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DENSITY OF ORBITS OF DOMINANT REGULAR SELF-MAPS

OF SEMIABELIAN VARIETIES

DRAGOS GHIOCA AND MATTHEW SATRIANO

Abstract. We prove a conjecture of Medvedev and Scanlon [Ann. of Math.
(2), 179 (2014), no. 1, 81–177] in the case of regular morphisms of semiabelian
varieties. That is, if G is a semiabelian variety defined over an algebraically
closed field K of characteristic 0, and ϕ : G → G is a dominant regular self-map
of G which is not necessarily a group homomorphism, we prove that one of the
following holds: either there exists a nonconstant rational fibration preserved
by ϕ or there exists a point x ∈ G(K) whose ϕ-orbit is Zariski dense in G.

1. Introduction

For any self-map Φ on a set X and any nonnegative integer n, we denote by Φn

the nth compositional power, where Φ0 is the identity map. For any x ∈ X, we
denote by OΦ(x) its orbit under the action of Φ, i.e., the set of all iterates Φn(x)
for n ≥ 0.

Our main result is the following.

Theorem 1.1. Let G be a semiabelian variety defined over an algebraically closed
field K of characteristic 0 and let ϕ : G −→ G be a dominant regular self-map which
is not necessarily a group homomorphism. Then either there exists x ∈ G(K) such
that Oϕ(x) is Zariski dense in G or there exists a nonconstant rational function
f ∈ K(G) such that f ◦ ϕ = f .

Theorem 1.1 answers affirmatively the following conjecture raised by Medvedev
and Scanlon in [MS14] for the case of regular morphisms of semiabelian varieties.

Conjecture 1.2 ([MS14, Conjecture 7.14]). Let X be a quasiprojective variety
defined over an algebraically closed field K of characteristic 0 and let ϕ : X ��� X
be a rational self-map. Then either there exists x ∈ X(K) whose orbit under ϕ
is Zariski dense in X or ϕ preserves a nonconstant fibration; i.e., there exists a
nonconstant rational function f ∈ K(X) such that f ◦ ϕ = f .

The origin of [MS14, Conjecture 7.14] lies in a much older conjecture formu-
lated by Zhang in the early 1990s (and published in [Zha10, Conjecture 4.1.6]).
Zhang asked that for each polarizable endomorphism ϕ of a projective variety
X defined over Q there must exist a Q-point with Zariski dense orbit under ϕ.
Medvedev and Scanlon [MS14] conjectured that as long as ϕ does not preserve a
nonconstant fibration, a Zariski dense orbit must exist; the hypothesis concerning
polarizability of ϕ already implies that no nonconstant fibration is preserved by ϕ.
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In [MS14], Medvedev and Scanlon also prove their conjecture in the special case
X = An, and ϕ is given by the coordinatewise action of n one-variable polynomials
(x1, . . . , xn) �→ (f1(x1), . . . , fn(xn)); their result was established over an arbitrary
field K of characteristic 0 which is not necessarily algebraically closed.

In [AC08], Amerik and Campana proved Conjecture 1.2 for all uncountable al-
gebraically closed fields K (see also [BRS10] for a proof of the special case of this
result when ϕ is an automorphism). In fact, Conjecture 1.2 is true even in positive
characteristic, as long as the field K is uncountable (see [BGR17, Corollary 6.1]);
on the other hand, when the transcendence degree of K over Fp is smaller than
the dimension of X, there are counterexamples to the corresponding variant of
Conjecture 1.2 in characteristic p (as shown in [BGR17, Example 6.2]).

With the notation as in Conjecture 1.2, it is immediate to see that if ϕ preserves
a nonconstant fibration, then there is no Zariski dense orbit. So, the real difficulty
in Conjecture 1.2 lies in finding a Zariski dense orbit for a self-map ϕ of X when
the algebraically closed field K is countable; in this case, there are only a handful
of results known, as we will briefly describe below.

• In [ABR11], Conjecture 1.2 was proven assuming there is a point x ∈ X(K)
which is fixed by ϕ and, moreover, the induced action of ϕ on the tangent
space of X at x has multiplicatively independent eigenvalues.

• Conjecture 1.2 is known for varieties X of positive Kodaira dimension; see,
for example, [BGRS17, Proposition 2.3].

• In [Xie15], Conjecture 1.2 was proven for all birational automorphisms of
surfaces (see also [BGT15] for an independent proof of the case of auto-
morphisms). Later, Xie [Xie] established the validity of Conjecture 1.2 for
all polynomial endomorphisms of A2.

• In [BGRS17], the conjecture was proven for all smooth minimal 3-folds of
Kodaira dimension 0 with a sufficiently large Picard number, contingent
on certain conjectures in the minimal model program.

• In [GS17], Conjecture 1.2 was proven for all abelian varieties.
• In [GX], it was proven that if Conjecture 1.2 holds for the dynamical
system (X,ϕ), then it also holds for the dynamical system (X × An, ψ),
where ψ : X × An ��� X × An is given by (x, y) �→ (ϕ(x), A(x)y) and
A ∈ GLn(K(X)).

Our Theorem 1.1 extends the main result of [GS17] where Conjecture 1.2 was
shown for abelian varieties. There are numerous examples in arithmetic geometry
when one needed to overcome significant difficulties to extend a known result for
abelian varieties to the case of semiabelian varieties: the case of nonsplit semiabelian
varieties presented intrinsic complications in each of the classical conjectures of
Mordell–Lang, Bogomolov, and Pink–Zilber. In the case of the Medvedev–Scanlon
conjecture, the major technical obstacle we face is the absence of Poincaré’s re-
ducibility theorem: if A is an abelian variety and B ⊂ A is an abelian subvariety,
then there exists an abelian subvariety C ⊂ A such that A = B + C and B ∩ C
is finite; i.e., A/B is isogenous to an abelian subvariety of A. The corresponding
version of this result is false for semiabelian varieties. Since Poincaré’s reducibility
theorem is used throughout [GS17], our proof of Theorem 1.1 requires significant
conceptual changes, specifically in the proofs of the main results of subsections 3.1,
3.2, and 4. Also, the absence of Poincaré’s reducibility theorem in the case of

Licensed to Univ of Waterloo. Prepared on Tue Mar 17 15:44:37 EDT 2020 for download from IP 129.97.193.44.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DENSITY OF ORBITS INSIDE SEMIABELIAN VARIETIES 6343

nonsplit semiabelian varieties G makes it impossible for one to use a strategy sim-
ilar to that in [GS17] in order to prove a generalization of Theorem 1.1 when the
action of ϕ is replaced by the action of a finitely generated commutative monoid of
regular self-maps on G; for more details, see Remark 4.4.

The plan of our paper is as follows. In section 2 we introduce our notation and
state the various useful facts about semiabelian varieties which we will employ in
our proof. We continue in section 3 by proving several reductions and auxiliary
statements to be used in the proof of our main result. Finally, we conclude by
proving Theorem 1.1 in section 4.

2. Properties of semiabelian varieties

2.1. Notation. We start by introducing the necessary notation for our paper.
Let G1 and G2 be abelian groups, and let G = G1×G2. By an abuse of notation,

we identify G1 as a subgroup of G through the inclusion map x �→ (x, 0); similarly,
we identify G2 with a subgroup of G through the inclusion map x �→ (0, x). Also,
viewing G as G1⊕G2, then for any x1 ∈ G1 and x2 ∈ G2 we use either the notation
(x1, x2) or x1 ⊕ x2 for the element (x1, x2) ∈ G. For any group G we denote by
Gtors its torsion subgroup; also, if G is abelian, then (unless otherwise noted) we
denote its group operation by “+”.

2.2. Semiabelian varieties. We continue by stating some useful facts regarding
semiabelian varieties. Unless otherwise noted, G denotes a semiabelian variety
defined over an algebraically closed field K of characteristic 0.

The following structure result for regular self-maps on semiabelian varieties is
proven in [NW16, Theorem 5.1.37].

Fact 2.1. Let G1 and G2 be semiabelian varieties and let ϕ : G1 −→ G2. Then
there exists a group homomorphism τ : G1 −→ G2 and there exists y ∈ G2 such
that ϕ(x) = τ (x) + y for each x ∈ G1.

By definition (see [NW16, Definition 5.1.20], [BBP16, Fact 2.4]) a semiabelian
variety over K is a commutative algebraic group G over K for which there is an
algebraic torus T , an abelian variety A, and a short exact sequence of algebraic
groups over K:

(2.1.1) 0 −→ T −→ G −→ A −→ 0.

We often say that T is the toric part of G, while A is the associated abelian variety of
G. When the short exact sequence (2.1.1) splits, we say that G is a split semiabelian
variety.

The next fact will be used several times in our proof.

Fact 2.2. There is no nontrivial group homomorphism between an algebraic torus
and an abelian variety.

As a consequence, we have the following: suppose σ : G1 −→ G2 is a group
homomorphism of semiabelian varieties and

0 −→ Ti −→ Gi
pi−→ Ai −→ 0

is a short exact sequence with Ti being the toric part of Gi and Ai the associated
abelian variety of Gi. Then p2(σ(T1)) = 0, so we have the following.
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Fact 2.3. LetG1 andG2 be semiabelian varieties with toric parts T1 and T2, respec-
tively associated with abelian varieties A1 and A2. Then for any group homomor-
phism σ : G1 −→ G2 the restriction σ|T1

induces a group homomorphism between
T1 and T2; furthermore, there is an induced group homomorphism σ : A1 −→ A2.

Thus, we see that morphisms of semiabelian varieties induce morphisms of their
corresponding tori and associated abelian varieties. There is a converse to this
statement as well. If G is a semiabelian variety and p : G → A is the quotient map
to its associated abelian variety, then p is a T -torsor, and hence G is the relative
spectrum of

⊕
m∈M Lm, where Lm is a line bundle and M is the character lattice

of T . One shows, see, e.g. [Lan08, Corollary 3.1.4.4], that for all m,m′ ∈ M we
have Lm ⊗ Lm′ � Lm+m′ and each Lm ∈ Pic0(A) = A∨. In other words, we have
a group homomorphism c : M → A∨. If σ : G′ → G is a group homomorphism,
then from Fact 2.3 we have homomorphisms σ|T ′ : T ′ → T and ψ = σ : A′ →
A between the toric parts and the associated abelian varieties. This, in turn,
induces a homomorphism φ : M → M ′ between the character lattices of T and T ′,
and a homomorphism ψ∨ : A∨ → (A′)∨ between dual abelian varieties. Via these
constructions we obtain an equivalence of categories as follows.

Fact 2.4 ([Lan08, Proposition 3.1.5.1]). The category of semiabelian varieties is
antiequivalent to the following category: objects are group homomorphisms c : M →
A∨, where M is a finitely generated free abelian group and A is an abelian variety;
morphisms of objects (c : M → A∨) → (c′ : M ′ → (A′)∨) consist of commutative
diagrams

M
c ��

φ

��

A∨

ψ∨

��
M ′ c′ �� (A′)∨,

where φ is a group homomorphism and ψ : A′ → A is a homomorphism of abelian
varieties.

From Fact 2.4 we see that if G is a semiabelian variety corresponding to the
homomorphism c : M → A∨, then End(G) is the subring of End(T ) × End(A)
consisting of pairs (α, ψ) such that c ◦ α∨ = ψ∨ ◦ c, where α∨ ∈ End(M) is the
endomorphism of the character lattice induced by α. So, we have the following.

Fact 2.5. With the notation as in (2.1.1), we let End(T ), End(G), and End(A)
be the endomorphism rings of the corresponding algebraic groups. Then the endo-
morphism ring End(G) embeds in End(T ) × End(A). In particular, End(G) is a
finitely generated Z-module.

Fact 2.6. Let G be a semiabelian variety and ϕ : G −→ G be a group homomor-
phism. Then there exists a monic polynomial f ∈ Z[z] of degree at most equal to
2 dim(G) such that f(ϕ(x)) = 0 for all cases where x ∈ G.

Moreover, for any x ∈ G(K) and any regular self-map ϕ : G −→ G the orbit
Oϕ(x) is contained in a finitely generated subgroup of G.

Proof. For the first part, by Fact 2.5 it is enough to show that each (φ, ψ) ∈
End(T )×End(A) satisfies a monic polynomial of degree at most 2 dim(G). Letting

d = dim(T ), we have End(T )
∼→ Md(Z) as the ring of d-by-d matrices with integer

entries. Then the matrix corresponding to φ satisfies its characteristic polynomial
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g(z), which has degree d. By [GS17, Fact 3.3] we know that ψ satisfies a monic
polynomial h(z) of degree at most 2 dim(A), so we can take f = gh.

We now prove the “moreover” statement. By Fact 2.3, there exists y ∈ G(K)
and τ ∈ End(G) such that ϕ(x) = τ (x)+ y for any x ∈ G. Then for all cases where
n ∈ N, we have

ϕn(x) = τn(x) + y + τ (y) + · · ·+ τn−1(y).

Since there exists a monic polynomial f ∈ Z[z] of degree at most 2 dim(G) such that
f(τ ) = 0, we conclude that Oϕ(x) is contained in the finitely generated subgroup
of G(K) spanned by τ i(x) and τ i(y) for 0 ≤ i ≤ 2 dim(G)− 1. �

For each positive integer n we let G[n] be the group of torsion points of G
killed by the multiplication-by-n map on G. Then, as shown in [BBP16, Fact 2.9],

G[n]
∼→ (Z/nZ)dim(T )+2 dim(A), where T and A are the toric part and the associated

abelian variety of G, respectively; see (2.1.1). Therefore, as in the case of abelian
varieties (see [GS17, Fact 3.10]), we obtain the following result.

Fact 2.7. Let G be a semiabelian variety defined over a field K0 of charac-
teristic 0. Then the group Gal(K0(Gtors)/K0) embeds as a closed subgroup of

GLdim(T )+2 dim(A)(Ẑ), where T and A are the toric part and the associated abelian

variety of G, respectively, and Ẑ is the ring of finite adéles.

The following result, proven by Faltings [Fal94] for abelian varieties and by
Vojta [Voj96] for semiabelian varieties, was known as the Mordell–Lang conjecture.

Fact 2.8 (Vojta [Voj96]). Let V ⊂ G be an irreducible subvariety of the semiabelian
variety G defined over an algebraically closed field K of characteristic 0. Assume
there exists a finitely generated subgroup Γ ⊂ G(K) such that V (K)∩ Γ is Zariski
dense in V . Then V is a coset of a semiabelian subvariety of G.

Combining Fact 2.6 with Fact 2.8, we obtain the following.

Fact 2.9. Let ϕ : G −→ G be a self-map and let x ∈ G(K). The Zariski closure of
Oϕ(x) is a finite union of cosets of semiabelian subvarieties of G.

Proof. Using the “moreover” part provided by Fact 2.6, we see that Oϕ(x) is con-
tained in a finitely generated subgroup Γ of G(K). Letting V be the closure of
Oϕ(x), we see V (K)∩Γ is Zariski dense in V . Fact 2.8 then tells us that each irre-
ducible component of V is a coset of a semiabelian subvariety of G, which finishes
the proof. �

Finally, we end with the following easy observation, which will be used in
section 3.

Fact 2.10. Let

0 −→ T −→ G
p−→ A −→ 0

be a short exact sequence of algebraic groups, with T being a torus and A an abelian
variety. If H ⊂ G is an algebraic subgroup such that A = p(H), then G/H is an
algebraic torus.
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6346 DRAGOS GHIOCA AND MATTHEW SATRIANO

Proof. We obtain the following diagram where the rows are short exact sequences
and the vertical arrows are inclusions:

1 �� H ∩ T ��� �

��

H ��� �

��

H/(H ∩ T ) ��
� �

��

1

1 �� T �� G
p �� A �� 1.

Since p(H) = A, we see H/(H ∩T ) = A. So, we have an isomorphism T/(H ∩T ) �
G/H which finishes the proof since quotients of tori are tori. �

3. Useful results

In the following subsections, we prove several propositions which will then be
used in order to derive Theorem 1.1.

3.1. Minimal dominating semiabelian subvarieties.

Lemma 3.1. It suffices to prove Theorem 1.1 for a conjugate σ−1 ◦ ϕ ◦ σ of the
self-map ϕ : G −→ G under some automorphism σ : G −→ G.

Proof. This is [GS17, Lemma 5.4]; the proof goes verbatim not only when G is a
semiabelian variety but also for any quasiprojective variety. �

Definition 3.2. Let G be a semiabelian variety and

(3.2.1) 0 −→ T −→ G
p−→ A −→ 0

the corresponding short exact sequence. We say H ⊂ G is a minimal dominating
semiabelian subvariety of G if (i) H is a semiabelian subvariety with p(H) = A
and (ii) for any semiabelian subvariety H ′ ⊂ G with p(H ′) = A, we have H ⊂ H ′.

We show the existence of minimal dominating semiabelian subvarieties after
allowing for an isogeny.

Lemma 3.3. For every semiabelian variety G there exists an isogeny f : G′ → G
such that G′ has a minimal dominating semiabelian subvariety.

Moreover, if G = G1 × G2 with the Gi semiabelian varieties, then there exist
isogenies fi : G

′
i → Gi such that G′

1 × G′
2 has a minimal dominating semiabelian

subvariety.

Proof. By Fact 2.4, the semiabelian variety G corresponds to a morphism c : M →
A∨, where M is the character lattice of T . To begin, notice that a semiabelian
subvariety H0 ⊂ G has p(H0) = A (see (3.2.1)) if and only if it induces a diagram

1 �� T0
��

� �

��

H0
��

� �

��

A �� 1

1 �� T �� G �� A �� 1

where the rows are short exact. By Fact 2.4 this is equivalent to factoring c as
M → M0 → A∨, withM → M0 being a surjection of free abelian groups. Therefore,
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a minimal dominating semiabelian subvariety exists if and only if c factors asM
q−→

M
c−→ A∨ such that (i) q is a surjection of a free abelian group, and (ii) for all

factorizations M
q0−→ M0

c0−→ A∨ of c there exists a surjection q1 : M0 → M such
that q = q1 ◦ q0 and c0 = c ◦ q1. In particular, if the image Im(c) is torsion free,
then a minimal dominating semiabelian subvariety exists.

Since Im(c) ⊂ A∨ is a subgroup, we see that the torsion part Im(c)tors is a finite
subgroup of A∨. Let Γ be any finite subgroup of A∨ that contains Im(c)tors. Then
Im(c)tors = Im(c) ∩ Γ. Since Γ is a finite subgroup, π : A∨ → A∨/Γ is an isogeny
of abelian varieties, and by construction the image of the map π ◦ c : M → A∨/Γ is
equal to Im(c)/ Im(c)tors, which is torsion free. Letting A′ = (A∨/Γ)∨ and ψ = π∨,
we have π = ψ∨, and ψ : A′ → A is an isogeny; see, e.g. [Mil, Theorem 9.1]. By
Fact 2.4 we have a morphism of short exact sequences,

1 �� T �� G′ ��

f

��

A′ ��

ψ

��

1

1 �� T �� G �� A �� 1,

where G′ is defined by π ◦c : M → A∨/Γ = (A′)∨. We see then that f is an isogeny.
Since the image of π ◦ c is torsion free, G′ has a minimal dominating semiabelian
subvariety.

Finally, it remains for us to handle the case when G = G1 × G2. Here, Gi is
defined by a map ci : Mi → A∨

i , withMi being finitely generated free abelian groups
and Ai abelian varieties. Then G is defined by the map c = (c1, c2) : M1 ⊕M2 →
A∨

1 ×A∨
2 = (A1 ×A2)

∨. Then Im(c) = Im(c1)⊕ Im(c2), so Im(c)tors = Im(c1)tors ⊕
Im(c2)tors. We can then choose Γ = Γ1 × Γ2 ⊂ A∨

1 ×A∨
2 , where Γi ⊂ A∨

i is a finite
subgroup containing Im(ci). The resulting isogeny ψ : A′ → A1 × A2 defined by Γ
in the previous paragraph is then of the form ψ = ψ1 × ψ2, where ψi : A

′
i → Ai is

the isogeny defined by Γi. �

Lemma 3.4. For i = 1, 2, let Gi be a semiabelian variety fitting into a short exact
sequence

0 −→ Ti −→ Gi
pi−→ Ai −→ 0,

with Ti being a torus and Ai an abelian variety. Let G = G1 × G2 and p =
(p1, p2) : G −→ A1 × A2. If H ⊂ G is an algebraic subgroup with T1 ⊂ H and
p(H) = A1 ×A2, then G1 ⊂ H.

Proof. To prove the lemma, it suffices to replace H by the connected component of
the identity of H, so we can assume that H is a semiabelian subvariety of G. By
Fact 2.4 we know that Gi corresponds to a group homomorphism ci : Mi −→ A∨

i ,
where Mi is the character lattice of Ti. Then G corresponds to the homomorphism
c = (c1, c2) : M1 ⊕M2 −→ A∨

1 ×A∨
2 . Since H is a semiabelian subvariety of G and

p(H) = A1 ×A2, then, as in the proof of Lemma 3.3, we know that H corresponds
to a factorization c′ of c through a quotient of M1 ⊕M2. Moreover, since T1 ⊂ H,
the quotient is of the following form: there is a surjection π : M2 −→ M ′, and
H corresponds to a group homomorphism c′ : M1 ⊕ M ′ −→ A∨

1 × A∨
2 such that
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6348 DRAGOS GHIOCA AND MATTHEW SATRIANO

c = c′ ◦(id, π), where id is the identity map on M1. Consider the following diagram:

M1 ⊕M2
c ��

(id,π)

��

A∨
1 ×A∨

2

M1 ⊕M ′ c′ ��

π′

��

A∨
1 ×A∨

2

q

��
M1

c1 �� A∨
1 ,

where π′ and q are the natural projections. Since (id, π) is surjective and c1 ◦ π′ ◦
(id, π) = q◦c, it follows that c1 ◦π′ = q◦c′. Since c1 corresponds to the semiabelian
subvariety G1 ⊂ G, we see G1 ⊂ H. �

Proposition 3.5. Let G1 and G2 be semiabelian varieties defined over an alge-
braically closed field K of characteristic 0, and let G = G1 ⊕ G2 and πi : G → Gi

be the natural projection maps. If Γ ⊂ G2(K) is a finitely generated subgroup, then
there exists x1 ∈ G1(K) with the following property: for any proper algebraic sub-
group H ⊂ G and for any γ ∈ Γ, if (x1, γ) ∈ H, then π2(H) is a proper algebraic
subgroup of G2.

In our proof for Proposition 3.5 we will use the following related result.

Lemma 3.6. Let T be an algebraic torus, let T0 ⊂ T be a subtorus, and let Γ0 ⊂
T (K) be a finitely generated subgroup. Then there exists a y0 ∈ T0(K) such that,
given any algebraic subgroup H0 ⊂ T , if there exists γ0 ∈ Γ0 such that y0 · γ0 ∈
H0(K), then T0 ⊂ H0.

Proof. Since K is algebraically closed, T splits and so, without loss of generality, we
may assume T = Gn

m and T0 = Gn0
m for some integers n0 ≤ n. We let Γ0,0 ⊂ Gm(K)

be the finitely generated subgroup spanned by all of the coordinates of a finite set
of generators of Γ0. Then we simply pick y0 := (y0,1, . . . , y0,n0

) ∈ Gn0
m (K) with the

property that for any nontorsion γ0,0 ∈ Γ0,0 (i.e., γ0,0 is not a root of unity) we
see that y0,1, . . . , y0,n0

, γ0,0 are multiplicatively independent. Since Γ0,0 has finite
rank, while Gm(K) has infinite rank, we can always do this.

Now, any algebraic subgroup H0 ⊂ Gn
m is the zero locus of finitely many equa-

tions of the form

(3.6.1) xm1
1 · · ·xmn

n = 1

for some integers m1, . . . ,mn. Now, if there exists some γ0 ∈ Γ0 such that y0 · γ0 ∈
H0(K), then (3.6.1) yields

(3.6.2) ym1
0,1 · · · ymn0

0,n0
∈ Γ0,0.

Our choice of y0,1, . . . , y0,n0
yields m1 = · · · = mn0

= 0; therefore, Gn0
m ⊂ H0, as

desired. �

Proof of Proposition 3.5. We first observe that it is enough to prove the desired
conclusion when each Gi is replaced by a finite cover.

Lemma 3.7. It suffices to prove Proposition 3.5 after replacing each Gi (for i =
1, 2) by a finite cover.
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Proof of Lemma 3.7. For each i = 1, 2, we let G̃i be a semiabelian variety, we

let σi : G̃i −→ Gi be an isogeny, and we let G̃ := G̃1 ⊕ G̃2. We also let σ :=

(σ1, σ2) : G̃ −→ G and let π̃i : G̃ −→ G̃i be the natural projections maps onto each
coordinate.

Since σ2 is an isogeny, Γ̃ := σ−1
2 (Γ) is a finitely generated subgroup of G̃2(K).

We assume that the conclusion of Proposition 3.5 holds for G̃ = G̃1 ⊕ G̃2 and Γ̃.

Thus, there exists an x̃1 ∈ G̃1(K) such that for any proper algebraic subgroup H̃ of

G̃, if there exists some γ̃ ∈ Γ̃ with (x̃1, γ̃) ∈ H(K), then π̃2(H̃) is a proper algebraic

subgroup of G̃2. We claim that x1 := σ1(x̃1) ∈ G1(K) satisfies the conclusion of
Proposition 3.5.

Indeed, assume there exists some proper algebraic subgroup H of G containing

(x1, γ) for some γ ∈ Γ. Then letting H̃ := σ−1(H), we see that (x̃1, γ̃) ∈ H̃(K) and,

moreover, since σ is an isogeny, H̃ is also a proper algebraic subgroup of G̃. Using

the property satisfied by x̃1, it follows that π̃2(H̃) is a proper algebraic subgroup

of G̃2. Since π2 ◦ σ = σ2 ◦ π̃2 and σ2 is an isogeny, we see that π2(H) must be a
proper algebraic subgroup of G2, as desired. �

For i = 1, 2 we let

0 −→ Ti −→ Gi
pi−→ Ai −→ 0

be a short exact sequence, where Ti is an algebraic tori and Ai is an abelian variety.
We also let T := T1 × T2 and let p := (p1, p2) : G −→ A, where A := A1 ×A2.

Using Lemmas 3.3 and 3.7, after replacing G1 and G2 by finite covers, if neces-
sary, we can assume that G admits a minimal dominant semiabelian subvariety H0.

We let Γ := p2(Γ) ⊂ A2(K). Then applying [GS17, Lemma 5.5], there exists an
x1 ∈ A1(K) with the following property: given any algebraic subgroup H ⊂ A =
A1⊕A2 for which there exists some γ ∈ Γ with (x1, γ) ∈ H, we must have A1 ⊂ H.

We let x1,0 ∈ G1(K) such that p1(x1,0) = x1. We let f : G −→ G/H0; since
p(H0) = A, G/H0 is an algebraic torus by Fact 2.10. We let Γ′ be the finitely
generated subgroup of G(K) spanned by x1,0 and Γ and let Γ0 := f(Γ′). We also
let U := G/H0 and let U0 ⊂ U be the algebraic subtorus f(T1). According to
Lemma 3.6, there exists a y0 ∈ U0(K) such that for any algebraic subgroup V ⊂ U ,
if there exists γ0 ∈ Γ0 such that y0 + γ0 ∈ V (K), then we must have U0 ⊂ V . We
let t0 ∈ T1(K) such that f(t0) = y0; we show next that x1 := t0 + x1,0 satisfies the
conclusion of Proposition 3.5.

So, let H ⊂ G = G1 ⊕ G2 be a proper algebraic subgroup containing (x1, γ)
for some γ ∈ Γ. We argue by contradiction and therefore assume π2(H) = G2.
Since p1(x1) = p1(x1,0) = x1, we obtain that p(H) is an algebraic subgroup of A

containing (x1, p2(γ)). Notice that p2(γ) ∈ Γ. If p(H) were a proper subgroup of
A = A1 ⊕ A2, then the hypothesis satisfied by x1 shows that π2(p(H)) is a proper
algebraic subgroup of A2, where π2 : A −→ A2 is the projection of A = A1 ⊕ A2

onto its second factor. However, p2(π2(H)) = π2(p(H)), which contradicts our
assumption that π2(H) = G2; it follows that p(H) = A. Using the minimality of
H0, we get H0 ⊂ H.

Next we consider the projection map f : G −→ G/H0 = U . We have

f(x1 ⊕ γ) = f(t0) + f(x1,0) + f(γ) = y0 + f(x1,0) + f(γ) ∈ y0 + Γ0;

on the other hand, x1 ⊕ γ ∈ H, so y0 + f(x1,0) + f(γ) = f(x1 ⊕ γ) is contained
in the subgroup V := f(H) of U . Our choice of y0 yields U0 = f(T1) ⊂ V ; taking
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inverse images under f , we have T1 ⊂ H + H0 = H. Since we also know that
p(H) = A = A1 ×A2, we see from Lemma 3.4 that G1 ⊂ H.

Finally, since H is a proper algebraic subgroup of G = G1 × G2 containing G1

(as shown above) and also projecting dominantly onto G2 under the natural projec-
tion map π2 (according to our assumption), we obtain a contradiction. Therefore,
π2(H) must be a proper algebraic subgroup of G2. This concludes our proof of
Proposition 3.5. �

3.2. Constructing topological generators. The following is the main result of
this subsection.

Proposition 3.8. Let K be an algebraically closed field of characteristic 0. Let
ψ : B −→ C be a group homomorphism of semiabelian varieties defined over K,
and let y ∈ C(K). If the algebraic subgroup generated by ψ(B) and y is C itself,
then there exists an x ∈ B(K) such that the Zariski closure of the cyclic subgroup
generated by ψ(x) + y is C.

We first prove a variant of Proposition 3.8: when B is an algebraic torus but the
algebraic group generated by ψ(B) and y is not necessarily equal to C. This result,
proven in Proposition 3.9, will then be used to derive Proposition 3.8.

Proposition 3.9. Let K be an algebraically closed field of characteristic 0, let T
be an algebraic torus, and let C be a semiabelian variety. Let ψ : T −→ C be a
homomorphism of algebraic groups defined over K, and let y ∈ C(K). Then there
exists an x ∈ T (K) such that the Zariski closure of the cyclic subgroup generated
by ψ(x) + y is the algebraic group generated by ψ(T ) and y.

Proof. Our argument follows the proof of [GS17, Lemma 5.1].
Let K0 be a finitely generated subfield of K such that T , C, and ψ are defined

over K0, and, moreover, y ∈ C(K0). So, without loss of generality, we may assume
that K is the algebraic closure of K0.

We let T = T1 ⊕ · · · ⊕ Tm be written as a direct sum of 1-dimensional algebraic
tori; at the expense of replacing K0 by a finite extension, we may assume each Ti

is defined over K0. Then

ψ(T ) =

m∑
i=1

ψ(Ti)

and, moreover, each ψ(Ti) is either trivial or a 1-dimensional algebraic torus. Our
strategy is to find an algebraic point zi ∈ ψ(Ti) such that if z :=

∑m
i=1 zi, and then

the Zariski closure of the cyclic group generated by z + y is the algebraic group
generated by ψ(T ) and y. If for some i we find that ψ(Ti) = {0} is trivial, then we
simply pick zi = 0. Now consider those cases where i ∈ {1, . . . ,m} such that ψ(Ti)
is nontrivial. For each such i, we will show there exist cases where zi ∈ ψ(Ti) such
that for any positive integer n we have

(3.9.1) nzi /∈ (ψ(Ti)) (K0 (Ctors, z1, . . . , zi−1)) .

Claim 3.10. If the above condition (3.9.1) holds for each i = 1, . . . ,m such that
ψ(Ti) = {0}, then the Zariski closure of the cyclic group generated by z + y is the
algebraic subgroup generated by ψ(T ) and y.

Proof of Claim 3.10. First, we note that if (3.9.1) holds, then zi = 0; therefore,
zi = 0 automatically implies that ψ(Ti) = {0}.
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Now, assume there exists some algebraic subgroup D ⊂ C (not necessarily con-
nected) such that z+ y ∈ D(K). Let i ≤ m be the largest integer such that zi = 0;
then we have

zi ∈ ((−y − z1 − · · · − zi−1) +D) ∩ ψ(Ti).

Assume first that ψ(Ti)∩D is a proper algebraic subgroup of ψ(Ti). Since ψ(Ti) is
a 1-dimensional torus, we see that D ∩ψ(Ti) is a 0-dimensional algebraic subgroup
of C; hence, there exists a nonzero integer n such that n · (D ∩ψ(Ti)) = {0}. Then
nzi is the only (geometric) point of the subvariety n ·(((−y − z1 − · · · − zi−1)+D)∩
ψ(Ti)), which is thus rational over K0(Ctors, z1, . . . , zi−1). But by our construction

nzi /∈ ψ(Ti)(K0(Ctors, z1, . . . , zi−1)),

which is a contradiction. Therefore, ψ(Ti) ⊂ D if i is the largest index in
{1, 2, . . . ,m} such that zi = 0 or, equivalently, if i is the largest index for which
ψ(Ti) = 0.

Now note that z+y =
∑

j≤i zj+y and zi ∈ ψ(Ti) ⊂ D, so z′+y = z+y−zi ∈ D,

where z′ := z1 + · · · + zi−1. Repeating the exact argument as above for the next
positive integer i1 < i for which ψ(Ti1) = {0} and then arguing inductively, we
obtain that each ψ(Tj) is contained in D, and therefore ψ(T ) ⊂ D. But then
z ∈ ψ(T ) ⊂ D and so y ∈ D as well, which yields that the Zariski closure of the
cyclic group generated by z + y is the algebraic subgroup of C generated by ψ(T )
and y, as desired. �

We just have to show that we can choose zi’s satisfying (3.9.1). So, the problem
reduces to the following: L is a finitely generated field of characteristic 0, ϕ is an
algebraic group homomorphism between an algebraic torus U and some semiabelian
variety C, all defined over L, ϕ has finite kernel, and we want to find x ∈ U(L)
such that for each positive integer n, we have

(3.10.1) nϕ(x) /∈ ϕ(U) (L (Ctors)) .

Indeed, with the above notation, U := Ti (for each i = 1, . . . ,m), L is the extension
of K0 generated by zj (for j = 1, . . . , i−1), and ϕ is the homomorphism ψ restricted
to U = Ti for which ψ(Ti) is nontrivial.

Let d be the degree of the isogeny ϕ′ : U −→ ϕ(U) ⊂ C. In particular, this
means that for each z ∈ C(L) and each x ∈ U(L) for which ϕ(x) = z we have

(3.10.2) [L(x) : L] ≤ d · [L(z) : L] .

For any subfield M ⊂ L, we let M (d) be the compositum of all extensions of M of
degree at most equal to d.

Claim 3.11. Let L be a finitely generated field of characteristic 0, let C be a
semiabelian variety defined over L, let Ltors := L(Ctors), and let d be a positive

integer. Then there exists a normal extension of L
(d)
tors whose Galois group is not

abelian.

Proof of Claim 3.11. The proof is identical to the one from [GS17, Claim 5.3]. Note
that L(Ctors) is Hilbertian since we can still apply [Tho13, Theorem, p. 238] due
to Fact 2.7. �
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Claim 3.11 yields that there exists a point x ∈ U(L) which is not defined over

an abelian extension of L (Ctors)
(d); i.e., nx /∈ U

(
L (Ctors)

(d)
)
for all positive inte-

gers n. Hence, nϕ(x) /∈ ϕ(U) (L (Ctors)) (see (3.10.2)), which concludes the proof
of Proposition 3.9. �

Proof of Proposition 3.8. Let

0 −→ T1 −→ B
p1−→ A1 −→ 0,

0 −→ T2 −→ C
p2−→ A2 −→ 0

be two short exact sequences of algebraic groups with Ti tori and Ai abelian vari-
eties. We let y := p2(y). By Fact 2.3, the endomorphism ψ : B −→ C induces an
endomorphism of abelian varieties ψ : A1 −→ A2. Using [GS17, Lemma 5.1], we
conclude that there exists x0 ∈ A1(K) such that the Zariski closure of the cyclic
group generated by ψ(x0)+y equals the algebraic subgroup generated by ψ(A1) and
y. Since the algebraic subgroup generated by ψ(B) and y equals C, we conclude
that the algebraic subgroup generated by ψ(A1) and y equals A2. So, the cyclic
subgroup generated by ψ(x0) + y is Zariski dense in A2.

Choose a point x1 ∈ B(K) such that p1(x1) = x0 and let y1 := ψ(x1)+y ∈ C(K).
Using Proposition 3.9, we can find t ∈ T1(K) such that the Zariski closure H of
the cyclic group generated by ψ(t) + y1 is equal to the algebraic group generated
by ψ(T1) and y1. We claim that the point x := x1 + t satisfies the conclusion of
Proposition 3.8. Since ψ(x)+ y = ψ(t)+ψ(x1)+ y = ψ(t)+ y1, it therefore suffices
to prove the following.

Lemma 3.12. With the above notation, H = C.

Proof of Lemma 3.12. We let U be the algebraic subgroup which is the Zariski
closure of the cyclic group generated by y1. By our choice of x0, x1, and t, we know
that

(i) ψ(T1) ⊂ H,
(ii) U ⊂ H, and
(iii) p2(U) = A2.

Statements (i) and (ii) follow directly from the definitions. Statement (iii) holds
because p2(y1) = p2(ψ(x1)) + p2(y) = ψ(p1(x1)) + p2(y) = ψ(x0) + y and by the
fact that the Zariski closure of the cyclic group generated by ψ(x0) + y equals A2.
Our hypothesis that the algebraic subgroup generated by ψ(B) and y is C itself
yields ψ(B) + U = C. Our goal is to show that ψ(T1) + U = C.

Using property (iii) above and Fact 2.10, we see C/U is an algebraic torus. Since
ψ(B)/(ψ(B) ∩ U) � (ψ(B) + U)/U = C/U , we see that

(3.12.1) ψ(B)/(ψ(B) ∩ U)

is an algebraic torus. Since ψ(T1) is the toric part of ψ(B), we find that

(3.12.2) ψ(T1)/(ψ(T1) ∩ U)

is the toric part of ψ(B)/(ψ(B) ∩ U).
Equations (3.12.1) and (3.12.2) yield

(3.12.3) ψ(B)/(ψ(B) ∩ U)
∼→ ψ(T1)/(ψ(T1) ∩ U)
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and therefore,

(3.12.4) (ψ(B) + U)/U
∼→ (ψ(T1) + U)/U.

Equation (3.12.4) yields dim(ψ(B) + U) = dim(ψ(T1) + U) and, because C =
ψ(B) + U is connected, we conclude that H = ψ(T1) + U = C, as desired. �

This concludes our proof of Proposition 3.8. �
3.3. Conditions to guarantee the existence of a Zariski dense orbit.

Lemma 3.13. Let K be an algebraically closed field of characteristic 0, let G be a
semiabelian variety defined over K, let y1, . . . , yr ∈ G(K), and let P1, . . . , Pr ∈ Q[z]
such that Pi(n) ∈ Z for each n ≥ 1 and for each i = 1, . . . , r, while deg(Pr) > · · · >
deg(P1) > 0. For an infinite subset S ⊂ N, let V := V (S;P1, . . . , Pr; y1, . . . , yr) be
the Zariski closure of the set

{P1(n)y1 + · · ·+ Pr(n)yr : n ∈ S} .
Then there exist nonzero integers 
1, . . . , 
r such that V contains a coset of the
subgroup Γ generated by 
1y1, . . . , 
ryr.

Proof. The proof is almost identical with the proof of [GS17, Lemma 5.6]; however,
since that proof employed (though in a nonessential way) Poincaré’s reducibility
theorem for abelian varieties, we include a proof for our present lemma in the
context of semiabelian varieties which, of course, does not use Poincaré’s reducibility
theorem.

Let Γ0 be the subgroup of G generated by y1, . . . , yr. Since V (K)∩Γ0 is Zariski
dense in V , then by Fact 2.8 we see that V is a finite union of cosets of algebraic
subgroups of G. So, at the expense of replacing S by an infinite subset, we may
assume V = z + C for some z ∈ G(K) and some irreducible algebraic subgroup C
of G. Hence, {−z+P1(n)y1+ · · ·+Pr(n)yr}n∈S ⊂ C(K). We will show there exist
nonzero integers 
i such that 
iyi ∈ C(K) for each i = 1, . . . , r.

We proceed by induction on r. We first handle the base case when r = 1.
Then {P1(n)}n∈S takes infinitely many distinct integer values as deg(P1) ≥ 1, and
in particular, there exist n0, n ∈ S with 
 := P1(n)− P1(n0) being nonzero. Since
C(K) is a subgroup ofG(K), we see 
y1 = (−z+P1(n)y1)−(−z+P1(n0)y1) ∈ C(K).

Next let s ≥ 2. Assuming that the statement holds for all cases where r < s,
we prove it for r = s. Let n0 ∈ S. Letting P ′

i := Pi − Pi(n0), we see {P ′
1(n)y1 +

· · · + P ′
s(n)ys}n∈S ⊂ C(K). Since deg(P ′

1) ≥ 1, there exists an n1 ∈ S such that
P ′
1(n1) = 0. For each i = 2, . . . , s we let

Qi(z) := P ′
1(n1)P

′
i (n)− P ′

1(n)P
′
i (n1).

Since C(K) is a subgroup of G(K) and
∑s

i=2 P
′
i (n)yi ∈ C(K), it follows that∑s

i=2 P
′
i (n)P

′
1(n1)yi ∈ C(K). Similarly,

∑s
i=2 P

′
1(n)P

′
i (n1)yi ∈ C(K). Subtract-

ing, we have {
s∑

i=2

Qi(n)yi

}
n∈S

⊂ C(K).

Since deg(Qi) = deg(Pi) for each i = 2, . . . , s, we can use the induction hypothesis
and conclude that there exist nonzero integers 
2, . . . , 
s such that 
iyi ∈ C(K) for
each i ≥ 2. Let 
1 := P ′

1(n1) ·
∏s

i=2 
i, which is nonzero since P ′
1(n1) is. Since

P ′
1(n1)y1 + · · · + P ′

s(n1)ys ∈ C(K), we see 
1y1 = (P ′
1(n1) ·

∏s
i=2 
i) y1 ∈ C(K).

This concludes our proof. �
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Lemma 3.13 has the following important consequence for us.

Lemma 3.14. Let K be an algebraically closed field of characteristic 0, let G be
a semiabelian variety defined over K, let τ ∈ End(G) with the property that there
exists a positive integer r such that (τ− id)r = 0, let y ∈ G(K), and let ϕ : G −→ G
be a self-map such that ϕ(x) = τ (x) + y for each x ∈ G.

Let x ∈ G(K) and let c+ C be a coset of an algebraic subgroup C ⊂ G with the
property that there exists an infinite set S of positive integers such that {ϕn(x) : n ∈
S} ⊂ c+C. Then there exists a positive integer 
 such that 
 · (β(x) + y) ∈ C(K),
where β := τ − id.

Moreover, if the cyclic group generated by β(x) + y is Zariski dense in G, then
C = G, and therefore the set {ϕn(x) : n ∈ S} is Zariski dense in G.

Proof. The proof is identical to the derivation of [GS17, Lemma 5.7] from [GS17,
Lemma 5.6]; this time, one employs Lemma 3.13 in order to derive the desired
conclusion.

For the “moreover” part in Lemma 3.14, one argues as in the proof of [GS17,
Corollary 5.8]; note that if a cyclic subgroup of G(K) is Zariski dense, then any
infinite subgroup of it is also Zariski dense (see also [GS17, Lemma 3.9]). �

4. Proof of our main result

Proof of Theorem 1.1. By Fact 2.1 there exists a dominant group endomorphism
τ : G −→ G, and there exists a y ∈ G(K) such that ϕ(x) = τ (x) + y for all cases
where x ∈ G. By [BGRS17, Lemma 2.1] it suffices to prove Theorem 1.1 for an

iterate ϕn with n > 0. Replacing ϕ by ϕn replaces y with
∑n−1

i=0 τ i(y) and τ by τn.
As a result, we may assume

(4.0.1) dimker(τm − id) = dim(ker(τ − id))

for all cases where m ∈ N. Letting f ∈ Z[t] be the minimal polynomial of τ ∈
End(G), we may therefore assume that 1 is the only root of unity which is a root
of f .

Let r be the order of vanishing at 1 of f , and let f1 ∈ Z[t] such that f(t) =
f1(t) · (t − 1)r. Then f1 is also a monic polynomial. Let G1 := (τ − id)r(G) and
let G2 := f1(τ )(G), where f1(τ ) ∈ End(G) and id is the identity map on G. By
definition both G1 and G2 are connected algebraic subgroups of G; hence, they are
both semiabelian subvarieties of G. By definition, the restriction τ |G1

∈ End(G1)
has a minimal polynomial equal to f1 whose roots are not roots of unity. On the
other hand, (τ − id)r|G2

= 0. Furthermore, as shown in [GS17, Lemma 6.1],

(4.0.2) G = G1 +G2

and G1∩G2 is finite. Even though [GS17, Lemma 6.1] was written in the context of
abelian varieties, it uses no specific properties of abelian varieties; instead it is valid
for any commutative algebraic group. So, G is isogenous with the direct product
G1 ×G2.

We let y1 ∈ G1 and y2 ∈ G2 such that y = y1 + y2. We denote by τi the induced
action of τ on each Gi. Since the minimal polynomial f1 of τ1 ∈ End(G1) does not
have the root 1, it follows that (id−τ1) : G1 −→ G1 is an isogeny. As a result,
there exists a y0 ∈ G1(K) such that (id−τ1)(y0) = y1. Using Lemma 3.1, it suffices
to prove Theorem 1.1 for T−y0

◦ ϕ ◦ Ty0
, where Tz represents the translation-by-z
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automorphism of G (for any given point z ∈ G). We may therefore assume that
y1 = 0.

Let ϕi : Gi −→ Gi be given by ϕ1(x) = τ1(x) and ϕ2(x) = τ2(x) + y2; then for
each x1 ∈ G1(K) and x2 ∈ G2(K) we have that

(4.0.3) ϕ(x1 + x2) = ϕ1(x1) + ϕ2(x2).

We let β := (τ2 − id)|G2
∈ End(G2); then βr = 0. Let B be the Zariski closure of

the subgroup of G2 generated by β(G2) and y2; then B is an algebraic subgroup
of G2.

Lemma 4.1. Assume B = G2. Then C := G1 + B is a proper algebraic subgroup
of G and, moreover, letting f : G −→ G/C be the natural quotient homomorphism,
we have f ◦ ϕ = f .

Proof of Lemma 4.1. Since G2 is connected and B is assumed to be a proper al-
gebraic subgroup, we have dim(B) < dim(G2). As a result, (4.0.2) tells us that
C = G1 + B is also a proper algebraic subgroup of G. Then the quotient map
f : G −→ G/C is a dominant morphism to a nontrivial semiabelian variety and,
moreover, we claim that f ◦ ϕ = f . Indeed, for each case where x ∈ G, we let
xi ∈ Gi (for i = 1, 2) such that x = x1 + x2 (see (4.0.2)), and then we get

f(ϕ(x)) = f(ϕ1(x1) + ϕ2(x2)) by (4.0.3)

= f(ϕ2(x2)) because ϕ1(x1) ∈ G1 ⊂ C

= f(x2 + β(x2) + y2) by definition of ϕ2 and β

= f(x2) because β(x2), y2 ∈ B ⊂ C

= f(x1 + x2) because x1 ∈ G1

= f(x),

as desired. �
By Lemma 4.1 if B = G2, then ϕ preserves a nonconstant fibration and Theo-

rem 1.1 holds. As a result, we may assume that B = G2. We will prove in this case
that there exists an x ∈ G(K) with a Zariski dense orbit under the action of ϕ. In
order to do this, we first show that we may also assume G is the direct product
G1 ⊕G2. Indeed, we construct

ϕ̃ := (ϕ1, ϕ2) : G1 ⊕G2 −→ G1 ⊕G2,

where (as before) ϕ1(x1) = τ1(x1) for each x1 ∈ G1 and ϕ2(x2) = τ2(x2) + y2 for
each x2 ∈ G2. We also let σ : G1⊕G2 −→ G given by σ(x1⊕x2) = ι1(x1)+ ι2(x2),
where ιj : Gj −→ G are the inclusion maps.

Lemma 4.2. If there exists (x1, x2) ∈ (G1 ⊕ G2)(K) with a Zariski dense orbit
under the action of ϕ̃, then x := σ(x1, x2) ∈ G(K) has a Zariski dense orbit
under ϕ.

Proof of Lemma 4.2. Indeed, identifying each Gj with its image ιj(Gj) inside G,
(4.0.3) yields

(4.2.1) σ ◦ ϕ̃ = ϕ ◦ σ.
Then equation (4.2.1) yields σ◦ϕ̃n = ϕn◦σ for each n ∈ N, which means that if there
exists a Zariski dense orbit Oϕ̃(x1⊕x2) ⊂ (G1⊕G2)(K), then Oϕ(x1+x2) ⊂ G(K)
is also a Zariski dense orbit; note that σ is a dominant homomorphism. �
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So, from now on, we may assume G = G1 ⊕ G2 and that ϕ : G −→ G is given
by the action (x1, x2) �→ (ϕ1(x1), ϕ2(x2)).

In order to prove the existence of a K-point in G with a Zariski dense orbit, we
first prove there exists an x2 ∈ G2(K) such that Oϕ2

(x2) is Zariski dense in G2.
Since we assumed that the group generated by β(G2) and y2 is Zariski dense in
G2, Proposition 3.8 yields the existence of x2 ∈ G2(K) such that the cyclic group
generated by β(x2) + y2 is Zariski dense in G2. Then Lemma 3.14 yields that any
infinite subset of Oϕ2

(x2) is Zariski dense in G2. If G1 is trivial, then G2 = G and
ϕ = ϕ2, so Theorem 1.1 is proven. Hence, from now on, assume that dim(G1) > 0.

Let πi (for i = 1, 2) be the projection of G onto each of its two factors Gi. Let
Γ be the End(G2)-submodule of G2(K) generated by x2 and y2. By Fact 2.5 Γ
is a finitely generated subgroup of G2(K). Using Proposition 3.5, we may find
x1 ∈ G1(K) with the property that if there exists a proper algebraic subgroup
H ⊂ G = G1 ⊕ G2 such that x1 ∈ Γ + H (or, equivalently, there exists a γ ∈ Γ
such that (x1, γ) ∈ H ⊂ G1 ⊕ G2), then π2(H) is a proper algebraic subgroup of
G2. Let x := x1 ⊕ x2 (or, equivalently, x = (x1, x2)); we will prove that Oϕ(x) is
Zariski dense in G.

Let V be the Zariski closure of Oϕ(x). Then Fact 2.9 yields a V that is a finite
union of cosets of algebraic subgroups of G. So, if V = G, then there exists a coset
c+H of a proper algebraic subgroup H ⊂ G which contains {ϕn(x)}n∈S for some
infinite subset S ⊂ N. In particular, for any integers n > m from S, we find that

(4.2.2) H contains ϕn(x)− ϕm(x).

Using the fact that G = G1 ⊕G2, we construct μ : G −→ G as

μ(z1, z2) := (τn1 (z1)− τm1 (z1), z2) .

Recall that the minimal polynomial f1 of τ1 = τ |G1
does not have eigenvalues which

are roots of unity, so
(
τn−m
1 − id

)
is an isogeny on G1. Because τ1 is also an isogeny

on G1, we see μ is an isogeny on G. Since

(4.2.3) ϕn(x)− ϕm(x) = (τn1 (x1)− τm1 (x1))⊕ (ϕn
2 (x2)− ϕm

2 (x2))

and ϕn
2 (x2)− ϕm

2 (x2) ∈ Γ,

we obtain that there exists γ ∈ Γ such that μ(x1, γ) ∈ H. In particular, this yields
that (x1, γ) ⊂ μ−1(H); furthermore, μ−1(H) is a proper algebraic subgroup of G
since μ is an isogeny. By our choice of x1 we conclude that π2(μ

−1(H)) is a proper
algebraic subgroup of G2. However, since μ|G2

is the identity map, we get that
π2(H) is a proper algebraic subgroup of G2. On the other hand, using (4.2.2)
and (4.2.3), we see that for any integers n > m from S

(4.2.4) π2(H) contains ϕn
2 (x2)− ϕm

2 (x2).

As a result, if we fix m0 ∈ S, we see that there are infinitely many n’s for which
ϕn
2 (x2) − ϕm0

2 (x2) ∈ H. That is, the coset ϕm0
2 (x2) + π2(H) contains infinitely

many points of the form ϕn
2 (x2). Notice that ϕ2(x) = τ2(x) + y2 and β = τ2 − id is

nilpotent. Furthermore, the cyclic subgroup generated by β(x2)+y2 is Zariski dense
in G2. As a result, Lemma 3.14 tells us that G2 = π2(H), which is a contradiction.
Hence, Oϕ(x) is Zariski dense in G, which concludes our proof. �
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Remark 4.3. As shown in the proof of Theorem 1.1 (see Lemma 4.1 specifically), we
obtain that there exists a positive integer n such that if ϕ preserves a nonconstant
fibration, then there actually exists a proper algebraic subgroup C such that

(4.3.1) f ◦ ϕn = f,

where f : G −→ G/C is the usual quotient homomorphism. Also, one cannot
expect that n can be taken to be equal to 1 in (4.3.1), as shown by the following
example. If ϕ : Gm −→ Gm is given by ϕ(x) = 1/x, then ϕ2 is the identity on Gm,
so, with the above notation, n = 2 and C = {1} is the trivial subgroup of Gm. On
the other hand, ϕ does not preserve a nonconstant power map on Gm; instead ϕ
preserves the nonconstant rational function f(x) := x+ 1/x.

So, the most one can get for the self-map ϕ itself is that there exists a finite
collection of proper algebraic subgroups C1, . . . , C� of G such that if ϕ preserves
a nonconstant fibration, then each orbit of a point in G is contained in a finite
union of cosets ci + Ci (for some ci ∈ G). The subgroups Ci are precisely the
subgroups appearing in the orbit under ϕ of the subgroup C from (4.3.1); note
that equation (4.3.1) yields a C that is fixed by ϕn, so there exist finitely many
subgroups Ci in the orbit of C under the action of ϕ.

Remark 4.4. One could ask whether our arguments could be adapted to yield a
generalization of Theorem 1.1 in which the action of the cyclic monoid generated by
ϕ is replaced by the action of a finitely generated commutative monoid S of regular
self-maps on the semiabelian variety G. The corresponding statement for abelian
varieties was proven in [GS17, Theorem 1.3], essentially using the same strategy
as in the case of a cyclic monoid (i.e., [GS17, Theorem 1.2]), combined with some
results regarding commutative monoids and linear algebra. However, in the proof
from [GS17, Theorem 1.3] (see the bottom of [GS17, p. 462]), one uses Poincaré’s
reducibility theorem in a crucial way by finding a complement of a given algebraic
subgroup of an abelian variety. In our proof of Theorem 1.1 we can construct such a
complement (see (4.0.2)) even in the absence of Poincaré’s reducibility theorem, but
that strategy fails when one deals with an arbitrary finitely generated commutative
monoid S; choosing a decomposition of G as a sum of two semiabelian subvarieties
as in (4.0.2) which works simultaneously for all maps from S is not possible unless
either S is cyclic (as in Theorem 1.1) or G is a split semiabelian variety (and
therefore Poincaré’s reducibility theorem applies). So, for a nonsplit semiabelian
variety G, in the absence of Poincaré’s reducibility theorem, one would need a
completely new strategy for proving the generalization of Theorem 1.1 regarding a
finitely generated commutative monoid of regular self-maps acting on G.
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