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On a dynamical Mordell–Lang conjecture for coherent sheaves

Jason P. Bell, Matthew Satriano and Susan J. Sierra

Abstract

We introduce a dynamical Mordell–Lang-type conjecture for coherent sheaves. When the sheaves
are structure sheaves of closed subschemes, our conjecture becomes a statement about unlikely
intersections. We prove an analogue of this conjecture for affinoid spaces, which we then use to
prove our conjecture in the case of surfaces. These results rely on a module-theoretic variant of
Strassman’s theorem that we prove in the appendix.
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1. Introduction

We formulate a generalized dynamical Mordell–Lang conjecture for coherent sheaves. We prove
our conjecture for surfaces with an automorphism, as well as for quasi-projective varieties X
with an automorphism that lies in an algebraic group acting on X. The heart of our argument
relies on first proving a variant of our conjecture for affinoid algebras. One of our key tools is a
module-theoretic analogue of Strassman’s theorem [13]; Strassman’s original theorem concerns
zeros of convergent power series. We believe this result may be of independent interest, so we
include it in an appendix.

Before stating our conjecture and results, we begin with a review of the dynamical Mordell–
Lang conjecture, which is now a theorem in the case of an étale self-map [2]. Let X be a
quasi-projective variety over an algebraically closed field of characteristic zero, Φ : X → X a
morphism, and Y a closed subvariety of X. For n � 0 we let Φn denote the n-fold composition
Φ ◦ · · · ◦ Φ. The dynamical Mordell–Lang conjecture asserts that for all x ∈ X, the set of natural
numbers n for which Φn(x) ∈ Y is a finite union of infinite arithmetic progressions along
with a finite set. In the case that there are infinitely many natural numbers n for which
Φn(x) ∈ Y , the dynamical Mordell–Lang conjecture guarantees the existence of an infinite
arithmetic progression of such n. As a result, there is some closed subset Y0 ⊆ Y with the
property that Φa(Y0) ⊆ Y0 for some a ∈ Z�1 and such that some iterate of x under Φ lies in
Y0. Indeed, if P := m + aZ is an infinite arithmetic progression such that Φn(x) ∈ Y for all
n ∈ P , then we can take Y0 to be the closure of the Φn(x) with n ∈ P .
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In other words, one can interpret the conjecture as follows: one expects that Y contains
only finitely many iterates Φn(x), and this is indeed the case provided there is no compelling
geometric reason to the contrary, namely the existence of Y0 as above. When cast in this form,
it is natural to try to extend the conjecture beyond the case of points. To do so, one must first
define what it means for two subvarieties to intersect ‘as expected’. Here, one gains some insight
from Serre’s intersection formula [5, p. 427], which states that if X is smooth, Y and Z are
closed subvarieties of X, and W is an irreducible component of the set-theoretic intersection
Y ∩ Z then the intersection multiplicity of W in the intersection product of Y and Z is given
by the alternating sum

∞∑
i=0

(−1)ilengthOX,x
ToriOX,x

(OX,x/I(Y ),OX,x/I(Z)), (1.1)

where x is the generic point of W and I(Y ) and I(Z) are the ideals given by the set of elements
in the local ring that vanish respectively at Y and Z. We remark that this sum is finite since
all sufficiently high Tor groups are zero. We observe that the first term in this summation is
the length of the tensor product of OX,x/I(Y ) ⊗OX,x/I(Z) = OW,x. This is what one expects
the intersection multiplicity to be when Y and Z do not intersect in a pathological way. For
example, if X is a smooth complex quasi-projective variety and Y and Z are smooth subvarieties
that intersect transversally (that is, for every x ∈ Y ∩ Z we have TxY + TxZ = TxX) then this
is exactly what occurs. In particular, a non-transverse intersection can be detected by the
non-vanishing of some higher Tor group appearing in Serre’s formula. Thus we see that there
is an intimate connection between the vanishing of higher Tor groups and the subvarieties
intersecting in an agreeable, or generic, manner.

We say that subschemes Y and Z of an ambient scheme X are homologically transverse
if the sheaf TorX

j (OY ,OZ) = 0 for j � 1. In light of the above discussion, we see that one
can intuitively think of two subschemes being homologically transverse as saying that their
intersection product is what one would naively guess: the length of the scheme-theoretic
intersection. For example, a point x and a proper subvariety Y of an irreducible variety X
are homologically transverse if and only if x /∈ Y ; curves in P3 are homologically transverse if
and only if they do not intersect; and two irreducible hypersurfaces in Pn are homologically
transverse if and only if they are not equal.

Taking this perspective, one can now extend the dynamical Mordell–Lang conjecture to the
more general setting where one considers two subvarieties Y and Z of an ambient complex quasi-
projective variety X. If one has an endomorphism Φ of X then one would like to understand
the set of natural numbers n for which the Zariski closure of Φn(Y ) and Z are homologically
transverse. In the case where Y is a point, the original dynamical Mordell–Lang conjecture
states that the set of n for which Φn(Y ) and Z fail to be homologically transverse is a finite
union of infinite arithmetic progressions along with a finite set. It is natural to expect that this
phenomenon extends to the general setting where Y is no longer a point. Moreover, identifying
a subvariety Y with its structure sheaf OY , we can view the conjecture as a statement about
coherent sheaves. Just as in the setting of the original dynamical Mordell–Lang conjecture, we
expect that in this more general setting, one only gets infinite arithmetic progressions due to
a compelling geometric reason. We thus make the following conjecture:

Conjecture 1.2. Let X be a quasi-projective variety over an algebraically closed field k
of characteristic zero, and let σ : X → X be an endomorphism of X. If M and N are coherent
sheaves on X then for each i � 1, the set of natural numbers n for which

TorX
i ((σn)∗M,N ) �= 0

is a finite union of infinite arithmetic progressions up to addition and removal of a finite set.
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This generalizes an earlier conjecture of the third-named author [11, Conjecture 5.15], which
dealt with the case where TorX

i ((σn)∗M,N ) vanishes generically.
We remark that Conjecture 1.2 really lies in the intersection of work around the dynamical

Mordell–Lang conjecture and the field of unlikely intersections. To illustrate this, we give
the following special case, which was inspired by discussions with Dragos Ghioca and Joe
Silverman. Let X = (C∗)3 and let Φ : X → X be the map (x, y, z) 	→ (x2, y3, z5). If Y is the
rational curve {(t, t, t) : t ∈ C∗} and Z is a curve given by the zero set of two polynomials
A(x, y, z) and B(x, y, z), then Φn(Y ) and Z are not homologically transverse if and only if there
is some c ∈ C∗ such that A(c2

n

, c3
n

, c5
n

) = B(c2
n

, c3
n

, c5
n

) = 0. Thus, although Conjecture 1.2
is inspired in part by the dynamical Mordell–Lang conjecture, one often must ultimately deal
with problems related to ‘unlikely intersections’ to obtain the desired conclusion.†

We note that the above example only deals with structure sheaves of subvarieties of the
ambient variety, and geometrically this is arguably the most interesting case of our conjecture.
The reason we have formulated our conjecture more generally in terms of coherent sheaves
rather than just structure sheaves of subvarieties is that when computing Tor groups of
structure sheaves it is often very useful to work with exact sequences involving coherent sheaves
that are not structure sheaves. Said another way, we imagine that any (inductive) proof of our
conjecture for the case of structure sheaves will naturally lead one to consider the coherent
sheaf formulation.

We hope the above example, which is obviously a very special case of the conjecture, gives
some underpinning to our belief that the conjecture is very difficult in general. Indeed, the
dynamical Mordell–Lang conjecture is already a hard question, but in this higher-dimensional
variant one must also now wrestle with difficult questions involving unlikely intersections. In
this paper, we restrict our attention to the case where σ is an automorphism of X. In this
setting we can prove Conjecture 1.2 in two cases: when dim(X) � 2 or σ acts vis-a-vis an
algebraic group.

Theorem 1.3. Let k be an algebraically closed field of characteristic zero, let X be a smooth
quasi-projective variety over k, and let σ : X → X be in Autk(X). Assume that at least one of
the following holds:

(1) X is a surface; or
(2) σ lies in an algebraic group acting as k-rational automorphisms of X.

If M and N are coherent sheaves on X then for each i � 1 the set of n ∈ Z for which

TorX
i ((σn)∗M,N ) �= 0

is a finite union of doubly infinite arithmetic progressions up to addition and removal of finite
sets.

†For the experts, we remark that an unlikely intersection in the sense of being non-homologically transverse
is similar in spirit, but not equivalent to, an unlikely intersection in the sense of Zannier [14]. In the latter sense,
we say subvarieties Y and Z of X intersect properly if every component of Y ∩ Z has the expected dimension
of max(dimY + dimZ − dimX, 0) and otherwise say that Y and Z have unlikely intersection. As shown in the
proof of [12, Lemma 42.16.1], if X is non-singular, and Y and Z are Cohen–Macaulay and intersect properly,
then Y and Z are homologically transverse. On the hand, if Y is a local complete intersection and Y and Z
are homologically transverse, then Y and Z have proper intersection. This follows by looking at the Koszul
resolution K∗ of Y , tensoring with OZ , and noting that Tor�1(OY ,OZ) = 0 if and only if the higher homology
of K∗ ⊗OX

OZ vanishes. By [12, Lemma 15.27.7], this implies that the equations locally cutting out Y give a
regular sequence on Z, which implies that Y and Z have proper intersection.

In particular, if Y is a local complete intersection, Z is Cohen–Macaulay, and X is smooth, then Y and
Z have proper intersection if and only if they are homologically transverse. For subvarieties which are not
Cohen–Macaulay, we can have proper intersection without being homologically transverse, see [12, Example
42.14.4].
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The second case of Theorem 1.3 follows from the third-named author’s work on a general
Kleiman–Bertini theorem [10]; this case is proved in § 6. The surface case is proved in § 5, and
relies on a version of Conjecture 1.2 for affinoid spaces, along with the original proof of the
cyclic case of the dynamical Mordell–Lang conjecture for étale endomorphisms. The affinoid
result is:

Theorem 1.4. Let S = K〈x1, . . . , xd〉 be the Tate algebra over K. Suppose that σ : S →
S is a K-algebra automorphism satisfying |σ(xi) − xi| < p−c for some c > 1/(p− 1) and for
i = 1, . . . , d, where xi denotes the image of xi in S. If M and N are finitely-generated S-modules
and i � 1, then the set of n ∈ Z for which

TorSi ((σn)∗M,N) �= 0

is, up to addition and removal of a finite set, a finite union of arithmetic progressions of
difference pr for some r � 0.

In fact, we prove Theorem 1.4 by establishing a more general result, which we state
momentarily. In § 2, using an analytic arc theorem we show that there is an S〈z〉-module
M with the property that M⊗ S〈z〉/(z − n) = (σn)∗M for all n ∈ Z. In other words, we
construct a p-adic family of modules M that interpolates between the iterates (σn)∗M (see
Definition 2.4). Making use of some technical results in § 3, we then prove the following result
in § 4, which clearly implies Theorem 1.4.

Theorem 1.5. Adopt the assumptions of Theorem 1.4. Then there exist finitely generated

S〈z〉-modules M and N with the following two properties. For i � 1, if TorS〈z〉
i (M,N ) = 0,

then TorSi ((σn)∗M,N) = 0 for all but finitely many n ∈ Z; if TorS〈z〉
i (M,N ) �= 0, then the set

of n ∈ Z for which TorSi ((σn)∗M,N) �= 0 is, up to addition and removal of a finite set, a finite
union of arithmetic progressions of difference pr for some r � 0.

Finally, as mentioned earlier, all of these results rely on our variant of Strassman’s theorem
for modules, which we prove in the appendix:

Theorem 1.6. Let K be a field with a non-Archimedean absolute value | · | such that
|p| = 1/p, and let R be a subring of the valuation ring of K. If M is a finitely generated
K〈x1, . . . , xd, z〉-module, then the set of c ∈ R for which M|z=c = (0) is open in R. If R is
compact, then there exists ε > 0 such that up to the addition and removal of finite sets, the
set of c ∈ R for which M|z=c = (0) is a union of balls in R of radius ε.

In particular, if R = Z, then up to addition and removal of finite sets, the set of c ∈ R for
which M|z=c = (0) is a finite union of arithmetic progressions with difference pr for some
r � 0.

Notation. Throughout the paper, we frequently denote (σn)∗M by Mσn

.

2. Constructing a p-adic family of modules

As outlined in the introduction, the first step in proving Theorem 1.4 is to construct a
p-adic family of modules interpolating between the iterates (σn)∗M . That is our goal in this
section.

Notation. Throughout this section and the subsequent two sections we use the following
notation and assumptions:
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(1) we let p be a prime number and we let K be a field that is complete with respect to a
non-Archimedean absolute value | · | such that |p| = 1/p;

(2) we let S = K〈xi, . . . , xd〉 be the ring of convergent power series;
(3) we let σ : S → S be a K-algebra automorphism satisfying |σ(xi) − xi| < p−c for some

c > 1/(p− 1) for i = 1, . . . , d;
(4) we let o denote the valuation ring of K.

In particular, σ restricts to an o-algebra automorphism of o〈x1, . . . , xd〉.
The following result is immediate from Theorem 1 and [9, Remark 3]. We include the proof

here since we make use of the notation in Lemma 2.3.

Proposition 2.1 [9, Theorem 1]. If c > 1/(1 − p) and σ(b) ≡ b (mod pc) for all
b ∈ o〈x1, . . . , xd〉, then there exists a map σz : S → S〈z〉 such that σz(b)|z=n = σn(b) for all
n ∈ Z.

Proof. Let Δ : S → S be defined by Δ(b) := σ(b) − b. Let σz : S → S〈z〉 be defined by

σz(b) =
∑
m�0

(
z

m

)
Δm(b),

where
(
z
m

)
:= 1

m!z(z − 1) . . . (z −m + 1). We must check that σz is well-defined; that is,
| 1
m!Δ

m(b)|p → 0 as m → ∞. Since |σ(xi) − xi| � p−c and Δ is Z[p−c]-linear, we see

|Δm(b)| � p−mc|b| < |m!|,

for m large, which proves σz is well-defined.
Lastly, we note that

σz(b)|z=n =
n∑

m=0

(
n

m

)
Δm(b) = (Δ + id)n(b) = σn(b),

which proves the result. �

We next define the ‘p-adic powers’ of σ:

Definition 2.2. For every element a ∈ Zp (and more generally, for every power bounded
element a ∈ S), we have a surjective map πa : S〈z〉 → S defined by z 	→ a. We define σa : S → S
to be σa = πa ◦ σz.

Lemma 2.3. Under the hypotheses of Proposition 2.1, the maps σz and σa satisfy the
following properties:

(1) σz : S → S〈z〉 is an injective homomorphism of K-algebras;
(2) σa+a′

= σa′ ◦ σa for all a, a′ ∈ Zp;
(3) σa is a K-algebra automorphism of S for all a ∈ Zp.

Proof. We first show that σz is additive. Note that for all b, b′ ∈ S and n ∈ N,
we have σz(b + b′)|z=n = σn(b + b′) = σn(b) + σn(b′) = (σz(b) + σz(b′))|z=n. Since σz(b) +
σz(b′) − σz(b + b′) ∈ S〈z〉 and has roots at every element of N, by Strassman’s Theorem (see
[13] or [3, Theorem 4.1, p. 62]) we know that σz(b + b′) = σz(b) + σz(b′).

Similarly, we see that σz is multiplicative, and so it is a ring homomorphism. It is clear
from the definition that σz is K-linear. To show it is injective, note that if σz(b) = 0, then
σ(b) = σz(b)|z=1 = 0, and so b = 0. This proves (1).
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Next, we recall the Chu–Vandermonde identity, which states that
(
a+a′

m

)
=

∑m
i=0

(
a
i

)(
a′

m−i

)
for all a, a′ ∈ N. Since N is dense in Zp, we see that the same identity holds when a, a′ ∈ Zp.
Since

σa+a′
(b) =

∑
m�0

(
a + a′

m

)
Δm(b)

and

σa′
(σa(b)) =

∑
i,j�0

(
a

i

)(
a′

j

)
Δi+j(b) =

∑
m�0

m∑
i=0

(
a

i

)(
a′

m− i

)
Δm(b),

this proves (2).
Property (3) follows from (2) since σ0 = id and σa ◦ σ−a = id = σ−a ◦ σa. �

Lastly, we define our p-adic family of modules:

Definition 2.4. We use the notation and assumptions given in (1)–(4) at the beginning
of this section. If M is a finitely generated S-module and if we take a presentation
M = Sd/〈r1, . . . , rm〉, with r1, . . . , rm ∈ Sd, then we let M(z) := S〈z〉d/〈σz(r1), . . . , σz(rm)〉.
For each a ∈ Zp (or more generally any power bounded element a ∈ S), we then define

M(a) := Sd/〈σa(r1), . . . , σa(rm)〉,
which is simply the image πa(M(z)) under the evaluation map sending z 	→ a; that is, the map
M(z) ⊗S〈z〉 S〈z〉 → M(z) ⊗S〈z〉 S in which S〈z〉 → S is given by specializing at z = a. Since
σz(M)|z=n = (σn)∗(M), we can think of M(z) as a p-adic family interpolating between the
(σn)∗(M) for n ∈ Z.

3. Specializing complexes of modules

In this section, we gather several technical results concerning exactness of sequences of S〈z〉-
modules after specializing z at values of Zp. We recall that a module M over a ring R is
saturated with respect to an element r ∈ R if for all x ∈ M , if rx = 0 then x = 0. We say M is
saturated with respect to a subset of R if it is saturated with respect to every element in the
subset.

Lemma 3.1. Let R be a Noetherian integral domain, let Σ ⊆ R be an additive subgroup,
and let Σ0 := Σ � 0. Fix an element r ∈ R. If M is a finitely generated R-module which is
saturated with respect to Σ0, then M is saturated with respect to r − s for a cofinite set of
s ∈ Σ. More specifically, the size of the set

{s ∈ Σ | M not saturated with respect to r − s}
is at most the number of modules occurring in the primary decomposition of (0) ⊆ M.

Proof. Since R is Noetherian and M is finitely generated, we have (0) = N1 ∩ · · · ∩ Nt

where the Ni are primary submodules of M; that is, for each i, if x ∈ R is a zero divisor on
M/Ni then there is some n � 1 such that xnM ⊆ Ni. By taking a minimal decomposition,
we may assume that each Ni is a proper submodule of M and that any proper intersection of
N1, . . . ,Nt is non-trivial.

If M is not saturated with respect to r − s, then there exists non-zero f ∈ M such that
(r − s)f = 0. Since f is non-zero, there exists i such that f /∈ Ni, and so (r − s)cM ⊆ Ni for
some c � 1.
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Now, if there are distinct elements s1, . . . , sm ∈ Σ0 with m > t and M not saturated with
respect to the r − sj , then we can find i and j �= k and a positive integer c such that both
(r − sj)cM and (r − sk)cM are contained in Ni. Now M � Ni and so we can find a submodule
M′ ⊆ M of the form M′ = (r − sj)a(r − sk)bM, for some a, b � 0, with the property that
M′ � Ni but (r − sj)M′ and (r − sk)M′ are both contained in Ni. But now it follows that
(sj − sk)M′ ⊆ Ni. Since M′ � Ni, we see sj − sk is a zero divisor on M′/Ni, and so there is
some natural number d such that (sj − sk)dM ⊆ Ni. But now if we take non-zero x ∈

⋂
� �=i N�

then (sj − sk)dx is in every N� and hence (sj − sk)dx = 0. By our saturation hypothesis, we
see that x = 0, a contradiction. The result follows. �

Applying this to R = A〈z〉, r = z, and Σ = Zp we have

Corollary 3.2. Let A be a Noetherian Zp-algebra which is an integral domain, and let
M be a finitely generated A〈z〉-module. If M is saturated with respect to Zp � 0, then M is
saturated with respect to z − a for a cofinite set of a ∈ Zp.

In the following lemma, we discuss how kernels and images of S〈z〉-module maps interact
with specialization at z = a.

Lemma 3.3. Let K be a field over Qp. Let S = K〈x1, . . . , xd〉 and g(z) : M(z) → M′(z) be
a morphism of finitely generated S〈z〉-modules. Then Im(g(a)) = Im(g(z))|z=a for all a ∈ Zp,
and ker(g(a)) = ker(g(z))|z=a for all but finitely many a ∈ Zp.

Proof. We begin by addressing the statement about kernels. Since K is a field containing Qp,
every S〈z〉-module is automatically saturated with respect to Zp � 0. So, by Corollary 3.2 there
are only finitely many a ∈ Zp for which the finitely generated S〈z〉-module M′(z)/Im(g(z))
is not saturated with respect to z − a. Assuming that a is not contained in this finite set, we
show that the conclusion of the lemma holds.

Let θ ∈ M(a) be in the kernel of g(a). Since the map M(z) → M(a) is surjective there
is some θ(z) ∈ M(z) with the property that θ = θ(a). Then by assumption g(z)(θ(z)) ∈ (z −
a)M(z) = ker(M(z) → M(a)). Thus we have g(z)(θ(z)) = (z − a)u(z) for some u(z) ∈ M(z).
By our choice of a, we see that u(z) ∈ Im(g(z)) and so u(z) = g(z)(θ′(z)). Thus θ(z) − (z −
a)θ′(z) is in the kernel of g(z). Since θ(z) − (z − a)θ′(z) is a lift of θ, we have shown ker(g(z)) →
ker(g(a)) is surjective, as desired.

Lastly, we show that Im(g(z))|z=a = Im(g(a)) for all a ∈ Zp. First observe that if θ′(z) =
g(z)(θ(z)), then after specialization we have θ′(a) = g(a)(θ(a)); thus, Im(g(z))|z=a ⊆ Im(g(a)).
On the other hand, if θ′ = g(a)(θ) for some θ ∈ M(a) then letting θ(z) ∈ M(z) with θ(a) =
θ and taking ξ(z) = g(z)(θ(z)), we see ξ(z) ∈ Im(g(z)) and ξ(a) = θ. This gives the other
containment. �

As an immediate consequence of the above lemma, we have

Corollary 3.4. Let K be a field over Qp. Let S = K〈x1, . . . , xd〉, let

M′′(z)
f(z)−→ M(z)

g(z)−→ M′(z)

be a sequence of finitely generated S〈z〉-modules, and let H(z) denote the cohomology module
ker(g(z))/ Im(f(z)). Consider the induced sequence of S-modules

M′′(a)
f(a)−→ M(a)

g(a)−→ M′(a)
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and denote its cohomology by H(a). Then for all but finitely many a ∈ Zp,

H(a) = H(z)|z=a.

In particular, if the former sequence is exact, then the latter is for all but finitely many a ∈ Zp.

4. Proof of Theorems 1.4 and 1.5

In this section, we prove the following result, which clearly implies Theorem 1.5, and hence
Theorem 1.4.

Theorem 4.1. Adopt the assumptions of Theorem 1.4, let M(z) be as in Definition 2.4,

and let N (z) = S〈z〉 ⊗S N . If TorS〈z〉
i (M(z),N (z)) = 0, then TorSi (M(a), N) = 0 for all but

finitely many a ∈ Zp. If TorS〈z〉
i (M(z),N (z)) �= 0, then the set of a ∈ Z for which

TorSi (M(a), N) �= 0 is, up to addition and removal of a finite set, a finite union of arithmetic
progressions of difference pr for some r � 0.

We prove the theorem after giving a preliminary result relating TorSi (M(a),N (a)) to the
specialization of TorS〈z〉

i (M(z),N (z)).

Proposition 4.2. Let K be a field over Qp and let S = K〈x1, . . . , xd〉. If M(z) and N (z)
are finitely generated S〈z〉-modules, then

TorSi (M(a),N (a)) = TorS〈z〉
i (M(z),N (z))|z=a

for all but finitely many a ∈ Zp.

Proof. By [6, Proposition 6.5], there is a finite free resolution

0 → Pd(z) → Pd−1(z) → · · · → P0(z) → N (z) → 0.

Then Corollary 3.4 shows that

0 → Pd(a) → Pd−1(a) → · · · → P0(a) → N (a) → 0

is a finite free resolution of N (a) for all a ∈ Zp � T , where T is a finite set.
Tensoring the former resolution with M(z), we obtain a complex

0 → Pd(z) ⊗S〈z〉 M(z) → Pd−1(z) ⊗S〈z〉 M(z) → · · · → P1(z) ⊗S〈z〉 M(z)

→ P0(z) ⊗S〈z〉 M(z) → 0.

Note that this complex specializes to

0 → Pd(a) ⊗S M(a) → Pd−1(a) ⊗S M(a) → · · · → P1(a) ⊗S M(a) → P0(a) ⊗S M(a) → 0

and so another application of Corollary 3.4 shows that for all a outside of a finite set T ′, the
cohomology of the former complex, namely TorS〈z〉

i (M(z),N (z)), specializes to cohomology of
the latter complex, which we temporarily denote by Hi(a).

Now, for all a /∈ T , the complex P•(a) is exact, and so Hi(a) = TorSi (M(a),N (a)). Thus,
TorSi (M(a),N (a)) = TorS〈z〉

i (M(z),N (z))|z=a for all a /∈ T ∪ T ′. �

Proof of Theorem 4.1. By Proposition 4.2, we know

TorSi (M(a), N) = TorS〈z〉
i (M(z),N (z))|z=a
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for all but finitely many a ∈ Zp. So, if TorS〈z〉
i (M(z),N (z)) = 0, then TorSi (M(a), N) = 0

with finitely many exceptions. If TorS〈z〉
i (M(z),N (z)) is a non-zero module, then applying our

module-theoretic Strassman Theorem A.1, we see that after addition or removal of a finite set,
the a ∈ Zp where TorSi (M(a), N) �= 0 is a finite union of arithmetic progressions with difference
pr for some r � 0. �

Corollary 4.3. Let k be a field of characteristic zero and let R be a k-algebra that is
a regular Noetherian local ring such that the field of fractions of R is a finitely generated
extension of k and such that R/m = k. Suppose that σ : R → R is a k-algebra automorphism
of R and that M and N are finitely generated R-modules. Then for each i � 1 we have that

{n : TorRi (Mσn

, N) �= 0}

is a finite union of arithmetic progressions up to addition and removal of finite sets.

Proof. Let d be the Krull dimension of R. Pick t1, . . . , td ∈ m that generate the maximal
ideal. By Cohen’s structure theorem, we have that the completion, R̂, of R is isomorphic to the
power series ring k[[t1, . . . , td]]. Since σ(m) = m, σ extends to an automorphism of k[[t1, . . . , td]].
Since the field of fractions of R is finitely generated as an extension of k, we have that Frac(R)
is finite over the subfield k(t1, . . . , td).

Hence σ(ti) = fi(t1, . . . , td) where each fi(t1, . . . , td) is algebraic over k(t1, . . . , td). Now an
algebraic power series has the property that its coefficients lie in a finitely generated Z-algebra.
(This follows from a general result of Denef and Lipshitz [4], which shows in particular that
the set of coefficients of an algebraic power series in d variables is a subset of the collection
of coefficients of some rational power series in 2d variables.) Thus there is a finitely generated
Z-subalgebra A of k such that f1, . . . , fd ∈ A[[x1, . . . , xd]].

Since Tor commutes with completion for finitely presented modules we may work with R̂
and replace M by M ⊗R R̂ and N by N ⊗R R̂. Now let J denote the Jacobian of (f1, . . . , fd)
at the origin. Then the determinant of J is a non-zero element of A. By adjoining the inverse
of det(J) to A, we may assume that J is invertible in A. By construction, σ restricts to an
automorphism of A[[x1, . . . , xd]]. Furthermore, we have that M ∼= R̂t/L and N ∼= R̂s/E for
submodules L and E of R̂t and R̂s respectively. Then by taking generators for L and E and
adjoining the coordinates of all elements in these generating sets to A, we may assume that A is
still a finitely generated Z-algebra and that there are finitely presented A[[x1, . . . , xd]]-modules
M0 and N0 such that M ∼= M0 ⊗A k and N ∼= N0 ⊗A k. Observe that k[[x1, . . . , xd]] is flat over
A[[x1, . . . , xd]], as it is a free module over a localization of A[[x1, . . . , xd]]. Let k0 denote the
field of fractions of A. Then we have [12, Lemma 10.75.1]

Tork[[x1,...,xd]]
i (M,N) ∼= TorA[[x1,...,xd]]

i (M0, N0) ⊗A[[x1,...,xd]] k[[x1, . . . , xd]].

Moreover, since k[[x1, . . . , xd]] is faithfully flat over k0[[x1, . . . , xd]], we see that

Tork[[x1,...,xd]]
i (Mσn

, N) = 0

if and only if

Tork0[[x1,...,xd]]
i (Mσn

0 ⊗A k0, N0 ⊗A k0) �= 0.

Now let M1 = M0 ⊗A k0 and let N1 = N0 ⊗A k0. Then pick a maximal ideal Q of A such
that AQ is regular. Since A is a finitely generated Z-algebra, A/Q is a finite field. We take the
completion, ÂQ, of AQ. Then by Cohen’s structure theorem [8, Section 29], this is a power
series ring in a finite number of variables over a finite unramified extension o of Zp for some
prime p. Let F denote the field of fractions of this completion of AQ. Then since σ is the
identity on k0 we may extend the automorphism σ of k0[[x1, . . . , xd]] to an automorphism
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of k0[[x1, . . . , xd]] ⊗k0 F . By then taking limits we may extend this to an automorphism of
F [[x1, . . . , xd]].

Since F [[x1, . . . , xd]] is a faithfully flat extension of k0[[x1, . . . , xd]], we see that

Tork[[x1,...,xd]]
i (Mσn

, N) = 0

if and only if

TorF [[x1,...,xd]]
i ((M ′)σ

n

, N ′) = 0,

where M ′ = M1 ⊗k0[[x1,...,xd]] F [[x1, . . . , xd] and N ′ = N1 ⊗k0[[x1,...,xd]] F [[x1, . . . , xd]. More-
over, by construction the induced automorphism σ of F [[x1, . . . , xd]] has the property
that σ(xi) = fi(x1, . . . , xd) ∈ (ÂQ)[[x1, . . . , xd]] ⊆ F [[x1, . . . , xd]] has Gauss norm � 1 and the
determinant of the Jacobian at the origin has p-adic norm exactly one, since it is a unit in A
by how we defined A. In particular, since ÂQ has finite residue field, we see that some iterate,
σm, of σ has the property that its Jacobian at the origin is congruent to the identity modulo
the maximal ideal of ÂQ.

Now to finish the proof off, let ui = xi/p for i = 1, . . . , d. Then F [[x1, . . . , xd]] =
F [[u1, . . . , ud]]. Observe that

σ(ui) =
1
p
· fi(pu1, . . . , pud) ≡ Li(u1, . . . , ud) (mod po),

where Li is the linear part of fi. Then by the above remarks we see that σm(ui) ≡ ui (mod po)
for i = 1, . . . , d. Then by Theorem 1.4 we see that for j = 0, . . . ,m− 1 we have{

n : TorF [[u1,...,ud]]
i (σmn+jM ′, N ′) �= 0

}
is, up to addition and removal of a finite set, equal to a finite union of arithmetic progressions.
The result follows. �

5. Theorem 1.3 for surfaces

In this section we prove the surface case of Theorem 1.3. We first give some preliminary results.

Lemma 5.1. Let (R,m) be a regular local ring of dimension two and let M be a finitely
generated R-module whose support is {P1, . . . , Pd} with each Pi of height at most one. Then
projdim(M) � 1.

Proof. If it is not, then projdim(M) � 2 and so TorR2 (R/m,M) �= 0. Thus it suffices to show
that TorR2 (R/m,M) = 0. Let x and y be generators for m. Then we have a resolution

0 → R → R2 → R → R/m,

where the map R → R2 is the map given by 1 	→ (y,−x) and the map from R2 → R is the map
(a, b) 	→ xa + yb. Then from this resolution we see that TorR2 (R/m,M) is just the kernel of the
map M = M ⊗R R → M2 = M ⊗R R2 given by m 	→ (ym,−xm). Since the maximal ideal of
R is not in the support of M , we see that the kernel is trivial. �

Note that this lemma shows that a torsion-free coherent sheaf T on a smooth surface X has
the property that TorX

2 (T ,N ) = 0 for any coherent sheaf N .

Proposition 5.2. Let k be an algebraically closed field, let X be a smooth surface over k,
and let N and T be coherent sheaves on X that each have the property that they are supported
on a finite set of points and a finite set of curves. Then TorX

1 (T ,N ) is non-zero if and only
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if either some irreducible subvariety in the support of T contains an irreducible subvariety in
the support of N or some irreducible subvariety in the support of N contains an irreducible
subvariety in the support of T .

Proof. Let Supp(T ) = {V1, . . . , Vm} and Supp(N ) = {W1, . . . ,Wq}, where each Vi and each
Wj is either a point or an irreducible curve. Now suppose that either Vi ⊆ Wj for some i, j or
Wi ⊆ Vj for some i, j. Then after switching T and N , if necessary and reindexing if necessary,
we may assume that V1 ⊆ W1. We shall show TorX

1 (T ,N ) is non-zero. To see this, suppose
that TorX

1 (T ,N ) = 0. Then since Tor commutes with localization we have TorR1 (TV1 ,NV1) = 0,
where R = OX,V1 is a regular local ring. We let P denote the maximal ideal of R. Since V1 is
in the support of T we have that there is an element in TV1 that is annihilated by P . Hence
the depth of TV1 is zero. By a result of Lichtenbaum [7, Corollary 6] we then have that the
homological dimension of NV1 is zero; that is, TorR1 (R/P,NV1) = 0. But this implies that NV1

is torsion-free, which is impossible since W1 ⊇ V1 is in the support of N . Thus we see that
TorX

1 (T ,N ) is non-zero, completing half of the proof.
Suppose that no Vi contains a Wj and that no Wi contains a Vj . We claim that

TorX
1 (T ,N ) = 0. To see this, suppose that TorX

1 (T ,N ) �= 0. Then there is some p ∈ X such
that TorR1 (Tp,Np) �= 0, where R = OX,p. Since TorR1 (Tp,Np) �= 0 there is some i and some j
such that p ∈ Vi ∩Wj . Let m denote the maximal ideal of R. We note that m cannot be an
element of the support of Tp since we would then have p = Vk for some k and so Vk ⊆ Wj ,
which we have assumed not to be the case; similarly, m cannot be an element of the support
of Np. In particular, the support of Tp consists of a finite set of height one primes and the
same holds for the support of Np. Moreover, by assumption the support of Tp and the support
of Np cannot share a common height one prime ideal. Thus, m must be in the support of
TorR1 (Tp,Np), since the supports of Tp and Np are both unions of height one primes and they
do not share any common primes. Then a result of Auslander’s [1, Theorem 2] gives that
projdim(Tp) + projdim(Np) � 3. But Lemma 5.1 gives that projdim(Tp) + projdim(Np) � 2, a
contradiction. The result follows. �

The proof of Theorem 1.3 for surfaces is a series of reductions. We first show that the result
holds if both sheaves are supported on proper subvarieties of an affine X. We then prove a
lemma allowing us to restrict from a quasi-projective variety to an open affine subset. Finally,
in Theorem 5 we put the pieces together, using Corollary 4.3 to handle behaviour at points of
finite σ-order.

Proposition 5.3. Let k be an algebraically closed field of characteristic zero, let X be a
quasi-projective irreducible surface over k, and let σ : X → X be an automorphism of X. If
M and N are coherent sheaves on X whose supports each have dimension at most one and U
is a non-empty affine open subset of X then for each i � 1, the set of natural numbers n for
which

TorOX(U)
i (Mσn

(U),N (U)) �= (0)

is a finite union of infinite arithmetic progressions up to addition and removal of finite sets.

Proof. We first prove the result when i = 1. Write Supp(M) = {V1, . . . , Vm} and Supp(N ) =
{W1, . . . ,Wq}, where each Vi and each Wj is either a point or an irreducible curve. Then since
SuppMσn

= {σ−n(V1), . . . , σ−n(Vq)}, by Proposition 5.2, we have that

TorOX(U)
1 (Mσn

(U),N (U)) �= 0
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if and only if σ−n(Vi) ⊆ Wj or σ−n(Vi) ⊇ Wj for some i and j with σ−n(Vi) ∩ U and Wj ∩ U
non-empty. For each i � m and j � q such that Vi ∩ U and Wj ∩ U are non-empty we let
S(i, j) denote the set of integers n for which σ−n(Vi) ⊆ Wj and we let S ′(i, j) denote the set
of integers n for which σ−n(Vi) ⊇ Wj . Then

{n ∈ Z : TorOX(U)
1 (Mσn

(U),N (U)) �= 0} =
m⋃
i=1

q⋃
j=1

(S(i, j) ∪ S ′(i, j)) .

Thus it is sufficient to show that for each i and j both S(i, j) and S ′(i, j) are a finite union of
complete doubly infinite arithmetic progressions up to addition and removal of finite sets. By
symmetry it is enough to just show this for S(i, j). Since Vi is either a point or a curve and Wj

is either a point or a curve, there are four cases to consider. If Vi is a curve and Wj is a point,
then S(i, j) is empty. If Vi is a point and Wi is a point then S(i, j) = {n : σ−n(Vi) = Wj}. This
is easily seen to be either the empty set, a single integer, or a single arithmetic progression. If Vi

is a curve and Wi is a curve then S(i, j) = {n : σ−n(Vi) = Wj}, which is again either the empty
set, a single integer, or a single arithmetic progression. Finally, if Vi is a point and Wi is a curve
then S(i, j) = {n : σ−n(Vi) ∈ Wj , σ−n(Vi) ∈ U}. Since U c and Wj are both Zariski closed, we
see that this set is a finite union of arithmetic progressions up to addition and subtraction of
finite sets (cf. [2]). Thus we have shown that the set of n for which TorX

1 (Mσn

,N ) �= 0 is a
finite union of arithmetic progressions up to addition and removal of finite sets.

We now quickly argue that for each i � 1, the set of n for which TorOX(U)
i (Mσn

(U),N (U)) �=
0 is a finite union of arithmetic progressions up to addition and removal of finite sets. We have
just proven the case when i = 1. Since X is a smooth surface, it remains only to prove the
case when i = 2. The set of n for which TorOX(U)

1 (Mσn

(U),N (U)) �= 0 is a finite union of
arithmetic progressions up to addition and removal of finite sets. Then we have a short exact
sequence

0 → M′ → F → M → 0

with F locally free and coherent and M′ coherent. Since σn(F) is also locally free, we see
TorOX(U)

i (Fσn

(U),N (U)) = 0 for all i > 0. Then TorOX(U)
1 ((M′)σ

n

(U),N (U)) is isomorphic
to TorOX(U)

2 (Mσn

(U),N (U)), and so we obtain the desired result. �

Lemma 5.4. Let k be an uncountable algebraically closed field, let X be an irreducible quasi-
projective variety over k, and let F be a finite subset of X and let T be a countably infinite
subset of X with F ∩ T = ∅. Then there is a rational function f on X with the following
properties:

(1) f is regular at all points in F ∪ T ;
(2) f(x) = 0 for x ∈ F ;
(3) f does not vanish at any point in T ;
(4) X � V (f) is affine.

Proof. We fix an embedding X → Pn and take homogeneous coordinates [x0 : . . . , xn] for
Pn. We first claim that there is a homogeneous one-form L := c0x0 + · · · + cnxn with [c0 : · · · :
cn] ∈ Pn such that the zero locus of L is disjoint from F ∪ T . To see this, observe that the
collection of homogeneous one-forms can be identified with Pn(k). Then the set of forms that
vanish at a point y ∈ Pn is a proper closed subset of Pn(k). Since F ∪ T is countable and Pn(k)
cannot be written as a countable union of proper subvarieties we see there is some homogeneous
one-form whose zero locus completely avoids F ∪ T . By changing variables, we may assume
that L = x0. Now for each y ∈ F , we consider the collection of homogeneous one-forms that
vanish at y. As before, this can be identified with Pn−1 and as before, we see there is some
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form Ly that vanishes at y and whose zero locus avoids T . Now X − V (Ly) is a non-empty
open affine neighbourhood of X. We now let f =

∏
y∈F Ly/x0. Then f is a rational function

on X satisfying properties (1)–(4). �

We now reduce the general case to the preceding result by using Corollary 4.3.

Theorem 5.5. Theorem 1.3 holds for smooth surfaces.

Proof. We first note that by replacing X by X ×k k′ for some uncountable algebraically
closed extension k′ of k we may assume that our base field k is uncountable and algebraically
closed.

Let i � 1 and let p1, . . . , pd denote the σ-periodic points that are elements of SuppM∪
SuppN . We may replace σ by an iterate and assume that p1, . . . , pd are fixed points of σ. Then
for j = 1, . . . , d, we let

Xj =
{
n ∈ Z : Tor

OX,pj

i

((
Mσn)

pj
,Npj

)
�= 0

}
.

By Corollary 4.3 we have that Xj is, up to addition and removal of a finite set, a finite union
of arithmetic progressions. We next let

U =
{
n ∈ Z : TorOX,q

i

((
Mσn)

q
,Nq

)
�= 0 for some q ∈ X � {p1, . . . , pd}

}
.

Then the set of integers n for which TorX
i (Mσn

,N ) �= 0 is the (not necessarily disjoint) union
of the Xj and U , and so it is sufficient to show that U is, up to addition and removal of
a finite set, a finite union of arithmetic progressions. Now for each n ∈ U we can pick some
point qn ∈ X � {p1, . . . , pd} that witnesses the non-vanishing of TorX

i (Mσn

,N ); we then let
T = {σj(qn) : j ∈ Z, n ∈ U . Then T is a countable subset of X that avoids p1, . . . , pd and so by
Lemma 5.4, there is a rational function f that is regular at p1, . . . , pd and at all points in T
with the following properties:

(1) f(pi) = 0 for i = 1, . . . , d;
(2) f does not vanish at any point in T ;
(3) U := X � V (f) is affine.

We note that σ need not induce an automorphism of U .
For n ∈ U we have that TorUi (Mσn

(U),N (U)) does not vanish. Now we have a short exact
sequence of sheaves

0 → N ′ → N → N ′′ → 0

with N ′ having support of dimension at most one and N ′′ being torsion free. By Lemma 5.6,
we have that TorUj (Mσn

(U),N ′′(U)) = 0 for all but finitely many n for all j � 1. This then
gives that

TorUi
(
Mσn

(U),N (U)
)
∼= TorUi

(
Mσn

(U),N ′(U)
)

for all i � 1 and all but finitely many n. Now we similarly have an exact sequence

0 → M′ → M → M′′ → 0

with M′ having support of dimension at most one and M′′ being torsion free. Then by
Lemma 5.6 we have TorUj ((M′′)σ

n

(U),N ′′(U)) = 0 for all but finitely many n for all j � 1
and so we get an isomorphism

TorUi
(
Mσn

(U),N (U)
)
∼= TorUi

(
Mσn

(U),N ′(U)
)
∼= TorUi

(
(M′)σ

n

(U),N ′(U)
)
.
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By Proposition 5.3, since dim SuppM′ and dim SuppN ′ � 1 we then see that the set of n for
which Tori((M′)σ

n

(U),N ′(U)) is, up to addition and removal of a finite set, a finite union of
arithmetic progressions. The result now follows. �

Lemma 5.6. Let k be an algebraically closed field of characteristic zero and let X be an
irreducible smooth quasi-projective surface over k, let U be a non-empty affine open subset of
X, and let σ ∈ Autk(X). If F is a torsion-free coherent sheaf on X and N is a coherent sheaf
on X such that there are no σ-periodic points in X that are elements of the support of N then
TorUj (Fσn

(U),N (U)) = 0 for all but finitely many n for all j � 1 and TorUj (N σn

(U),F(U)) = 0
for all but finitely many n for all j � 1.

Proof. We do the case where TorUj (Fσn

(U),N (U)) = 0, the other case following mutatis
mutandis.

We have a short exact sequence

0 → F → E → Q → 0

with E coherent and locally free and Q coherent having support of dimension at
most one. Then since E is locally free, we have an isomorphism TorUj (Fσn

(U),N (U)) ∼=
TorUj+1((Qσn

)(U),N (U)). Since X is a smooth surface, we see that the only case that is
not immediate is when j = 1 and so it is sufficient to show that the set of n such that
TorU2 ((Qσn

)(U),N (U)) is non-zero is finite. Let q1, . . . , qr be the points in U that are
elements of SuppN ; that is, the associated points of N in U . By Lemma 5.1 we see that
if TorU2 ((Qσn

)(U),N (U)) is non-zero, then there must be some qi that is an element of the
support of Qσn

and such that TorU2 ((Qσn

)qi ,Nqi) �= 0. Thus σ−n(qi) must be an element of
SuppQ. But by assumption, q1, . . . , qr are not σ-periodic points and so the collection of n for
which σ−n(qi) is an element of SuppQ is a finite set. �

6. Theorem 1.3 when σ lies in an algebraic group

In this section we prove the remaining case of Theorem 1.3.

Theorem 6.1. Let k be an algebraically closed field of characteristic zero, let X be a non-
singular quasi-projective variety over k, and let G be an algebraic group contained in Autk(X).
Let σ ∈ G and let M, N be coherent sheaves on X. For all i � 1 the sets:{

n ∈ Z | TorX
i ((σn)∗M,N ) = 0

}
and {

n ∈ Z | TorX
i ((σn)∗M,N ) �= 0

}
are finite unions of infinite arithmetic progressions up to the addition and removal of finite
sets.

Theorem 6.1 follows from the following result.

Proposition 6.2. Let k be an algebraically closed field of characteristic zero, let X be
a non-singular quasi-projective variety over k, and let H be a connected component of an
algebraic group G contained in Autk(X). Let M,N be coherent sheaves on X. For all i � 1,
there is an open subset V of H so that either

TorX
i (g�M,N ) = 0 for all g ∈ V,
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or

TorX
i (g�M,N ) �= 0 for all g ∈ V.

Proof. Let

be the two projection maps, and let μ : G×X → X be the map defining the action of G on
X. Consider coherent sheaves F on G×X and E on X. When we write F ⊗X E , we implicitly
assume that X acts on F via μ. We note that μ is flat and so we have

TorG×X
i (F , μ∗E) ∼= TorX

i (F , E).

Let L• → M be a locally free resolution of M (which is finite by assumption). Consider the
complex

C• = p∗L• ⊗X N
of sheaves on G×X. The sheaves p∗L• are an X-flat resolution of p∗M, and so the ith
homology of C• is TorX

i (p∗M,N ). These homology groups are computed via exact sequences

0 → Zi+1 → Ci+1 → Bi → 0

and

0 → Bi → Zi → TorX
i (p∗M,N ) → 0

for 0 � i � dimX. By generic flatness, there is a dense open subset V ⊂ H such that each of
the finitely many Bi and TorX

i (p∗M,N ) are flat over V . Therefore, if g ∈ V , the sequences

0 → Zi+1 ⊗G kg → (p∗Li+1 ⊗X N ) ⊗G kg → Bi ⊗G kg → 0

and

0 → Bi ⊗G kg → Zi ⊗G kg → TorX
i (p∗M,N ) ⊗G kg → 0

are still exact, and so

Hi(C• ⊗G kg) = TorX
i (p∗M,N ) ⊗G kg

for all i ∈ Z and g ∈ V .
Note that μ induces the multiplication-by-g isomorphism from {g} ×X → X. The complex

p∗L• ⊗G kg is a locally free resolution of M on {g} ×X. Thus μ maps C• ⊗G kg to the complex
g∗L• ⊗X N , and these complexes are isomorphic considered as sheaves on X. The final complex
computes TorX

i (g∗M,N ). It follows that

μ∗
(
TorX

i (p∗M,N ) ⊗G kg
) ∼= TorX

i (g∗M,N )

for all i ∈ Z and g ∈ V .
The sheaves TorX

i (p∗M,N ) are flat over V by assumption. Since V is an open subset
of a connected variety, it is connected. Thus for each i it is the case that either the sheaf
TorX

i (p∗M,N ) ⊗G kg is 0 for all g ∈ V or that it is never 0 for g ∈ V . Replacing g by g−1, the
result follows. �

Proofs of Theorem 6.1. By replacing G by the Zariski closure of the subgroup generated
by σ we may assume that the forwards and backwards iterates of σ are Zariski dense in G.
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By replacing σ by an iterate, we may assume that σ lies in the connected component of the
identity of G and that its iterates are dense in the connected component of the identity of
G. Since the result holds for σ if it holds for an iterate of σ, we may then assume that G is
connected. Let i � 1. By Proposition 6.2, there is a non-empty open subset V of G such that
either TorX

i (g∗M,N ) is zero for every g ∈ V or it is non-zero for every g ∈ V . Now consider
the map f : G → G given by f(g) = σ ◦ g. Then f is an automorphism and V is open, so the
collection of integers n for which fn(1) ∈ X � V is a finite union of arithmetic progressions
along with a finite set (cf. [2]). Moreover, since S := {fn(1) : n ∈ Z} is Zariski dense in G, we
see that there cannot possibly be an infinite arithmetic progression upon which fn(1) ∈ X � V ,
since the Zariski closure of elements in this progression would be a proper closed subset and
would be invariant under an iterate of σ, contradicting the fact that S is dense in G. Thus
there are only finitely many n for which fn(1) ∈ X � V . This means that TorX

i (Mσn

,N ) is
either zero for all but finitely many n or it is non-zero for all but finitely many n. Note that
we replaced σ by an iterate, we then obtain the desired result. �

Appendix. Module-Theoretic Analogue of Strassman’s Theorem

Strassman’s theorem [13] is a cornerstone finiteness result in p-adic analysis, controlling the
zeros of a convergent power series. Specifically, it states that if K is a non-Archimedean field
with valuation ring o, then every non-zero element f(z) of the ring of convergent power series
K〈z〉 has only finitely many zeros in o. The goal of this appendix is to prove a module-theoretic
analogue of Strassman’s theorem. Throughout this section, we take K to be a non-Archimedean
field containing Qp, take o to be its valuation ring, and R to be a subring of o.

Theorem A.1. Let M be a finitely generated K〈x1, . . . , xd, z〉-module. Then the set of
c ∈ R for which M|z=c = (0) is open in R. If R is compact, then there exists ε > 0 such that
up to the addition and removal of finite sets, the set of c ∈ R for which M|z=c = (0) is a union
of balls in R of radius ε.

In particular, if R = Z then up to addition and removal of finite sets, the set of c ∈ R for
which M|z=c = (0) is a finite union of arithmetic progressions with difference pr for some r � 0.

Remark A.2. Using Theorem A.1, we recover a weak version of Strassman’s theorem,
namely the case where K/Qp is a finite extension. Let d = 0, M = K〈z〉/(f(z)), and R = o.
Since K/Qp is finite, R is compact and so Theorem A.1 tells us that there exists ε > 0 such
that up to addition and removal of finite sets, the set of c ∈ R with M|z=c = (0) is a union of
ε-balls. Since there are only finitely many balls of radius ε, this set is a finite union of ε-balls,
and hence closed.

Now note that M|z=c = (0) if and only if f(c) �= 0. As a result, up to addition and removal of
finite sets, the set of c ∈ R where f vanishes is open. Since f(z) has infinitely many zeros in R by
assumption, it must vanish on a ball, say of radius ε′. Recentering the ball, we can assume that
f(z) vanishes for all |z| < ε′. If f(z) is non-zero, then it has the form f(z) = anz

n +
∑

i>n aiz
i

with an �= 0. However, for |z| sufficiently small, anzn has larger norm than
∑

i>n aiz
i, and so

f does not vanish at z. We conclude that f(z) = 0.

Before proving Theorem A.1, let us give some motivation as to why one would expect
this statement to be true. We begin with a simple proof of Strassman’s theorem using the
commutative algebra of affinoids. For each λ ∈ o, the ideal (z − λ) is a maximal ideal of K〈z〉.
If f(λ) = 0 then f(z) ∈ (z − λ). Suppose f(λ) = 0 for all λ ∈ S where S is an infinite subset
of o. Then f(z) ∈ I :=

⋂
λ∈S(z − λ). Note that I is a radical ideal and it has finitely many

minimal prime ideals P1, . . . , Pr above it. Then since each (z − λ) is above I, each (z − λ)
contains some Pi. In particular, there is some j and an infinite set of λ such that (z − λ) ⊇ Pj .
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But by Krull’s principal ideal theorem we have that (z − λ) is a height one prime ideal and
since they are pairwise comaximal we then see that Pj = (0) and so I = (0).

Taking this point of view, it is natural to seek an extension expressed in terms of ideal
membership. More precisely, one has an affinoid algebra S := K〈x1, . . . , xd, z〉 and an ideal
I(z). One would like to conclude that if f(z) ∈ S has the property that f(z) ∈ I(z) + (z − c)S
for infinitely many c ∈ o then f is in I(z). Note that if one had such a statement, then taking
d = 0 and I(z) to be the zero ideal gives Strassman’s theorem. Unfortunately, this is false
as stated. For example, the ideal I(z) = (z) has the property that 1 ∈ I(z) + (z − c)S for
all non-zero c ∈ o. Another example, when K is an extension of Qp, is given by the ideal
I(z) := (xz − 1) in K〈x, z〉, which has the property that 1 ∈ I(z) + (z − c)R for all c ∈ pZp.
Note that in the latter example, this set of c is an open ball; in the former example it is an
open ball minus a point.

We begin the proof of Theorem A.1 by showing that the desired set of c is open in R.

Lemma A.3. If M is a finitely generated K〈x1, . . . , xd, z〉-module, then the set of c ∈ R for
which M|z=c = (0) is open in R.

Proof. Now let T denote the collection of c ∈ R for which M|z=c = (0), or equivalently,
(z − c)M = M. We show that T is open. To see this, let g1, . . . , g� be a set of generators
for M and let c ∈ T . Then (z − c)hi = gi for some hi ∈ M for i = 1, . . . , �. We can write
hi =

∑
ai,jgi. Let ε be a positive number that is less than the reciprocal of the Gauss norm

of each non-zero ai,j . Then for α ∈ B(c, ε) ∩R, the ball of radius ε centered at c, we have
(z − α)hi = (z − c)hi + (c− α)hi = gi +

∑
(c− α)ai,j(z)gj . We can write this in the form

(z − α)

⎡
⎢⎣
h1

...
h�

⎤
⎥⎦ = (I + T )

⎡
⎢⎣
g1

...
g�

⎤
⎥⎦ ,

where T is a �× � matrix with entries in K〈x1, . . . , xd, z〉 that are of Gauss norm strictly
less than 1 and I is the identity matrix. In particular, I + T is invertible with inverse I −
T + T 2 − T 3 + · · · ∈ Md(K〈x1, . . . , xd, z〉). Thus multiplying our vector equation on the left
by (I + T )−1 we see that (z − α)hi with i = 1, . . . , � generate M. Thus B(c, ε) ⊆ T , showing
that T is open. �

We next reduce the general case to that of cyclic modules.

Lemma A.4. Let S = K〈x1, . . . , xd〉 and M be a finitely generated S〈z〉-module. If
N = S〈z〉/Ann(M). Then

{c ∈ R | M|z=c = (0)} = {c ∈ R | N |z=c = (0)}.

Proof. Let J = Ann(M). First if N|z=c = (0), then 1 = f + (z − c)g with f ∈ J and
some g ∈ S〈z〉, and so every m ∈ M can be expressed as m = fm + (z − c)gm = (z − c)gm ∈
(z − c)M showing that M|z=c = (0).

Conversely, suppose M|z=c = (0) and let m1, . . . ,m� be a set of generators of M. Then there
is a matrix A ∈ M�(S〈z〉) such that⎡

⎢⎣
m1

...
m�

⎤
⎥⎦ = (z − c)A

⎡
⎢⎣
m1

...
m�

⎤
⎥⎦.

Let f = det(I − (z − c)A) ∈ S〈z〉 which is non-zero since it is of the form 1 + (z − c)g with
g ∈ S〈z〉, and z − c is not a unit in S〈z〉. Letting B be the adjugate matrix of I − (z − c)A, we
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know B(I − (z − c)A) = fI. Multiplying by mi, we see fmi = 0 for all i, and so f ∈ J . Thus,
1 = f − (z − c)g ∈ J + (z − c)S〈z〉 showing that N|z=c = (0). �

Lemma A.5. Let S = K〈x1, . . . , xd〉. Given an ideal I of S〈z〉, let MI = S〈z〉/I and TI be
the set of c ∈ R for which MI |z=c = (0). If J is the intersection of prime ideals Q1, . . . , Qr,
then TJ =

⋂
i TQi

. Moreover, if each TQi
is, up to addition and removal of finite sets, a union

of εi-balls, then TJ is as well.

Proof. Note that c ∈ TI if and only if (z − c) and I are comaximal. For ease of notation, let
Ti := TQi

. It is clear that if (z − c) + J = S〈z〉, then (z − c) + Qi = S〈z〉 for all i. Conversely,
we have 1 = (z − c)ai + qi for fi ∈ S〈z〉 and qi ∈ Qi. So

∏
i(1 − (z − c)ai) ∈ J and it is of the

form 1 + (z − c)f , so (z − c) + J = S〈z〉. This establishes the first statement.
Now suppose that there are finite sets Si1 and Si2 such that (Ti ∪ Si1) ∩ Sc

i2 is a finite union
of εi-balls. Now,

⋂
i((Ti ∪ Si1) ∩ Sc

i2) = (
⋂

i Ti ∪
⋂

i Si1) ∩
⋂

i Sc
i2. Since

⋂
i Si1 is a finite set and⋂

i Sc
i2 is the complement of a finite set, we see that up to addition and removal of finite sets,

TJ is the intersection of unions of εi-balls.
Without loss of generality, ε1 � · · · � εr. Let (Ti ∪ Si1) ∩ Sc

i2 be the union of εi-balls Di,j

where j runs through an index set Si. Then up to addition and removal of finite sets, TJ is
the union of sets of the form D1,j1 ∩ · · · ∩Dr,jr where ji ∈ Si. Since K is non-Archimedean, if
two balls intersect, then one of them is contained in the other. Therefore, D1,j1 ∩ · · · ∩Dr,jr is
either empty, or is an εr-ball, which finishes the proof. �

Finally, we handle the case where M is cyclic and R is compact.

Proposition A.6. Let S = K〈x1, . . . , xd〉 and let M = S〈z〉/J . If R is compact, then there
exists ε > 0 such that, up to the addition and removal of finite sets, the set of c ∈ R for which
M|z=c = (0) is a union of ε-balls.

In particular, it follows that if R = Z then up to addition and removal of finite sets, the set
of c ∈ R for which M|z=c = (0) is a finite union of arithmetic progressions with difference pr

for some r � 0.

Proof. Since there are only finitely many balls of a given radius in Z, the statement
concerning the case R = Z is immediate from the more general statement about compact R.

To prove the general claim about compact R, first note that M|z=c = (0) if and only if (z − c)
and J are comaximal. Since S〈z〉 is Jacobson, this is equivalent to (z − c) and rad(J) being
comaximal, so we can assume J is a radical ideal. Now, since S〈z〉 is Noetherian, J is a finite
intersection of prime ideals Q1, . . . , Qr. Then by Lemma A.5, we may assume that J is prime.

By Noether normalization, M is a finitely generated module over some T = K〈t1, . . . , tr〉.
Since T is a domain, the stalk of M at the generic point of SpecT is a vector space, hence free,
and so there is an open neighbourhood of SpecT where M is free. So, there is some non-zero
q ∈ T such that the localization Mq is a free Tq-module, say of rank n. Then the action map
of M on itself gives a map ι : M → Mn(Tq) which is an embedding since J is prime. Note
that M|z=c = (0) if and only if z − c ∈ M is a unit if and only if det(ι(z − c)) ∈ T ∗

q . Indeed,
it is clear that if z − c is invertible then det(ι(z − c)) ∈ T ∗

q , and the converse follows from the
Cayley–Hamilton theorem.

Let t be an indeterminate and consider the minimal polynomial f(t) of ι(z). Since the
minimal polynomial divides the characteristic polynomial, there is a polynomial g such that
f(t)g(t) = det(ι(z) − t). Away from the finitely many roots of g(t), we see f(c) ∈ T ∗

q if and
only if det(ι(z − c)) ∈ T ∗

q . Thus, we must prove that, up to addition and removal of a finite
set, the set of c for which f(c) ∈ T ∗

q is closed. In fact, we prove the stronger statement that
there is an ε > 0 such that the set of such c is a finite union of ε-balls.
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If there exists c ∈ R with f(c) = 0, then f(t) = (t− c)r(t) in M, and so (z − c)r(z) = 0 in
M. Since M is a domain, z − c = 0 or r(z) = 0 in M. Since f is the minimal polynomial, the
only case is that f(t) = u(t− c), for some unit u ∈ T ∗

q . But then f(c′) = u(c′ − c), which is
always a unit for c �= c′, which proves the claim.

We now handle the case where 0 /∈ f(R). Since R is compact, there is an ε > 0 such that
||f(c)|| > ε. Let f(t) = a0 + a1t + · · · + adt

d with the ai ∈ Rq; in fact, since q ∈ R∗
q and we

are only concerned with whether or not f(c) ∈ R∗
q , we can clear denominators and assume

ai ∈ R. Let N be the maximum of the Gauss norm of the ai. We show that if f(c) is a unit
and |c− c′| < ε/(2Npd), then f(c′) is a unit. To see why this is true, first consider the Taylor
expansion f(t) = f(c) + (t− c)r(t), where

r(t) = f ′(t) + (t− c)
f ′′(t)

2
+ · · · + (t− c)d−1 f

(d)(t)
d!

.

We know that for 1 � k � d, the norm of 1/k is bounded by pd. The coefficients of f (k)(t) are
integer linear combinations of the coefficients of f(t), so have norm bounded by N . Since R
is a subring of the valuation ring, |c′| and |c− c′| are at most 1. It follows that |r(c′)| � Npd,
and so |(c′ − c)r(c′)| < ε/2. Since |f(c)| > ε, we see (c′ − c)r(c′)/f(c) has norm at most 1/2.
Therefore,

f(c′)
f(c)

= 1 +
(c′ − c)r(c′)

f(c)

is a unit. �
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