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Fig. 1. Three divisors in |DΓ|.

1. Introduction

This paper is motivated by the following question: given plane curves C and C ′, which 
divisors supported on Trop(C) ∩ Trop(C ′) are tropicalizations of divisors from C ∩ C ′? 
When the two tropical curves intersect properly, every tropical intersection point is the 
tropicalization of an algebraic intersection point, counted with multiplicity [24]. However, 
as is often the case, tropical curves do not intersect properly, and their intersection may 
only be lifted at the level of cycles [25,12]. In this paper we focus on the other extreme: 
where the two curves have the exact same tropicalization.

Fix a tropical curve Γ in R2, and an algebraic curve C satisfying Trop(C) = Γ. A 
divisor D on Γ is said to be C-realizable (see Definition 3.1) if it is the tropicalization 
of the intersection of C with another curve C ′, such that Trop(C ′) = Trop(C) = Γ. A 
divisor is said to be rational if its coordinates are in the valuation group of the ground 
field. Clearly, rationality is a necessary condition for realizability.

Our first main result is the following.

Theorem A. Let Γ = Trop(C) be a smooth tropical plane curve. If the valuation of the 
ground field surjects onto R, then the set of C-realizable divisors is a polyhedral complex 
of pure dimension d − g, where d is the degree of the self intersection Γ · Γ.

We should clarify what we mean by ‘balanced’. Since our tropical curve is embedded 
in R2, we may identify its divisors of degree d with subsets of (R2)d/Sd. We therefore 
refer to a set as balanced if its pullback to R2d is.

We next specialize to the case where the curve has genus is at most 1. We prove that 
a large class of divisors satisfying a combinatorial criterion are necessarily C-realizable.

Definition 1.1. Let Γ be a tropical curve. If Γ has genus 1, then a divisor in the linear 
system |Γ · Γ| is said to be internal if it has at least two chips (see Section 2.1) on the 
cycle, or a single chip in the interior of an edge of the cycle. If Γ has genus 0, then every 
divisor is said to be internal.

For instance, the divisors described in Figs. 1a and 1b are internal, whereas the divisor 
in Fig. 1c is not.

Our next main result is then:
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Theorem B. Suppose that Γ = Trop(C) is a smooth tropical plane curve of genus g ≤ 1. 
Then every rational internal divisor is C-realizable. In particular, every divisor in |Γ ·Γ|
that is supported on the minimal skeleton is realizable.

By minimal skeleton we mean the subgraph obtained by contracting all the leaf edges. 
An inherent difficulty in the proof is that, a priori, the set of curves with a fixed trop-
icalization is a non-Archimedean semi-algebraic set that does not have a nice algebraic 
structure [22]: it is not Zariski closed, and is not closed under addition. However, using 
Lemma 3.2 below, we can replace it with a complete linear system without changing the 
set of intersection points. This may be considered as a variation of tropical modification 
[9,19]. The realizability problem is therefore replaced with characterizing the tropical-
ization of certain linear systems. While the literature contains various advancements 
towards this goal in the case of abstract curves [7,6,20], this is in general a wide open 
problem. In the present paper, however, we gain additional mileage by explicitly using 
the polyhedral structure obtained from the embedding of Γ into R2.

We stress, however, that Theorem B also ensures the realizability of divisors supported 
on the minimal skeleton of Γ, and such divisors do not depend on the embedding of Γ
into R2.

In [21], Morrison provides a strong necessary condition for lifting intersections of 
smooth tropical planes curves in terms of chip firing: if D is the tropicalization of the 
scheme-theoretic C∩C ′, then D is linearly equivalent to the stable intersection Trop(C) ·
Trop(C ′). By combining the tools developed in Sections 3 and 4, we show in Theorem 5.2
that the converse of this statement is false.

Finally, we mention that tropical geometry has already had many applications in com-
puting intersections of algebraic varieties: it has been used to compute Gromov–Witten 
invariants [26], Hurwitz numbers [8], and bitangents of plane curves [14,13]. We hope 
that the results in this paper, and the tools developed to achieve them will play a role in 
understanding non-transverse tropical intersection, and inspire additional applications 
of tropical intersection theory to algebraic geometry.

Acknowledgments. We thank Matt Baker, Dustin Cartwright, Eric Katz, Sam Payne, 
Joseph Rabinoff, Martin Ulirsch, and Josephine Yu for helpful discussions and valuable 
advice. The second author is partially supported by an NSERC [RGPIN-2015-05631 
to M.S.] Discovery grant. We also thank the referee for their insightful comments and 
remarks.

2. Background

We begin by setting notations and reminding the reader of some of the basic terms 
in tropical geometry. By a tropical curve we mean a subset Γ ⊂ R2 with the following 
properties. First there is a distinguished finite set of points v1, . . . , vm ∈ Γ ∩ Z2 which 
we refer to as vertices. For each i < j, let eij be the line segment between vi and vj . 
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If eij ⊂ Γ, we refer to eij as a bounded edge of Γ. If a ray r with endpoint at vertex 
vi is contained in Γ, then we require that r have rational slope and we refer to r as an 
unbounded edge of Γ. Then Γ is the union of its vertices, bounded edges, and unbounded 
edges. We further require that at each vertex v ∈ Γ, the balancing condition holds: ∑

v∈e ue = 0, where the sum runs through the edges e containing v, and v + ue is the 
primitive lattice point along the ray emanating from v in the direction of e; notice that 
such a primitive lattice point exists as each edge has rational slope.

Let K be an algebraically closed field of characteristic 0 with a non-trivial non-
Archimedean valuation ν : K → R. Unless stated otherwise, we assume that the 
valuation is surjective onto R. The tropicalization of a variety X embedded in an 
n-dimensional torus Gn

m is the set of points

Trop(x1, . . . , xn) = (−ν(x1), . . . ,−ν(xn)),

as (x1, . . . , xn) runs through the closed points of X. Note that if we removed the assump-
tion that the valuation surjected onto R, the tropicalization would be the closure of the 
image of this map. When n = 2 and X is a curve, Kapranov’s theorem [16, Theorem 
3.13] implies that Trop(X) is a tropical curve. Moreover, every tropical curve in R2 arises 
this way.

When Γ is the tropicalization of a curve C, its subdivided Newton polygon is, by 
definition, the subdivided Newton polygon PC of C. Up to translation, this object may 
be described in terms of Γ as follows (see [4, Section 2.2] or [16, Definition 2.3.4]). For 
every vertex v of Γ, PC contains a polygon Pv whose edges have lattice length 1 and 
are perpendicular to the edges emanating from v. As v varies over the vertices of Γ, 
the various polygons Pv naturally glue together to be the polygon PC , whose edges 
are perpendicular to the infinite ends of Γ. Note that every plane tropical curve is the 
tropicalization of some algebraic curve, and the subdivided Newton polygons of all these 
curves coincide up to translation.

A tropical curve Γ is said to be smooth if it is trivalent, and each Pv is a triangle of 
area 1

2 . Unless said otherwise, we will always assume that tropical curves are smooth. 
This is also the reason that we do not discuss weights on the edges of the curve.

When two tropical curves Γ and Γ′ intersect properly at a point p, their intersection 
multiplicity is | det(u, u′)|, where u, u′ are the primitive direction vectors of the edges 
containing p. The stable intersection of Γ and Γ′, denoted Γ ·Γ′, is obtained by choosing 
a vector v such that Γ and εv + Γ′ intersect properly for small enough ε > 0, and taking 
the limit of Γ ∩ (εv + Γ′) as ε tends to 0 [16, Section 3.6].

2.1. Tropical and algebraic divisors

We provide a brief review of the basic concepts in the theory of tropical divisors. See 
[2] for a more thorough treatment. A divisor on Γ is a formal sum

D = a1p1 + . . . + akpk,
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where p1, p2, . . . , pk are points of Γ and a1, a2, . . . , ak are integers. In this case, D is said 
to have ai chips at pi; the support of D is the set of points pi. The divisor D is said to 
be effective if all ai ≥ 0. The degree of D is defined as deg(D) =

∑
ai. The divisor group 

of Γ, denoted Div(Γ), is the free abelian group generated by the points of Γ.
Suppose that φ : Γ → R is a continuous function whose restriction to each edge of Γ

is a piecewise linear function with integer slopes and finitely many domains of linearity. 
Assume moreover that φ is bounded. We associate to φ a divisor div(φ), whose value at 
every point is the sum of outgoing slopes of φ, see [18, Section 4.2] for a precise definition. 
Divisors constructed this way are referred to as principal, and two divisors are said to 
be linearly equivalent when their difference is principal.

The linear system of a divisor D, denoted |D| is the set of effective divisors that are 
linearly equivalent to D. It is a polyhedral complex, which in general does not have 
pure dimension [11]. We may view |D| as a subset of Γd/Sd, where Sd is the group of 
permutations on d elements. In particular, it is a subset of R2d/Sd. For any subset S of 
Γd/Sd, we denote S̃ its pullback to Γd.

Fix a divisor D of degree d on a smooth curve C embedded in the 2-dimensional torus 
G2

m. Since C is not a proper curve, we need to be careful with regards to the definition of 
the linear system: given a smooth compactification C of C, the linear system |D| consists 
of the effective divisors that are equivalent to D on C, and are supported on C.

We note for future that there is a vital relation between intersections and linear 
equivalence, in the sense that intersection of C with curves that are linearly equivalent 
in the ambient space gives rise to divisors that are linearly equivalent on C. Indeed, 
suppose that C was obtained as the closure of C in a smooth compactification X of G2

m. 
By [10, Theorem 1.20], the inclusion C ⊆ X pulls back to a well-defined map between 
Chow groups. Since Chow coincides with Picard in co-dimension 1, restriction of divisors 
is well-defined on linear equivalence classes. This restriction extends to the open inclusion 
C ⊆ X as well. In particular, if C1 and C2 are linearly equivalent curves on X, their 
intersection with C gives rise to linearly equivalent divisors. Similarly, if two tropical 
curve Γ1 and Γ2 are the same up to translation, then their stable intersections with a 
tropical curve Γ give rise to linearly equivalent divisors [1, Corollary 9.1].

3. Realizing divisors via stable intersection

For the rest of this section, we fix a curve C ⊆ G2
m defined over a non-Archimedean 

valued field (K, ν) with smooth tropicalization Γ ⊆ R2. We denote the genus of Γ by 
g = g(Γ), the stable self intersection Γ · Γ by DΓ, and the degree of DΓ by d.

Definition 3.1. A divisor D in |DΓ| is C-realizable (or just realizable when there is no 
cause for confusion) if there is a curve C ′ such that Trop(C ′) = Γ and D = Trop(C∩C ′).

We denote by RC the set of all C-realizable divisors. Note that since linear equivalence 
is preserved under tropicalization, we have a containment RC ⊂ |DΓ| ⊂ Γd/Sd. Let 
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R̃C ⊂ Γd be the pullback of RC under the quotient map Γd → Γd/Sd. Our goal in 
this section is to show that R̃C is a balanced polyhedral complex of dimension d − g, 
i.e. to prove Theorem A. We accomplish this in several steps. In Section 3.1, we study 
the auxiliary locus Rst

Γ of divisors Γ · Γ′, where Γ′ varies through all the tropical curves 
whose subdivided Newton polygon coincides with the subdivided Newton polygon of Γ. 
We prove in Proposition 3.6 that this yields a (d − g)-dimensional sub-locus of R̃C . This 
results in Theorem A as well as the genus 0 case of Theorem B.

3.1. Obtaining a (d − g)-dimensional locus of realizable divisors

Although we are interested in studying divisors of the form Trop(C ∩ C ′) where 
Trop(C ′) = Γ, the following lemma shows that we are allowed to consider a larger, 
better behaved set.

Lemma 3.2. Let C1 and C2 be distinct curves in G2
m, such that the Newton polygon of 

C2 is contained in the Newton polygon of C1. Then there is a curve C ′
2 with Trop(C1) =

Trop(C ′
2) such that the scheme-theoretic intersections C1 ∩ C2 and C1 ∩ C ′

2 are equal.

Proof. Let f1, f2 ∈ K[x±, y±] such that C1 = V (f1) and C2 = V (f2). Let C ′
2 = V (h)

where h = f1 +trf2, t is a uniformizer of K, and r is a positive integer. Since the Newton 
polygon of C2 is contained in that of C1, choosing r sufficiently large, we have Trop(C1) =
Trop(C ′

2). Since we have an equality of ideals (f1, f2) = (f1, h), the scheme-theoretic 
intersections C1 ∩ C2 and C1 ∩ C ′

2 are equal. �
In light of Lemma 3.2, we make the following definitions, where “st” stands for “stable”.

Definition 3.3. Rst
Γ is the set of divisors Γ · Γ′, where Γ′ is any tropical curve whose 

Newton polygon coincides with that of Γ up to translation.

Lemma 3.2 immediately implies:

Corollary 3.4. We have a containment

Rst
Γ ⊆ RC .

Proof. Let D = Γ · Γ′ where Γ′ has the same Newton polygon as Γ up to translation. 
Choose C ′ such that Trop(C ′) = Γ′. Multiplying by an appropriate monomial, we may 
assume that the Newton polygon of C ′ coincides with that of C. Lemma 3.2 then tells 
us that there is a curve C ′′ such that C ∩ C ′ = C ∩ C ′′ and Trop(C ′′) = Trop(C) = Γ. 
In particular, D = Trop(C ∩ C ′′) ∈ RC . �

As the next example shows, Rst
Γ does not contain all the realizable divisors. Nonethe-

less, Proposition 3.6 will show that it contains a large dimensional set of divisors.
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(a) (b) (c) (d)

Fig. 2. Four realizable divisors on Trop(f).

Example 3.5 (Rst
Γ 	= RC). Let t be a uniformizer for K and let C be the zero set of 

f := t + x + y + txy. Its tropicalization Γ, depicted in Fig. 2, has vertices at (−1, −1)
and (1, 1).

Let D = p1 +p2, where p1 and p2 is any pair of points on the diagonal edge of Γ. Then 
we may find a tropical curve with the same Newton polygon, whose stable intersection 
with Γ consists of p1 and p2, see Fig. 2a. By Corollary 3.4, D is C-realizable. Similarly, 
Fig. 2b illustrates how Corollary 3.4 realizes divisors that consist of a chip on the vertical 
ray emanating from (−1, −1) and a chip on the horizontal ray emanating from (1, 1).

In Fig. 2c we use the same technique to realize 2 chips at a single point along the 
diagonal edge of Γ. Notice that the stable intersection of the two tropical curves has 2 
chips at their point of intersection since the tangent directions there generate a sublattice 
of index 2. Observe that, although their subdivided Newton polygons differ, the Newton 
polygons of the two tropical curves are the same; hence Corollary 3.4 still applies here.

Finally, there are many divisors in RC that are not in Rst
Γ , such as the one depicted 

in Fig. 2d. There is no curve with the same Newton polygon as f whose stable inter-
section with Γ is (1, 2) + (1, 3). On the other hand, this divisor is in RC since it is the 
tropicalization of the intersection of C with the curve

g = ta + bx + cy + tdxy,

where

b = a + β − tγ − t2β − t5δ, c = a + β − tγ − t5δ, d = a + β − tγ

and a, β, γ, δ are generic with valuation 0.

Although Rst
Γ 	= RC , as Example 3.5 illustrates, we now show that it nonetheless 

contains a large dimensional set of divisors. Our next main goal for the rest of this 
subsection is to prove:

Proposition 3.6. Let Γ be a tropically smooth plane curve of genus g with d vertices. Then 
Rst

Γ contains a (d − g)-dimensional set of divisors.

In fact, to obtain this (d − g)-dimensional set, it would suffice to intersect Γ with 
tropical curves Γ′ having the same subdivided Newton polygon as Γ. Before proceeding 
with the proof, we illustrate the main ideas with an example.
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Fig. 3. Illustrating the proof of Proposition 3.6.

Example 3.7 (Illustrating the proof of Proposition 3.6). Let Γ be the tropical curve shown 
in Fig. 3a. Its vertices are labelled v1, . . . , v4 and its bounded edges are labelled e1, . . . , e4. 
Let SΓ be the set of tropical curves with the same subdivided Newton polygon as Γ. 
If Γ′ ∈ SΓ, then its vertices v′1, . . . , v′4 and bounded edges e′1, . . . , e′4 are in canonical 
bijection with those of Γ. Moreover, Γ′ is completely determined once we fix the location 
of v′4 and the lengths of the e′i. In Fig. 3b, the blue curve represents Γ, and the red curve 
Γ′ represents a translation of Γ by a small generic vector η.

Now, here is the key point: consider all Γ′′ ∈ SΓ that are obtained from Γ′ by small 
perturbations to the edge lengths e′1, . . . , e′4 while keeping the location of v′4 fixed. There 
is a 2-dimensional family of such Γ′′, since there are two linear conditions coming from 
the fact that the cycle must close (a linear condition from the x-coordinates and a linear 
condition from the y-coordinates). Corollary 3.4 tells us that each such Γ ·Γ′′ is realizable. 
We are interested in computing the dimension of the locus of divisors Γ ·Γ′′ obtained in 
this manner. In this particular example, we see there is a 1-dimensional family of such 
Γ · Γ′′: the purple chip pictured in Fig. 3b is the only chip which can vary in this family. 
Combined with the fact that we have a 2-dimensional space of choices for η, we obtain 
a 3 = d − g dimensional locus of realizable divisors.

In the proof of Proposition 3.6, rather than directly computing this dimension, we ask 
which Γ′′ have the property that Γ · Γ′′ = Γ · Γ′. In the example, these are precisely the 
curves obtained from Γ′ by varying the lengths of e′1 and e′3 while keeping the lengths 
of e′2 and e′4 constant. For such Γ′′, the locations of v′1 and v′4 are fixed; in accordance 
with Definition 3.8 below, we say that these vertices are pinned since their location is 
constant throughout the family. We see that the only non-pinned vertices are v′2 and 
v′3, and these vertices are precisely those which live in the topmost unbounded region of 
R2 \Γ. This region, which we denote by Ωη, is special since it corresponds to the unique 
maximal cone of the recession fan which contains the translation vector η.

In general, Proposition 3.6 will be proven by showing that (i) if v′i /∈ Ωη then it is 
pinned, (ii) each v′i ∈ Ωη is not pinned, but the location of one such v′i ∈ Ωη determines 
the location of all other v′j ∈ Ωη. Hence, the curves Γ′′ with Γ · Γ′′ = Γ · Γ′ vary in 
a 1-dimensional family. Applying this observation back to the example at hand, the 
dimension of the space of divisors Γ ·Γ′′ obtained from perturbations of the edge lengths 
of Γ′ is 2 − 1 = 1, which is the same answer we obtained above. Combined with the fact 
that there are 2-dimensions worth of choices for η, we obtained a 1 + 2 = 3 dimensional 
locus of realizable divisors.
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Having now outlined the general strategy for proving Proposition 3.6, we proceed by 
establishing some notation. Denote by E0(Γ) the set of bounded edges of our tropically 
smooth curve Γ, and let SΓ be the set of tropical curves Γ′ with the same subdivided 
Newton polygon as Γ. Notice that if Γ′ ∈ SΓ, then it is obtained by translating Γ by 
some η ∈ R2, followed by varying the edge lengths of Γ. Our goal is to understand the 
space of divisors Γ · Γ′ obtained by letting Γ′ vary through the elements of SΓ.

We will study SΓ by breaking it up into more manageable pieces. For each Γ′ ∈ SΓ, 
there is a canonical bijection between the vertices of Γ and those of Γ′, which we denote 
ϕΓ′ . For a fixed generic η ∈ R2, let vη ∈ Γ be the unique vertex whose dot product with 
η is minimal.1 Denote vΓ′,η = ϕΓ′(vη) the vertex of Γ′ corresponding to vη, and let

SΓ,η := {Γ′ ∈ SΓ | vΓ′,η = vη + η}

be the set of tropical curves obtained from Γ + η by varying the edge lengths of E0(Γ)
while fixing the position of the vertex vΓ′,η = vη +η. That is, we are assigning a length to 
each element of E0(Γ) subject to the condition that each cycle closes. We may therefore 
identify SΓ,η with an open subset of a vector subspace VΓ,η ⊂ R|E0(Γ)| of dimension 
|E0(Γ)| − 2g.

Finally, we define a piecewise linear map

ΨΓ,η : SΓ,η → Div(Γ)

sending a tropical curve Γ′ to Γ · Γ′.

Definition 3.8. Let Γ′ ∈ SΓ,η, and denote F = Ψ−1
Γ,η(ΨΓ,η(Γ′)), the collection of curves 

Γ′′ ∈ SΓ,η for which Γ · Γ′ = Γ · Γ′′. We say that a vertex v′ of Γ′ is η-pinned (or pinned
when η is understood) if there is an open neighborhood U ⊂ SΓ,η of Γ′ such that U is 
contained in a domain of linearity of ΨΓ,η, and ϕΓ′′(v′) = v′ for all Γ′′ ∈ U ∩ F .

In other words, a vertex is pinned if moving it changes the stable intersection with Γ.

Remark 3.9. By the very definition of SΓ,η, if Γ′ is in a domain of linearity of ΨΓ,η, then 
vΓ′,η is pinned.

Throughout the rest of this section, we say that two vertices of Γ′ are neighbors if 
they are connected by an edge.

Lemma 3.10. Let η ∈ R2 be generic with sufficiently small norm, and let Γ′ = Γ + η. 
Then the following hold:

(1) Γ′ is in the interior a domain of linearity of ΨΓ,η;

1 vη plays the same role as v4 in Example 3.7. Similarly, vΓ′,η plays the role of v′
4.
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(2) there is a unique connected component Ωη of R2 \ Γ such that Ωη + η ⊂ Ωη;
(3) if v′ ∈ Γ′ is a vertex with v′ /∈ Ωη, then v′ is pinned.

Proof. By our hypothesis on η, we see Γ′ intersects Γ in d distinct points which lie in 
the interior of the edges of Γ. It follows that Γ′ is in the interior of a domain of linearity.

Consider a connected component Ω of R2\Γ. It is convex [23], and since η is sufficiently 
small, (Ω + η) ∩ Ω 	= ∅. If Ω is a bounded region, then Ω + η is not contained in Ω. By 
[5, Corollary 3.10], the recession cones of Γ fit together to form a complete fan, hence η
is in the interior of a unique maximal cone of the recession fan. As a result, Ω + η ⊂ Ω
for exactly one unbounded region Ω, proving our second claim.

For the final claim of the lemma, we begin with some trivial observations. Since Γ
is tropically smooth, it is a balanced trivalent graph. It follows that a vertex v′ ∈ Γ′ is 
pinned under any of the following circumstances: (i) v′ has two edges that intersect Γ, 
(ii) v′ has two neighbors that are pinned, (iii) v′ has an edge e′ that intersects Γ as well 
as a neighbor not coming from e′ which is pinned. Finally, we observe that every vertex 
v′ of Γ′ has at least one edge e′ that intersects Γ. Indeed, v′ = v + η for some vertex 
v of Γ; we choose e′ to be the η-translate of an edge e of v such that the dot product 
ue · η < 0, where ue is the unit vector emanating from v in the direction of e.

Now, let v′0 be a vertex of Γ′ contained in a connected component Ω of R2 \Γ; assume 
Ω 	= Ωη. We know v′0 has an edge e′0 intersecting Γ. If v′0 has two edges intersecting 
Γ, then v′0 is pinned. Otherwise, since Γ′ is trivalent, the remaining two edges of v′0
are contained in Ω. Both of these edges may be unbounded; for any bounded edge, the 
corresponding neighbor vertex is contained in Ω and we may apply the same argument 
to said vertex. The result is a chain of neighboring vertices v′−s, . . . , v

′
−1, v

′
0, v

′
1, . . . , v

′
r

with the following properties:

(1) Each v′i ∈ Ω.
(2) Each v′i has an edge e′i intersecting Γ.
(3) Let f ′

i be the edge connecting v′i to v′i+1. Let g′r 	= e′r, f
′
r−1 be the remaining edge of 

v′r. Let g′−s 	= e′−s, f
′
−s be the remaining edge of v′−s. Then g′r intersects Γ or it is 

unbounded and contained in Ω. Similarly, g′−s intersects Γ or it is unbounded and 
contained in Ω.

We claim that it is impossible for both g′r and g′−s to be unbounded rays contained 
in Ω. If Ω is a bounded region, this is clear. If Ω is unbounded, then since v′−s and 
v′r are η-translates of vertices of Γ, the recession cone corresponding to Ω is generated 
by the unbounded rays of g′−s and g′r. Since Ω 	= Ωη, we see η is not contained in the 
recession cone corresponding to Ω, thereby showing that one of these unbounded rays 
must intersect Γ. We have therefore established that one of v′−s and v′r has two edges 
that intersect Γ. Without loss of generality, say it is v′r. So, v′r is pinned. Then v′r−1 has 
a neighbor which is pinned as well as an edge e′r−1 which intersects Γ, so v′r−1 is also 



Y. Len, M. Satriano / Journal of Combinatorial Theory, Series A 170 (2020) 105138 11
pinned. Arguing in this manner, we see v′r, v
′
r−1, . . . , v

′
0 are all pinned. So, v′0 is pinned, 

establishing the last of our claims. �
In the process of analyzing the fibers of ΨΓ,η below (Lemma 3.13), we would need 

to avoid the situation where the vertex vη is on the boundary of Ωη. To illustrate this 
point, we begin with an example.

Example 3.11. Consider the following tropical curve Γ, where the vertices are labelled 
by vi and the unbounded rays are labelled by gi and ei.

v0 v1
g0 g1

e0 e1

If η lives in the pointed cone generated by the rays g0 and g1, then Ωη is equal to the 
topmost region and hence vη lies on its boundary. However, note that if η is contained 
in the cone spanned by g0 and e0, then Ωη is equal to the leftmost region. In this case, 
vη = v1 which is not on the boundary of Ωη.

As the next lemma shows, we may choose η so that the vertex vη is not on the 
boundary of Ωη.

Lemma 3.12. Assume d > 1. Then there is a non-empty open subset W ⊂ R2 such that 
for any generic η ∈ W of sufficiently small norm, vη is not on the boundary of Ωη.

Proof. Let η0 be any generic element of R2 with sufficiently small norm. Let v0, v1, . . . , vr
be the vertices of Γ on the boundary of Ωη, ordered in such a way that vi and vi+1 are 
neighbors. Let fi be the edge connecting vi to vi+1. For 0 < i < r, let ei be the remaining 
edge of vi; for i ∈ {0, r}, let ei and gi be the remaining edges of vi so that gi is unbounded 
and the boundary of Ωη is given by g0 ∪ f0 ∪ · · · ∪ fr−1 ∪ gr.

First suppose that for some 0 ≤ j ≤ r, the edge ej is bounded, connecting vj to a 
vertex xj . In this case, we let W be the interior of the cone (centered at 0) with boundary 
rays g0 and gr, i.e. W is the set of η such that Ωη = Ωη0 . Then for any generic η ∈ W

of sufficiently small norm, xj · η < vi · η for all 0 ≤ i ≤ r, and since vη is defined to be 
the vertex of Γ whose dot product with η is minimal, we see vη 	= vi; in particular, vη is 
not on the boundary of Ωη.

Next consider the case where ej is unbounded for all 0 ≤ j ≤ r. Then the vertices of 
Γ are precisely v0, . . . , vr; since d > 1, we see r ≥ 1. In this case, we let W be the interior 
of the cone (centered at 0) with boundary rays g0 and e0. Then for any generic η ∈ W

of sufficiently small norm, Ωη has exactly one vertex on its boundary, namely v0. Since 
v1 · η < v0 · η, we again see vη is not on the boundary of Ωη. �
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Having now constructed our suitable set W , we turn to analysing the fibers of ΨΓ,η, 
which amounts to an analysis of the vertices of Γ′ contained in Ωη.

Lemma 3.13. Assume d > 1. Let W ⊂ R2 be as in Lemma 3.12, let η ∈ W be generic of 
sufficiently small norm, and let Γ′ = Γ +η. Then there is an open neighborhood U ⊂ SΓ,η
of Γ′ such that U is contained in a domain of linearity of ΨΓ,η and the fibers of ΨΓ,η|U
are 1-dimensional.

Proof. As in the proof of Lemma 3.12, let v0, v1, . . . , vr be the vertices of Γ on the 
boundary of Ωη, ordered in such a way that vi and vi+1 are neighbors. Let fi be the edge 
connecting vi to vi+1. For 0 < i < r, let ei be the remaining edge of vi; for i ∈ {0, r}, let 
ei and gi be the remaining edges of vi so that gi is unbounded and the boundary of Ωη

is given by g0 ∪ f0 ∪ · · · ∪ fr−1 ∪ gr.
Let v′i = vi + η which is a vertex of Γ′, and e′i = ei + η which is an edge of Γ′. Let 

pi be the intersection point of e′i with Γ. Lastly, we let ui denote the unit vector in the 
direction from pi to v′i, and wi be a unit vector in the direction from vi to vi−1. Then 
we have

v′i = pi + λiui and v′i−1 = v′i + μiwi

for some λi, μi ∈ R+. By Lemma 3.10 (1), we can choose a sufficiently small open 
neighborhood U ⊂ VΓ,η of Γ′ which is contained in a domain of linearity. Notice that for 
η sufficiently small, a vertex v ∈ Γ satisfies v+η ∈ Ωη if and only if v is on the boundary 
of Ωη. Said another way, a vertex v′ ∈ Γ′ is in Ωη if and only if v′ = v′i for some i. By 
Lemma 3.10 (3), we then know that if v′ ∈ Γ′ is vertex with v′ 	= v′i, then v′ is pinned. 
Furthermore, as Γ′′ varies through elements of the fiber of ΨΓ,η|U above Γ′, we have 
Γ · Γ′ = Γ · Γ′′, and so the location of pi is fixed throughout the family. Therefore, every 
such element Γ′′ corresponds to a choice of εi, ωi ∈ R of sufficiently small norm which 
satisfy

v′′i = v′i + εiui and v′′i−1 = v′′i + (μi + ωi)wi

where v′′i := ϕΓ′′(v′i).
To show that there is a 1-dimensional family of such Γ′′, we prove that for all ε0 of 

sufficiently small norm, there are unique choices of the εi and ωi such that the above 
equations are satisfied. We show this inductively on i. Suppose we have shown existence 
and uniqueness of εj−1 and ωj−1. Then uj and wj form a basis for R2, so v′′j−1 =
pj + ajuj + bjwj for unique aj , bj ∈ R. So,

pj + ajuj + (bj − μj − ωj)wj = v′′j−1 − (μj + ωj)wj = v′′j = pj + (λj + εj)uj .

Thus, we find εj = aj − λj and ωj = bj − μj are uniquely determined. �
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We are now ready to prove the main result of this subsection.

Proof of Proposition 3.6. If d = 1, the statement is clear, so we may assume d > 1. 
Choose W as in Lemma 3.13, let η ∈ W be generic with sufficiently small norm, and let 
Γ′ = Γ + η. Since Γ′ lies in the locus of linearity of ΨΓ,η by Lemma 3.10, we can apply 
the First Isomorphism Theorem to compute the image of ΨΓ,η in a small neighborhood 
U of Γ′. By Euler’s formula, |E0| − d + 1 = g and by Lemma 3.13, the fibers of ΨΓ,η|U
are 1-dimensional. So, ΨΓ,η(U) has dimension

|E0| − 2g − 1 = d + g − 1 − 2g − 1 = d− g − 2.

Combined with the fact that we have a 2-dimensional space of choices for η, we see Rst
Γ

contains a (d − g)-dimensional set of divisors. �
Remark 3.14. The boundary of the region Ωη plays a similar role to that of a string that 
appeared in [15, Lemma 4.2] and [17, Proposition 4.49].

3.2. Proof of Theorem A and the genus 0 case of Theorem B

Making use of Proposition 3.6, we show that R̃C is a polyhedral complex that is 
balanced and of pure dimension d − g, thus proving Theorem A.

Proof of Theorem A. Let X be a smooth toric compactification of G2
m such that the 

closure C of C is smooth. Consider the linear system on X of curves whose Newton 
polygon is contained in the Newton polygon of C, and denote L its restriction to C. 
Let S ⊂ L be the subset of divisors that are supported on C, and let L = S|C . By 
Lemma 3.2, we see that Trop(L) = RC .

Corollary 3.4 and Proposition 3.6 imply that RC contains a (d −g)-dimensional subset. 
Since dimension is preserved under tropicalization, the dimension of L is at least d − g

as well.
On the other hand, since restriction of divisors is well-defined on equivalence classes 

(see the discussion at the end of Section 2.1), L is a subset of a complete linear system 
of degree d > 2g − 2 on a curve of genus g. By Riemann–Roch, the dimension of such a 
linear system is exactly d − g, so the dimension of L is at most d − g. We conclude that 
the dimension of L is exactly d − g as well.

The pullback L̃ of L via the natural map Cd → Cd/Sd is embedded in a torus via 
L̃ ⊂ Cd ⊂ G2d

m . Since tropicalization commutes with pullback, we have Trop(L̃) = R̃C . 
Since L has dimension d −g, every irreducible component L̃′ of L̃ is also d −g dimensional, 
hence Trop(L̃′) is a subset of R̃C that is balanced and of pure dimension d −g. It follows 
that the union of the tropicalizations of these irreducible components, namely R̃C , is 
balanced and of pure dimension d − g as well. �

We are now in a position to prove the genus 0 case of Theorem B.
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Corollary 3.15. If C is rational then every divisor of degree d is realizable. That is, 
R̃C = Effd(Γ), the set of degree d effective divisors on Γ.

Proof. Let L be as in the proof of Theorem A. Since C is rational, we have dimL = d. 
But then L is a full dimensional subset of Effd(C), which is irreducible. It follows that 
L = Effd(C). Since the map Effd(C) → Effd(Γ) is surjective, every divisor of degree d on 
Γ is realizable. �
4. Internal divisors

Having now handled Theorem B for rational curves, we turn to the genus 1 case. 
Throughout this section, we assume that Γ is a smooth tropical plane curve of genus 1. 
We denote by IΓ the collection of internal divisors (Definition 1.1) in |DΓ|; Our strategy 
for proving Theorem B is as follows. In Lemma 4.4, we use the balancing condition for 
R̃C (Theorem A) to show that if σ1 and σ2 are adjacent top-dimensional cells of IΓ, 
and if σ1 ⊂ RC , then σ2 ⊂ RC . Making use of Proposition 3.6, we are able to find a 
top-dimensional cell of IΓ contained in RC , and then in Corollary 4.5, we use this to 
show IΓ ⊂ RC , thereby proving Theorem B for Γ.

Let us now describe the polyhedral structure of IΓ and |DΓ|. As |DΓ| may be identified 
with a subset of R2d/Sd, it has a natural polyhedral structure arising from the metric 
of R2d. Each cell is indexed by choices of vertices v1, . . . , v� and edges e�+1, . . . , ed. The 
corresponding cell parametrizes divisors in |DΓ| where 
 chips are forced to remain at the 
vertices v1, . . . , v�, and the rest of the chips are allowed to vary in the edges e�+1, . . . , ed
(as long as they maintain linear equivalence with DΓ). A cell is said to be maximal if it 
is not contained in a higher dimensional cell. Maximal cells are given by setting 
 = 0
and letting all chips vary in the chosen edges. Note that |DΓ| is not pure dimensional, 
i.e. maximal cells may have different dimensions. For instance, a cell that parametrizes 
divisors supported only on bridge edges has dimension d, whereas any other cell has 
strictly smaller dimension.

Now, since IΓ excludes divisors supported away from the cycle, it is, in fact, pure 
dimensional of dimension d −1. Co-dimension 1 cells of IΓ are obtained by forcing a single 
chip to remain at a vertex. A word of caution is in order. When there are exactly two 
chips on the cycle, linear equivalence implies that the position of one of them determines 
the position of the other. In particular, if the cycle is highly symmetric, forcing one chip 
to remain at a vertex could mean that the other chip is at a vertex throughout the entire 
cell. Such a situation requires special care, and we give it a name.

Definition 4.1. A cell of IΓ is said to be exposed if it parametrizes divisors of the form

D′ = v′ + v′′ + p3 + . . . + pd,

where v′, v′′ are vertices of the cycle, and p3, p4, . . . , pd are in the interiors of edges that 
are external to the cycle.
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Fig. 4. A divisor in an exposed cell of |DΓ|.

The term ‘exposed’ is derived from the fact that there is an adjacent d-dimensional 
cell of |DΓ| \ IΓ, where the two chips from the vertices are allowed to move away from 
the cycle. Exposed cells are adjacent to two maximal cells in IΓ, in which the 2 chips 
at the vertices move off in either direction. For non-exposed co-dimension 1 cells, the 
adjacent maximal cells are given by letting the chip on the vertex move along one of the 
adjacent edges. Since Γ is trivalent, there are three such cells in |DΓ|. The complexes IΓ
and |DΓ| coincide at a neighborhood of every non-exposed cell.

Note that IΓ also excludes the cells of |DΓ| where one chip is at a vertex, and the 
rest are away from the cycle. Such cells have dimension d − 1, but are only adjacent to 
d dimensional cells. In particular, IΓ coincides with the union of maximal cells of |DΓ|
of dimension d − 1.

Example 4.2. The divisor depicted in Fig. 4 is in an exposed 2-dimensional cell, obtained 
by letting the two chips on the infinite rays vary. The adjacent 3-dimensional cells of IΓ
are given by also letting the chips on the vertices move towards each other or away from 
each other at equal speed. By letting those chips vary on the adjacent infinite rays, we 
obtain a 4-dimensional cell of |DΓ| which is not in IΓ.

As we shall now see, the set of internal divisors satisfies an additional desirable prop-
erty.

Lemma 4.3. If Γ has genus 1, then IΓ is connected in co-dimension 1.

Proof. Throughout the proof we say that a path in IΓ is admissible if it avoids cells of 
co-dimension greater than 1.

First, let D1 and D2 be divisors in top dimensional cells of IΓ that are supported 
on the cycle. In particular, they have the same number of chips on the cycle, and this 
number is at least three. If D2 = D1 + divφ, then there is a path between them in |DΓ|
given by D(t) = D + div max(t, φ). When t is smaller than the minimum of φ we have 
D(t) = D1, and when t is greater than the max, we have D(t) = D2. As we will see, this 
path can be perturbed to become admissible.

In any path in |DΓ|, the position of the chips vary continuously. Denote by 
c1(t), c2(t), . . . , cd(t) the functions describing the position of the different chips at time 
t. Choose generic ε1, . . . , εd ∈ R that are arbitrarily small and sum to zero. Let D′

1 and 
D′

2 be the divisors obtained from D1 and D2 by translating each chip ci a distance εi
along the cycle. Similarly, at time t, consider the divisor D(t)′ obtained from D(t) by 
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translating each chip ci a distance εi along the cycle. All of these divisors are equivalent 
to each other, and D(t)′ is a continuous path between D′

1 and D′
2. Moreover, since the 

εi’s were chosen generically, no more than one chip can be at a vertex at any time t. 
Therefore, the path obtained by concatenating the paths from D1 to D′

1 to D′
2 to D2 is 

admissible.
The proof will be complete once we show that there is an admissible path from every 

divisor in IΓ to one supported on the cycle. Suppose that D is in a top-dimensional cell 
of IΓ, and has a chip at a point p outside of the cycle. Let v be the point on the cycle 
that is closest to p. By continuously sliding the chip towards v until it reaches the cycle, 
we obtain an admissible path from D to D − p + v. Moreover, since D was in IΓ, the 
divisor D − p + v has at least 2 chips on the cycle. We may therefore move the chips on 
v to the interior of an adjacent edge on the cycle in an admissible way. We have shown 
that there is an admissible path from D to a divisor in a top cell with strictly fewer 
external chips. By induction, there is an admissible path to a divisor that is supported 
on the cycle. �

As the next lemma shows, when a cell is realizable, its neighboring cells are realizable 
as well.

Lemma 4.4. Let σ1 and σ2 be top dimensional cells of IΓ intersecting at a co-dimension 
1 cell σ0. If σ1 ⊂ RC , then σ2 ⊂ RC .

Proof. In order to show that RC contains the adjacent cell σ2 as well, we distinguish 
between the case where σ0 is exposed and is adjacent to two cells of IΓ, or σ0 is not 
exposed, and is adjacent to three cells of IΓ. We deal with the case of an exposed cell, 
which is harder, and leave the detail of non-exposed cells to the reader.2

Assume then that σ0 is an exposed cell, which parametrizes divisors with two chips 
on vertices of the cycle, and the rest of the chips are in the interior of edges away from 
the cycle. The two cells σ1 and σ2 correspond to divisors where the chips on the vertices 
move into the interior of cycle. We already know that RC contains σ1. As we will see, 
RC may only be balanced if it contains σ2 as well.

We set up some notation in order to describe the pullbacks of these cells to R2d. 
Suppose that σ0 classifies divisors of the form D′ = v′ + v′′ + p3 + . . . + pd, such that 
v′ and v′′ are vertices, and p3, . . . , pd are in the interior of edges e3, . . . , ed that are all 
external to the cycle. For each cell σ, we denote σ̃ its pullback to R2d. Then we may 
write

σ̃0 = {v′} × {v′′} × e3 × . . .× ed.

2 Here is why the non-exposed case is easier: when σ0 is not exposed, it is contained in 3 maximal cells 
σ1, σ2, and σ3. Since σ1 ⊂ RC , the balancing condition forces σ2 and σ3 to be contained in RC as well. 
When σ0 is exposed, a more refined argument is needed.
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v′′
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f ′′
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Fig. 5. A divisor in σ0.

Let f ′
1, f

′
2 ∈ R2 be the primitive direction vectors of the edges of the cycle emanating 

from v′, and f ′′
1 , f

′′
2 the primitive direction vectors of the edges of the cycle emanating 

from v′′. We choose f ′
1 and f ′′

2 to have clockwise orientation along the cycle, and f ′′
1

and f ′
2 to have counter-clockwise orientation along the cycle (see Fig. 5). If σj (where 

j = 1, 2) is the cell in which the chips move from the vertices into f ′
j, f

′′
j , then σ̃j is 

the subset of R≥0f
′
j × R≥0f

′′
j × e3 × . . . × ed in which the coefficients of the first two 

coordinates are equal.
We now describe the cell of |̃DΓ| ⊂ R2d adjacent to σ0 parametrizing divisors that are 

supported away from the cycle (note that this cell is d-dimensional). Since Γ is balanced, 
the direction vector of the edge emanating from the cycle at vj is −f ′

j − f ′′
j . This cell is 

therefore of the form

R≤0(f ′
1 + f ′

2) ×R≤0(f ′′
1 + f ′′

2 ) × e3 × . . .× ed.

Now, since R̃C is of dimension d −1, its intersection with σ̃0 consists of a finite number 
of (d − 1)-dimensional cells τ̃1, ̃τ2, . . . , ̃τk. Assume for the sake of contradiction that RC

does not contain σ2. We will show that in this case, the balancing condition cannot be 
satisfied. Fix an integer vector v1 such that σ̃1 is spanned by σ̃0 and v1. Similarly, fix 
integer vectors u1, . . . , uk that span τ̃i. Then the balancing condition for R̃C implies that

v1 + u1 + . . . + uk ∈ σ̃0.

Since each ui lives in τ̃i, its first two coordinates form a negative multiple of f ′
1 + f ′

2, 
and its third and fourth coordinates form a negative multiple of f ′′

1 + f ′′
2 . But v1 lives in 

σ1, so its first two coordinates form a positive multiple of f ′
1, and the third and fourth 

coordinates form a positive multiple of f ′′
1 . These vectors never sum to zero, so the 

balancing condition cannot be satisfied, which is a contradiction. �
We are finally ready to prove that every internal divisor is realizable. Since we have 

assumed throughout this paper that the non-Archimedean valuation ν : K → R is 
surjective, this proves Theorem B in the case where the valuation is surjective.

Corollary 4.5. If Γ has genus 1, then

IΓ ⊆ RC .
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Proof. To begin, we show that there is a top-dimensional cell of IΓ that is contained 
in RC . Let η ∈ R2 be generic with sufficiently small norm and let Γ′ = Γ + η. Then 
the proof of Proposition 3.6 tells us RC contains a (d − 1)-dimensional locus of divisors 
Γ · Γ′′ coming from sufficiently small perturbations of η and of the edge lengths of Γ. 
Notice that all such Γ ·Γ′′ are internal. We have therefore produced a (d −1)-dimensional 
open locus of RC contained in IΓ, and hence there is a (d − 1)-dimensional cell σ0 of 
IΓ that contains an open set of RC . We claim that RC must contain σ0 itself. Indeed, 
if σ0 	⊂ RC , then the balancing condition for R̃C (Theorem A) dictates that there a cell 
σ′ of RC that is attached to the interior of σ0. But RC is a subset of |DΓ|, and such a 
cell σ′ does not exist in |DΓ|, as σ0 is a cell of |DΓ|.

Having now shown the existence of a top-dimensional cell σ0 of IΓ with σ0 ⊆ RC , 
we fix an interior point p0 ∈ σ0. To prove IΓ ⊆ RC , it suffices to show that every 
top-dimensional cell σ of IΓ is contained in RC . Choose an interior point p of σ. Since 
IΓ is connected in co-dimension 1 by Lemma 4.3, there is a path γ : [0, 1] → IΓ from p0

to p which avoids cells of co-dimension greater than one; choosing the path minimally, 
we can assume it intersects all cells a finite number of times. Any time that the path 
crosses from one cell to another, it must pass through their intersection. Since γ avoids 
cells of co-dimension greater than one, this means we have 0 = s0 < t0 ≤ s1 < t1 ≤
s2 < · · · < tm = 1 and a chain of cells σ0 ⊃ τ0 ⊂ σ1 ⊃ τ1 ⊂ · · · ⊂ σm = σ with the σi

full-dimensional, the τi of co-dimension 1, γ([si, ti]) ⊂ σi, and γ([ti, si+1]) ⊂ τi; we can 
assume σi 	= σi+1.

Notice that if σj ⊆ RC , then τj is also contained in RC since τj ⊂ σj . Then Lemma 4.4
tells us σi+1 ⊆ RC . Since σ0 ⊆ RC , we see by induction that σ ⊆ RC . �

To finish the proof of the main theorem, we remove the assumption that the valua-
tion is surjective. Many of the arguments used above are invalid in this case, since the 
collection of C-realizable divisors only becomes a polyhedral complex after passing to 
the closure.

Proof of Theorem B. Let D be a K-rational internal divisor, and let (K̃, ̃ν) be an ex-
tension of the non-Archimedean field (K, ν), in which the valuation ν̃ surjects onto R.

Let Ñ and N be the linear systems in G2
m(K̃) and G2

m(K) respectively of curves 
whose Newton polygon is contained in that of C, and let L̃ and L be their restric-
tions to C. By Lemma 3.2, we know that Trop L̃ contains IΓ, and in particular con-
tains D.

Let D be a divisor on C such that Trop(D) = D, and let p1, . . . , pd be the corre-
sponding points in G2

m(K). The collection of curves in Ñ passing through these points 
is a vector subspace Ṽ . Since p1, . . . , pd are K-points, Ṽ is defined via linear equations 
over K. The same linear equations cut out a vector subspace of N of the same positive 
dimension. It follows that there is a curve C ′ defined over K passing through p1, . . . , pd, 
and in particular, C ∩ C ′ is a divisor tropicalizing to D. �
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Fig. 6. Realizing a non-internal divisor via intersection.

5. Non-internal cells and generalizations

The techniques in the proof of Lemma 4.4 may also be used to provide partial in-
formation about the realizable locus inside the non-internal cells |DΓ| \ IΓ. In fact, the 
balancing condition of RC implies that there are exactly two possibilities for the realiz-
able cells adjacent to an exposed cell that are not in IΓ.

(1) Either there is a unique such cell, parametrizing divisors where the two chips on 
v′, v′′ move away from the cycle at equal speed, or

(2) There are two such cells, and in each of them one chip moves away from the cycle, 
and the other chip stays at the vertex.

Note, however, that, since these cells are contained in a d-dimensional cell of |DΓ|, there 
is no guarantee that RC contains them in their entirety.

Example 5.1. Let Γ be the tropical curve shown in Fig. 6 with four vertices v1 =
(−1, 1), v2 = (1, 1), v3 = (1, −1), v4 = (−1, −1). Denote the infinite edge adjacent to 
vi by ei for i = 1, 2, 3, 4. Let C be any curve such that Trop(C) = Γ. Consider the set of 
divisors of the form q1 + q2 + p3 + p4, where p3, p4 are on e3, e4 respectively, and q1 and 
q2 are both in the cycle. By Theorem B, such a divisor is realizable if and only if D is 
linearly equivalent to DΓ.

Let σ0 be cell parametrizing divisors obtained by forcing q1 and q2 to remain at v1, v2. 
In order for RC to be balanced at σ0, there must be cells adjacent to it parametrizing 
divisors where the chips from v1, v2 move along e1, e2. Moreover, arbitrarily close to σ0, 
precisely one of the following two options may occur.

(1) Either there is a unique such cell, parametrizing divisors where the two chips on 
v1, v2 vertices move away from the cycle at equal speed, or

(2) There are two such cells, and in each of them one chip moves away from the cycle, 
and the other chip stays at the vertex.

We claim, moreover, that the only realizable option is the first one. Indeed, given a divisor 
close enough to C0, we will realize it as the stable intersection with a curve Γ′ with the 
same Newton polygon as Γ. Lemma 3.2 then implies that this divisor is realizable.
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Indeed, let D = p1 + p2 + p3 + p4 be a divisor such that p1 and p2 are at distance ε
from v1, v2 on e1, e2, and p3, p4 are further at distances δ3, δ4 > ε on e3, e4. Let Γ′ be the 
tropical curve whose vertices are at (−1 − δ4, 1 + ε), (1 + δ3, 1 + ε), (−1 − δ4, −R), (1 +
δ3, −R), where R is any real number greater than 1 + max(δ3, δ4). Then Γ ∩st Γ′ = D. 
See Fig. 6.

In particular, divisors where only one of p1 or p2 is away from the vertex are not 
realizable.

Note that the result of the example did not depend on the choice of C. We have 
therefore shown the following.

Theorem 5.2. There is a tropical plane curve Γ and a divisor D ∈ |DΓ| such that D is 
not the tropicalization of C ∩ C ′ for any pair of curves with Trop(C) = Trop(C ′) = Γ.

In particular, this is a counter example to [21, Conjecture 3.4], even in the case of 
self intersection (see [3, Lemma 3.15] for a non self intersection example).

We end the paper with a natural generalization of our results to higher genus. Let Γ
be a tropical curve of genus g, and let σ be a cell of |DΓ| parametrizing divisors with k
chips on vertices. If dimσ = d − g − k then the divisors in σ are said to be internal. In 
genus 1, this definition coincides with our original definition.

Conjecture 5.3. Let Γ be a smooth tropicalization of an algebraic curve C. Then every 
internal divisor on Γ is C-realizable.

References

[1] Lars Allermann, Johannes Rau, First steps in tropical intersection theory, Math. Z. 264 (3) (2010) 
633–670, arXiv :0709 .3705.

[2] M. Baker, D. Jensen, Degeneration of Linear Series from the Tropical Point of View and Applica-
tions, Springer International Publishing, Cham, 2016, pp. 365–433.

[3] E. Brugallé, L. Medrano, Inflection points of real and tropical plane curves, J. Singul. 4 (2011) 
74–103.

[4] E. Brugallé, I. Itenberg, G. Mikhalkin, K. Shaw, Brief introduction to tropical geometry, in: Proceed-
ings of the Gökova Geometry-Topology Conference 2014, Gökova Geometry/Topology Conference 
(GGT), Gökova, 2015, pp. 1–75.

[5] J. Burgos Gil, M. Sombra, When do the recession cones of a polyhedral complex form a fan?, 
Discrete Comput. Geom. 46 (4) (2011) 789–798.

[6] L. Caporaso, Y. Len, M. Melo, Algebraic and combinatorial rank of divisors on finite graphs, J. 
Math. Pures Appl. (9) 104 (2) (2015) 227–257.

[7] D. Cartwright, D. Jensen, S. Payne, Lifting divisors on a generic chain of loops, Canad. Math. Bull. 
58 (2) (2015) 250–262.

[8] R. Cavalieri, H. Markwig, D. Ranganathan, Tropicalizing the space of admissible covers, Math. 
Ann. 364 (3–4) (2016) 1275–1313.

[9] M.A. Cueto, H. Markwig, How to repair tropicalizations of plane curves using modifications, Exp. 
Math. 25 (2) (2016) 130–164.

[10] D. Eisenbud, J. Harris, 3264 and All That: A Second Course in Algebraic Geometry, Cambridge 
Univ. Press, Cambridge, 2016.

[11] C. Haase, G. Musiker, J. Yu, Linear systems on tropical curves, Math. Z. 270 (3–4) (2012) 1111–1140.
[12] X. He, A generalization of lifting non-proper tropical intersections, preprint, arXiv :1606 .04455, 2016.

http://refhub.elsevier.com/S0097-3165(19)30119-0/bib41523037s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib41523037s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib424As1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib424As1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib424Ds1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib424Ds1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib42494D53s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib42494D53s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib42494D53s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib726563657373696F6E2D636F6E65732D666F726D2D66616Es1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib726563657373696F6E2D636F6E65732D666F726D2D66616Es1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434C4Ds1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434C4Ds1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434A50s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434A50s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434D52s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434D52s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434D3134s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib434D3134s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4548s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4548s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib484D59s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4865s1


Y. Len, M. Satriano / Journal of Combinatorial Theory, Series A 170 (2020) 105138 21
[13] N. Ilten, Y. Len, Projective duals to algebraic and tropical hypersurfaces, Proc. Lond. Math. Soc. 
119 (2019) 1234–1278.

[14] Y. Len, H. Markwig, Lifting tropical bitangents, J. Symbolic Comput. 96 (2019) 122–152.
[15] Y. Len, D. Ranganathan, Enumerative geometry of elliptic curves on toric surfaces, Israel J. Math. 

226 (2018) 351–385.
[16] D. Maclagan, B. Sturmfels, Introduction to Tropical Geometry, American Mathematical Society 

(AMS), Providence, RI, 2015.
[17] H. Markwig, The Enumeration of Plane Tropical Curves, PhD thesis, Technische Universität Kaiser-

slautern, 2006.
[18] G. Mikhalkin, I. Zharkov, Tropical curves, their Jacobians and theta functions, in: Curves and 

Abelian Varieties, in: Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008.
[19] G. Mikhalkin, Tropical geometry and its applications, in: M. Sanz-Sole, et al. (Eds.), Invited Lectures 

v. II, Proceedings of the ICM Madrid, 2006, pp. 827–852, arXiv :math .AG /0601041.
[20] M. Moeller, M. Ulirsch, A. Werner, Realizability of tropical canonical divisors, preprint, arXiv :

1710 .06401, 2017.
[21] R. Morrison, Tropical images of intersection points, Collect. Math. 66 (2) (2015) 273–283.
[22] J. Nicaise, S. Payne, F. Schroeter, Tropical refined curve counting via motivic integration, preprint, 

arXiv :1603 .08424, 2016.
[23] M. Nisse, F. Sottile, Higher convexity for complements of tropical varieties, Math. Ann. 365 (1) 

(2016) 1–12.
[24] B. Osserman, S. Payne, Lifting tropical intersections, Doc. Math. 18 (2013) 121–175.
[25] B. Osserman, J. Rabinoff, Lifting nonproper tropical intersections, in: Tropical and Non-

Archimedean Geometry, in: Contemp. Math., vol. 605, Amer. Math. Soc., Providence, RI, 2013, 
pp. 15–44.

[26] J. Rau, Intersections on tropical moduli spaces, Rocky Mountain J. Math. 46 (2009).

http://refhub.elsevier.com/S0097-3165(19)30119-0/bib494Cs1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib494Cs1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4C4Ds1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4C52s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4C52s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D53s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D53s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D61726B776967s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D61726B776967s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D5As1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D5As1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D693036s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D693036s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D5557s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D5557s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4D6F723135s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4E5053s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4E5053s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib534Es1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib534Es1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4F50s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4F52s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4F52s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib4F52s1
http://refhub.elsevier.com/S0097-3165(19)30119-0/bib526175s1

	Lifting tropical self intersections
	1 Introduction
	2 Background
	2.1 Tropical and algebraic divisors

	3 Realizing divisors via stable intersection
	3.1 Obtaining a (d-g)-dimensional locus of realizable divisors
	3.2 Proof of Theorem A and the genus 0 case of Theorem B

	4 Internal divisors
	5 Non-internal cells and generalizations
	References


