neighbourhoods of a point. Therefore, it follows directly from the
definition of α that αP,{xi}(π

∗D′) = απ(P ),{x′
i}(D

′). �

Proposition 4.8. Let X be a projective terminal Q-factorial split toric variety
over a number field k and let ψ : X ��� X ′ be a birational elementary MMP step. If
P ∈ X(k)�Exc(ψ) is a canonically bounded point of X, then ψ(P ) is a canonically
bounded point of X ′.

Proof. We first consider the case where ψ is a divisorial contraction. Let E ⊂ X
be the exceptional divisor and let

ψ∗(−KX′) = −KX + aE.

Since X ′ has terminal singularities, a > 0. Given any Zariski dense sequence {x′
i}

converging to ψ(P ), letting {xi} be as in Lemma 4.7, we find

αψ(P ),{x′
i}(−KX′) = αP,{xi}(ψ

∗(−KX′)) = αP,{xi}(−KX + aE).

By concavity of α, shown in [MR15, Proposition 2.14.(b)], we see

αψ(P ),{x′
i}(−KX′) = αP,{xi}(−KX + aE) ≥ αP,{xi}(−KX) + aαP,{xi}(E)

> αP,{xi}(−KX) ≥ dimX = dimX ′

where the last line follows from the previous one by the effectiveness of E and the
fact that P 	∈ E.

We next handle the case where ψ : X ��� X ′ is an elementary flip. Let C0 be
the generator of the KX -negative ray corresponding to ψ. Let Φ, Φ′, and X∗ be as
in diagram (4.5). Then applying equation (4.6) with F = −KX , we have

Φ′∗(−KX′) = Φ∗(−KX) + (−KX .C0)D
∗.

Since −KX .C0 > 0, Lemma 4.7 tells us that for any Zariski dense sequence {xi}
on X ′ converging to ψ(P ), we have

αP,{xi}(−KX′) = αP,{xi}(Φ
′∗(−KX′)) > αP,{xi}(Φ

∗(−KX))

= αP,{xi}(−KX) ≥ dimX = dimX ′

where for ease of notation, P and xi are used to denote points on any of X, X ′, or
X∗. It follows that ψ(P ) is a canonically bounded point of X ′. �

In light of Proposition 4.8 and the discussion beforehand, we employ the following
method to prove Theorem 4.2. Let X1 be a projective terminal Q-factorial split
toric variety, D1 a nef Q-divisor on X1, and P1 ∈ X(k) a canonically bounded point.
Let a1 be as in equation (4.4). Then D1 + a1KX1

∈ R⊥
1 for some KX1

-negative
extremal ray R1 of NE(X1). Let ψ1 : X1 ��� X2 be the associated elementary
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MMP step, and let D2 be the nef Q-divisor on X2 such that D1 + a1KX1
= ψ∗

1D2.
Proceeding in this manner, we arrive at the following data: we have a sequence

X1
ψ1��� X2

ψ2��� · · · ψm��� Xm+1

of elementary MMP steps and a sequence of points Pi ∈ Xi(k) such that Pi /∈
Exc(ψi) and Pi+1 = ψi(Pi) for 1 ≤ i < m, and Pm ∈ Exc(ψm). Furthermore, for
1 ≤ i ≤ m, we have a nef Q-divisor Di on Xi and a real number ai ≥ 0 such
that Di + aiKXi

= ψ∗
i Di+1 is a nef Q-divisor perpendicular to the KXi

-negative
extremal ray corresponding to ψi.

Applying Proposition 4.8 repeatedly, we see that Pi is a canonically bounded
point of Xi for 1 ≤ i ≤ m. By Lemma 4.3, Theorem 4.2 for the triple (Xi, Pi, Di)
follows from that of (Xi, Pi, Di + aiKXi

). So, to prove Theorem 4.2 for the triple
(X1, P1, D1), it suffices to show the result for (Xm, Pm, Dm) and additionally show
that the case of (Xi, Pi, Di + aiKXi

) follows from that of (Xi+1, Pi+1, Di+1). In
other words, we have reduced to proving Propositions 4.9 and 4.10.

Proposition 4.9. Let X be a projective terminal Q-factorial split toric variety
over a number field k and let ψ : X ��� X ′ be a birational elementary MMP step
corresponding to the extremal ray R. Let D ∈ Nef(X) ∩ R⊥ and D′ ∈ Nef(X ′) be
Q-divisors such that D = ψ∗D′. If P ∈ X(k)� Exc(ψ) is canonically bounded and
Theorem 4.2 holds for (X ′, ψ(P ), D′) then it holds for (X,P,D).

Proposition 4.10. Let X be a projective terminal Q-factorial split toric vari-
ety over a number field k and let ψ : X ��� X ′ be an elementary MMP step
corresponding to the extremal ray R. If D ∈ Nef(X) ∩ R⊥ be a Q-divisor and
P ∈ X(k) ∩ Exc(ψ) is canonically bounded, then Theorem 4.2 holds for (X,P,D).

5. Induction step: P is not in the exceptional locus

In this section, we prove Proposition 4.9. We assume throughout that X is
a projective terminal Q-factorial split toric variety over a number field k, P ∈
X(k) � Exc(ψ) is a canonically bounded point, and ψ : X ��� X ′ is a birational
elementary MMP step corresponding to the contraction of the extremal ray R. We
let C0 be the generator of R, D ∈ Nef(X) ∩ R⊥, and D′ ∈ Nef(X ′) be Q-divisors
such that D = ψ∗D′. We handle the case where ψ is a divisorial contraction in
Section 5.1 and the case where ψ is a flip in Section 5.2.

5.1. The case of divisorial contractions. Throughout this subsection, we as-
sume ψ : X → X ′ is a divisorial contraction and let E ⊂ X be the exceptional
divisor. We first handle the case where X ′ 
 Pn.

Lemma 5.1. If X ′ 
 Pn, then there is a smooth irreducible curve C through P such
that −KX · C ≤ dimX and αP,C(D) ≤ αP,{xi}(D) for all Zariski dense sequences
{xi} on X.

Proof. We may assume X ′ = Pn and let Z ⊂ X ′ be the locus along which ψ is the
blow-up. Let 
 be a line in Pn that contains both P and at least one point of Z.
Letting C be the strict transform of 
, we have C.E ≥ 1. Since KX = ψ∗KPn + rE
with r = codim(Z)− 1, we have

−KX · C = −KPn · ψ∗C − rE · C = −KPn · 
− rE · C ≤ n+ 1− r ≤ n.
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Next, let {xi} be a Zariski dense sequence on X converging to P . By Lemma 4.7,
αP,{xi}(D) = αψ(P ),{ψ(xi)}(D

′). If d = deg(D′), then Lemma 2.13 and Proposition
2.14(a) of [MR15] show

αP,{xi}(D) = αψ(P ),{ψ(xi)}(D
′) = dαψ(P ),{ψ(xi)}(O(1)) ≥ d.

On the other hand, since C is smooth at P , we have

αP,C(D) = C ·D = 
 ·D′ = d,

proving αP,C(D) ≤ αP,{xi}(D). �

Having dispensed with the case where X ′ is isomorphic to Pn, we can assume
that there is a rational irreducible curve C ′ ⊆ X ′ through ψ(P ) which is unibranch
at ψ(P ) such that −KX′ · C ′ ≤ dimX ′ = dimX and

αψ(P ),C′(D′) ≤ αP,{x′
i}(D

′)

for all Zariski dense sequences {x′
i} on X ′. To prove Proposition 4.9 in the case of

divisorial contractions, it remains to show the following.

Lemma 5.2. Let C ⊆ X be the strict transform of C ′. Then C is unibranch at P ,
−KX ·C ≤ dimX, and αP,C(D) ≤ αP,{xi}(D) for all Zariski dense sequences {xi}
on X.

Proof. Since X has terminal singularities, KX = ψ∗KX′ + rE with r > 0. Then

−KX · C = (−ψ∗KX′ − rE) · C = −KX′ · C ′ − rE · C ≤ dimX − rE · C ≤ dimX,

where the last inequality follows because E is effective, C is irreducible, and C is
not contained in E.

Next, let m be the multiplicity of C at P . Since P is not in the exceptional
locus, m is also the multiplicity of C ′ at ψ(P ). Applying Theorem 2.8 and using
that C and C ′ are unibranch at P and ψ(P ) respectively, we find

αP,C(D) =
1

m
C ·D =

1

m
C · ψ∗D′ =

1

m
C ′ ·D′ = αψ(P ),C′(D′).

Now if {xi} is a Zariski dense sequence on X converging to P , then Lemma 4.7
shows αP,{xi}(D) = αψ(P ),{ψ(xi)}(D

′). By the defining property of C ′, we see
αψ(P ),C′(D′) ≤ αψ(P ),{ψ(xi)}(D

′), which proves αP,C(D) ≤ αP,{xi}(D). �

5.2. The case of flips. In this subsection, we handle the case where ψ : X ��� X ′ is
an elementary flip. Since ψ is an isomorphism in codimension 1, the Picard numbers
of X and X ′ are equal. Since the Picard number of X must be at least 2, we see
then that X ′ 	
 Pn. So we may assume there is a rational irreducible curve C ′ ⊆ X ′

through ψ(P ) which is unibranch at ψ(P ) such that −KX′ · C ′ ≤ dimX ′ = dimX
and αψ(P ),C′(D′) ≤ αP,{x′

i}(D
′) for all Zariski dense sequences {x′

i} on X ′. Let X∗,

Φ, and Φ′ be as in diagram (4.5). It then suffices to prove the following.

Lemma 5.3. Let C̃ ′ ⊂ X∗ be the strict transform of C ′ and C = Φ(C̃ ′). Then C
is rational, irreducible, and unibranch at P , −KX · C ≤ dimX, and αP,C(D) ≤
αP,{xi}(D) for all Zariski dense sequences {xi} on X.

Proof. Since Φ and Φ′ are isomorphisms away from Exc(ψ), and C ′ is rational
and irreducible, it follows that C is as well. Moreover, since C ′ is unibranch at
P ′ := ψ(P ) and P /∈ Exc(ψ), we see C is unibranch at P .
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Next, we see Φ′∗D′ · C̃ ′ = D′ · Φ′
∗C̃

′ = D′ · C ′ and similarly Φ∗D · C̃ ′ = D · C.
Since D · C0 = 0, equation (4.6) tells us Φ∗D = Φ′∗D′. Let m be the multiplicity
of C at P . Since m is also the multiplicity of C ′ at P ′, we see from Theorem 2.8
that

αP,C(D) =
1

m
D · C =

1

m
D′ · C ′ = αP ′,C′(D′).

Again applying (4.6), we find

KX ·C = Φ∗KX · C̃ ′ = (Φ′∗KX′ − (KX ·C0)D
∗) · C̃ ′ = KX′ ·C ′− (KX ·C0)(D

∗ · C̃ ′).

Recall that C0 generates a KX -negative ray. Since C̃ ′ is irreducible and not con-

tained in the effective divisor D∗, we have D∗ · C̃ ′ ≥ 0. By hypothesis, −KX′ ·C ′ ≤
dimX, so we find −KX · C ≤ dimX.

It remains to show that αP,C(D) ≤ αP,{xi}(D) for all Zariski dense sequences
{xi} on X converging to P . Since P /∈ Exc(ψ), only finitely many of the xi ∈
Exc(ψ). So, removing these finitely many terms, we may assume xi /∈ Exc(ψ) for
all i. Let P ∗ := Φ−1(P ), x∗

i := Φ−1(xi), and x′
i := Φ′(x∗

i ). Then two applications
of Lemma 4.7 show

αP,{xi}(D) = αP ∗,{x∗
i }(Φ

∗D) = αP ∗,{x∗
i }(Φ

′∗D′) = αP ′,{x′
i}(D

′).

It follows that αP,C(D) = αP ′,C′(D′) ≤ αP ′,{x′
i}(D

′) = αP,{xi}(D). �

6. Results on fake weighted projective spaces

The analysis in this section is by far the most involved. Our goal is to prove the
following result which forms a crucial step in the proof of Proposition 4.10.

Proposition 6.1. Let W be a fake weighted projective space with torus T , and let
P ∈ W (k). Then there is a unibranch rational curve C ⊆ W through P satisfying
the following properties:

(a) There is a T -orbit closure Z ⊆ W and a 1-parameter subgroup C0 ⊆ TZ

of the torus of Z such that C is the translate of the closure of C0 by a
T (k)-point,

(b) −KW · C ≤ 1 + dimW ,
(c) If W has terminal singularities and is not isomorphic to projective space,

then C can be chosen to additionally satisfy −KW · C ≤ dimW .

Recall that every fake weighted projective spaceW admits a canonical toric cover
f : W ′ → W which is étale in codimension 1 and such that W ′ is a weighted pro-

jective space, see e.g. [Bu02]. Moreover, there is a subgroup scheme G =
∏�

i=1 μri

of the torus T ′ of W ′ such that under the induced action of G, we have W = W ′/G
and f is the quotient map. The morphism f is referred to as the universal covering
in codimension 1, and is constructed explicitly as follows. Let v0, . . . , vn ∈ N be
the primitive generators for the rays of the fan of W . There exist relatively prime
positive integers a0, . . . , an such that

∑
aivi = 0 in N . The map f corresponds to

the finite index inclusion ι : N ′ ↪→ N , where N ′ is the lattice generated by the vi.
We begin by reducing Proposition 6.1 to a subclass of fake weighted projective

spaces.

Lemma 6.2. If Proposition 6.1(a) and (b) hold for all weighted projective spaces,
then they hold for all fake weighted projective spaces.
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Furthermore, suppose Proposition 6.1 holds for

(a) weighted projective spaces, and
(b) fake weighted projective spaces of the form Pn/μp, where p is prime and the

quotient map Pn → Pn/μp is the universal covering in codimension 1.

Then Proposition 6.1 holds for all fake weighted projective spaces.

Proof. Let W be a fake weighted projective space. We define a finite surjective toric
morphism g : W ′ → W which is étale in codimension 1 as follows. If the universal
covering in codimension 1 of W is not isomorphic to projective space, then we take
g : W ′ → W to be the universal covering in codimension 1. If, on the other hand,
f : Pn → W is the universal covering in codimension 1 realizing W as Pn/G, then
choose a prime p and a subgroup scheme μp ⊆ G. The map f then factors as

Pn → W ′ := Pn/μp
g→ W . Since f is finite surjective and étale in codimension

1, the map g is as well. Since in either case g : W ′ → W is toric finite surjective,
the induced map on lattices N ′ → N is a finite index inclusion which induces a
bijection between the cones in the fans ΣW and ΣW ′ . Let T and T ′ denote the
tori of W and W ′, respectively. By [KM98, Proposition 5.20(3)], if W has terminal
singularities, then W ′ does as well.

Given P ∈ W (k), let Y ⊆ W be the T -orbit closure for which P ∈ TY (k). It
suffices to prove the lemma for the identity of the torus TY . Indeed suppose C
is the desired curve for the identity of the torus TY . Note that T acts on Y via
the quotient map η : T → TY which is split and hence surjective on k-points. So,
choosing Q ∈ T (k) with η(Q) = P , we see that the Q-translate of C contains P
and satisfies the properties of Proposition 6.1.

It remains to handle the case where P ∈ TY (k) is the identity of the torus.
Since Y corresponds to a cone σ ∈ ΣW , by considering σ as a cone of ΣW ′ on
the coarser lattice N ′, we obtain a T ′-orbit closure Y ′ ⊆ W ′ and a toric map
g|Y ′ : Y ′ → Y . In particular, choosing P ∈ TY ′(k) to be the identity of the torus,
we see g(P ′) = P . By hypothesis, there is a T ′-orbit closure Z ′ ⊆ W ′ and a
1-parameter subgroup C ′

0 ⊆ TZ′ such that its closure C ′ ⊆ W ′ contains P ′ and
satisfies −KW ′ ·C ′ ≤ 1+dimW ′ = 1+dimW or −KW ′ ·C ′ ≤ dimW , depending on
whether W ′ has terminal singularities. As above, we have a T -orbit closure Z ⊆ W
corresponding to Z ′ and a toric map g|Z′ : Z ′ → Z. Since C ′ is the translate of the
closure of C ′

0 by a T ′(k)-point, its image C := f(C ′) is the translate of the closure
of the 1-parameter subgroup of f(C ′

0) ⊆ TZ by a T (k)-point. In particular, C is
unibranch and contains P . Since g is étale in codimension 1, we have g∗KW = KW ′ .
Letting d denote the degree of g|C′ : C ′ → C, we find

−KW · C =
1

d
(−KW ) · g∗C ′ =

1

d
(−KW ′) · C ′ ≤ −KW ′ · C ′,

thereby yielding the desired bound for −KW · C. �
Lemma 6.3 provides a bound that is useful throughout the rest of this section.

Lemma 6.3. If W is a weighted projective space and P ∈ W (k). Then there is a
curve C ⊆ W through P satisfying property (a) of Proposition 6.1, and such that
D · C ≤ 1 for all torus-invariant divisors D on W .

Proof. Let v0, . . . , vn ∈ N be the primitive generators for the rays of ΣW , and let
a0, . . . , an be relatively prime positive integers with

∑
aivi = 0 in N . Without loss

of generality a0 = max(ai). Since W is a weighted projective space, N is the lattice
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spanned by the vi. Let Di be the torus-invariant divisor corresponding to vi. We
prove the result by inducting on dimension.

We first handle the base case where dimW = 1, i.e. W = P1. Then choosing
C = W , we find C ·Di = deg(Di) = 1.

Next, we handle the case where P ∈ T or where P is in the torus TD0
of D0. Let

C be the closure of the 1-parameter subgroup corresponding to the lattice point
v0 ∈ N . Let φ denote the unique function φ : NR → R which is linear on all maximal
cones subject to the condition φ(v0) = 1 and φ(vi) = 0 for i 	= 0. Then

D0 · C = φ(v0) + φ(−v0).

Since −v0 =
∑

i>0
ai

a0
vi is in the maximal cone generated by v1, . . . , vn, we see

φ(−v0) = 0 and so D0 · C = 1. Furthermore, since 1
a0
D0 and 1

ai
Di are linearly

equivalent for all i, and ai ≤ a0, we find

Di · C =
ai
a0

D0 · C ≤ 1.

Note that C contains both the identity of T and the identity of TD0
. Thus, if P ∈ T

or P ∈ TD0
, a suitable T -translate of C contains P .

It remains to handle the case where P ∈ Dj for some j 	= 0. Now, Dj is a

weighted projective space of dimension dimW−1; its lattice is given byN := N/Zvj
and its torus-invariant divisors D′

i correspond to the ray spanned by vi in N for
i 	= j. By induction, there exists a curve C ⊆ Dj which is the translate of the
closure of a 1-parameter subgroup in a TDj

-orbit closure by a TDj
(k)-point; since

the quotient map T → TDj
is surjective on k-points, C is also the translate of

the closure of a 1-parameter subgroup in a T -orbit closure by a T (k)-point. By
construction D′

i ·C ≤ 1 for all i 	= j. Letting mij ≥ 1 denote the multiplicity of the
cone 〈vi, vj〉 in N , we have from [Fu93, p. 100] that

Di · C =
1

mij
D′

i · C ≤ 1

for i 	= j. To handle the case of Dj , we apply the same technique as above:

Dj · C =
aj
a0

D0 · C ≤ D′
0 · C ≤ 1.

This completes the proof of the result. �

Applying Lemmas 6.2 and 6.3, we are able to handle many cases of Proposition
6.1.

Corollary 6.4. The following are true:

(1) Proposition 6.1 holds for weighted projective spaces.
(2) Proposition 6.1(a) and (b) hold for all fake weighted projective spaces.

Proof. By Lemma 6.2, statement (2) follows from statement (1).
Let W be a weighted projective space. We let n = dimW and again denote

by v0, . . . , vn ∈ N the primitive generators for the rays of ΣW . Let a0, . . . , an be
relatively prime positive integers with

∑
aivi = 0 in N . Without loss of generality

a0 = max(ai).
By Lemma 6.3, there is a curve C ⊆ W through P satisfying property (a) of

Proposition 6.1, and such that Di ·C ≤ 1 for all i. Since 1
a0
D0 and 1

ai
Di are linearly
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equivalent for all i, and D0 · C ≤ 1, we see

−KW · C =
1

a0
(

n∑
i=0

ai)D0 · C ≤ 1

a0

n∑
i=0

ai.

As a0 = max(ai), we see 1
a0

∑n
i=0 ai ≤ n + 1, thereby proving Proposition 6.1(b)

for weighted projective spaces.
It remains to prove that if W has terminal singularities and is not isomorphic

to Pn, then 1
a0

∑n
i=0 ai ≤ n. For ease, of notation, let h =

∑n
i=0 ai. By [Ka13,

Proposition 2.3], we see

(6.5)
n∑

i=0

{aiκ

h

}
≤ n− 1

for all 2 ≤ κ ≤ h − 2, where {x} = x − �x�. Since W 	
 Pn, we know each ai ≥ 1
and a0 ≥ 2; in particular, we can choose κ = n.

Now, if 1
a0

∑n
i=0 ai > n, then na0

h < 1, and so �nai

h � = 0 for all i. As a result,

n∑
i=0

{nai
h

}
=

n∑
i=0

nai
h

= n,

contradicting (6.5). �

In light of Lemma 6.2 and Corollary 6.4, to finish the proof of Proposition 6.1,
it remains to handle the case where W has terminal singularities and is of the form
given in Lemma 6.2(b). We first handle the case where P ∈ T through Lemma 6.6
and Corollary 6.7.

Lemma 6.6. Let W = Pn/μr be a fake weighted projective space where the quotient
map Pn → W is the universal covering in codimension 1. Then there is a standard
affine patch xj 	= 0 of Pn on which the action of ζ ∈ μr is given by

[ζw0x0 : . . . : ζwj−1xj−1 : xj : ζ
wj+1xj+1 : . . . : ζwnxn]

such that wi ≤ rn
n+1 for all i.

Proof. In what follows, we will denote by M(k) the unique element of {0, 1, . . . , r−
1} that is congruent to k modulo r.

First, note that we may reorder the coordinates of Pn so that the action of μr

on Pn globally is given by

[x0 : ζw1x1 : . . . : ζwnxn],

where the wi are positive integers satisfying r := w0 > w1 ≥ . . . ≥ wn ≥ wn+1 := 0.
For 0 ≤ j ≤ n, if we identify the j-th affine patch xj = 1 with An, the action of
ζ ∈ μr is given by(

ζw0−wjx0, . . . , ζ
wj−1−wjxj−1, ζ

wj+1−wjxj+1, . . . , ζ
wn−wjxn

)
.

Next, notice that
∑n

j=0 M(wj −wj+1) = (w0 −w1)+ · · ·+(wn−1 −wn)+ (wn −
wn+1) = r. So by the Pigeonhole Principle, there is some j for which

wj − wj+1 = M(wj − wj+1) ≥
r

n+ 1
.

In particular, wj ≥ wj − wj+1 ≥ r
n+1 . Furthermore, wj > wj+1 since otherwise

r = 0, a contradiction.
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On the j-th affine patch, the weights of the μr-action are given by M(wi − wj)
for i 	= j. If i < j, then M(wi − wj) = wi − wj ; since wi < r and wj ≥ r

n+1 ,

we find M(wi − wj) < rn
n+1 . If i > j, then since wj > wj+1 ≥ wi, we find

M(wi − wj) = r + wi − wj ≤ r + wj+1 − wj ≤ rn
n+1 , as desired. �

Corollary 6.7. Proposition 6.1 holds for fake weighted projective spaces W of the
form given in Lemma 6.2(b) whenever P ∈ T . In fact, the stronger conclusion
−KW · C ≤ dimW holds even if W does not have terminal singularities.

Proof. Let W = Pn/μp be a fake weighted projective space where the quotient
map f : Pn → W is the universal covering in codimension 1. By Lemma 6.6, after
permuting coordinates, we may assume that on the standard affine patch x0 	= 1,
ζ ∈ μp acts by (ζw1x1, . . . , ζ

wnxn) with

wn ≤ · · · ≤ w1 ≤ np

n+ 1
.

Since the restriction of f : Pn → W to the torus T = Gn
m ⊆ W is a μp-torsor,

giving a 1-parameter subgroup Gm → T is equivalent to giving a diagram

Gm
γ

��

β

��

Gn
m

Gm

where β is a μp-torsor and γ is a μp-equivariant map. In particular, we can take
β and γ to be the maps β(t) = tp and γ(t) = (tw1 , . . . , twn). Let C ⊆ W be the
closure of the 1-parameter subgroup defined by the diagram, and let C ′ ⊆ Pn be
the closure of the 1-parameter subgroup defined by γ. We then have f(C ′) = C,
and since β is a degree p map, we see f∗C

′ = pC. As w1 = max(wi), we have
−KPn · C ′ = (n+ 1)w1. Since f is étale in codimension 1, f∗KW = KPn and so

−KW · C =
1

p
(−KW ) · f∗C ′ =

1

p
(−KPn) · C ′ =

n+ 1

p
w1 ≤ n.

Thus, translating C by P ∈ T (k), we obtain our desired curve. �

We now turn to the case where P lives on the boundary of W , which is handled
in Lemma 6.8 and Corollary 6.9.

Lemma 6.8. Let p be a prime and W = Pn/μp a fake weighted projective space
such that the quotient map Pn → W is the universal covering in codimension 1. If
D ⊆ W is a torus-invariant divisor, then either D 
 P(1, . . . , 1, p, . . . , p), or D 

Pn−1/μp is a fake weighted projective space such that the quotient map Pn−1 → D
is the universal covering in codimension 1.

Furthermore, if D is a weighted projective space, then there is a torus-invariant
divisor D′ 	= D such that the cone in the fan ΣW corresponding to D ∩ D′ has
multiplicity strictly greater than 1.

Proof. Let v0, . . . , vn ∈ N be the primitive generators for the rays of ΣW and let
N ′ = Zv0 + · · · + Zvn. By hypothesis, [N : N ′] = p and

∑n
i=0 vi = 0. The fan for

Dn lives on the lattice N := N/Zvn; its rays are generated by the images vi ∈ N
of the vi for 0 ≤ i < n. Let bi ∈ Z+ and v′i ∈ N be the primitive lattice point such
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that vi = biv
′
i. Letting N

′
:= N ′/Zvn, we see the induced map N/N ′ → N/N

′
is

an isomorphism, and hence

[N : N
′
] = p.

Let N
′
0 := Zv′0 + · · ·+ Zv′n−1, and note that the universal covering in codimension

1 of Dn is induced by the inclusion of lattices N
′
0 ⊆ N . So, Dn is a weighted

projective space if and only if N
′
0 = N .

From the inclusions N
′ ⊆ N

′
0 ⊆ N and the fact that [N : N

′
] = p, we see Dn is

not a weighted projective space if and only if N
′
0 = N

′
. Since v0 = −

∑n
i=1 vi, we

see that v1, . . . , vn is a Z-basis for N ′ and so v1, . . . , vn−1 is a Z-basis for N
′
. Now,

if N
′
0 = N

′
, then v′1 =

∑n−1
i=1 civi for some ci ∈ Z. As a result, v1 =

∑n−1
i=1 b1civi,

so b1 = 1. Similarly, all bi = 1, so
∑n−1

i=0 v′i = 0, i.e. ΣN
′
0
is the fan for Pn−1

so Pn−1 → Dn is the universal covering in codimension 1, identifying Dn with
Pn−1/μp.

We may therefore assume that Dn is a weighted projective space. In order to
show Dn 
 P(1, . . . , 1, p, . . . , p), it is equivalent to show that every maximal cone
of Dn has multiplicity dividing p. Given such a maximal cone σ, after reindexing

we can assume σ = 〈v′1, . . . , v′n−1〉. Since v0 = −
∑n−1

i=1 vi, we see N
′
= Zv1 + · · ·+

Zvn−1. From the inclusions

N
′ ⊆ Zv′1 + · · ·+ Zv′n−1 ⊆ N

and the fact that [N : N
′
] = p, we see

mult(σ) = [N : Zv′1 + · · ·+ Zv′n−1] ∈ {1, p},

as desired.
Lastly, note that bi = mult(〈vi, vn〉) for 0 ≤ i < n. If all bi = 1, then N

′
= N

′
0,

which, as we have observed above, is equivalent to the statement that Dn is not
a weighted projective space. So, if Dn is a weighted projective space, then there
must exist some i < n for which the cone corresponding to Di∩Dn has multiplicity
bi > 1. �

Corollary 6.9. Proposition 6.1 holds for fake weighted projective spaces W of the
form given in Lemma 6.2(b). In fact, the stronger conclusion −KW · C ≤ dimW
holds even if W does not have terminal singularities.

Proof. We prove the statement by induction on dimW . Let W = Pn/μp as in
Lemma 6.2(b), and let P ∈ W (k). Let v0, . . . , vn ∈ N be the primitive generators
for the rays of ΣW , and denote by Di the torus-invariant divisor corresponding to
vi. If P ∈ T , then the statement follows from Corollary 6.7. So, we may assume
without loss of generality that P ∈ D0. For 1 ≤ i ≤ n, let D′

i denote the torus-
invariant divisor on D0 corresponding to vi.

First suppose that D0 is a weighted projective space. Then by Lemma 6.8, there
exists i 	= 0 such that the multiplicity of the cone 〈v0, vi〉 is m ≥ 2. Since D0 is a
weighted projective space, Lemma 6.3 yields a curve C ⊆ D0 satisfying Proposition
6.1(a) and C.D′

j ≤ 1 for all j. Then

−KW · C = (n+ 1)Di · C =
n+ 1

m
D′

i · C ≤ n+ 1

m
≤ n.
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Note, in particular, that this handles the base case of our induction. Indeed, there
are no 1-dimensional fake weighted projective spaces of the form given in Lemma
6.2(b), so the base case is n = 2, in which case we necessarily have D0 
 P1.

If D0 is not a weighted projective space, then by Lemma 6.8, we know D0 

Pn−1/μp as in Lemma 6.2(b). By induction on dimension, we can assume the
existence of our desired C with −KD0

·C ≤ n− 1. Since
∑n

i=1 D
′
i ·C = −KD0

·C,
by the Pigeonhole Principle, we may without loss of generality that D′

1 · C ≤ n−1
n .

So, for all 0 ≤ i ≤ n, we have Di · C = D1 · C ≤ D′
1 · C ≤ n−1

n , which implies

−KW · C ≤ 1
n (n− 1)(n+ 1) ≤ n. �

Putting these results together we have:

Proof of Proposition 6.1. Corollary 6.4 shows that Proposition 6.1(a) and (b) hold
for all fake weighted projective spaces and that part (c) additionally holds for all
weighted projective spaces. By Lemma 6.2, it remains to show Proposition 6.1
holds for fake weighted projective spaces of the form given in Lemma 6.2(b). This
is handled in Corollary 6.9. �

7. Base case: P is in the exceptional locus

In this section we prove Proposition 4.10, thereby finishing the proof of Theorem
4.2, and hence also proving Theorem 1.7. We begin with a lemma that allows us
to reduce to the case of fake weighted projective spaces.

Lemma 7.1. Let X be a projective terminal Q-factorial split toric variety and
let π : X → Y be an elementary contraction corresponding to the extremal ray R.
Suppose C ⊆ X is a curve contracted by π. If F is the reduction of the fiber of π
containing C, then −KX · C ≤ −KF · C.

Proof. Let v1, . . . , v� be the rays of the fan ΣX , and Di ⊆ X denote the torus-
invariant divisor corresponding to vi. Let y = π(F ). There is a unique torus-orbit
closure Z ⊆ Y such that y is contained in the torus TZ of Z. Since the fibers
of π are irreducible, π−1(Z) is also irreducible. So, the reduction of π−1(Z) is a
torus-orbit closure W ⊆ X. Let τ ∈ ΣX be the cone corresponding to W . Since
F is positive-dimensional and it is a general fiber of π|W : W → Z, we see W is
contained in the exceptional locus Exc(π).

By Lemma 14-1-7 and Corollary 14-2-2 of [Ma02], Exc(π) is the torus-orbit clo-
sure corresponding to the cone spanned by the rays vi withDi ·C < 0. Furthermore,
the aforementioned results of [Ma02] show that the toric map from Exc(π) to its im-
age corresponds to the quotient map η : N/N− → N/N�=0, where N− (resp. N�=0) is
the saturation of the sublattice generated by the vi withDi ·C < 0 (resp.Di ·C 	= 0).
So if Di · C > 0, then η(vi) = 0 and hence Di does not contain a fiber of π. In
particular, Di · C ≤ 0 if vi is a ray of τ .

Reordering the rays if necessary, we can assume τ = 〈v1, . . . , va〉, and that
va+1, . . . , vb are the rays in Star(τ ) which are not in τ . Let m be the multiplicity of
the cone 〈v1, . . . , va〉. For a < i ≤ b, we let D′

i be the torus-invariant divisor on W
corresponding to vi, and let mi ≥ 1 be the multiplicity of the cone 〈v1, . . . , va, vi〉.
Since Di · C = 0 for vi /∈ Star(τ ), and since Di · C ≤ 0 for vi ∈ τ ,

−KX ·C =
b∑

i=1

Di · C ≤
b∑

i=a+1

Di ·C =
b∑

i=a+1

m

mi
D′

i · C ≤
b∑

i=a+1

D′
i ·C = −KW · C.
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Finally, since F is a general fiber of π|W , we find KW |F = KF , and so −KX · C ≤
−KF · C. �

If X 
 Pn, then Theorem 4.2 follows from [McK07, Theorem 2.6]. Therefore,
the following result finishes the proof of Proposition 4.10.

Proposition 7.2. Let X be a projective terminal Q-factorial split toric variety over
a number field k and let π : X → Y be the elementary contraction corresponding to
an extremal ray R. Let D ∈ Nef(X)∩R⊥ be a Q-divisor and P ∈ X(k)∩Exc(π) a
canonically bounded point. If X 	
 Pn, then there exists an irreducible rational curve
C through P such that C is unibranch at P , −KX · C ≤ dimX, and αP,C(D) ≤
αP,{xi}(D) for all Zariski dense sequences {xi} on X.

Proof. Let F be the reduction of the fiber containing P . It follows from [Fu06,
Remark 3.3] that F is a fake weighted projective space.

Suppose first that Y is a point. Then F = X. Since X has terminal singularities
and is not isomorphic to projective space, Proposition 6.1(a) and (c) tell us there
is an irreducible rational curve C through P which is unibranch at P and satisfies
−KX · C ≤ dimX.

Next suppose Y is not a point. Then dimF ≤ dimX − 1. By Proposition 6.1(a)
and (b), there is an irreducible rational curve C ⊆ F through P which is unibranch
at P and satisfies −KF · C ≤ 1 + dimF . By Lemma 7.1, we have

−KX · C ≤ −KF · C ≤ 1 + dimF ≤ dimX.

Lastly, regardless of whether or not Y is a point, by Theorem 2.8, if m denotes
the multiplicity of C at P , we have αP,C(D) = 1

mC · D = 0, so αP,C(D) = 0 ≤
αP,{xi}(D) for all Zariski dense sequences {xi} on X. �

8. Finding the curve of best approximation

A curve C ⊆ X is said to be a curve of best approximation with respect to D if
αP,C(D) = αP (D). The curve C constructed in Theorem 1.7 is not required to be
a curve of best approximation, but only one that approximates P better than any
Zariski dense sequence. In addition to the theoretical point raised in Remark 1.8
that there may be some Zariski-degenerate sequence with higher dimensional closure
that approximates P better than C, there is the very practical point mentioned
in Remark 1.9 that the curve C we find is in fact not always a curve of best
approximation to P , as we discuss in this section.

For example, let k be a number field, and fix a place v of k. If X is the weighted
projective space P(4, 7, 13), and D is the generator of the Picard group of X, then
D = − 4·7·13

4+7+13KX . Assuming canonical boundedness of the point P = [1 : 1 : 1],

we find then that αP,{xi}(D) ≥ 91
3 . Our proof of Theorem 1.7 for this choice of X

and P ultimately comes from Lemma 6.3. Specifically, the curve C we construct in
this case is x7 = y4, which has D-degree 28. So, αP,C(D) = 28 < 91

3 ≤ αP,{xi}(D)
for all Zariski dense sequences {xi}. However, it is easy to see (for this particular
X and P ) that there are other curves which have smaller α-value, e.g. the curve
x5 = yz has D-degree 20 and hence has α-value 20.

One may wonder whether x5 = yz is the curve of best approximation. The
answer turns out to be interesting: a thorough search reveals that the curve C ′

given by the equation
x8y + xy5 − 3x3y2z + z3 = 0
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satisfies αP,C′(D) = 19.5 provided that
√
−3 ∈ kv � k. This is because C ′, which

has degree C ′ ·D = 39, is singular at P and the tangent directions to C ′ at P are
distinct and split over the field Q(

√
−3). So, if

√
−3 ∈ kv � k, then Theorem 2.7

implies αP,C′(D) = 39
2 = 19.5.

In fact, as we now explain, the curve C ′ is a curve of best approximation to
P when

√
−3 ∈ kv � k. Let D′ be the Weil divisor x = 0, so that D = 91D′.

Letting mP be the maximal ideal at P , we see OX,P /m
3
P has dimension

(
4
2

)
= 6. A

straightforward computation shows that H0(14D′) has dimension 7 >
(
4
2

)
, and so

there must be some non-zero section g ∈ H0(14D′) that vanishes at P to order at
least 3. In fact, one computes that, up to scalar, there is a unique such g, which
defines the curve C ′′

x14 − 4x9yz + x7y4 + 6x4y2z2 − 4x2y5z + y8 − xz4 = 0.

Then the section g13 ∈ H0(13 · 14D′) = H0(2D) vanishes at P to order at least
39. Thus, if π : Y → X denotes the blowup of X at P , with exceptional divisor
E, then 2π∗D − 39E is effective. Let B ⊂ X be the image of the asymptotic base
locus of 2π∗D − 39E. Then Theorem 3.3 of [MR16], shows that for any sequence
{xi} not contained in B, we have αP,{xi}(D) ≥ 39

2 = 19.5. Thus, unconditionally
(i.e. without even assuming P is canonically bounded), the curve C ′ must be a
curve of best D-approximation to P , once we show that there is no curve in the
locus B with a smaller α-value than C ′.

To handle curves in the locus B, first note that the self-intersection (2π∗D −
39E)2 = −65 is negative. Now, B is contained in the locus defined by the vanishing
g13, namely the divisor 13C ′′. Thus, it suffices to show that αP,C′′(D) > αP,C′(D).
This is the case since C ′′ has degree 56, so by Theorem 2.7, we see αP,C′′(D) ≥
56
2 = 28 > 19.5 = αP,C′(D). Therefore, C ′ is indeed a curve of best approximation

to P , provided that
√
−3 ∈ kv � k.

In summary, the curve of best approximation depends in a subtle way on the
number field k. In particular, if one wishes to show the existence of a curve of best
D-approximation to P without assuming a priori that P is canonically bounded,
one would need to provide an explanation for the non-trivial fact that C ′ is con-
tained in the Zariski closed locus of exceptions to the canonical boundedness con-
dition provided by Vojta’s Conjecture, at least when

√
−3 ∈ kv � k.
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[Th09] Axel Thue, Über Annäherungswerte algebraischer Zahlen (German), J. Reine Angew.
Math. 135 (1909), 284–305, DOI 10.1515/crll.1909.135.284. MR1580770

[Vo87] Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes
in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR883451

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L

3G1, Canada

Email address: dmckinnon@uwaterloo.ca

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L

3G1, Canada

Email address: msatrian@uwaterloo.ca

Licensed to Univ of Waterloo. Prepared on Thu May  6 08:52:42 EDT 2021 for download from IP 129.97.193.44.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=23854
https://www.ams.org/mathscinet-getitem?mr=2273272
https://www.ams.org/mathscinet-getitem?mr=1234037
https://arxiv.org/pdf/1809.02001.pdf
https://arxiv.org/pdf/1809.02001.pdf
https://arxiv.org/pdf/1304.3029.pdf
https://arxiv.org/pdf/1304.3029.pdf
https://www.ams.org/mathscinet-getitem?mr=1658959
https://www.ams.org/mathscinet-getitem?mr=1875410
https://www.ams.org/mathscinet-getitem?mr=2274515
https://www.ams.org/mathscinet-getitem?mr=3572552
https://www.ams.org/mathscinet-getitem?mr=3338009
https://www.ams.org/mathscinet-getitem?mr=72182
https://www.ams.org/mathscinet-getitem?mr=1544471
https://www.ams.org/mathscinet-getitem?mr=1580770
https://www.ams.org/mathscinet-getitem?mr=883451

	1. Introduction
	2. Key properties of the approximation constant 𝛼_{𝑃}
	3. Vojta’s Main Conjecture and canonical boundedness
	4. Preliminary reductions in the proof of Theorem 1.7
	5. Induction step: 𝑃 is not in the exceptional locus
	6. Results on fake weighted projective spaces
	7. Base case: 𝑃 is in the exceptional locus
	8. Finding the curve of best approximation
	Acknowledgments
	References

