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Abstract
In previous work, the first author, Ghioca, and the third author introduced a broad
dynamical framework giving rise to many classical sequences from number theory
and algebraic combinatorics. Specifically, these are sequences of the form f (�n(x)),
where � : X ��� X and f : X ��� P

1 are rational maps defined over Q and x ∈
X(Q) is a point whose forward orbit avoids the indeterminacy loci of � and f . They
conjectured that if the sequence is infinite, then lim sup h( f (�n(x)))

log n > 0. They also
made a corresponding conjecture for lim inf and showed that it implies the Dynamical
Mordell–Lang Conjecture. In this paper, we prove the lim sup conjecture as well as
the lim inf conjecture away from a set of density 0. As applications, we prove results
concerning the height growth rate of coefficients of D-finite power series as well as
the Dynamical Mordell–Lang Conjecture up to a set of density 0.

Mathematics Subject Classification 11G50 · 37P55 · 14E05

1 Introduction

In [3], the authors introduced a broad dynamical framework giving rise to many clas-
sical sequences from number theory and algebraic combinatorics. In particular, this
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construction yields all sequences whose generating functions are D-finite, i.e., those
satisfying homogeneous linear differential equations with rational function coeffi-
cients. This class, in turn, contains all hypergeometric series (see, e.g., [10,27]), all
series related to integral factorial ratios [7,23], generating functions for many classes
of lattice walks [9], diagonals of rational functions [17], algebraic functions [18],
generating series for the cogrowth of many finitely presented groups [11], as well as
generating functions of numerous classical combinatorial sequences (see Stanley [25,
Chapter 6] and the examples therein). In [3], they also stated the so-called lim sup
and lim inf Height Gap Conjectures, which if true, would imply both the Dynamical
Mordell–Lang Conjecture as well as results concerning the height growth rate of coef-
ficients of D-finite power series. The goal of this paper is to prove a uniform version
of the lim sup Height Gap Conjecture and to prove the lim inf version away from a set
of density zero. Consequently, we obtain applications to D-finite power series and a
weak version of the Dynamical Mordell–Lang Conjecture.

To state our results, we fix the following notations. Throughout, we letN (resp.Z+)
denote the set of all nonnegative (resp. positive) integers. Let h denote the absolute
logarithmic Weil height function. We refer the reader to [2,14,15] for the theory of
Weil heights. Given an arbitrary rational map g, let Ig denote its indeterminacy locus.
If � is a rational self-map of a quasi-projective variety X defined over Q, then we
let X�(Q) denote the subset of points x ∈ X(Q) such that for any n ∈ N, the n-th
iterate �n(x) avoids I�; for such an x ∈ X�(Q), we let O�(x) denote its forward
orbit under �. Lastly, if f : X ��� P

1 is a rational function, let X�, f (Q) ⊆ X�(Q)

be the subset of points x with I f ∩ O�(x) = ∅.
The following lim sup Height Gap Conjecture was introduced in [3].

Conjecture 1.1 (cf. [3, Conjecture 1.4]). Let X be a quasi-projective variety, let
� : X ��� X be a rational self-map, and let f : X ��� P

1 be a non-constant rational
function, all defined over Q. Then for any x ∈ X�, f (Q), either f (O�(x)) is finite, or

lim sup
n→∞

h( f (�n(x)))

log n
> 0.

Our first main result is a simple proof of Conjecture 1.1. This generalizes [3, The-
orem 1.3], which handled the case where � and f are morphisms.

Theorem 1.2 (lim sup Height Gap). Conjecture 1.1 is true.

In [3], the authors also introduced the following lim inf Height Gap Conjecture and
showed that it implies the Dynamical Mordell–Lang Conjecture ([5]).

Conjecture 1.3 (cf. [3, Conjecture 1.6]). Let X, �, f , and x be as in Conjecture 1.1.
Suppose further that X is irreducible and the orbitO�(x) is Zariski dense in X. Then

lim inf
n→∞

h( f (�n(x)))

log n
> 0.

Generalizing our method of proof of Theorem 1.2 via a more involved technique
introduced in Sect. 3, we obtain a uniform version of the above lim sup height gap
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result for any subset T ⊆ N of positive density (see Definition 3.1 for the notion of
upper asymptotic density).

Theorem 1.4 (Uniform lim sup Height Gap). Let X, �, f , and x be as in Conjec-
ture 1.1. Then either f is constant on some periodic component of the Zariski closure
ofO�(x), or there exists an ε > 0 such that for any subset T ⊆ N of positive density,
we have

lim sup
n∈T

h( f (�n(x)))

log n
> ε.

The significance of our above uniform bound is that it immediately implies the
lim inf Height Gap Conjecture 1.3 away from a set of density zero.

Theorem 1.5 (Weak lim inf Height Gap). Let X, �, f , and x be as in Conjecture 1.1.
If f is non-constant on each periodic component of the Zariski closure ofO�(x), then
there exists a constant C > 0 and a set S ⊂ N of upper asymptotic density zero such
that

h( f (�n(x))) > C log n

whenever n /∈ S, or equivalently,

lim inf
n∈N�S

h( f (�n(x)))

log n
> 0.

Note that Conjecture 1.3 is stated only when X is irreducible andO�(x) is Zariski
dense in X because, otherwise, an example of [3] with non-Zariski dense orbit shows
that it is false. However, our result holds under a weaker but necessary hypothesis that
f is non-constant on each periodic component of the Zariski closure of O�(x).

Remark 1.6 We observe that variants of our main results (i.e., Theorems 1.2, 1.4,
and 1.5) also hold for function fields over finite fields. Our proofs are characteristic-
free except for our use of Schanuel’s Theorem 2.1 for number fields (e.g., in Step 3
of our proof of Theorem 1.4). To obtain the result for function fields, one requires
analogues of Schanuel’s Theorem. In the global case (i.e., function fields of curves
over finite fields), an analogue of Schanuel’s Theorem due to Wan [26] can be used to
obtain gaps of the same type as in the number field case. For function fields of higher
transcendence degree over finite fields, however, it appears that exact asymptotics
have not been explicitly worked out in the literature. Nevertheless, we give estimates
in Remark 3.11, which show the types of gaps one can attain via our methods.

For function fields of arbitrary transcendence degree over infinite base fields, it
turns out to be a difficult problem to obtain the types of gaps that we obtain in the case
of number fields. For example, Cantat and Xie [8] show that for birational maps � of
projective spaces, either the sequence (max0≤i≤n deg�i )n∈N is bounded, or it grows
asymptotically faster than the inverse of the diagonal Ackermann function which has

123



974 J. P. Bell et al.

significantly slower growth than log n. Although our methods show that for function
fields over finite fields one gets the same type of gap result as in the number field case
(see Remark 3.11), examples suggest that a stronger gap result might in fact hold in
the general function field case. Inspired by the recent results of Cantat and Xie and
others (see [8] and references therein), we pose the following height gap question.

Question 1.7 Let K be a function field of transcendence degree d ≥ 1 over a field
k of arbitrary characteristic. Let X be an irreducible quasi-projective variety, let
� : X ��� X be a rational self-map, and let f : X ��� P

1 be a non-constant rational
function, all defined over K . Suppose that x ∈ X�, f (K ) so that h( f (�n(x))) is not
uniformly bounded. Then is there a constant ε > 0 such that

lim sup
n→∞

h( f (�n(x)))

n
> ε ?

Remark 1.8 One may also like to consider a lim inf version of this question. However,
the naive dichotomy does not hold for function fields in positive characteristic. For
instance, let X be the affine planeA

2 overFp(t)with coordinates x1, x2, let� : X −→
X be a self-map of X defined by (x1, x2) 
→ (t x1, (1+ t)x2), and let f : X −→ A

1 be
the function f (x1, x2) = x2 − x1. Then f (�n(1, 1)) = 1 whenever n is a power of p,
but if gcd(n, p) = 1 then f (�n(1, 1)) has degree n − 1. It follows that the sequence
h( f (�n(1, 1))) is unbounded but lim infn→∞ h( f (�n(1, 1))) = 0. This example is
essentially due to Lech [16].

We provide two applications of our main results. As an application of Theorem 1.2,
we obtain a simple proof of the univariate version of a result of Bell–Nguyen–Zannier
[6] which, in turn, generalized results of van der Poorten–Shparlinski [21] with the
aid of Bell–Chen [1].

Recall that a power series F(z) ∈ Q[[z]] is D-finite, if it is the solution of a
non-trivial homogeneous linear differential equation with coefficients in the rational
function fieldQ(z); this is equivalent to saying that the coefficients of F(z) satisfy cer-
tain linear recurrence relations with polynomial coefficients (see [24, Theorem 1.5]).

Theorem 1.9 (Height gaps for D-finite power series). If
∑

n≥0 anz
n ∈ Q[[z]] is D-

finite and lim supn→∞
h(an)
log n = 0, then the sequence (an)n∈N is eventually periodic.

As an application of Theorem 1.5, we show that the DynamicalMordell–Lang Con-
jecture holds away from a set of upper asymptotic density zero (see Definition 3.1).
We note that a slightly stronger version of this result has been obtained in [4, Corol-
lary 1.5] (see also [12,20]) using the upper Banach density function (which is not less
than our upper asymptotic density).

Theorem 1.10 (Weak Dynamical Mordell–Lang). Let X be a quasi-projective variety,
� : X ��� X a rational self-map, and Y ⊆ X a subvariety of X, all defined over
Q. If x ∈ X�(Q), then {n ∈ N : �n(x) ∈ Y } is a union of finitely many arithmetic
progressions along with a set of upper asymptotic density zero.
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Lastly, we prove a generalization of Theorem 1.5 for multiple commuting rational
self-maps (under slightly stronger assumptions). We fix some notations first. Given m
commuting rational self-maps �1, . . . , �m of X and n := (n1, . . . , nm) ∈ N

m , let �n

denote the composite �
n1
1 ◦ · · · ◦ �

nm
m ; let X�1,...,�m (Q) denote the subset of points

x ∈ X(Q) such that for every n ∈ N
m , the n-th iterate�n(x) avoids the indeterminacy

loci of all �1, . . . , �m . For any x ∈ X�1,...,�m (Q), as usual, O�1,...,�m (x) stands for
the orbit of x under all�1, . . . , �m , i.e., the set of points of the form�n(x). Similarly,
for a rational function f : X ��� P

1, let X�1,...,�m , f (Q) ⊆ X�1,...,�m (Q) denote the
subset of points x with I f ∩ O�1,...,�m (x) = ∅. We endow N

m with the 1-norm
‖n‖1 := n1 + · · · + nm .

Theorem 1.11 (Weak lim inf Height Gap for multiple maps). Let X be an irreducible
quasi-projective variety, let �1, . . . , �m be m commuting rational self-maps of X,
and let f : X ��� P

1 be a non-constant rational function, all defined over Q. If the
orbit O�1,...,�m (x) of x ∈ X�1,...,�m , f (Q) is Zariski dense in X, then there exist a
constant C > 0 and a set S ⊂ N of upper asymptotic density zero such that

max{n : ‖n‖1=n} h( f (�n(x))) > C log n

whenever n /∈ S, or equivalently,

lim inf
n∈N�S

max{n : ‖n‖1=n}
h( f (�n(x)))

log n
> 0.

Theorem 1.11 shall be proved by induction on the number of self-maps for all X ,
where the base case m = 1 is implied by Theorem 1.5. In Example 5.1, we show that
one cannot expect a version of Theorem 1.11 to hold if one takes the lim inf over N

m

except a subset S of density zero, nor if one does not take the maximum over n ∈ N
m

with ‖n‖1 = n.
In [18], Lipshitz introduced and studied multivariate D-finite power series, which

extended Stanley’s pioneeringwork [24] on univariate D-finite power series. Recently,
the first author, Nguyen, and Zannier proved a height gap result for the coefficients of
multivariate D-finite power series; see [6, Theorem 1.3(c)]. The reader may be curious
to know whether it is possible to deduce their result from Theorem 1.11, analogously
to how we deduced the univariate D-finiteness result Theorem 1.9 from Theorem 1.2.
This appears to be a subtle issue: our proof of Theorem 1.9 relies on the fact that for
sufficiently large n, the coefficients of a univariate D-finite power series are of the
form f (�n(c)) for certain choices of X , �, f , and c; see [5, § 3.2.1]. In contrast, we
construct in Example 5.2 a D-finite power series in two variables (in fact, a rational
function) whose coefficients never arise as f (�n1

1 ◦�
n2
2 (c)) for any choices of X , �1,

�2, f , and c.
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2 The lim sup height gap: proof of Theorem 1.2

We start by recalling Schanuel’s Theorem, which plays a central role in the proofs
of Theorems 1.2 and 1.4. It can be regarded as a quantitative version of Northcott’s
theorem. Schanuel’s Theorem has a conjectural extension to Fano varieties, known as
Manin’s conjecture, which has attracted a lot of attention recently (see the survey [19]
and references therein).

Theorem 2.1 (Schanuel [22], cf. [14, Theorem B.6.2] or [2, 11.10.5]). Let K be a
number field of degree d and let h denote the absolute logarithmicWeil height function.
Then we have

lim
B→∞

#{P ∈ P
n(K ) : h(P) ≤ log B}

Bd(n+1)
= C(n, K ) > 0,

where the positive constant C(n, K ) depends only on n and K .

We shall prove Theorem 1.2 via an application of Schanuel’s Theorem 2.1 and
the following lemma. Recall that a topological space U is called Noetherian if the
descending chain condition holds for closed subsets of U , i.e., for every chain of
closed sets Z1 ⊃ Z2 ⊃ . . . , there is some m ≥ 1 for which Zm = Zn for all n ≥ m.

Lemma 2.2 Let X be a quasi-projective variety, let � : X ��� X be a rational self-
map, and let f : X ��� P

1 be a rational function, all defined over Q. Then there exists
a constant � ∈ N with the following property: if x, y ∈ X�, f (Q) and f (�n(x)) =
f (�n(y)) for 0 ≤ n ≤ �, then f (�n(x)) = f (�n(y)) for all n ≥ 0.

Proof Let Un = X�
⋃

j≤n(I� j ∪ I f ◦� j ) and U = ⋂
n Un . By construction, the Q-

points ofU are precisely those on which�n and f ◦�n are well-defined for all n ≥ 0,
i.e., U (Q) = X�, f (Q). We endow U with the subspace topology inherited from X
thereby making it a Noetherian topological space. Since

U ×U Un ×Un P
1 × P

1( f ◦�n , f ◦�n)

is continuous and the image of the diagonal map P
1 −→ P

1 × P
1 is closed, we see

that

Zn := {(x, y) ∈ U ×U : f (�i (x)) = f (�i (y)) for i ≤ n}

is a closed subset of U ×U . As U ×U is Noetherian, there exists an � ∈ N such that
Zn = Z� for all n ≥ �. ��
Proof of Theorem 1.2 Let x ∈ X�, f (Q). Without loss of generality, we may assume
that X , �, f , and x are defined over a fixed number field K . Suppose that

lim sup
n→∞

h( f (�n(x)))

log n
= 0,
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i.e., h( f (�n(x))) = o(log n). We will show that f (O�(x)) is finite.
Letting � be as in Lemma 2.2, we define

yi := ( f (�i (x)), f (�i+1(x)), . . . , f (�i+�(x))) ∈ (P1)�+1(K )

for i ≥ 0, and let S = {yi : i ≥ 0}. Via the Segre embedding, we may view
S ⊆ P

2�+1−1(K ). Then

h(yi ) =
�∑

j=0

h( f (�i+ j (x))) = o(log i).

Next, choose 0 < ε < ([K : Q]2�+1)−1. Then there exists N0 ∈ Z
+ such that for

all i ≥ N0, we have h(yi ) < ε log i . So, for all n ≥ N0,

#{yN0 , yN0+1, . . . , yn} ≤ #
{
z ∈ P

2�+1−1(K ) : h(z) ≤ log nε
} = O(nε[K :Q]2�+1

),

where the equality comes from applying Schanuel’s Theorem 2.1. Choosing n suffi-
ciently large, we find

#{yN0 , yN0+1, . . . , yn} < n − N0.

In particular, there exist i < j for which yi = y j . Thus, f (�n(�i (x))) =
f (�n(� j (x))) for all 0 ≤ n ≤ �, and so Lemma 2.2 implies f (�n+i (x)) =
f (�n+ j (x)) for all n ≥ 0. It follows that f (�n(x)) is eventually periodic with period
dividing j − i . Hence, f (O�(x)) is finite. ��

3 Uniform lim sup height gap: proof of Theorem 1.4

The main goal of this section is to prove Theorem 1.4 which is the strengthening of
Theorem 1.2.

3.1 Preliminary results on sets of positive density

Definition 3.1 Let A be a subset of Z
+. The upper asymptotic (or natural) density

d(A) of A is defined by

d(A) := lim sup
m→∞

|A ∩ [1,m]|
m

.

We frequently refer to d(A) simply as the density of A.

Remark 3.2 It is easy to see that the density d(A) of any A ⊆ Z
+ is right translation

invariant, i.e., d(A + i) = d(A) for any i ∈ N, where A + i := {a + i : a ∈ A}.
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Consequently, can extend the definition of density to any A ⊆ Z that is bounded from
below.

Remark 3.3 Let T ⊆ N have positive density and let L ≥ 1. By the subadditivity of
natural density, there exists some a ∈ {0, 1, . . . , L − 1} such that T ∩ (a + LN) has
positive density.

Definition 3.4 Given T ⊆ N, the shift set of T is defined to be

�(T ) = {i ∈ N : d(T ∩ (T + i)) > 0}.

Our goal in this section is to prove that if T has positive density, then �(T ) does
as well. We prove this after a preliminary lemma.

Lemma 3.5 Let T ⊆ N and N ∈ Z
+ satisfying d(T ) > 1

N . Then for any finite subset
F ⊆ Nwith |F | ≥ N, there exist j, k ∈ F with j > k such that d((T +( j−k))∩T ) >

0.

Proof For ease of notation, we let Ti = T + i for any i ∈ N. By definition of the
density function, there is a sequence 0 < m1 < m2 < · · · < mn < · · · and intervals
In = [0,mn] ⊂ N such that

lim
n→∞

|T ∩ In|
|In| = d(T ).

For each i ∈ N, we have |T ∩ In| − i ≤ |T ∩ (In − i)| ≤ |T ∩ In|, and so
limn→∞ |T∩(In−i)|

|In | = d(T ). In particular, this holds for each i ∈ F .

Fix an ε > 0 with 1
N + ε < d(T ). Then for n sufficiently large,

|Ti ∩ In|
|In| = |T ∩ (In − i)|

|In| >
1

N
+ ε

for all i ∈ F . Now, suppose to the contrary that d(Tj ∩ Tk) = d(Tj−k ∩ T ) = 0 for
all distinct j, k ∈ F with j > k. It follows that for n sufficiently large,

|Tj ∩ Tk ∩ In| <
2|In|
|F | ε

for all distinct j, k ∈ F . Clearly,

|In| ≥
∣
∣
∣
∣
∣
In ∩

⋃

i∈F
Ti

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

⋃

i∈F
(Ti ∩ In)

∣
∣
∣
∣
∣
.
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However, the inclusion-exclusion principle asserts that

∣
∣
∣
∣
∣

⋃

i∈F
(Ti ∩ In)

∣
∣
∣
∣
∣
≥

∑

i∈F
|Ti ∩ In| −

∑

j,k∈F
j>k

|Tj ∩ Tk ∩ In|

> |F |
(
1

N
+ ε

)

|In| −
(|F |

2

)
2|In|
|F | ε

=
( |F |

N
+ ε

)

|In| ≥ (1 + ε)|In|,

which yields a contradiction and hence Lemma 3.5 follows. ��
The following result is strengthening of [4, Lemma 2.1].

Proposition 3.6 If T ⊆ N satisfies d(T ) > 0, then d(�(T )) > 0.

Proof Choose a positive integer N satisfying d(T ) > 1
N , and let Ti denote T + i for

any i ∈ N. If �(T ) = N, then there is nothing to prove. So we may suppose there
is some i ∈ N such that d(T ∩ Ti ) = 0. Consider the set S of those finite subsets
F ⊆ N such that d(Tj−k ∩ T ) = 0 for all j, k ∈ F with j > k. Clearly, S �= ∅ as
{1, i + 1} ∈ S. Moreover, by Lemma 3.5, we know |F | < N for any F ∈ S.

Let ∅ �= Fmax ⊆ N be any maximal element of S (with respect to inclusion of
sets), and let M be the maximum element of Fmax. Then by our definition of Fmax, for
any integer n > M , there exists some kn ∈ Fmax satisfying

d(Tn−kn ∩ T ) > 0, i.e., n − kn ∈ �(T ).

Since 0 ≤ kn ≤ M , we see n − M ≤ n − kn ≤ n. In particular, for every c ≥ 2, we
have

iM − kcM ∈ �(T ) ∩ [(c − 1)M, cM].

It thus follows from the definition of density that d(�(T )) ≥ limc→∞ c−1
cM = 1

M . ��
Remark 3.7 Using a similar argument, one can obtain an analogue of Proposition 3.6
where one replaces d by upper Banach density.

3.2 Stable non-periodic dimension

Given a Noetherian topological space U of finite Krull dimension and continuous
map � : U −→ U , a subset Y ⊆ U is periodic with respect to � if �n(Y ) ⊆ Y for
some positive integer n; we frequently say Y is �-periodic or simply periodic if �

is understood from context. If Z ⊆ U is a closed subset, let Z1, . . . , Zr denote its
irreducible components and consider the set

S =
{

⋃

i∈I
Zi : I ⊆ {1, . . . , r}

}

.
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Notice that if Y1,Y2 ∈ S are periodic with respect to�, then so is Y1∪Y2. In particular,
there is a uniquemaximal�-periodic element ofS whichwe denote by P�(Z). Notice
that P�(Z) contains all periodic irreducible components of Z , but it is possible for
P�(Z) to also contain some non-periodic irreducible components of Z as well. We
let N�(Z) denote the union of the irreducible components of Z that are not contained
in P�(Z).

For each Zi ⊆ N�(Z), the sequence dim�n(Zi ) is weakly decreasing and con-
verges to some di ∈ N since U has finite Krull dimension. Let

νi := (di , dim Zi ).

Weput a strict total order≺ on (N∪{−∞})×(N∪{−∞}) by declaring (a, b) ≺ (a′, b′)
if a < a′, or if a = a′ and b < b′. The relations �, �, and � are then defined in the
natural way.

Definition 3.8 With notation as above, we define the stable non-periodic dimension
ν(Z) of Z to be the maximum νi with respect to ≺. If N�(Z) is empty, we define
ν(Z) = (−∞,−∞).

The following is the main technical result of this section.

Proposition 3.9 Let U be a Noetherian topological space of finite Krull dimension
and � : U −→ U a continuous map. Suppose that T ⊆ N has positive density and
Z ⊆ U is a closed subset with N�(Z) �= ∅. Then there exist infinitely many j ∈ �(T )

with ν(Z) � ν(Z ∩ �− j (Z)).

Proof Let Z1, . . . , Zr be the irreducible components of Z . After relabelling, we may
assume

N�(Z) = Z1 ∪ · · · ∪ Zs and P�(Z) = Zs+1 ∪ · · · ∪ Zr .

Let L ∈ Z
+ such that �L(P�(Z)) ⊆ P�(Z). By Remark 3.3, there is some a ∈

{0, 1, . . . , L − 1} such that T ∩ (a + LN) has positive density. Replacing T by T ∩
(a + LN), we can assume that all elements of �(T ) are multiples of L .

Fix m sufficiently large so that

dim�m(Zi ) = lim
n→∞ dim�n(Zi )

for i ≤ s, and let ν(Z) = (d, e). After relabeling, we may assume that there exist
1 ≤ � ≤ t ≤ s such that:

1. dim�m(Zi ) = d and dim Zi = e for i ≤ �,
2. dim�m(Zi ) = d and dim Zi < e for � < i ≤ t ,
3. dim�m(Zi ) < d for t < i ≤ s.

We first claim that for every j ∈ �(T ), we have

P�(Z ∩ �− j (Z)) ⊇ P�(Z). (3.1)
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To see this, first note that since j is a multiple of L , we have Z ∩ �− j (Z) ⊇ P�(Z).
So, it remains to show that every irreducible component Zi contained in P�(Z) is also
an irreducible component of Z ∩ �− j (Z). Since Zi is irreducible, it is contained in
some irreducible component Z ′

i of Z ∩ �− j (Z). Then Zi ⊆ Z ′
i ⊆ Z ∩ �− j (Z) ⊆ Z .

As Zi is already an irreducible component of Z and Z ′
i is irreducible, it follows that

Zi = Z ′
i is an irreducible component of Z ∩ �− j (Z).

By Eq. (3.1), we necessarily have ν(Z ∩ �− j (Z)) � ν(Z). Suppose that

ν(Z ∩ �− j (Z)) = ν(Z) (3.2)

for every sufficiently large j ∈ �(T ). We shall derive a contradiction in the remainder
of the proof.

We next claim that for every sufficiently large j ∈ �(T ), there is some i ≤ � such
that

Zi ⊆ �− j (Z). (3.3)

If j ∈ �(T ) is sufficiently large, then by Eq. (3.2), there is an irreducible component
C of Z ∩ �− j (Z) not contained in P�(Z ∩ �− j (Z)) such that dimC = e and
dim�n(C) ≥ d for all n ≥ 0. We have C ⊆ Zi ∩ �− j (Z) for some 1 ≤ i ≤ r . By
Eq. (3.1), we see C � P�(Z), and so Zi is not an irreducible component contained
in P�(Z), i.e., i ≤ s. Next observe that

d ≤ dim�m(C) ≤ dim�m(Zi ∩ �− j (Z)) ≤ dim�m(Zi ),

and so i ≤ t . Moreover, since C ⊆ Zi ∩ �− j (Z) ⊆ Zi , we see dim Zi ≥ e and hence
i ≤ �. By dimension contraints, C = Zi which implies equation (3.3).

Since Proposition 3.6 shows that �(T ) has positive density, by the subadditivity
of natural density, there exists a fixed i ∈ {1, . . . , �} and a positive density subset
�i ⊆ �(T ) such that equation (3.3) holds for all j ∈ �i . Further refining, there exists
k ∈ {1, . . . , r} and a positive density subset �i,k ⊆ �i such that

Zi ⊆ �− j (Zk)

for all j ∈ �i,k .
We next show that k ≤ s. If this were not the case, then Zk ⊆ P�(Z) and so

� j (Zi ) ⊆ Zk ⊆ P�(Z). In particular, since j is a multiple of L , we have � j (Zi ∪
P�(Z)) ⊆ P�(Z) ⊆ Zi ∪ P�(Z). By maximality of P�(Z), it follows that P�(Z) =
Zi ∪ P�(Z), and hence Zi ⊆ P�(Z), a contradiction.

Since�i,k is infinite, there exist a, b ∈ �i,k with b−a, a > m.Wewrite b = a+Lc
with c > 0. Since Zi ⊆ �−a(Zk), we have �a+Lc(Zi ) = �Lc(�a(Zi )) ⊆ �Lc(Zk),
and hence �a+Lc(Zi ) ⊆ �Lc(Zk). As a + Lc, Lc > m, we see dim�Lc(Zk) ≤ d =
dim�a+Lc(Zi ). Then by irreducibility of Zk , we have �a+Lc(Zi ) = �Lc(Zk). On
the other hand, b ∈ �i,k , so �a+Lc(Zi ) ⊆ Zk , which implies

�Lc(Zk) ⊆ �Lc(Zk) = �a+Lc(Zi ) ⊆ Zk .
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So, Zk is periodic and hence contained in P�(Z), contradicting the fact that k ≤ s. ��
Lemma 3.10 Let U be a non-empty Noetherian topological space of Krull dimension
d. Suppose that

Z0 ⊇ Z1 ⊇ Z2 ⊇ · · · ⊇ Zm

is a descending chain of non-periodic closed subsets of U such that ν(Z0) � ν(Z1) �
· · · � ν(Zm). Then m < (d + 1)2.

Proof Wenecessarily have ν(Z0) � (d, d).Write ν(Zi ) = (di , ei ). Then by definition
of ≺, we have d ≥ d0 ≥ d1 ≥ · · · ≥ dm . For s ∈ {0, 1, . . . , d}, let As = {i : di =
s}. Then As is an interval. Notice that if As = { j, j + 1, . . . , j + �}, then since
d j = · · · = d j+� = s, we must have e j > e j+1 > · · · > e j+�. Since e j ≤ d,
we see that � ≤ d. Hence |As | ≤ d + 1 for each s ∈ {0, 1, 2, . . . , d}. Then since
{0, 1, 2, . . . ,m} = A0 ∪ A1 ∪ · · · ∪ Ad , we see that m + 1 ≤ (d + 1)2, as required. ��

3.3 Finishing the proof of Theorem 1.4

Proof of Theorem 1.4 We divide the proof into several steps.

Step 1 We shall start with the following set-up. Let

U = X�

⋃

n∈N

(I�n ∪ I f ◦�n ),

which may not be open. We endow U with the subspace topology, thereby making it
a Noetherian topological space. Clearly, U (Q) = X�, f (Q). If U does not have any
Q-points, then the theorem is vacuously true, so we assume that there is an x ∈ U (Q)

such that f (O�(x)) is infinite. We may also assume that X ,�, f and x are all defined
over a fixed number field K . By construction, �|U is a regular self-map of U and
f |U : U −→ P

1 is regular; by abuse of notation, we denote these restriction maps by
� and f , respectively. Finally, replacing U by the Zariski closure of the orbit O�(x)
inU , we may assumeO�(x) is Zariski dense inU ; see also the end of the introduction
of [3].

So, from now on, we may assume:

1. U ⊆ X is a Noetherian topological space;
2. � is regular on U and �(U ) ⊆ U ;
3. f : U −→ P

1 is regular;
4. x ∈ U (K ) and O�(x) is Zariski dense in U ;
5. f is non-constant on each periodic component of the Zariski closure of O�(x).

Step 2 Let T ⊆ N be a subset of positive density, d = dim(U ×U ), and

Z0 = {(u, v) ∈ U ×U : f (u) = f (v)}.

123



Height gap conjectures, D-finiteness, and weak DML 983

Note that Z0 is a closed subset of U ×U since it is the inverse image of the diagonal
�P1 ⊆ P

1 × P
1 under the product map ( f , f ) : U × U −→ P

1 × P
1. Applying

Proposition 3.9 to Z0 ⊂ U × U , the product map (�,�), and T , we see that there
is some i0 ∈ �(T ) such that T1 := T ∩ (T + i0) has positive density and Z1 :=
Z0 ∩ (�,�)−i0(Z0) satisfies ν(Z1) ≺ ν(Z0). If Z1 = P(�,�)(Z1) is periodic under
(�,�), then let m = 1. Otherwise, applying Proposition 3.9 to Z1 yields an element
i1 ∈ �(T1) ⊆ �(T ) with i0 < i1 such that T2 := T1 ∩ (T1 + i1) has positive density
and Z2 := Z1 ∩ (�,�)−i1(Z1) satisfies ν(Z2) ≺ ν(Z1). Proceeding in this manner,
we obtain a sequence of integers

0 < i0 < i1 < · · · < im

and a descending chain of closed subsets Z0 ⊇ Z1 ⊇ Z2 ⊇ · · · ⊇ Zm such that
ν(Zi ) � ν(Zi+1) and Zm = P(�,�)(Zm), i.e., Zm is periodic. Furthermore, by con-
struction, if

S :=
{

∑

i∈I
i : I ⊆ {i0, . . . , im}

}

then

T ′ :=
⋂

s∈S
(T + s) ⊆ T

has positive density,

Zm =
⋂

s∈S
(�,�)−s(Z0)

and there is some L ∈ Z
+ such that

(�,�)L(Zm) ⊆ Zm .

Lastly, Lemma 3.10 implies

|S| ≤ 2m+1 ≤ 2(d+1)2 .

Notice that Zm �= ∅ since the diagonal �U ⊆ U × U is contained in Z0 and
(�,�)−n(�U ) ⊇ �U for every n ≥ 0.

Step 3 By Schanuel’s Theorem 2.1, there exists a positive real number κ > 0 depend-
ing only on the number field K such that for all sufficiently large B, we have

#
{
y ∈ P

1(K ) : h(y) ≤ log B
} ≤ Bκ . (3.4)
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Choose an ε independent of T such that 0 < ε < (2(d+1)2+1κ)−1. We shall prove that
this choice of ε satisfies the conclusion of Theorem 1.4. Suppose to the contrary that

lim sup
n∈T

h( f (�n(x)))

log n
≤ ε.

In particular, there is a positive integer N0 such that h( f (�n(x))) ≤ 2ε log n for all
n ∈ T with n ≥ N0.

First, by equation (3.4), we have

#
{
f (�n(x)) ∈ P

1(K ) : n ∈ T , N0 ≤ n ≤ N
}

≤ N 2εκ (3.5)

for N sufficiently large. Let

T ′′ =
⋂

s∈S
(T − s) ⊆ T .

Since d(T ′) > 0 and T ′′ = T ′ − (i0 + · · · + im), we see d(T ′′) > 0. By construction,
for any j ∈ T ′′, we have j + s ∈ T for every s ∈ S. In particular, equation (3.5)
implies

#
{(

f (� j+s(x))
)

s∈S ∈ P
1(K )|S| : j ∈ T ′′, N0 ≤ j ≤ N − (i0 + · · · + im)

}

≤
∏

s∈S
#

{
f (� j+s(x)) ∈ P

1(K ) : j ∈ T ′′, N0 − s ≤ j ≤ N − s
}

≤
∏

s∈S
#

{
f (� j+s(x)) ∈ P

1(K ) : j + s ∈ T , N0 ≤ j + s ≤ N
}

≤ N 2εκ·|S|. (3.6)

Step 4 Let L be as in Step 2. Since d(T ′′∩[N0,∞)) = d(T ′′) > 0, by subadditivity of
natural density, there exists an integer a ∈ [0, L) such that { j ∈ T ′′ : j ≥ N0, j ≡ a
(mod L)} has positive density. Then by the definition of natural density (see Defini-
tion 3.1), there exists a subsequence (n�)�∈Z+ of positive integers and a positive real
number δ > 0, such that

#
{
j ∈ T ′′ : N0 ≤ j ≤ n�, j ≡ a (mod L)

} ≥ δn�

for sufficiently large �. Now, replacing δ by a smaller positive number if necessary,
we can further assume that

#
{
j ∈ T ′′ : N0 ≤ j ≤ n� − (i0 + · · · + im), j ≡ a (mod L)

} ≥ δn�, (3.7)

for sufficiently large �.
Recall from Step 2 that |S| ≤ 2m+1 ≤ 2(d+1)2 and hence 2εκ · |S| < 1. Therefore,

we can choose � large enough such that δn� > n2εκ·|S|
� . Combining equation (3.7)
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with (3.6) where N = n�, a direct counting argument yields that there exist positive
integers i, j ∈ T ′′ with i < j such that

f (�i+s(x)) = f (� j+s(x)) for all s ∈ S and i ≡ j (mod L).

Then by definition, (�i (x),� j (x)) ∈ Zm (see Step 2 for the construction and
properties of Zm). Since (�,�)L(Zm) ⊆ Zm , we have (�kL+i (x),�kL+ j (x)) ∈ Zm

for every k ∈ N. As Zm ⊆ Z0, the definition of Z0 yields

f (�kL+i (x)) = f (�kL+ j (x)).

It thus follows from the fact that i ≡ j (mod L) that the sequence ( f (�kL(�i (x))))k∈N

is periodic. In particular, the orbit O�L (�i (x)) of �i (x) under �L is contained in
finitely many fibers F1, . . . , Fs of f . Note that

O�(�i (x)) =
L−1⋃

t=0

O�L (�i+t (x)) =
L−1⋃

t=0

�t (O�L (�i (x))) ⊆
L−1⋃

t=0

�t (F1 ∪ · · · ∪ Fs).

It thus follows that

O�(�i (x)) ⊆
L−1⋃

t=0

�t (F1) ∪ · · · ∪ �t (Fs).

Since the full forward orbit O�(x) is Zariski dense in U , the fibers Fi are periodic
components of U , which contradicts our assumption in Step 1 that f is non-constant
on each periodic component of the Zariski closure of O�(x). We thus complete the
proof of Theorem 1.4.

��

Remark 3.11 As mentioned in Remark 1.6, our proofs of Theorems 1.2, 1.4, and 1.5
are characteristic-free except for our use of Schanuel’s Theorem 2.1 for number fields
(e.g., in Step 3 of the proof of Theorem 1.4). We outline below an extension of our
main results to function fields of higher transcendence degree over finite fields.

LetY be an irreducible projective variety inP
m , regular in codimension one, defined

over a finite field Fq . Let K be the function field Fq(Y ) of Y . If P = [ f0 : . . . : fn] is
a K -rational point of P

n , then the height function hK can be equivalently defined by

hK (P) := degφ∗OPn (1), (3.8)

where φ is an Fq -rational map determined by P as follows:

φ : Y ��� P
n, y ∈ Y (Fq) 
→ [ f0(y) : . . . : fn(y)] ∈ P

n(Fq).
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Note that this definition of height is dependent upon the embeddingY ↪→ P
m , but given

two height functions h1, h2 on P
n
K defined in this way, there are constants C1,C2 > 0

such that

C1h1(P) ≤ h2(P) ≤ C2h1(P)

for all P ∈ P
n(K ). See, for instance, [15, §3.3], [14, §B.10] or [2, §2.4] for a brief

account of the theory of heights over function fields.
Let d denote the transcendence degree of K over Fq (i.e., d = dim Y ). By [13,

Theorem I.7.5], there is a unique polynomial pY (z) ∈ Q[z] of degree d such that
for all k sufficiently large, pY (k) = dim S(Y )k , the degree k homogeneous piece
of the homogeneous coordinate ring S(Y ) of Y with respect to the embedding into
P
m . Then using the notation of equation (3.8), the number of P ∈ P

n(K ) for which
degφ∗OPn (1) = k is at most the number of (n + 1)-tuples of degree k elements in
S(Y ), which is q(n+1)pY (k) for k sufficiently large. It follows that there is a constant
C = C(Y ) > 0 such that for k � 0, the number of P ∈ P

n(K ) with hY (P) ≤ k is
at most qC(n+1)kd . On the other hand, if we fix a nonzero element g0 ∈ S(Y )k and let
g1, . . . , gn vary over elements of S(Y )k , we see that the elements [1 : g1/g0 : . . . :
gn/g0] ∈ P

n(K ) give rise to qnpY (k) distinct elements of height at most k in P
n(K ).

Thus, similarly, for k � 0 the number of elements of height at most k in P
n(K ) is at

least qC
′nkd for some positive constant C ′. In summary, there are positive constants

C1 and C2, depending only upon Y and q, such that

BC1n ≤ #
{
P ∈ P

n(K ) : hK (P) ≤ (log B)1/d
} ≤ BC2(n+1) (3.9)

for all B sufficiently large. In fact, we only require the upper bound in our arguments.
Thus, replacing our use of Schanuel’s Theorem with (3.9), we find that when K

is a function field of transcendence degree d over a finite field Fq , analogues of
Theorems 1.2, 1.4, and 1.5 hold with log n replaced by (log n)1/d . Moreover, this gap
is optimal in terms of what can be attained via our methods. In particular, in the global
case (i.e., when d = 1), the exact same conclusion holds as in the number field case.

4 Applications of Theorems 1.2 and 1.4

4.1 Weak lim inf height gap

Theorem 1.5, which asserts that Conjecture 1.3 holds away from a set of density zero,
is an immediate consequence of Theorem 1.4.

Proof of Theorem 1.5 Let ε > 0 be the positive real number as in Theorem 1.4 and

S :=
{

n ∈ N : h( f (�n(x)))

log n
≤ ε

2

}

.

Then by Theorem 1.4, S has density zero, which concludes the proof. ��
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Remark 4.1 One can see from the proof of Theorem 1.4 (in particular, Step 3) that our
constants ε and C depend only on the fixed number field K and the dimension of X ;
moreover, they are decreasing as the dimension of X increases.

4.2 Height gaps for D-finite power series

We apply Theorem 1.2 to obtain a simple proof of Theorem 1.9 recovering the uni-
variate case of [6, Theorem 1.3(c)].

Proof of Theorem 1.9 If
∑

n≥0 anz
n ∈ Q[[z]] is a D-finite power series, then there is

a rational self-map � : P
d ��� P

d for some d ≥ 2, a point c ∈ P
d(Q), and a rational

map f : P
d ��� P

1 such that an = f (�n(c)) for n � 0; see, e.g., [5, §3.2.1]. So,
Theorem 1.2 immediately implies Theorem 1.9. ��

4.3 A weak dynamical Mordell–Lang theorem

Asmentioned before in the introduction, the lim inf Height Gap Conjecture 1.3 would
imply the Dynamical Mordell–Lang Conjecture. Similarly, we deduce Theorem 1.10
as an application of Theorem 1.5.

Proof of Theorem 1.10 For anyn ∈ N, we denote by Z≥n theZariski closure of {�i (x) :
i ≥ n} in X . Since X is a Noetherian topological space, there is somem ∈ N such that
Z≥n = Z≥m for every n ≥ m. Denote Z≥m by Z and �m(x) by x1. It then suffices to
prove Theorem 1.10 for (Z ,�|Z , x1,Y ∩ Z).

Let Z1, . . . , Zr denote the irreducible components of Z and let Yi := Y ∩ Zi .
Then x1 ∈ Zi for some i . After relabeling, we may assume that x1 ∈ Z1. For each
i = 2, . . . , r , choose an arbitrary xi ∈ O�(x1) ∩ Zi ; the intersection is non-empty
since O�(x1) is dense in Z by definition. We claim that �|Z cyclically permutes
the irreducible components Zi of Z . To see this, first note that �|Z is a dominant
rational self-map of Z , so it permutes the Zi . Suppose that (Zi1 , . . . , Zis ) is an s-cycle
under �|Z with 1 ≤ s ≤ r , and consider the forward orbit O�(xi1) of xi1 ∈ Zi1 .
Clearly, the closure of O�(xi1) in X is contained in the union of Zi1 , . . . , Zis . On
the other hand, xi1 = �n(x) for some n ≥ m, and so the closure of O�(xi1) in X is
Z≥n = Z . It follows that s = r and hence �|Z is a cyclic permutation (Zi1 , . . . , Zir ).
Hence �r (Zi ) ⊆ Zi for each i . Moreover, after relabeling, we may assume that
�(Zi ) ⊆ Zi+1 for i = 1, . . . , r − 1 and �(Zr ) ⊆ Z1. So, for i = 2, . . . , r , our xi
could be taken to be �i−1(x1). Therefore, by the subadditivity of natural density, it
suffices to show Theorem 1.10 for (Zi ,�

r |Zi , xi ,Yi ) for each i = 1, . . . , r .
We claim further that for each i , the forward orbit O�r (xi ) of xi ∈ Zi under �r

is dense in Zi . In fact, if we denote the irreducible decomposition of the closure of
O�r (xi ) by Wi,1, . . . ,Wi,ri , then

r⋃

i=1

Zi = Z = O�(x1) =
r⋃

i=1

O�r (xi ) =
r⋃

i=1

ri⋃

j=1

Wi, j .
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Since Zi is irreducible, Zi ⊆ Wk, j for some 1 ≤ k ≤ r and 1 ≤ j ≤ rk . However,
we note that Wk, j ⊆ O�r (xk) ⊆ Zk . As Z1, . . . , Zr are the irreducible components
of Z , we must have k = i . The claim O�r (xi ) = Zi thus follows.

We shall prove that either O�r (xi ) ⊆ Yi , or the set

Ai := {
n ∈ N : �rn(xi ) ∈ Yi

}

has density zero, thereby proving Theorem 1.10 for (Zi ,�
r |Zi , xi ,Yi ). If Yi = Zi or

Yi = ∅, then the result is immediate. Thus we may assume, without loss of generality,
that Yi is a non-empty proper subvariety of Zi . We pick a non-constant morphism
fi : Zi −→ P

1 such that fi (Yi ) = 1; one can accomplish this by choosing a non-
constant rational function Fi vanishing onYi and then letting fi := Fi+1. In particular,
if �rn(xi ) ∈ Yi , then h( fi (�rn(xi ))) = 0. On the other hand, as O�r (xi ) is dense in
Zi , it follows from Theorem 1.5 that there exist a positive constant C and a set S ⊂ N

of zero density such that for any n ∈ N�S, the height of fi (�rn(xi )) is greater than
C log n > 0; in particular, for such an n, �rn(xi ) /∈ Yi . It follows that Ai ⊆ S has
density zero, as required. We hence complete the proof of Theorem 1.10. ��

5 Weak lim inf height gap for multiple maps: proof of Theorem 1.11

We begin this section by proving Theorem 1.11.

Proof of Theorem 1.11 As before, we first fix a number field K so that X ,�1, . . . , �m ,
f , and x are all defined over K . We shall prove the theorem by strong induction on the
number m of commuting self-maps �1, . . . , �m for any irreducible quasi-projective
variety X and any non-constant rational function f defined over the above K . The base
case m = 1 has been handled in Theorem 1.5 with a constant CK ,X > 0 depending
only on the fixed number field K and the dimension of X (see Remark 4.1). So, let
us suppose that our theorem holds true for any k < m commuting self-maps of any
irreducible quasi-projective variety W and for any non-constant rational function on
W defined over K , with a constantCK ,W > 0 depending only on K and the dimension
of W .

Let G denote the semigroup of rational self-maps �n = �
n1
1 ◦ · · · ◦ �

nm
m of X

generated by �1, . . . , �m . By assumption, the forward orbit O�1,...,�m (x) of x ∈
X�1,...,�m , f (Q) under G is Zariski dense in X . Without loss of generality, we may
assume that for any n′ ∈ N

m , the forward orbit O�1,...,�m (x ′) of x ′ := �n′
(x) =

�
n′
1

1 ◦ · · · ◦ �
n′
m

m under G is also Zariski dense in X (for the purpose of induction).
Otherwise, there must be some fixed i with 1 ≤ i ≤ m and some fixed j with
0 ≤ j < n′

i such that the forward orbit of �
j
i (x) under the m − 1 commuting self-

maps �1, . . . , �i−1,�i+1, . . . , �m is Zariski dense in X ; Theorem 1.11 thus follows
from the induction hypothesis with the same positive constant CK ,X .

As before, let Znm denote the Zariski closure of {�k
m(x) : k ≥ nm} in X . We may

pick an nm such that Z := Znm = Znm+1 = · · · . By the above remark, wemay replace
x by�

nm
m (x) and assume that the orbit closure of x under�m is equal to Z and that�m
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permutes the irreducible components of Z . In particular, there is some fixed L ∈ Z
+

such that the Zariski closure of the orbit of x under�L
m is an irreducible component Z1

of Z . For each i ∈ {0, . . . , L − 1}, let Ri denote the subset {n ∈ N : n ≡ i (mod L)}
of N. Now, by the subadditivity of natural density, it suffices to prove the following

Claim For each i ∈ {0, . . . , L − 1}, the subset

Si := {
n ∈ Ri : h( f (�n(x))) ≤ C log ‖n‖1 for every n ∈ N

m with ‖n‖1 = n
}

of Ri has density zero, where C := CK ,X > 0 is the same constant as above.

In fact, the zero density set S := ∪Si and the above C > 0 satisfy the conclusion of
Theorem 1.11. Let us fix an i ∈ {0, . . . , L−1}. If there exists an element� = �a ∈ G
with ‖a‖1 ∈ Ri such that f is non-constant on �(Z1), then by applying Theorem 1.5
to the rational self-map�L

m of�(Z1), the non-constant rational function f |�(Z1), and
the K -rational point �(x) of �(Z1), there exists a constant CK ,�(Z1) > 0 such that

S′ :=
{
n ∈ N : h( f (�Ln

m ◦ �(x))) ≤ CK ,�(Z1) log(Ln + ‖a‖1)
}

has density zero. Now, for any s ∈ Si ⊂ Ri , without loss of generality, wemay assume
that s ≥ ‖a‖1 and write s = Ln + ‖a‖1 for some n ∈ N, since ‖a‖1 ∈ Ri . By the
definitions of Si and S′, as well as the fact that CK ,X ≤ CK ,�(Z1) (see Remark 4.1),
we have n ∈ S′. This yields that Si ⊂ LS′ + ‖a‖1 up to finitely many elements,
while the latter clearly has density zero. Hence Claim 5 follows. So, from now on,
let us consider the case when f is constant on �(Z1) for every � = �n ∈ G with
‖n‖1 ∈ Ri .

For the fixed i , let E denote the subfield of the function field K (X) of X generated
by all rational functions f ◦ �n with ‖n‖1 ∈ Ri . Since K (X) is finitely generated
over K , so is E . We may then assume that there exist k1, . . . ,ke ∈ N

m with each
‖k j‖1 ∈ Ri such that E is generated by f ◦�k1 , . . . , f ◦�ke over K . (Notice that the
f ◦ �k j do not necessarily form a K -basis.) In particular, we have a K -rational map

χ : X ��� A
e, x 
→ ( f (�k1(x)), . . . , f (�ke(x))).

Furthermore, if we let Y denote the proper transform of X under χ , then each �� ∈ G
with ‖�‖1 ∈ R0 induces a natural rational self-map � of Y such that � ◦ χ = χ ◦ ��.
Indeed, for each j with 1 ≤ j ≤ e, the rational function f ◦ (�k j ◦ ��) is in the
field E as ‖k j + �‖1 = ‖k j‖1 + ‖�‖1 ∈ Ri . Hence, there is a rational function
g j ∈ K (T1, . . . , Te) such that f ◦ (�k j ◦ ��) = g j ( f ◦ �k1, . . . , f ◦ �ke ). Clearly,
the restriction of the rational self-map of A

e defined by the g j to Y is our �.
Since Y is the proper transform of X under χ , Y is irreducible. Also, since the orbit

of x underG is dense in X , it must have dense orbit under the subsemigroup generated
by �L

1 , . . . , �L
m . Let � j denote the induced self-map of Y from �L

j . Then y := χ(x)
has Zariski dense orbit under �1, . . . ,�m . Recall that by construction the irreducible
variety Z1 is the orbit closure of x under �L

m and f is constant on �n(Z1) for every
n ∈ N

m with ‖n‖1 ∈ Ri . It follows that χ(Z1) = y is a single point fixed by �m .

123



990 J. P. Bell et al.

Therefore, ifwe let H denote the semigroupgenerated by�1, . . . ,�m−1, then the orbit
of y under H is Zariski dense in Y and one can deduce fromχ(�

Ln1
1 ◦· · ·◦�

Lnm
m (x)) =

�
n1
1 ◦ · · · ◦ �

nm
m (y) that

f
(
�

Ln1
1 ◦ · · · ◦ �Lnm

m (�k1(x))
)

= p1
(
�

n1
1 ◦ · · · ◦ �nm

m (y)
)

= p1
(
�

n1
1 ◦ · · · ◦ �

nm−1
m−1 (y)

)
,

where p1 is the projection ofA
e to the first coordinate. Applying the induction hypoth-

esis to the irreducible variety Y , the semigroup generated by �1, . . . ,�m−1, and the
projection p1, we prove Claim 5 by the same argument as before. We hence complete
the proof of Theorem 1.11 by induction. ��

The example below explains why we consider sets S ⊂ N of zero density in
Theorem 1.11, rather than subsets S ⊆ N

m of zero density,1 as well as the necessity
of the maximum over n ∈ N

m with ‖n‖1 = n.

Example 5.1 We define two self-maps �1 and �2 of X = A
1 as follows:

�1(x) = 2x and �2(x) = 0.

Let f be the identity map of A
1. It follows that if T ⊆ N

2, then

lim sup
(n1,n2)∈T

h( f (�n1,n2(1)))

log(n1 + n2)
> 0

only if T contains infinitely many points from the ray R := {(n1, n2) ∈ N
2 : n2 = 0}

which has density zero. On the other hand, the lim inf of the above quantity is zero
whenever T has positive density. Moreover, the only set T over which the lim inf is
positive is a subset of the above ray R plus finitely many points.

On the other hand, without the maximum over n ∈ N
m with ‖n‖1 = n in Theo-

rem 1.11, for any T ⊂ N, the lim inf over all n ∈ N
m with ‖n‖1 ∈ T is zero.

At the end of the introduction, we mention that it appears to be a subtle issue
to deduce a multivariate D-finiteness result (e.g., [6, Theorem 1.3(c)]) from our
Theorem 1.11. See Lipshitz [18] for the precise definition and basic properties of
multivariate D-finite power series. In the univariate case the coefficients of a D-finite
power series arise as f (�n(c)) for certain choices of X , �, f , and c; see [5, § 3.2.1].
However, in Example 5.2 below, we construct a rational function in two variables
whose coefficients cannot arise as f (�n1

1 ◦ �
n2
2 (c)) for any choices of X , �1, �2,

f , and c. It is well known that all algebraic functions are D-finite (see [18, Proposi-
tion 2.3]).

1 Generalizing Definition 3.1, the upper asymptotic (or natural) density of T ⊆ N
m is defined by d(T) :=

lim supn→∞ |T ∩ [0, n]m |/(n + 1)m .
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Example 5.2 Let us consider the following rational function

F(z1, z2) := 1

(1 − z1z2)(1 − z1)
=

∑

n2≥0

∑

n1≥n2

zn11 zn22 .

By letting an1,n2 = 1 if n1 ≥ n2 ≥ 0 and an1,n2 = 0 if n2 > n1 ≥ 0, we may write

F(z1, z2) =
∑

n1,n2∈N

an1,n2 z
n1
1 zn22 .

One can show that there is no choice of algebraic variety X , commuting rational self-
maps �1, �2 : X ��� X , and rational function f : X ��� P

1 all defined over Q, and
a point c ∈ X�1,�2, f (Q) such that

f
(
�

n1
1 ◦ �

n2
2 (c)

) = an1,n2 ,

for sufficiently large n1 and n2.
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