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We prove a uniform version of the Dynamical Mordell–Lang Conjecture for étale maps;

also, we obtain a gap result for the growth rate of heights of points in an orbit along an

arbitrary endomorphism of a quasiprojective variety defined over a number field. More

precisely, for our 1st result, we assume X is a quasi-projective variety defined over a

field K of characteristic 0, endowed with the action of an étale endomorphism �, and

f : X −→ Y is a morphism with Y a quasi-projective variety defined over K. Then for

any x ∈ X(K), if for each y ∈ Y(K), the set Sx,y := {n ∈ N : f (�n(x)) = y} is finite, then

there exists a positive integer Nx such that �Sx,y ≤ Nx for each y ∈ Y(K). For our 2nd

result, we let K be a number field, f : X ��� P
1 is a rational map, and � is an arbitrary

endomorphism of X. If O�(x) denotes the forward orbit of x under the action of �, then

either f (O�(x)) is finite, or lim supn→∞ h(f (�n(x)))/ log(n) > 0, where h(·) represents

the usual logarithmic Weil height for algebraic points.

1 Introduction

As usual in algebraic dynamics, given a self-map � : X −→ X of a quasi-projective

variety X, we denote by �n the n-th iterate of �. Given a point x ∈ X, we let O�(x) =
{�n(x) : n ∈ N} be the orbit of x. Recall that a point x is periodic if there exists some

n ∈ N such that �n(x) = x; a point y is preperiodic if there exists m ∈ N such that �m(y)

is periodic. Our 1st result is the following.
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2 J. Bell et al.

Theorem 1.1. Let X and Y be quasi-projective varieties defined over a field K of

characteristic 0, let f : X −→ Y be a morphism defined over K, let � : X −→ X be an

étale endomorphism, and let x ∈ X(K). If |O�(x) ∩ f −1(y)| < ∞ for each y ∈ Y(K),

then there is a constant N (depending only on X, Y, � and x, but independent of y)

such that

|O�(x) ∩ f −1(y)| < N

for each y ∈ Y(K).

Theorem 1.1 offers a uniform statement for the Dynamical Mordell–Lang Con-

jecture. Indeed, the Dynamical Mordell–Lang Conjecture (see [4, 10]) predicts the

following: given a quasi-projective variety X defined over a field K of characteristic

0, endowed with an endomorphism �, for any point x ∈ X(K) and any subvariety

V ⊂ X, the set

S(X, �, V, x) := {n ∈ N : �n(x) ∈ V(K)}
is a finite union of arithmetic progressions {ak + b : k ∈ N} for some suitable integers

a and b, where the case a = 0 yields a singleton instead of an infinite arithmetic

progression. We also note that a = 0 is the typical case since a > 0 would mean that V

contains a positive dimensional periodic subvariety.

In particular, assuming x is not preperiodic, if V ⊂ X contains no peri-

odic positive-dimensional subvariety intersecting the orbit of x, then the Dynamical

Mordell–Lang Conjecture predicts that V intersects the orbit of x in finitely many

points, see [2,§3.1.3]. The Dynamical Mordell–Lang Conjecture is still open in its full

generality, though several partial results are known; for a full account of the known

results prior to 2016, see [4]. One important case for which the dynamical Mordell–Lang

conjecture is known is the case of étale endomorphisms, see [2]. Our Theorem 1.1 yields

a uniform statement for the dynamical Mordell–Lang conjecture in the case of étale

endomorphisms, as follows.

Let X be a quasi-projective variety defined over a field K of characteristic

0, endowed with an étale endomorphism �. Let {Xy}y∈Y be an algebraic family of

subvarieties of X parametrized by some quasi-projective variety Y (i.e., the family of

fibers of a morphism X −→ Y). Let x ∈ X(K) be a non-preperiodic point with the

property that its orbit under � meets each subvariety Xy in finitely many points, that

is, no subvariety Xy contains a periodic positive-dimensional subvariety intersecting

O�(x). Then Theorem 1.1 proves that there exists a uniform upper bound N for the

number of points from the orbit O�(x) on the subvarieties Xy as y varies in Y(K). We
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Dynamical Uniform Bounds 3

believe the same statement would hold more generally (for an arbitrary endomorphism),

as stated in the following uniform version of the dynamical Mordell–Lang conjecture.

Conjecture 1.2. (Uniform dynamical Mordell–Lang conjecture) Let f : X −→ Y be a

morphism of quasi-projective varieties defined over a field K of characteristic 0, let

� : X −→ X be an endomorphism defined over K and let x ∈ X(K). If |O�(x)∩f −1(y)| < ∞
for all y ∈ Y(K), then there is a constant N (depending only on X, Y, �, and x, but

independent of y) such that

|O�(x) ∩ f −1(y)| < N

for all y ∈ Y(K).

Theorem 1.1 answers Conjecture 1.2 in the case of étale endomorphisms. Fur-

thermore, at the expense of replacing � by an iterate and also, replacing X by ��(X)

for a suitable �, we see that Theorem 1.1 yields a positive answer for Conjecture 1.2

for unramified endomorphisms � of a smooth quasi-projective variety X; thus, the

conclusion of Theorem 1.1 applies to any endomorphism of a semiabelian variety X

defined over a field of characteristic 0. We note that a uniform version of the Dynamical

Mordell–Lang Conjecture was suggested by the automatic uniformity feature from the

classical Mordell–Lang conjecture (see [12]); also, there were various special cases which

suggested that a uniform dynamical Mordell–Lang conjecture might hold (see [9]).

One of the key lemmas from the proof of Theorem 1.1 (see Lemma 1) provides the

motivation for our next result (which is also motivated in its own right by the dynamical

Mordell–Lang conjecture, as we will explain after its statement).

Theorem 1.3. Let X be a quasi-projective variety defined over Q, let � : X −→ X be an

endomorphism, and let f : X ��� P
1 be a rational function. Then for each x ∈ X(Q) with

the property that the set f (O�(x)) is infinite, we have

lim sup
n→∞

h(f (�n(x)))

log(n)
> 0,

where h(·) is the logarithmic Weil height for algebraic numbers.

Note that if X = A
1, the map � : X −→ X is given by �(x) = x + 1, and f : X ↪→ P

1

is the usual embedding, then h(f (�n(0))) = log(n) for n ∈ N. This example shows that

Theorem 1.3 is, in some sense, the best possible. However, we believe that this gap result

should hold more generally for rational self-maps. Specifically, we make the following

conjecture.
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4 J. Bell et al.

Conjecture 1.4. (Height gap conjecture) Let X be a quasi-projective variety defined

over Q, let � : X ��� X be a rational self-map, and let f : X ��� P
1 be a rational function.

Then for x ∈ X(Q) with the property that �n(x) avoids the indeterminacy locus of � for

every n ≥ 0, if f (O�(x)) is infinite then

lim sup
n→∞

h(f (�n(x)))

log(n)
> 0.

Remark 1.5. We note that since in our proof of Theorem 1.3 we use the fact that there

exist finitely many points of bounded height in a given finite extension of our ground

field, then our argument does not extend to the function field case (i.e., replacing Q

with the algebraic closure of L(t) for a field L of characteristic 0). Also, in order to state

a counterpart of our Conjecture 1.4 in the function field setting, one would also need

to take into account the isotriviality issues since the orbit of x might be infinite but

contain only points defined over the constant field.

Theorem 1.3 proves this conjecture in the case of endomorphisms. Many inter-

esting number theoretic questions fall under the umbrella of the gap conjecture stated

above. As an example, we recall that a power series F(x) ∈ Q[[x]] is called D-finite if it

is the solution to a nontrivial homogeneous linear differential equation with rational

function coefficients. It is known that if
∑

n≥0 a(n)xn is a D-finite power series over

a field of characteristic zero, then there is some d ≥ 2, a rational endomorphism

� : Pd ��� P
d, a point c ∈ P

d, and a rational map f : Pd ��� P
1 such that a(n) = f ◦ �n(c)

for n ≥ 0, see [4, Section 3.2.1]. Heights of coefficients of D-finite power series have been

studied independently, notably by van der Poorten and Shparlinski [11], who showed a

gap result holds in this context that is somewhat weaker than what is predicted by our

height gap conjecture above; specifically, they showed that if
∑

n≥0 a(n)xn ∈ Q[[x]] is

D-finite and

lim sup
n→∞

a(n)

log log(n)
= 0,

then the sequence {a(n)} is eventually periodic. This was improved recently [5], where it

is shown that if lim supn→∞
a(n)

log(n)
= 0, then the sequence {a(n)} is eventually periodic.

We see this then gives additional underpinning to Conjecture 1.4. Furthermore, with the

notation as in Theorem 1.3, assume now that

lim sup
n→∞

h
(
f (�n(x))

)

log(n)
= 0. (1.1)
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Dynamical Uniform Bounds 5

Then Theorem 1.3 asserts that Equation (1.1) yields that f (O�(x)) is finite. We claim that

actually this means that the set {f (�n(x))}n∈N is eventually periodic. Indeed, for each

m ∈ N, we let Zm be the Zariski closure of {�n(x)}n≥m. Then Zm+1 ⊆ Zm for each m and

thus, by the Noetherian property, we get that there exists some M ∈ N such that Zm = ZM

for each m ≥ M. So, there exists a suitable positive integer � such that �� induces

an endomorphism of each irreducible component of ZM ; moreover, each irreducible

component of ZM contains a Zariski dense set of points from the orbit of x. Furthermore,

because f (O�(x)) is a finite set, we get that f must be constant on each irreducible

component of ZM and thus, in particular, f is constant on each orbit O��(�r(x)) for r

sufficiently large. Hence, Theorem 1.3 actually yields that once Equation (1.1) holds,

then {f (�n(x))}n∈N is eventually periodic.

It is important to note that one cannot replace lim sup with lim inf in

Conjecture 1.4, even in the case of endomorphisms. To see this, consider the map

� : A3 → A
3 given by (x, y, z) �→ (yz, xz, z + 1). Then, letting c = (0, 1, 1), it is easily

shown by induction that for n ≥ 0, we have

�2n(c) = (0, (2n)! , 2n + 1) and �2n+1(c) = ((2n + 1)! , 0, 2n + 2).

Consequently, if f : A3 → A
1 is given by f (x, y, z) = x, then we see that f (�2n(c)) = 0 and

f (�2n+1(c)) = (2n + 1)! for every n ≥ 0, and so

lim inf
n→∞

h(f (�n(c)))

log(n)
= 0, while lim sup

n→∞
h(f (�n(c)))

log(n)
= ∞.

Despite the fact that the conjecture does not hold when one replaces lim sup with lim inf,

we believe the following variant of Conjecture 1.4 holds if we were to add the hypothesis

that the orbit of x under � is Zariski dense in X (note that in the above example, the orbit

O�(x) lies inside the union of the two lines x = 0 and y = 0 of A3).

Conjecture 1.6. Let X be an irreducible quasi-projective variety defined over Q, let

� : X ��� X be a rational self-map, and let f : X ��� P
1 be a non-constant rational

function. Let x ∈ X(Q) with the property that �n(x) avoids the indeterminacy locus

of � for every n ≥ 0, and further suppose that O�(x) is Zariski dense in X. Then

lim inf
n→∞

h(f (�n(x)))

log(n)
> 0.
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6 J. Bell et al.

We point out that, if true, this would be a powerful result and would imply the

dynamical Mordell–Lang conjecture for rational self-maps when we work over a number

field. To see this, let Z be a quasi-projective variety defined over Q, let � : Z ��� Z be a

rational self-map, Y be a subvariety of Z, and suppose that the orbit of x ∈ Z(Q) avoids

the indeterminacy locus of �. As before, denote by Zn the Zariski closure of {�j(x) : j ≥
n}. Since Z is a Noetherian topological space, there is some m such that Zn = Zm for

every n ≥ m. Letting X = Zm, and replacing Y with Y ∩ X, it suffices to show that the

conclusion to the Dynamical Mordell–Lang conjecture holds for the data (X, �, x, Y). We

let X1, . . . , Xd denote the irreducible components of X and let Yi = Y ∩ Xi. Since �|X
is a dominant self-map, it permutes the components Xi, so there is some b such that

�b(Xi) ⊂ Xi for each i. Then if we let x1, . . . , xd be elements in the orbit of x with the

property that xi ∈ Xi, then it suffices to show that the conclusion to the statement of

the Dynamical Mordell–Lang conjecture holds for the data (Xi, �
b, xi, Yi) for i = 1, . . . , d.

Then by construction, the orbit of xi under �b is Zariski dense. We prove that either

O�b(xi) ⊂ Yi or that O�b(xi) intersects Yi finitely many times. If Yi = Xi or Yi = ∅ then

the result is immediate; thus, we may assume without loss of generality that Yi is a non-

empty proper subvariety of Xi. We pick a non-constant morphism fi : Xi −→ P
1 such that

fi(Yi) = 1 (we find such fi by choosing first a non-constant rational function Fi vanishing

on Yi and then letting fi := Fi + 1). If �bn(xi) ∈ Yi, then h(fi(�
bn(xi))) = 0. Conjecture 1.6

implies that this can only happen finitely many times, and so {n : �bn(xi) ∈ Yi} is finite.

2 Proof of Our Main Results

We recall the following definitions. The ring of strictly convergent power series Qp〈z〉
is the collection of elements P(z) := a0 + a1z + a2z2 + · · · ∈ Qp[[z]] such that |an|p → 0

as n → ∞ and which thus consequently converge uniformly on Zp. The Gauss norm

is given by |P(z)|Gauss := maxn≥0 |an|p. The ring Zp〈z〉 ⊂ Qp〈z〉 is the set of P(z) with

|P(z)|Gauss ≤ 1, that is, the set of P with ai ∈ Zp.

Proof. of Theorem 1.1 Clearly, we may reduce immediately (at the expense of replacing

� by an iterate of it) to the case X and Y are irreducible.

A standard spreading out argument (similar to the one employed in the proof of

[2, Theorem 4.1]) allows us to choose a model of X, Y, f , �, and x over an open subset

U ⊆ SpecR, where R is an integral domain, which is a finitely generated Z-algebra.

In other words, K is a field extension of the fraction field of R, we can find a map

X −→ Y over U, a section U −→ X , and an étale endomorphism X −→ X over U which
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Dynamical Uniform Bounds 7

base change over K to be f : X −→ Y, x : SpecK −→ X, and � : X −→ X, respectively.

After replacing U by a possibly smaller open subset, we can assume U = SpecR[g−1] for

some g ∈ R. Since R[g−1] is a finitely generated Z-algebra, it is of the form Z[u1, . . . , ur].

Applying [1, Lemma 3.1], we can find a prime p ≥ 5 and an embedding R[g−1] into Qp

that maps the ui into Zp. Base changing by the resulting map SpecZp −→ U, we can

assume U = SpecZp. We will abusively continue to denote the map X −→ Y by f , the

étale endomorphism X −→ X by �, and the section SpecZp = U −→ X by x. We let

X = X ×
Zp

Fp, let � : X −→ X be the reduction of �, and let x ∈ X (Fp) be the reduction

of x ∈ X (Zp).

Notice that if f (�n(x)) = y, then since x extends to a Zp-point of X , necessarily

y ∈ Y(K) extends to a Zp-point of Y as well. In particular, it suffices to give a uniform

bound on the sets {n : f (�n(x)) = y} as y varies through the elements Y(Zp).

To prove Theorem 1.1, we may replace x by ��(x) for some � ∈ N; similarly, we

can replace � by �D for some D ∈ N. Since |X (Fp)| < ∞, there exist integers i ≥ 0 and

j ≥ 1 such that �
i+j

(x) = �
i
(x); therefore, at the expense of replacing x by �i(x) and

also replacing � by �j, we may assume that x is fixed by �. Applying the p-adic Arc

Lemma (see, e.g., Remark 2.3 and Theorem 3.3 of [2]) we can assume there are p-adic

analytic functions φ1, . . . , φd ∈ Zp〈z〉 such that letting B ⊂ X (Zp) be the set of points

whose reduction mod p is x, then there is a bijection ι : B −→ Z
d
p , such that

ι
(
�n(x)

) = (φ1(n), . . . , φd(n)) := φ(n)

for each positive integer n.

Next, fix an embedding Y ⊂ P
r
Zp

, let {Vi}i be an open affine cover of Y, and for

each i, let {Uij}j be an open affine cover of f −1(Vi). We can further assume that each Vi is

contained in one of the coordinate spaces A
r
Zp

⊂ P
r
Zp

. Since X and Y are quasi-compact,

we can assume the {Uij}i,j and {Vi}i are finite covers. Then we can view f |Uij
: Uij −→ Vi ⊆

A
r
Zp

as a tuple of polynomials (pij0, . . . , pijr). Letting Pijk(z) = pijkι−1φ(z), we see f |O�(x)

is given by the following piecewise analytic function:

f (�n(x)) = (Pij0(n), . . . , Pijr(n))

whenever �n(x) ∈ Uij.

It therefore suffices to prove that for each i, j, there exists Nij such that for all

(y1, . . . , yr) ∈ Vi(Zp) ⊆ A
r(Zp), the number of simultaneous roots of Pijk(z) − yk (for k =

1, . . . , r) is bounded by Nij. In other words, we have reduced to proving the lemma below,

where S = {n : �n(x) ∈ Uij} and V = Vi(Zp).
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8 J. Bell et al.

Lemma 2.1 Let r be a positive integer, let V ⊂ Z
r
p, and let S ⊂ N be an infinite subset.

For each 1 ≤ k ≤ r, let Pk ∈ Zp〈z〉 and consider the function P : S −→ Z
r
p given by

P(n) := (P1(n), . . . , Pr(n)).

Suppose the set {n ∈ S : P(n) = y} is empty if y ∈ Z
r
p �V and is finite if y ∈ V. Then there

exists a positive integer N depending on V, P1 . . . , Pr, but independent of y, such that

|{n ∈ S : P(n) = y}| ≤ N

for all y ∈ V. �

Proof. We may assume S is infinite since otherwise we can take N = |S|. We claim that

Pk(z) is not a constant power series for some k. Suppose to the contrary that Pk(z) =
ck ∈ Zp for each k. If y := (c1, . . . , cr) ∈ Z

r
p � V, then we can take N = 0. If y ∈ V, then

{n ∈ S : P(n) = y} = S which is infinite, contradicting the hypotheses of the lemma.

We have therefore shown that some Pk(z) is non-constant. Let K be the set of k for

which Pk(z) := ∑
m≥0 ck,mzm is non-constant. Given any non-constant element Q(z) :=

∑
m≥0 cmzm of Zp〈z〉, let

D(Q) := max{m : |cm| = |Q|Gauss}. (2.1)

Recall from Strassman’s theorem (see [14] or [8, Theorem 4.1, p. 62]) that the number of

zeros of Q(z) is bounded by D(Q). We can obtain a slight strengthening of Strassman’s

theorem as follows.

Proposition 2.3. Let Q(z) := ∑
m≥0 cmzm ∈ Zp〈z〉 be a non-constant power series. Then

there exists a positive integer Dmax(Q) such that for any α ∈ Zp, there are at most

Dmax(Q) zeros for the power series Q(z) − α.
�

Proof of Proposition 2.3 We claim that the desired conclusion holds with Dmax(Q) :=
D(Q(z) − Q(0)). Indeed, D(Q(z) − Q(0)) is a positive integer since Q(z) is a non-constant

power series and therefore, Q(z)− Q(0) is a non-constant power series with its constant

term equal to 0. Now, this means that for any α ∈ Zp, we have that the power series

Q(z)−α has at most D(Q(z)− α) zeros (according to Strassman’s Theorem). However, for

each α ∈ Zp, we have that D(Q(z) − α) ≤ D(Q(z) − Q(0)) because the constant term of

Q(z) − Q(0) is zero and therefore, it has absolute value less than the absolute value of

the constant term of any other power series Q(z) − α (while the other corresponding

coefficients of the two power series Q(z) − α and Q(z) − Q(0) are equal to each
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Dynamical Uniform Bounds 9

other). So, the conclusion in Proposition 2.3 holds with Dmax(Q) := D(Q(z) − Q(0)), as

desired. �

We let N := mink∈K Dmax(Pk) and then we see then that for all (y1, . . . , yr) ∈
Z

r
p, the number of simultaneous zeros of P1(z) − y1, . . . , Pr(z) − yr is bounded by N.

In particular, |{n ∈ S : P(n) = y}| ≤ N for all y ∈ V, as desired in the conclusion

of Lemma 2.1.

This concludes our proof of Theorem 1.1.
Proof of Theorem 1.3 As before, at the expense of replacing � by an iterate, we

may assume X is irreducible. Furthermore, arguing as in the last paragraph of the

introduction, we may assume O�(x) is Zariski dense.

Let K be a number field such that X, �, and f are defined over K and moreover,

x ∈ X(K). As proven in [13], there exists a constant c0 > 0 such that for each real number

N ≥ 1, there are fewer than c0N2 algebraic points in K of logarithmic height bounded

above by log(N). So, there exists a constant c1 > 1 such that for each real number N ≥ 1,

there are fewer than cN
1 points in K of logarithmic height bounded above by N.

Arguing as in the proof of Theorem 1.1, we can find a suitable prime number p, a

model X of X over some finitely generated Z-algebra R which embeds into Zp such that

the endomorphism � extends to an endomorphism of X , and a section Spec(Zp) −→ X
extending x; we continue to denote by � and x the endomorphism of X and the section

Spec(Zp) −→ X , respectively. At the expense of replacing both � and x by suitable

iterates, we may assume the reduction of x modulo p (called x) is fixed under the induced

action of � on the special fiber of X . Consider the p-adic neighborhood B ⊂ X (Zp)

consisting of all points whose reduction modulo p is x. Then there is an analytic

isomorphism ι : B → Z
m
p so that in these coordinates

x = (0, . . . , 0) ∈ F
m
p

and � is given by (x1, · · · , xm) �→ (φ1(x1, . . . , xm), · · · , φm(x1, . . . , xm)), where

φi(x1, . . . , xm) ≡
m∑

j=1

ai,jxj (mod p)

for each i = 1, . . . , m, for some suitable constants ai,j ∈ Zp (for more details, see

[4, Section 11.11]). Applying [4, Theorem 11.11.1.1] (see also the proof of [4, Theorem

11.11.3.1]), there exists a p-adic analytic function G : Zp −→ Z
m
p such that for each n ≥ 1,

we have

‖�n(x) − G(n)‖ ≤ p−n, (2.2)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz257/5625888 by U

niversity of W
aterloo user on 17 M

arch 2020



10 J. Bell et al.

where for any point (x1, . . . , xm) ∈ Z
m
p , we let

‖(x1, . . . , xm)‖ := max
1≤i≤m

|xi|p.

As in the proof of Theorem 1.1, let V1 � A
1 and V2 � A

1 be the standard affine

cover of P1, and let {Uij} be a finite open affine cover of X minus the indeterminacy locus

of f such that f (Uij) ⊂ Vi � A
1. Let

Sij := {n : �n(x) ∈ Uij}.

Since f |Uij
is given by a polynomial with p-adic integral coefficients, there exist Hij(z) ∈

Zp〈z〉 such that

f (G(n)) = Hij(n)

whenever n ∈ Sij. Notice that if f (�n(x)) = y, then since x extends to a Zp-point of X ,

necessarily y ∈ P
1(K) extends to a Zp-point of P

1 as well. Thus, we need only concern

ourselves with roots of Hij(z) − t for t ∈ Zp.

Lemma 2.5. The following holds:

1. for all i and j, we have that {f (�n(x)) : n ∈ Sij} is an infinite set,

2. for all i and j, we have that N� Sij has upper Banach density zero,

3. there exist i and j, there exists a constant κ and a sequence M1 < M2 < . . .

such that

�{n ∈ Sij : n ≤ κM�} ≥ M�.

�

Proof of Lemma 2.5. We first prove property 1 for all i, j. If {f (�n(x)) : n ∈ Sij} =
{t1, . . . , tk} is a finite set, then

O�(x) ⊂ (X � Uij) ∪
⋃

1≤�≤k

f −1(t�),

which contradicts the fact that O�(x) is Zariski dense.

We next prove property 2 for all i, j. Since Z := X � Uij is a closed subvariety, [3,

Corollary 1.5] tells us N�Sij is a union of at most finitely many arithmetic progressions

and a set of upper Banach density zero. Since O�(x) is Zariski dense, N � Sij cannot

contain any nontrivial arithmetic progressions. Indeed, if there exists 0 ≤ b < a such

that {an+b : n ∈ N} ⊂ N�Sij, then writing O�(x) = ⋃
0≤�<a ��O�a(x), we see ��O�a(x) is
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Dynamical Uniform Bounds 11

Zariski dense for some �; applying a suitable iterate of �, we see �bO�a(x) is also Zariski

dense, contradicting the fact that �bO�a(x) is contained in the proper closed subvariety

Z. Thus, N� Sij has upper Banach density zero.

Next, we turn to property 3. Let U denote our set of affine patches Uij, and let

κ = |U |. For each M ≥ 2, there must exist some element g(M) ∈ U and 0 ≤ n1 < n2 <

· · · < nM ≤ (M − 1)κ such that �n� (x) ∈ g(M) for 1 ≤ � ≤ M. Let i and j be such that

g(M) = Uij for infinitely many M ≥ 2. With this choice of i and j, by construction,

there is a sequence M1 < M2 < . . . such that Sij contains at least M� of the integers

0 ≤ n ≤ (M� − 1)κ . As a result,

�{n ∈ Sij : n ≤ κM�} ≥ M�

finishing the proof of lemma. �

Let i and j be as in Lemma 2.5. For ease of notation, let H(z) = Hij(z) and S = Sij.

Since

lim sup
n→∞

h(f (�n(x)))

log(n)
≥ lim sup

n∈S,n→∞
h(f (�n(x)))

log(n)

it suffices to show the latter is positive.

We split our proof now into two cases which are analyzed separately in Lemmas

2.6 and 2.10. Before giving the proof of Lemma 2.6, we recall that by the Weierstrass

Preparation Theorem [7, 5.2.2], if P(z) := a0 + a1z + a2z2 + · · · ∈ Qp〈z〉 is nonzero and

D = D(P) as in (1), then P(z) = Q(z)u(z), where u(z) is a unit in Qp〈z〉 with |u(z)|Gauss = 1,

and Q(z) is a polynomial of degree D whose leading coefficient has p-adic norm equal to

|P(z)|Gauss. Combined with [7, 5.1.3 Proposition 1], we see u(z) = c + pu0(z) with |c|p = 1

and |u0|Gauss ≤ 1. In particular, |u(n)|p = 1 for all n ∈ N.

Lemma 2.6. If H(z) is non-constant, then the conclusion of Theorem 1.3 holds.

Proof of Lemma 2.6 Writing H(z) = a0+a1z+a2z2+· · · ∈ Zp〈z〉, there exists some L ≥ 1

such that |aL|p > |aj|p for all j > L. As proven in Lemma 2.1, since H(z) is not constant,

there exists a uniform bound C such that for each t ∈ Zp, the number of solutions to

H(z) = t is at most C. Furthermore, if n is an element of S such that f (�n(x)) = t, then

equation (2.2) yields

|H(n) − t|p ≤ p−n.
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12 J. Bell et al.

As mentioned above, by the Weierstrass preparation theorem, we can write

H(z) − t = qt(z)ut(z)

with qt(z) a polynomial of degree D(H−t) ≤ L and ut(z) a unit of Gauss norm 1; moreover,

the leading coefficient of qt(z) has p-adic norm equal to the Gauss norm of H − t. Hence,

we can write

qt(z) = bt(z − β1,t) · · · (z − βD(H−t),t)

with bt ∈ Qp, the βj,t ∈ Qp, and

|bt|p = |H − t|Gauss ≥ |aL|p.

We have therefore bounded |bt|p below independent of t ∈ Zp. As noted before the proof

of the lemma, we know |ut(n)|p = 1 for all t ∈ Zp and n ∈ N. Hence, there is a constant

c2 > 0 (independent of t) such that for all t ∈ Zp, if |H(n) − t|p ≤ p−n then there exists

1 ≤ j ≤ D(H − t) such that

|n − βj,t|p < c2p− n
D(H−t) ≤ c2p− n

L .

So, if n1, . . . , nL+1 are distinct elements of S with |H(ni)−t|p ≤ p−ni for i = 1, . . . , L+1 then

there exist k1, k2 with k1 �= k2 and j such that |nk1
− βj,t|p < c2p−nk1/L and |nk2

− βj,t|p <

c2p−nk2/L. Consequently,

|nk1
− nk2

|p < c2p− min(nk1 ,nk2 )/L.

Hence, letting | · | be the usual Archimedean absolute value, we have that

|nk1
− nk2

| > c2pmin(nk1 ,nk2 )/L;

therefore, there exists a positive constant c3 (independent of t, since both L and c2 are

independent of t) such that for all M ≥ 1 and all t ∈ P
1(K),

�{n ≤ M : n ∈ S and f (�n(x)) = t} ≤ c3 log(M). (2.3)

In fact, we have a substantially better bound. Let expk denote the k-th iterate of the

exponential function and let Lp(M) be the smallest integer k such that expk(p) > M.

Then �{n ≤ M : n ∈ S and f (�n(x)) = t} ≤ c3Lp(M); however, we will not need this

stronger bound. As an aside, we note that this stronger bound is similar to the one

obtained for the Dynamical Mordell–Lang problem in Theorem 1.4 of [6].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz257/5625888 by U

niversity of W
aterloo user on 17 M

arch 2020



Dynamical Uniform Bounds 13

Now, let κ be as in Lemma 2.5, and choose a constant c4 > 1 such that

c3 · log(κcr
4) · cr

1 < cr−1
4 (2.4)

for all sufficiently large r ∈ R, for example, we may take c4 := 2c1. Let M1 < M2 < . . . be

as in Lemma 2.5, and let

N� = �logc4
(M�)�.

Property 3 of Lemma 2.5 implies

�{n ≤ κcN�

4 : n ∈ S} ≥ M� > cN�−1
4 . (2.5)

To conclude the proof, we show that for all � sufficiently large, there exists some

n� ≤ κcN�

4 with the property that n� ∈ S and h(f (�n� (x))) ≥ N�. If this were not the case,

then since there are fewer than cN�

1 algebraic numbers t ∈ P
1(K) of logarithmic Weil

height bounded above by N�, by (2.5) there would be such an algebraic number t with

�{n ≤ κcN�

4 : n ∈ S and f (�n(x)) = t} >
cN�−1

4

cN�

1

> c3 log(κcN�

4 )

and this violates inequality (2.3). We have therefore proven our claim that for all �

sufficiently large, there exists a positive integer n� ≤ κcN�

4 with h(f (�n�(x))) ≥ N�. So,

lim sup
n→∞

h(f (�n(x)))

log(n)
≥ lim

�→∞
N�

log(κ) + N� log(c4)
= 1

log(c4)
> 0

as desired in the conclusion of Theorem 1.3. �

Lemma 2.10. If H(z) is a constant, then lim supn→∞
h(f (�n(x)))

log(n)
= ∞.

Proof of Lemma 2.10 By property 1 of Lemma 2.5, we can find a sequence n1 < n2 <

. . . with the ni ∈ S such that

f
(
�n2k−1(x)

) �= f
(
�n2k(x)

)
and {n ∈ S : n2k−1 < n < n2k} = ∅

for all k ≥ 1.

Let t0 := H(n) (for all n ∈ N) and for each i ≥ 1, let ti := f
(
�ni(x)

)
. Then (2.2)

yields that

|ti − t0|p ≤ p−ni .

So, |t2k − t2k−1|p ≤ p−n2k−1 and since t2k �= t2k−1, we have that for all k ≥ 1,

h
(
t2k − t2k−1

) = h
(
(t2k − t2k−1)−1

)
≥ c5n2k−1, (2.6)
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14 J. Bell et al.

for a constant c5 depending only on the number field K and on the particular embedding

of K into Qp (e.g., for the usual embedding of K into Qp, we may take c5 := 1
2[K:Q] ).

Inequality (2.6) yields that

max{h(t2k), h(t2k−1)} ≥ 1

2
(c5n2k−1 − log(2)) (2.7)

since h(a + b) ≤ h(a) + h(b) + log(2) for any a, b ∈ Q.

First suppose that max{h(t2k), h(t2k−1)} = h(t2k−1) for infinitely many k. Then

consider a subsequence k1 < k2 < . . . where max{h(t2kj
), h(t2kj−1)} = h(t2kj−1). Letting

mj = n2kj−1, we see

h
(
f
(
�mj(x)

)) ≥ 1

2
(c5mj − log(2)),

which shows lim supn→∞
h(f (�n(x)))

log(n)
= ∞.

Thus, we may assume that max{h(t2k), h(t2k−1)} = h(t2k) for all k sufficiently

large. We claim that

lim sup
k→∞

h(f (�n2k(x)))

log(n2k)
= ∞. (2.8)

If this is not the case, then there is some C′ > 0 such that for all sufficiently large k, we

have

C′ >
h(f (�n2k(x)))

log(n2k)
≥ 1

2 log(n2k)
(c5n2k−1 − log(2)),

where we have made use here of inequality (2.7). In particular, there is a constant C > 1

such that for all k sufficiently large,

n2k > C n2k−1. (2.9)

Recalling that S does not contain any positive integers between n2k−1 and n2k, inequality

(2.9) implies that N�S has positive upper Banach density. This contradicts property 2 of

Lemma 2.5, and so our initial assumption that C′ >
h(f (�n2k(x)))

log(n2k)
is incorrect. This proves

equation (2.8), and hence Lemma 2.10. �

Clearly, Lemmas 2.6 and 2.10 finish the proof of Theorem 1.3.
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