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A Noncommutative Analogue of the Odlyzko
Bounds and Bounds on Performance for

Space-Time Lattice Codes
Benjamin Linowitz, Matthew Satriano, and Roope Vehkalahti

Abstract— This paper considers space-time coding over several
independently Rayleigh faded blocks. In particular, we will
concentrate on giving upper bounds for the coding gain of lattice
space-time codes as the number of blocks grow. This problem
was previously considered in the single antenna case by
Bayer-Fluckiger et al. in 2006. Crucial to their work was
Odlyzko’s bound on the discriminant of an algebraic number
field, as this provides an upper bound for the normalized coding
gain of number field codes. In the MIMO context natural codes
are constructed from division algebras defined over number fields
and the coding gain is measured by the discriminant of the
corresponding (noncommutative) algebra. In this paper, we will
develop analogues of the Odlyzko bounds in this context and
show how these bounds limit the normalized coding gain of a
very general family of division algebra based space-time codes.
These bounds can also be used as benchmarks in practical code
design and as tools to analyze asymptotic bounds of performance
as the number of independently faded blocks increases.

Index Terms— Space-time codes, algebra, MIMO, fading.

I. INTRODUCTION

CONSIDER a lattice L ⊂ Cn having fundamental
parallelotope of volume one and define a function

f1 : C
n → R by

f1(x1, . . . , xn) = |x1|2 + |x2|2 + · · · + |xn|2. (1)

The real number h(L) = infx∈L , x �=0 f1(x) is the
Hermite invariant of the lattice L. In rough terms we may say
that the greater the Hermite invariant of a lattice is, the higher
the guaranteed protection against worst case pairwise error
when a subset of the lattice is used as a code in the Gaussian
or slow fading channel. Similarly, if we have a Rayleigh fast
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fading single antenna channel, the role of the function f1 is
played by the function

f2(x1, x2, . . . , xn) = |x1x2 · · · xn|. (2)

Assuming that it is not zero, the real number
Ndp,min (L) = infx∈L ,x �=0 f2(x) is the normalized product
distance of the lattice L and can be used to identify the best
lattice code for the fast fading channel on high signal-to-noise
ratio (SNR) regime.

Let us now consider the main topic of this paper. Suppose
that we have n transmit antennas and a Rayleigh block fading
channel where the fading stays stable for n units of time
and then changes independently for the next n units of time.
The ability to encode and decode over m such independently
faded blocks implies that our lattice code L lies in the
space Mn×mn(C). Let us suppose that (X1, X2, . . . , Xm) is
an element of Mn×mn (C), and define

f3(X1, X2, . . . , Xm) =
m∏

i=1

|det (Xi)|. (3)

In analogy with the functions defined above, we can define
the normalized minimum determinant of the lattice L by
δ(L) = inf X∈L ,X �=0 | f3(X)|. Again, the number δ(L) can be
seen as measuring the quality of the lattice L.

The following problems are natural to consider in all
three cases.

1 Given the channel, find optimal lattices that maximize the
corresponding function fi .

2 Given a lattice, find upper and lower bounds for the
maximal value obtained by the function fi .

From a mathematical standpoint these problems can be seen
as arising in the classical geometry of numbers, though good
solutions for the problems in full generality do not appear to
be in the literature.

The case in which one considers the function f1, defined
in (1), and the associated Hermite invariant, is known as the
sphere packing problem. In this setting there exist a number
of good constructions and general bounds.

In the case of the function f2, defined in (2), and the
associated real number Ndp,min (L), most of the known con-
structions are based on algebraic number fields and good
general bounds are known only in the case where the lattice L
is real [22, p. 615].
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For the function f3 defined in (3) and the associated real
number δ(L), to the best of our knowledge there are no good
general bounds.

For a general lattice L ⊂ Mn×mn (C) finding good bounds
for δ(L) is an extremely difficult task. For this reason we
restrict our attention to a broad class of lattices arising from
central division algebras defined over number fields. For the
lattices arising from this construction we can say a great deal
more about δ(L).

In order to describe our results on δ(L), let us first briefly
describe the general construction principle behind these alge-
braic lattices. There are many ways to construct lattice codes
with good Hermite invariant. To build a lattice code with
good product distance or minimum determinant, the task is
more difficult. A usual method is to choose a central simple
algebra or number field A, a suitable subset � ⊂ A and then
a faithful representation ψ which maps every element of A
to a suitable matrix space Mm×mn(C). If the mapping ψ , the
subset �, and the algebra A are well chosen then the set ψ(�)
will be a lattice in Mn×mn (C) and will have a good minimum
determinant. This type of construction offers a rich selection of
lattice codes. Assuming that this algebraic construction yields
a k-dimensional lattice in the given matrix space Mn×mn(C),
it is natural to ask for bounds on the size of the minimum
determinant.

This problem was first considered in the context of number
field codes in a fast fading SISO channel in [7] by using the
Odlyzko bounds [13], and in [21] by using sphere packing
bounds. In [19], [18], and [30] the problem was considered
in the case in which m = 1 and n ≥ 1. In [9] the authors
concentrated on the case where n = m = 2.

In this work we will generalize and unify previous
number field and division algebra constructions and relate the
normalized minimum determinant to the discriminant of the
corresponding algebra. We will then give completely general
lower bounds for the discriminant of any division algebra and
derive upper bounds for the minimum determinants of the
corresponding lattices. The discriminant bounds given in this
paper are a generalization of the Odlyzko bounds in number
fields and are of independent interest.

We will begin by defining the channel model, lattice
codes and finite codes associated to a lattice. We will then
describe the suitability of the normalized minimum determi-
nant as a design criterion in one shot MIMO channels and
make some remarks on the limits of this criterion.
In Section I-D we show how this criterion can be extended
to the multi-block channel. In Section II we briefly review the
known construction methods of lattice codes from division
algebras. We then extend these methods so as to obtain
a lattice code for a multiblock channel from any order in
a central division algebra. The presented explicit methods
follow [5], [8], and unify [4], [9]. The construction method
given in Proposition 4 generalizes the previously used
methods by allowing us to consider a larger array of centers.

Section VI contains the main results of our paper.
In construction Sections II and III we did prove that in
most cases the normalized minimum determinant of a division
algebra code depends only on the discriminant of the algebra.

Unlike the case of number fields however, the mathematical
literature does not offer ready-to-use bounds for the discrimi-
nant of a central division algebra defined over a number field.
The discriminant bounds in [30] do solve this problem, but
only after the center is fixed. However, in the general case,
where we are allowed to optimize our code over all number
fields with a fixed degree (or even signature), these results
do not apply. The problem is that the Z-discriminant of a
central division algebra A defined over a number field K is a
product of terms depending on the discriminant of the center
d(OK /Z) and the K -discriminant d(�/OK ) of the algebra A
and minimizing one term might implicitly make the other term
bigger. This problem was first considered in [9], where the
authors were able to solve the problem for division algebras
of degree 2 over totally complex fields of degree 4.

In Section VI we will give completely general lower bounds
which make no assumptions on the degree (or even signature)
of the center or division algebra. The proofs of these results
combine the bounds in [30] with an analysis of the proof of
the original Odlyzko bounds for number fields. As described
in [30], the discriminant d(�/OK ) depends only on the
two prime ideals of OK of smallest norm. In order to find
lower bounds we make crucial use of the fact that the
original proof of Odlyzko (and certainly its refinement due
to Poitou [29]) describes the impact on d(OK /Z) of the
assumption that the field K has prime ideals with small norm.
The proofs of our theorems are a result of balancing the
effect of small primes on d(�/OK ) against their effect on
making the field discriminant d(OK /Z) bigger. The bounds
we develop therefore form a non-commutative analogue of
the Odlyzko bounds in algebraic number theory.

While Section VI is strongly mathematical, Section VII
returns to the coding theoretic context. We first derive some
easy-to-use corollaries of our main theorems and then show
how it is possible to find algebras that are optimal for our
bounds. We then show how these discriminant bounds can be
used so as to deduce minimum determinant bounds. Finally,
we compare the resulting bounds to the minimum determinants
of some example codes.

As in the case of the traditional Odlyzko bounds, our
non-commutative bounds seem to be very tight. Therefore the
bounds can be used as a benchmark in code design and provide
understanding of the asymptotic behavior of the worst case
pairwise error probability. The weakness of our approach lies
in the fact that while minimum determinant criteria (in one
form or another) has been applied in a number of space-time
coding papers it only considers pairwise error and not the
actual error probability. We will discuss this issue in Section II
and suggest a remedy to this problem.

A. Channel Model

In this paper we are considering the so called multiblock
Rayleigh faded channel with minimal delay. In such a channel
a codeword X ∈ Mn×nm (C) has the form (X1, X2, . . . , Xm),
where Xi ∈ Mn(C). The channel equation, for transmitting
i’th block Xi , then has the form

Yi = Hi Xi + Ni , (4)
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where Hi ∈ Mnr ×n(C) is the channel matrix and
Ni ∈ Mnr ×T (C) is the noise; nr denotes the number of
receiving antennas. Here we assume that each of Hi are
independently Rayleigh faded and the decoding is done after
the receiver has received all m blocks. We will call such a
channel an (n, nr ,m)-multiblock channel. We note that when
m = 1 this is the usual one shot MIMO channel and when
n = 1 we are dealing with the fast fading single antenna
channel. Throughout the paper we assume that receiver has
perfect channel state information.

A code C in a (n, nr ,m)-channel is a set of matrices
in Mn×nm (C). This paper will discuss code design and
performance limits of codes in this channel. In particular we
will concentrate on finite codes that are drawn from lattices
and we assume that the receiver has perfect channel state
information.

B. Lattices and Spherical Shaping

Definition 1: A matrix lattice L ⊆ Mn×T (C) has the form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBk,

where the matrices B1, . . . , Bk are linearly independent
over R, i.e., form a lattice basis, and k is called the rank
or the dimension of the lattice.

The space Mn×T (C) is a 2nT -dimensional real vector space
with a real inner product

〈X,Y 〉 = �(T r(XY †)),

where Tr is the matrix trace. This inner product also
naturally defines a metric on the space Mn×T (C) by setting
||X || = √〈X, X〉.

We now consider a spherical shaping scheme based on
a k-dimensional lattice L inside Mn×T (C). Given a positive
real number R we define

L(R) = {X ∈ L : ||X || ≤ R, X �= 0}.
These codes L(R) will be the finite codes we are

considering.

C. Design Criterion for One Shot MIMO

Before presenting a design criterion for the multiblock
channel we describe the minimum determinant criterion used
in the usual MIMO Rayleigh fading channel. The concept of
normalized minimum determinant we are going to define has
appeared implicitly or in restricted forms in several papers in
space-time coding. Early attempts to define it in generality
were given in [23] and [24], but only in [11] was the
normalized minimum determinant defined formally and in a
manner completely analogous to the definition of the Hermite
invariant. Despite various papers where it has been used as a
code design criterion, the needed energy normalizations still
seem to cause confusion. We will therefore try to give an
improved explanation of the concept here.

Let us suppose that L is a k-dimensional lattice in Mn×T (C)
and that we consider a finite code L(R). Let θ be a positive
constant with the property that

1

|L(R)|
∑

X∈L(R)

||θX ||2 = T .

Let us now consider transmission of codewords from
L(R) in the Rayleigh fading MIMO channel with n = nt

transmit antennas and nr receive antennas. The channel is
assumed to be fixed for a block of T channel uses, but to vary
in an independent and identically distributed (i.i.d.) fashion
from one block to another. Thus, the channel input-output
relation can be written as

Y = √
ρH θX + N, (5)

where H ∈ Mnr ×n(C) is the channel matrix and
N ∈ Mnr ×T (C) is the noise matrix. The entries of H and N are
assumed to be i.i.d. zero-mean complex circular symmet-
ric Gaussian random variables with variance 1. The matrix
X ∈ L(R) is the transmitted codeword, and the term ρ denotes
the signal-to-noise ratio (SNR). It is assumed that the receiver
has perfect channel state information.

Following [10], we can bound the pairwise error probability
between two codewords X �= X ′ ∈ L(R) by above when
transmitting with SNR ρ:

P(ρ, X → X ′) ≤ 1

(det(I + ρθ2

4n (X − X ′)(X − X ′)∗))nr
, (6)

where ∗ denotes complex conjugate transpose.
Combining this expression with the union bound we can

now deduce an upper bound for the average error probability
when transmitting a codeword from L(R) at SNR ρ:

Pe(ρ) ≤
∑

X∈L ,
0<||X ||≤2R

1

(det(I + ρθ2

4n X X∗))nr
.

If we suppose that ρ is particularly large and the matrices X
are invertible then we obtain the further bound

Pe(ρ) ≤
∑

X∈L ,
0<||X ||≤2R

1

(det( ρθ
2

4n X X∗))nr
. (7)

In what follows, the matrices in our lattices will not only be
invertible but have an even stronger property.

Definition 2: If the minimum determinant of the lattice
L ⊆ Mn×T (C) is non-zero, i.e. satisfies

detmin (L) := inf
0 �=X∈L

√| det(X X∗)| > 0,

we say that the lattice satisfies the non-vanishing
determinant (NVD) property.

Assuming now that detmin (L) = c > 0, we can further
improve our inequality (7) with

Pe(ρ) ≤
∑

X∈L ,
0<||X ||≤2R

(4n)nnr

c2nr θ2nnr ρnnr
. (8)

This bound suggests that minimum determinant plays a crucial
role in the code design. However, in order to compare
two k-dimensional lattices L1 and L2, the comparison based
on the minimum determinant is relevant only if both the
needed constants θ1, θ2 and the number of codewords
in L1(R) and L2(R) are close to one another. Therefore we
need a normalization that guarantees a fair comparison.
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Let us now suppose we have a k dimensional lattice
L ⊂ Mn×T (C). The Gram matrix of the lattice L is defined as

G(L) = (〈Xi , X j 〉)
)

1≤i, j≤k,

where {Xi } is a basis of L. The volume of the fundamental
parallelotope of L is then defined as vol(L) = √|det (G(L))|.

The following lemma proves that if we have
two k-dimensional lattices L1 and L2 in the same space
Mn×T (C), then the scaling factors θ1 and θ2 needed for
normalization are roughly the same and the finite codes L1(R)
and L2(R) have roughly the same number of codewords.

Although both of the assertions in the following lemma are
well known, we give a complete proof of the second as it
seems to have caused some confusion within the space-time
community.

Lemma 1: Let L be a k-dimensional lattice with a unit
fundamental parallelotope in Mn×T (C) and L(R) be defined
as above. Then |L(R)| = c1 Rk + O(Rk−1) and

∑

X∈L(R)

||X ||2 = c2 Rk+2 + O(Rk+1),

where ci are constants independent of R and the lattice L,
and O is Landau’s big O.

Proof: The first claim is well known. Let us denote the
Voronoi cell of a point x ∈ L by Vx , and let r be a real
number such that for any x ∈ L and for any y ∈ Vx we have
||x − y|| < r . We then have that for any x ∈ L and for
any y ∈ Vx ,

||x ||2 − 2r ||x || − r2 ≤ ||y||2 ≤ ||x ||2 + 2r ||x || + r2.

We can therefore write
∑

x∈L(R−r)

(||x ||2 − 2r ||x || − r2)vol(Vx ) ≤
∫

B(R)
||x ||2dx

≤
∑

x∈L(R+r)

(||x ||2 + 2r ||x || + r2)vol(Vx),

where B(R) is a closed ball of radius R about the origin and
integral is done in the space R(L). As we have assumed that
vol(L) = 1, we have that vol(Vx ) = 1 for all x and

∑

x∈L(R−r)

||x ||2 −
∑

x∈L(R−r)

(2r ||x || + r2) ≤
∫

B(R)
||x ||2dx

≤
∑

x∈L(R+r)

||x ||2 +
∑

x∈L(R+r)

(2r ||x || + r2). (9)

The integral in the middle grows like cRk+2 + O(Rk+1) and
according to the first statement the sum

∑
x∈L(R) 2r ||x ||+r2 is

bounded above by C Rk+1 for some C indepen-
dent of R. Using again the first statement we have
that

∑
x∈L(R) ||x ||2 − ∑

x∈L(R−r) ||x ||2 ∈ O(Rk+1) and∑
x∈L(R+r) ||x ||2 − ∑

x∈L(R) ||x ||2 ∈ O(Rk+1). Taking all
these into account and reorganizing (9) we get the claim.

We can now define the normalized minimum determi-
nant δ(L), which is obtained by first scaling the lattice L to
have a unit size fundamental parallelotope and then taking the
minimum determinant of the resulting scaled lattice. A simple
computation proves the following.

Lemma 2: Let L be a k-dimensional matrix lattice in
Mn×T (C). We then have that

δ(L) = detmin (L) /(vol(L))n/k .

Remark 1: Different forms of minimum determinant
criteria have been used in numerous papers on space-time
coding. While a crude tool, the concept has been quite effective
in code design. However, the derivation of the minimum
determinant criterion through the union bound as in Lemma 1
makes it clear that the distribution of the determinants in
the lattice, and not just the minimum determinant, is quite
relevant. This is particularly clear when the SNR compared
to the code size is relatively small. This was already known
in the very early work on number field codes [16], though
the technical obstacles needed to analyze the question did not
allow researchers at the time to attack this problem.

In the context of algebraic codes this problem was addressed
in [25], where the distribution of determinants of number
field and division algebra codes was analyzed. This work
revealed that division algebra based codes can be divided
into different classes with respect to their signature (defined
below in Definition 9). However, as pointed out in [28], the
normalized minimum determinant still plays a major role and
is effective when we compare codes having the same signature.
The bounds we will develop in this paper are sensitive to
the signatures of the considered algebras, and can therefore
be used to analyze the behavior of minimum determinants
within the class of algebras having the same signature. We can
conclude that while minimum determinant criteria are not a
perfect measure of space-time codes, the bounds presented
here will also be relevant to more refined analyses.

Remark 2: We also point out the recent work [14], which
appeared after finishing this work. In this paper it is proved that
the normalized minimum determinant has far more important
role in the performance of lattice space-time codes than was
believed earlier. It seem to play almost exactly analogous role
to the Hermite invariant, which has had a crucial role in the
design of lattice codes for the Gaussian single antenna channel.

D. Design Criterion for Multiblock Channel

Let us now show how the design criterion of the previous
section can be used to define a design criterion for the
multiblock channel. Let us suppose we have a multiblock code
L ⊂ Mn×mn (C) and that (X1, X2, . . . Xm) is a codeword in L.
The channel equation

(H1 X1, H2 X2, . . . , Hm Xm)+ (N1, N2, . . . , Nm ),

can just as well be written in the form

(H1, . . . , Hm)diag(X1, . . . , Xm)+ diag(N1, . . . , Nm ),

where the diag-operator places the i th n × n entry in the
i th diagonal block of a matrix in Mmn(C). This reveals that
optimizing a code L for the (n, nr ,m)-multiblock channel
is equivalent to optimizing diag(L) for the usual one shot
nm × mnr MIMO channel, where diag(L) is defined
as {diag(X) | X ∈ L}.
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Let us now suppose we have an (n, nr ,m)-multiblock
code L.

Definition 3: By abusing notation we define the normalized
minimum determinant for the code L by

δ(L) := δ(diag(L)).

We are now interested in the extrema of the normalized min-
imum determinants of k-dimensional (n, nr ,m)-multiblock
codes.

II. ALGEBRAIC PRELIMINARIES AND LATTICE

CODES FOR ONE SHOT MIMO

Let us now describe how lattice codes from division
algebras are typically built. We will follow the standard
presentation (see [3], [15]), but with an order-theoretic
perspective [20]. The general idea is to show how we can
transform an abstract algebraic structure into a concrete lattice
of matrices. This construction will form a basis for our
construction of multiblock codes. We refer the reader to [15]
for all proofs.

Definition 4: Let K be an algebraic number field of
degree m and assume that E/K is a cyclic Galois extension of
degree n with Galois group Gal(E/K ) = 〈σ 〉. We can define
an associative K -algebra

A = (E/K , σ, γ ) = E ⊕ u E ⊕ u2 E ⊕ · · · ⊕ un−1 E,

where u ∈ A is an auxiliary generating element subject to the
relations xu = uσ(x) for all x ∈ E and un = γ ∈ K ∗. We call
the resulting algebra a cyclic algebra.

It is clear that the center of the algebra A is precisely the
field K . That is, an element of A commutes with all other
elements of A if and only if it lies in K .

Definition 5: We call
√[A : K ] the degree of the algebra

A. It is easily verified that the degree of A is equal to n.
We consider A as a right vector space over E and note that

every element a = x0 + ux1 + · · · + un−1xn−1 ∈ A has the
following representation as a matrix

ψ(a) =

⎛

⎜⎜⎜⎜⎜⎝

x0 γ σ(xn−1) γ σ 2(xn−2) · · · γ σ n−1(x1)
x1 σ(x0) γ σ 2(xn−1) γ σ n−1(x2)

x2 σ(x1) σ 2(x0) γ σ n−1(x3)
...

...
xn−1 σ(xn−2) σ 2(xn−3) · · · σ n−1(x0)

⎞

⎟⎟⎟⎟⎟⎠
.

This mapping allows us to embed any cyclic algebra
into Mn(C). Under such an embedding ψ(A) forms an
mn2-dimensional Q-vector space. The map ψ is called the
left regular representation of A (see Remark 3).

We are particularly interested in algebras A for which ψ(a)
is invertible for all non-zero a ∈ A.

Definition 6: A cyclic K -algebra A is a division algebra if
every non-zero element of A is invertible.

The set ψ(A) is an additive subgroup of Mn(C) but is not
discrete. This is obviously not a preferred property for a lattice
code. A usual strategy to try to overcome this problem is to
restrict one’s attention to the image in Mn(C) of a suitable
subset of A.

Definition 7: A Z-order � in A is a subring of A having
the same identity element as A, and such that � is a finitely
generated module over Z which generates A as a linear space
over Q.

Lemma 3: Let � be a Z-order in a division algebra A.
We then have that ψ(�) is a free group with mn2 generators.
In other words

ψ(�) = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBmn2 ⊂ Mn(C).

We also have that det (X) �= 0 for every non-zero element
X ∈ ψ(�).

Although ψ(�) is an additive group, it is not usually a
lattice; indeed, if m > 2 then the matrices Bi cannot be linearly
independent over R, as mn2 > 2n2. Lattice theory then tells
us that ψ(�) is not a discrete set under such conditions.

It can be proven that if K is either Q or a complex quadratic
field, then ψ(�) is a lattice in Mn(C) and will have the
NVD property. For other division algebras, as we pointed out
above, ψ(�) is not a lattice in Mn(C). However, this does not
exclude the possibility that there is a different embedding ψ ′
of A into a matrix space that realizes � as an NVD lattice.

Algebraic existence results (particularly the short exact
sequence of Brauer groups that appears in local class field
theory [2, eq. (32.13)] show that, given an algebraic number
field K of degree m and any integer n ≥ 1, there exist
infinitely many isomorphism classes of central division alge-
bras of degree n having center equal to K . Furthermore,
the Albert-Brauer-Hasse-Noether theorem implies that every
central simple algebra defined over a number field is cyclic
[2, Th. 32.20], and therefore of the form given in Definition 4.
We will show in the following sections that for every order
� in a division algebra A, there is an embedding ψ ′ of A
into a suitable matrix such that the resulting code ψ ′(�) is a
multiblock code with the NVD property.

Remark 3: In order to state our constructions in Section III
in full generality, we need a more general version of the left
regular representation. Let A be a central division algebra
of degree n over a number field K . Let us now suppose
that E is a maximal subfield of A. From the theory of central
simple algebras, we know that [A : E] = n. Let {d1, . . . , dn}
be a right E-basis for A. Multiplication on the left is an
E-linear mapping of A into itself. In this manner we get a
K -algebra embedding φ : A ↪→ Mn(E) ⊆ Mn(C). We call
this embedding the left regular representation.

Lastly, given a division algebra A over a number field,
to every Z-order � in A, we can associate a non-zero
integer d(�/Z) called the Z-discriminant of �. Although we
do not give the definition here, throughout the paper we give
references for all propeties of Z-discriminants that we use.
We refer the reader to [2, Ch. 2] for a detailed treatment of
the theory of orders in central simple algebras.

III. MULTIBLOCK CODES FROM CENTRAL

DIVISION ALGEBRAS

In this section we will describe how we can build
multiblock lattice codes from division algebras and how it
is possible to measure the normalized minimum determinants

Authorized licensed use limited to: University of Waterloo. Downloaded on March 17,2020 at 19:48:17 UTC from IEEE Xplore.  Restrictions apply. 



1976 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 4, APRIL 2015

of the constructed codes in terms of algebraic invariants of
the corresponding division algebras. The main theme here is
that we begin with an “idealized” abstract embedding ψabs

that gives us an existence result where any order � of a
division algebra A can be realized as a multiblock lattice
code ψ(�) ⊂ Mn×nk (C) having the NVD property. The
normalized minimum determinant of the corresponding code
is directly related to the discriminant of the order �. We then
try to find an explicit embedding ψreg that has many of the
same properties of the abstract embedding and for which
the connection between the discriminant and the minimum
determinant still holds. Our presentation follows [4]. Only
in Section III-B will we extend beyond [4].

We begin with a few definitions and preliminary results.
Let K/Q be an algebraic number field of degree m. We then

have that

m = r1 + 2r2,

where r1 is the number of real embeddings and r2 the number
of pairs of complex embeddings of K into C.

Let us define the space G(C)n ⊆ Mn×2n(C) by

G(C)n = {(B, B) ∈ Mn×2n(C) : B ∈ Mn(C)},
where ∗ refers to complex conjugation and B = (b∗

i j ).
Definition 8: The ring H of Hamiltonian quaternions is a

subset in M2(C) consisting of matrices of type
(

x1 −x∗
2

x2 x∗
1

)
,

where xi ∈ C are freely chosen. Each matrix in the matrix ring
Mn(H) ⊂ M2n(C) consists of n2 freely chosen (2 × 2) blocks
that have the inner structure of Hamiltonian quaternions.

There exists an isomorphism (see [1])

A ⊗Q R ∼= Mn/2(H)ω × Mn(R)
r1−ω × G(C)r2

n . (10)

The integer ω appearing in (10) is, by definition, the number
of real places where A ramifies.

Definition 9: We call the triplet (ω, r1, r2) the signature
of A.

Each element in A can now be seen as a concatenation of
ω matrices in Mn(C), r1 − ω matrices in Mn(R) and r2 pairs
of conjugate matrices in Mn(C). Equivalently, every element
of A can be viewed as a matrix in Mn×nm (C), where as above
m = r1 + 2r2.

The above isomorphism (10) implies the existence of an
injection ψabs

A ↪→ (Mn/2(H)ω × Mn(R)
r1−ω × G(C)r2

n ) ⊂ Mn×nm (C).

(11)

This will be our "idealized" abstract embedding.

A. Division Algebra Based mn2-Dimensional
Codes in Mn×nm (C)

We will now finally show how any order inside of an
arbitrary central division algebra A can be realized as a lattice
in a suitable matrix space.

Let us first describe the codes and their properties we get
by using the embedding (11).

Let K/Q be a number field of degree m and A a K -central
division algebra of degree n.

Proposition 1 [4]: Let us suppose that � is a Z-order in
A and ψabs the embedding (11). Then ψabs(�) is an
n2m-dimensional lattice in Mn×nm (C) and

detmin (ψabs(�)) = 1, vol(ψabs(�)) = √|d(�/Z)|,
and δ(ψabs(�)) =

(
1

|d(�/Z)|
)1/2n

.

This result gives us the existence result. We now know that
any order of a division algebra can be realized as a multiblock
code. However, the embedding (11) is based on existence
results and does not directly give us a method to find the
lattices of Proposition 1. Yet it does give us a hint of how it
can be imitated in an explicit way

Let K and A be as above, E be a maximal subfield of A and
φ : A ↪→ Mn(E) ⊆ Mn(C) the left regular representation.

The field K has m distinct Q-embeddings βi from K into C.
For each βi we can find an embedding αi : E ↪→ C which
extends βi in the sense that αi |K = βi . We caution the reader
that the embedding αi will not in general be unique. Let us
now suppose that {α1, . . . , αm } is collection of embeddings of
E into C which extend all of the embeddings {β1, . . . , βm}. Let
a be an element of A and A = φ(a) the corresponding matrix
in Mn(E). We then get a mapping ψreg1 : A → Mn×nm (C)
given by

d �→ (α1(A), . . . , αm(A)), (12)

where each of the embeddings αi have been extended to maps
αi : Mn(E) ↪→ Mn(C).

Proposition 2 [4]: Let � be a Z-order in A and ψreg1
the previously defined embedding. Then ψreg1(�)
is an n2m-dimensional lattice in Mn×nm (C) and
detmin

(
ψreg1(�)

) = 1.
We are now interested in the values of δ(ψreg1(�)).

As we know that detmin
(
ψreg1(�)

) = 1, Lemma 2 implies
that in order to measure δ(ψreg1(�)) it suffices to know
vol(ψreg1(�)). Unfortunately we cannot always relate this
value to the algebraic invariants of A. The following result
describes conditions under which we can determine the
normalized minimum determinant of the code from the
discriminant of the associated order.

Proposition 3: Let us suppose that A has signature
(ω, r1 − ω, r2). If

ψreg1(A) ⊂ (Mn/2(H)ω × Mn(R)
r1−ω × G(C)r2),

then

vol(ψabs(�)) = vol(ψreg1(�)) and

δ(ψabs(�)) = δ(ψreg1(�)).
Remark 4: We note that the geometric structure

of ψreg1(�) will in general depend on the choice of
E-basis of A and on the choice of the embeddings αi .
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B. Division Algebra Based 2mn2-Dimensional
Codes in Mn×nm (C)

In the previous section we gave a construction of space
time lattice codes from division algebras and described a
means of measuring their normalized minimum determinants.
We are not yet using the whole signaling space however. The
codes in the previous section are mn2-dimensional lattices in
Mn×nm (C), while the maximal rank a lattice can have in such
a space is 2mn2. We now describe a construction of lattices
with maximal rank. The usual strategies for code construction
in this scenario can be found in [5] and [8]. Unfortunately
these methods only allow us to realize some division algebras
as lattice codes. In this section we show how it is possible to
overcome these limitations.

Let us consider the case where the center K of the division
algebra A is a totally complex number field. As the center K
does not have real primes we simply have an embedding

A ↪→ G(C)r2 . (13)

The space G(C) consists of pairs of n ×n matrices, where the
second matrix is the complex conjugate of the first. Projecting
onto the first coordinate gives us an embedding

ψabs2 : A ↪→ Mn×n (C)
r2 . (14)

Proposition 4: Let K be a totally complex number field of
degree 2m, A a K -central division algebra of degree n and �
a Z-order in A. Then ψabs2(�) is a 2mn2-dimensional lattice
in Mn×nm (C) and the following hold:

detmin (ψabs2(�)) = 1, vol(ψabs2(�)) = 2−mn2√|d(�/Z)|
and

δ(ψabs2(�)) =
(

22mn2

|d(�/Z)|

)1/4n

.

Proof: The part considering the dimension of the lattice
follows directly from Proposition 1. Let us consider the claim
detmin (ψabs2(�)) = 1. If we use the mapping ψabs , the
absolute value of the determinant of any codeword B is given
by the formula |det (diag(ψabs(B)))| = ∏2r2

1=1 |bi |, where
the bi are the determinants of n × n blocks Bi that appear
in B . However, in this product each bi can be paired with its
complex conjugate. This shows that

|det (ψabs2(B))| = √|det (ψabs(B))| ≥ 1.

Let us now consider the Gram matrix of ψabs2(�). The
elements in the matrix are of type �(tr(ψabs2(a)ψabs2(b)†)).
But the relation between mappings ψabs and ψabs2
already reveals that �(tr(ψabs(a)ψabs(b)†)) =
2�(tr(ψabs2(a)ψabs2(b)†). As the Gram matrix is a
2mn2 × 2mn2 matrix we then have that

vol(ψabs2(�)) = √
G(ψabs2(�)) =

√
2−2mn2 G(ψabs(�))

= 2−mn2
vol(ψabs(�)).

The final result now follows from Lemma 2 together with
equation vol(ψabs(�)) = √|d(�/Z)|.

Let us now see how these existence results can be realized
as explicit codes.

The field K has 2m distinct Q-embeddings βi : K ↪→ C.
As we assumed that K is totally complex, each of these
embeddings is part of a complex conjugate pair. We will
denote by βi the embedding given by x �→ βi (x).

For each βi we can find an embedding αi : E ↪→ C such
that that αi |K = βi . This choice can be made in such away that
αi |K = βi . Let us now suppose {α1, . . . , α2m} is a collection
of such embeddings and that they have been ordered in such
a way that αi = αi+m , for 0 ≤ i ≤ m.

With this notation we can now define the following. Let a be
an element of A and A = φ(a). We then get a mapping
ψreg2 : A �→ Mn×nm (C) by

a �→ (α1(A), . . . , αm/2(A)), (15)

where each αi is extended to an embedding
αi : Mn(E) ↪→ Mn(C).

Proposition 5: Let � be a Z-order in A and ψreg2 the
previously defined embedding. Then ψreg2(�) is
a 2mn2-dimensional lattice in Mn×nm (C) which satisfies

detmin
(
ψreg2(�)

) = 1, vol(ψreg2(�)) = 2−mn2 √|d(�/Z)|
and

δ(ψreg2(�)) =
(

22mn2

|d(�/Z)|

)1/4n

.

Remark 5: The standard method to build multiblock codes
with full rate as in [5] and [8] works only for algebras defined
over number fields containing a complex quadratic field. The
method described above works for any totally complex center.

IV. ALGEBRAIC AND CODING THEORETIC MOTIVATION

FOR DISCRIMINANT BOUNDS

In the previous section we saw that the normalized coding
gain of a code derived from a division algebra depends on
the discriminant of the algebra. In the rest of this paper
we will concentrate on giving general lower bounds for the
discriminants. These will in turn yield upper bounds for
the normalized minimum determinants. Before giving these
(purely algebraic) results, let us first examine these bounds
and show the manner in which they extend the results of [7].

A. Connection to the Discriminant Bounds in Number Fields

In [7] the authors considered algebraic number field codes
in the Rayleigh fast fading SISO channel. In our notation the
fast fading SISO channel is simply a multiblock channel with
n = 1. The codewords are then of type

(x1, x2, . . . , xm) ∈ C
m,

where each of the elements xi faces an independent fading.
In order to design a code in this scenario, we can apply the

construction of Proposition 2. It calls for a number field K of
degree m and a K -central division algebra A of degree 1; that
is, A = K .
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Let us now suppose that α1, . . . , αm are the Q-embeddings
of the field K into C. We then have that ψreg1(OK ) is
an m-dimensional lattice in Cm . This mapping is the usual
Minkowski embedding that has been used in several coding
theoretic works.

We can partition the embeddings α1, . . . , αm into r1 real
embeddings and 2r2 complex embeddings. It follows that
ψreg1(K ) ⊂ R

r1 × G1(C)
r2 . From the basic algebraic number

theory we know that K ⊗Q R ∼= Rr1 × G1(C)
r2 . According to

Propositions 1 and 3 we now have that

δ(ψreg1(OK )) = 1√|d(K/Q)| . (16)

In the same manner we may choose a totally complex
field K of degree 2m so that ψreg2(OK )) will be
a 2m-dimensional lattice in Cm satisfying

δ(ψreg2(OK )) = 2m/2

|d(K/Q|1/4 . (17)

It is evident that the normalized minimum determinant
depends only on the discriminant of the field K . In [7] the
authors then posed the question: What are the limits for the
normalized minimum determinant for a given m when one uses
these algebraically defined codes? After all, there are infinitely
many isomorphism classes of number fields of each degree m.
Equations (16) and (17) transform this problem into finding
bounds for discriminants of degree m algebraic number fields.
While multiple number fields may have the same discriminant,
it is known that there are only finitely many number fields
with a given discriminant. It follows that for every degree m
infinitely many discriminants are assumed by degree m number
fields. In order to get some intuition for this scenario, the
authors of [7] used known discriminant bounds of the form
described below.

The Odlyzko bound C(r1,r2) is a lower bound for the
discriminant of all number fields having signature (r1, r2).

As the degree m → ∞ these bounds give

|d(K/Q)|1/m ≥ (60.8)r1/m(22.3)2r2/m . (18)

By employing equations (16) and (17) the Odlyzko bounds
can be transformed into minimum determinant bounds.

We now consider the same question, but in the setting in
which we have nt transmit antennas and employ a Rayleigh
block fading channel. The codewords then have form

(X1, X2, · · · , Xm),

where the Xi are n × n matrices. As we saw earlier,
in order to build a code we need degree m number
field K (resp. degree 2m totally complex number field)
and a degree n division algebra. We will then have

δ(ψ(�)) =
(

1
|d(�/Z)|

) 1
2n

and δ(ψ2(�)) =
(

22mn2

|d(�/Z)|

) 1
4n

.

Now we can ask the same question as in the case of number
fields. If we fix m and n, what are the limits for the normalized
minimum determinant for codes in this setting. In the case
of number fields the Odlyzko bound immediately implied an
upper bound. In the case of division algebras however, the
needed bounds do not appear in the mathematical literature.

The bounds given in [30] answer to this question only in the
case in which the center K is fixed. The bounds in [9] on the
other hand consider only the case of totally complex quartic
fields.

In this paper we will give completely general lower bounds.
Given a center of degree m and a division algebra A of
degree n we will produce lower bounds for the discriminant
d(�/Z), where � is any Z-order of A.

B. Scope and Implications of the Discriminant Bounds

The methods used in the previous sections made use of
Z-orders contained in division algebras. We would therefore
like to determine lower bounds for the discriminants of these
orders. Maximal orders have the smallest discriminant of all
Z-orders contained in a given division algebra A. It is therefore
sufficient to find lower bounds for the discriminants of
maximal orders. This is an enormous help to us as any
maximal Z-order contained in a division algebra has an
additional integral structure. In particular maximal Z-orders
are also OK -orders.

Proposition 6 [2, Th. 10.5]: Let A be a K -central division
algebra. Then any maximal Z-order in A is an OK -order.

This result will play a crucial role in Section VI.
Discriminant bounds obviously give bounds for the normal-

ized minimum determinants of the corresponding lattices in
the case that we are using construction of Proposition 5 or 1.
However, when using Proposition 2 the connection between
the discriminant and normalized minimum determinant is more
subtle. Even in this case however, our bounds are effective.

We also note that the discriminant bounds we give are
dependent upon the signature of the algebra, much as the
Odlyzko bounds depend on the signature of the number
field whose discriminant is being bounded. The need for this
dependency is clear as different signatures lead to different
codes needed within different coding schemes. If we have a
2 transmit and receive antennas and we can decode and encode
over 2-blocks of length 2 without any constraints in decoding
complexity then it is a good idea to use the construction
of Proposition 5, which leads to a 16-dimensional lattice in
M2×4(C). The corresponding discriminant bound is then given
by Theorem 2.

However, if we have the same scenario with only a single
receiving antenna and we aim for low decoding complexity,
then it is natural to use a code which is an 8-dimensional
lattice in M2×4(C). Such code can be naturally be build from
the construction of Proposition 2.

The other reason for this division is that, as suggested
in [25], different signatures seem to lead to considerably dif-
ferent behaviors of the inverse determinant sum (7). Therefore
even two codes having the same center can have very different
performances.

V. ALGEBRAIC PRELIMINARIES

Let K be a number field of degree d and signature (r1, r2).
That is, d = r1 + 2r2 where r1 is the number of real
embeddings of K and r2 is the number of complex-conjugate
pairs of embeddings. Let OK denote the ring of integers of K .
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We impose an order relation on the set of ideals of OK as
follows. Given two ideals I1 and I2, we will write I1 ≤ I2 if
|N K

Q
(I1)| ≤ |N K

Q
(I2)|.

Let A be a central division algebra over K of degree n.
Given an OK -order � of A, we denote by d(�/OK ) the
discriminant of �. An order of A is called maximal if it is
maximal with respect to inclusion. It is well known that all
maximal orders of A have the same discriminant. This quantity
is the discriminant of A.

The following theorem summarizes in
[30, Th. 2.4.26 and Proposition 2.4.27].

Theorem 1: Let A be a central division algebra of degree n
over a number field K . Let P1 ≤ P2 be a pair of prime ideals
of OK having smallest norms.

1) If no real place of K ramifies in A then the discriminant
of A is at least (P1 P2)

n(n−1).
2) If K has a unique real place and n = 2m with m odd,

then the discriminant of A is at least Pn(n−1)
1 Pm(m−1)

2 .
3) If K has at least two real places and n = 2m with m odd,

then the discriminant of A is at least (P1 P2)
m(m−1).

Remark 6: We note that Theorem 1 is exhaustive in the
following sense. The only cases potentially not covered by
this theorem are those in which K has no real places or those
in which the algebra A has degree n = 2km over K where
k > 1 and m is odd. In both of these cases however, one may
construct a central division algebra over K of degree n which
is unramified at all real places (see [30, Remark 2.4.24]).

VI. BOUNDING THE Z-DISCRIMINANT OF AN ORDER

Let � be an OK -order of A. The Z-discriminant of � is
defined by the formula

d(�/Z) = NK/Q(d(�/OK ))d(OK /Z)
n2
,

[2, p. 223].
The following theorems provide lower bounds for the
Z-discriminant of � which depend only on the signatures of K
and A. Note that below, γ = 0.577215664901532860 . . . is
Euler’s constant, and that Ch is the function defined below in
Equation (20).

Parts (1)-(3) of Theorem 1 are used to prove Theorems 2-4,
respectively.

Theorem 2: Let K be a number field of degree d and
signature (r1, r2), A be a central division algebra over K of
degree n ≥ 2 and signature (0, r1, r2), and � be a maximal
order of A. Let y0 ∈ {0.1, 2} and y ≤ y0 be a positive real

number. Lastly, let z(y) = [
er1 ed(γ+log4π)e−12π/5

√
ye−I (y)

]n2

and (p1, p2) be the relevant pair of prime powers from Table I.
1) If y0 = 0.1, then

|d(�/Z)|
≥

{
4n(n−1)(53.450)n

2
z(y), n ≥ 7

(p1 p2)
n(n−1)(eCh(p1,0.1)+Ch(p2,0.1))n

2
z(y), 2 ≤ n ≤ 6

2) If y0 = 2, then

|d(�/Z)|
≥

{
4n(n−1)(8.134)n

2
z(y), n ≥ 7

(p1 p2)
n(n−1)(eCh(p1,2)+Ch(p2,2))n

2
z(y), 2 ≤ n ≤ 6

TABLE I

PRIME POWERS (p1, p2) FOR WHICH (x1x2)
1− 1

n eCh (x1 ,y)+Ch (x2 ,y)

IS MINIMIZED FOR y ∈ {0.1, 2}

TABLE II

PRIME POWERS (p1, p2) FOR WHICH fn(x1, x2) = x
1− 1

n
1 x

1
4 − 1

2n
2

eCh (x1,0.1)+Ch (x2,0.1) IS MINIMIZED

Theorem 3: Let K be a number field of degree d and
signature (1, r2), A be a central division algebra over K of
degree n = 2m (with m odd), and � be a maximal order of A.
Let y0 ∈ {0.1, 2} and y ≤ y0 be a positive real number. Lastly,

let z(y) = [
er1 ed(γ+log4π)e−12π/5

√
ye−I (y)

]n2

and (p1, p2) be
the relevant pair of prime powers from Table II.

1) If y0 = 0.1, then

|d(�/Z)|
≥

{
2n(n−1)41m(m−1)(9.572)n

2
z(y), n ≥ 30

pn(n−1)
1 pm(m−1)

2 (eCh(p1,y0)+Ch(p2,y0))n
2
z(y), 2 ≤ n ≤ 26

2) If y0 = 2, then

|d(�/Z)|
≥

{
2n(n−1)41m(m−1)(2.852)n

2
z(y), n ≥ 30

pn(n−1)
1 pm(m−1)

2 (eCh(p1,2)+Ch(p2,2))n
2
z(y), 2 ≤ n ≤ 26

Theorem 4: Let K be a number field of degree d and
signature (r1, r2) with r1 ≥ 2. Let A be a central division alge-
bra over K of degree n = 2m (with m odd), and � be a maxi-
mal order of A. Let y0 ∈ {0.1, 2} and y ≤ y0 be a positive real

number. Lastly, let z(y) = [
er1ed(γ+log 4π)e−12π/5

√
ye−I (y)

]n2

and (p1, p2) be the relevant pair of prime powers
from Table III.

1) If y0 = 0.1, then

|d(�/Z)|
≥

{
372m(m−1)(1.803)n

2
z(y), n ≥ 118

(p1 p2)
m(m−1)(eCh(p1,y0)+Ch(p2,y0))n

2
z(y), 6≤n ≤ 114

2) If y0 = 2, then

|d(�/Z)| ≥
{

92m(m−1)(1.189)n
2
z(y), n ≥ 14

(11)2m(m−1)(1.091)n
2
z(y), n = 6, 10

Remark 7: In stating Theorem 4 we excluded the
case n = 2. The reason for this was that in this situation,

1The ‘*’ in Table II indicates that when n = 2 the function fn(x1, x2) does
not depend upon x2 and will be minimized whenever x1 = 13.
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TABLE III

PRIME POWERS (p1, p2) FOR WHICH (x1x2)
1
4 − 1

2n

eCh (x1,0.1)+Ch (x2 ,0.1) IS MINIMIZED

the hypotheses of the theorem allow for the existence of
a quaternion division algebra ramified at precisely two real
places of K and which is unramified at all finite primes of K .
Given a maximal order � of such an algebra, we will have
d(�/Z) = d(Ok/Z), hence our desired bound is simply the
Odlyzko bound.

Remark 8: As was the case with Theorem 1 (and pointed
out in Remark 6), Theorems 2, 3 and 4 exhaust all possible
central division algebras.

In order to obtain a lower bound for d(�/Z), it of course
suffices to obtain a lower bound for

|N K
Q (d(�/OK ))|1/n2 |d(OK /Z)|.

We have already seen, in Theorem 1, how to obtain lower
bounds for |N K

Q
(d(�/Ok))|. We now focus on bounding

|d(OK /Z)| from below. To do so we will employ the
Odlyzko bounds [13], as well as a refinement of these
bounds due to Poitou [29] which takes into account the
existence of primes of small norm. The precise formulation
of these bounds which we will use is due to
Brueggeman and Doud [12, Th. 2.4].

Let y > 0 be a real number, γ be Euler’s constant, and
I (y) be as in [12, Th. 2.4]. Let

f (x) := (3x−3(sin x − x cos x))2,

and

C f (x, y) := 4
∞∑

j=1

log x

1 + x j f ( j
√

y log x).

[12, Th. 2.4] shows that for any prime ideals P1, P2 of k
and all y > 0

|d(OK /Z)| ≥ er1ed(γ+log 4π)e−12π/5
√

y ·
e−I (y)eC f (N K

Q
(P1),y)eC f (N K

Q
(P2),y). (19)

We further define functions

h(x) =
{

f (x), x ≤ 4
0, x > 4

and

Ch(x, y) := 4
∞∑

j=1

log x

1 + x j
h( j

√
y log x). (20)

The next lemma follows immediately from the fact that for
all x ≥ 0 we have f (x) ≥ h(x) ≥ 0 and the fact that h(x) is
decreasing.

Lemma 4: For all real numbers x, y, y0 > 0 with y ≤ y0
the following properties hold:

(i) We have C f (x, y) ≥ Ch(x, y).

(ii) We have Ch(x, y) ≥ Ch(x, y0).
It follows that for all y > 0

|d(OK /Z)| ≥ er1ed(γ+log4π)e−12π/5
√

ye−I (y)

· eCh(N K
Q
(P1),y)eCh(N K

Q
(P2),y). (21)

Since we are viewing the signatures of A and K as being
fixed, and since the term er1ed(γ+log 4π)e−12π/5

√
ye−I (y) is

determined by the signature of K , it suffices (by Theorem 1)
to determine the rational prime powers p1, p2 > 1 for which
each of the following functions are minimized:

1) (p1 p2)
(n−1)/neCh(p1,y)eCh(p2,y) = (p1 p2)

1− 1
n eCh(p1,y)

eCh(p2,y),

2) p(n−1)/n
1 pm(m−1)/n2

2 eCh(p1,y)eCh(p2,y) = p
1− 1

n
1 p

1
4 − 1

2n
2

eCh(p1,y)eCh(p2,y),
3) (p1 p2)

m(m−1)/n2
eCh(p1,y)eCh(p2,y) = (p1 p2)

1
4 − 1

2n

eCh(p1,y)eCh(p2,y).
We will determine the minima of these three functions with

respect to the parameters y = 0.1 and y = 2.
In order to obtain a good bound for δ(�), we will take

advantage of the fact that both d(�/Ok) and d(Ok/Z) are
affected by the existence of primes of small norm. To do so
we will need a few technical results, which are the subject
of Section VI-A.

A. Three Technical Propositions

Proposition 7: Let n ≥ 2 and define fn(x1, x2) =
(x1x2)

1− 1
n eCh(x1,y)+Ch(x2,y).

1) If y = 0.1 and n ≥ 7 then for all prime powers p1,
p2 > 1 we have fn(p1, p2) ≥ fn(2, 2). For 2 ≤ n ≤ 6
the prime powers for which fn(x1, x2) is minimized are
given in Table I.

2) If y = 2 and n ≥ 7 then for all prime powers p1, p2 > 1
we have fn(p1, p2) ≥ fn(2, 2). For 2 ≤ n ≤ 6 the
prime powers for which fn(x1, x2) is minimized are given
in Table I.

Proof: We will prove the proposition in the case that
y = 0.1. The case in which y = 2 is completely
analogous.

Fix an integer n ≥ 2 and define an auxiliary function
g(x1, x2) = (x1x2)eCh(x1,0.1)+Ch(x2,0.1). Note that for all
x1, x2 ≥ 0 we have g(x1, x2) ≥ fn(x1, x2). An easy
calculation shows that 214 > g(2, 2). As g(2, 2) ≥ fn(2, 2),
we conclude that 214 ≥ fn(2, 2). Observe that
fn(x1, x2) ≥ √

x1x2. It follows that if p1, p2 are prime
powers and fn(p1, p2) < fn(2, 2), then fn(p1, p2) < 214
and so 2 ≤ p1, p2 ≤ 2142

2 .
By virtue of the previous paragraph we can check, for

any fixed value of n ≥ 2, to see which values of (p1, p2)
minimize the function fn(x1, x2) when restricted to prime
powers. The assertion of the proposition for 2 ≤ n ≤ 6
therefore follows immediately. Similarly, an easy computation
shows that fn(p1, p2) ≥ fn(2, 2) for all prime powers p1, p2
when 7 ≤ n ≤ 1000. Suppose now that n > 1000.
Since fn(x1, x2) = g(x1, x2)/(x1x2)

1
n , we have fn(2, 2) >

fn(p1, p2) if and only if g(2, 2) > ( 4
p1 p2

)
1
n g(p1, p2). As we

are assuming that n > 1000 it is clear that if (p1, p2) �= (2, 2)

Authorized licensed use limited to: University of Waterloo. Downloaded on March 17,2020 at 19:48:17 UTC from IEEE Xplore.  Restrictions apply. 



LINOWITZ et al.: NONCOMMUTATIVE ANALOGUE OF THE ODLYZKO BOUNDS 1981

then ( 4
p1 p2

)
1
n > 0.990707126780213. The proposition

now follows from a computation which shows that
g(2, 2) < 0.990707126780213·g(p1, p2) for all prime powers
p1, p2 ≤ 2142

2 .
Proposition 8: Let n = 2m ≥ 2 with m odd and define

fn(x1, x2) = x
1− 1

n
1 x

1
4 − 1

2n
2 eCh(x1,y)+Ch(x2,y).

1) If y = 0.1 and n ≥ 30 then for all prime powers p1,
p2 > 1 we have fn(p1, p2) ≥ fn(2, 41). If 2 ≤ n ≤ 26,
the prime powers for which fn(x1, x2) is minimized are
given in Table II.

2) If y = 2 and n ≥ 14 then for all prime powers p1, p2 > 1
we have fn(p1, p2) ≥ fn(2, 9). If n ∈ {2, 6, 10}, the
prime powers for which fn(x1, x2) is minimized are
{(7, 17), (3, 11), (2, 11)}.

Proof: We will prove the proposition in the case that
y = 0.1. The case in which y = 2 is similar and is left to the
reader.

Fix an integer n ≥ 30 as in the statement of
the proposition and define an auxiliary function

g(x1, x2) = x1x
1
4
2 eCh(x1,y)+Ch(x2,y). Then for all x1, x2 > 0

we see that g(x1, x2) > fn(x1, x2). An easy calculation
shows that 49 > g(2, 41) > fn(2, 41). As n ≥ 30 we see that

49 > fn(2, 41) > x
29
30

1 x
7

30
2 . It follows that if p1, p2 are prime

powers for which fn(2, 41) > fn(p1, p2) then 49
30
7 ≥ p

29
7

1 p2.
In particular we must have p1 ≤ 47 and
p2 ≤ 992129.

By virtue of the previous paragraph we can check, for any
fixed value of n ≥ 30, to see which values of (p1, p2)
minimize the function fn(x1, x2) when restricted to
prime powers. Similarly, an easy computation shows
that fn(p1, p2) ≥ fn(2, 41) for all prime powers p1, p2 when
30 ≤ n = 2m ≤ 7000.

We now assume that n > 7000. Since fn(x1, x2) =
g(x1, x2)/x

1
n
1 x

1
2n
2 , we have fn(2, 41) > fn(p1, p2) if and only

if g(2, 41) > ( 2
p1
)

1
n ( 41

p2
)

1
2n g(p1, p2). In this case we see that

( 2
p1
)

1
n ( 41

p2
)

1
2n ≥ ( 2

47 )
1

7000 ( 41
992129)

1
14000 = 0.998828683870189

for all prime powers p1, p2 in the ranges specified above.
A computation shows that g(2, 41) < 0.998828683870189 ·
g(p1, p2) for all prime powers 2 ≤ p1 ≤ 47 and
2 ≤ p2 ≤ 992129 with (p1, p2) �= (2, 41), (2, 37), (2, 43).
The case of the proposition in which y = 0.1 and n ≥ 30
now follows from demonstrating that for n > 7000 and
(p1, p2) = (2, 37), (2, 43) we have fn(p1, p2) ≥ fn(2, 41).
The case in which y = 0.1 and 2 ≤ n ≤ 26 can be handled
similarly.

Proposition 9: Let n = 2m ≥ 2 with m odd and define
fn(x1, x2) = (x1x2)

1
4 − 1

2n eCh(x1,y)+Ch(x2,y).
1) If y = 0.1 and n ≥ 118 then for all prime powers

p1, p2 > 1 we have fn(p1, p2) ≥ fn(37, 37).
If 6 ≤ n ≤ 114, the prime powers for which fn(x1, x2)
is minimized are given in Table III.

2) If y = 2 and n ≥ 14 then for all prime powers p1, p2 > 1
we have fn(p1, p2) ≥ fn(9, 9). If n = 6, 10 then for
all prime powers p1, p2 > 1 we have
fn(p1, p2) ≥ fn(11, 11).

Proof: We will prove the proposition in the case that
y = 0.1. The case in which y = 2 is similar and is left to the
reader.

Fix an integer n ≥ 114 as in the statement
of the proposition and define an auxiliary function
g(x1, x2) = (x1x2)

1
4 eCh(x1,y)+Ch(x2,y). Then for all x1, x2 > 0

we see that g(x1, x2) > fn(x1, x2). An easy calculation shows
that 11 > g(37, 37) > fn(37, 37). As fn(x1, x2) > (x1x2)

14
57

for n in this range, we see that if p1, p2 are prime powers for

which fn(p1, p2) < fn(37, 37) then (p1 p2) < 11
57
14 .

By virtue of the previous paragraph we can check, for
any fixed value of n ≥ 114, to see which values of
(p1, p2) minimize the function fn(x1, x2) when restricted
to prime powers. Similarly, an easy computation shows that
fn(p1, p2) ≥ fn(37, 37) for all prime powers p1, p2 when
116 ≤ n = 2m ≤ 20000. Suppose now that n > 20000.
Since fn(x1, x2) = g(x1, x2)/(x1x2)

1
2n , we have fn(37, 37) >

fn(p1, p2) if and only if g(37, 37) > ( 37√
p1 p2

)
1
n g(p1, p2).

Note that 8681 is the largest prime power less than � 11
57
14

2 �.
As we are assuming that n > 20000 it is clear that
( 37√

p1 p2
)

1
n ≥ ( 37

8681)
1

20000 = 0.999727138528677 for all prime

powers 2 ≤ p1, p2 ≤ � 11
57
14

2 �. The proof of the y = 0.1,
n ≥ 114 case of the proposition now follows from a com-
putation which shows that g(37, 37) < 0.999727138528677 ·
g(p1, p2) for all prime powers p1, p2 in the aforementioned
range. The proof when y = 0.1 and 6 ≤ n ≤ 110 is virtually
identical.

B. Proof of Theorems 2, 3 and 4

We will now prove Theorem 2. The proofs of
Theorems 3 and 4 are similar and will be left to the
reader.

Let y0 ∈ {0.1, 2} and y ≤ y0 be any positive real number.
We have already seen, by combining Theorem 1, equation (21)
and Lemma 4, that

|d(�/Z)| ≥ N K
Q (P1 P2)

n(n−1) ·
[
eCh(N K

Q
(P1),y0)eCh(N K

Q
(P2),y0)

]n2

·
[
er1ed(γ+log 4π)e−12π/5

√
ye−I (y)

]n2

. (22)

We begin by obtaining a lower bound for the related quantity

N K
Q (P1 P2)

1− 1
n · eCh(N K

Q
(P1),y0)eCh(N K

Q
(P2),y0)

· er1ed(γ+log 4π)e−12π/5
√

ye−I (y). (23)

Because we are viewing the signature of K as being fixed,
it suffices to simply determine the prime powers p1, p2 for
which

(p1 p2)
1− 1

n eCh(p1,y0)+Ch (p2,y0)

is minimized. This was done in Proposition 7. The theorem
follows by substituting these values into (22) and performing
simple algebraic manipulations.
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VII. A USER’S GUIDE TO DISCRIMINANT BOUNDS

In this section we will discuss how to use the bounds
of the previous section and will compare them to certain
naive bounds defined below. We give the construction of
the naive bound only for the case considered in Theorem 2,
although analogous bounds can be deduced for the other cases
a virtually identical manner.

Let K be a number field of degree d and P1, P2 be the
smallest prime ideals of K (with respect to the order relation
on the prime ideals of K given in the first paragraph of
Section V). If we suppose that no infinite place of K is
ramified in the degree n central division algebra A (this is
the case when K is totally complex for instance), then for any
order � ⊂ A we have that by Theorem 1

|d(�/Z)| ≥ |(NK/Q(P1)NK/Q(P2))
n(n−1)d(OK /Z)

n2 |. (24)

This equation suggests a trivial bound that can be used to
gauge the quality of the bounds proven in the previous section.
Denote by Cr1,d the best known Odlyzko discriminant bound
for a degree d number field K containing precisely r1 real
primes.

Proposition 10: Suppose that K is a totally complex num-
ber field of degree d and A is a central division algebra defined
over K which has degree n. If � is a Z-order contained in A
then

|d(�/Z)| ≥ 4n(n−1)(C0,d)
n2
.

Proof: It is clear that C0,d ≤ |d(OK /Z)|. As the norm
of any prime of K must be at least 2, the result follows from
Equation (24).

Let us now see how our bounds in Section VI stack up
against this naive bound. In order to compare them, we will
transform the main theorems in Section VI to an easy-to-use
form involving classical Odlyzko bounds Cr1,d . This is done
in Corollaries 1-3.

The function I (y) that appeared in (19) depends on the
degree d of the field extension K and the number of real
embeddings from K into R. More precisely,

I (y) = Ir1,d(y) =
∫ ∞

x=0
d

1 − f (x
√

y)

sinh(x)
+ r1

1 − f (x
√

y)

cosh(x/2)
dx,

where d is the degree of K and r1 is the number of real
embeddings from K to R. Let yr1,d the value of y which
maximizes

er1 ed(γ+log4π)e−12π/5
√

ye−Ir1 ,d (y) (25)

over all real y > 0. According to [27], we have

Cr1,d = er1ed(γ+log4π)e−12π/5√yr1 ,d e−Ir1 ,d (yr1,d ).

Proposition 11: There exist integers 1 ≤ N1 ≤ N2 such
that when d > N1 we have that yr1,d < 2 and when d > N2
we have yr1,d < 0.1.

Proof: Let yc be a positive real number. We will now prove
that when d is large enough the optimal y will be smaller
than yc. Through elementary analysis we can see that there
exists a positive constant C such that Ir1,d(y) ≥ dC , for all
y ≥ yc. Therefore 12π

5
√

y + Ir1,d (y) ≥ dC , for all y ≥ yc.

It is now enough to prove that there exists such y that

12π

5
√

y
+ Ir1,d(y) < dC, (26)

as in this case the y must be smaller than yc.
Poitou [29, p. 6] proves that for a certain constant l (which is

independent of r1 and d) we have that

Ir1,d(y) ≤ ly. (27)

Combining (26) and (27) we can see that it is now enough
to prove that when d is large enough we have such y that

12π

5
+ d

√
y(yl − C) < 0,

which, for large enough d , is obviously true when
y = C/(l + 1).

Remark 9: This proposition proves that for sufficiently
large d our discriminant bounds are effective. Explicitly,
calculations in [27] show already that when d > 7,
we have yr1,d < 2.

Remark 10: The bounds in [27] are actually calculated
by using a simple approximation of the function Ir1,d (y)
(see [29, p. 16]), which gives slightly weaker bounds. The
differences between these weaker bounds and those obtained
by optimizing (25) are very small and the loss arising from
using the tables in [27] is irrelevant for practical purposes.

We next state the easy-to-use versions of our bounds
in Section VI. Corollaries 1, 2, and 3 follow immediately from
Proposition 11 and Theorems 2, 3, and 4, respectively.

Corollary 1: Let K be a number field of degree d and
signature (r1, r2), A be a central division algebra over K of
degree n ≥ 2 and signature (0, r1, r2), and � be a maximal
order of A. Lastly, let (p1, p2) be the relevant pair of prime
powers from Table I.

1) If d > N2, then

|d(�/Z)|
≥

{
4n(n−1)(53.450)n

2
(Cr1,d)

n2
, n ≥ 7

(p1 p2)
(n2−n)(eCh(p1,0.1)+Ch(p2,0.1)Cr1,d )

n2
, 2 ≤ n ≤ 6

2) If d > N1, then

|d(�/Z)|
≥

{
4n(n−1)(8.134)n

2
(Cr1,d)

n2
, n ≥ 7

(p1 p2)
(n2−n)(eCh(p1,2)+Ch(p2,2)Cr1,d)

n2
, 2 ≤ n ≤ 6

Corollary 2: Let K be a number field of signature (1, r2),
A be a central division algebra over k of degree n = 2m
(with m odd) and � be a maximal order of A. Lastly, let
(p1, p2) be the relevant pair of prime powers from Table II.

1) If d > N2, then

|d(�/Z)|
≥

{
2n(n−1)41m(m−1)(9.572)n

2
(Cr1,d)

n2
, n ≥ 30

pn2−n
1 pm2−m

2 (eCh(p1,0.1)+Ch(p2,0.1)Cr1,d)
n2
, 2 ≤ n ≤ 26

2) If d > N1, then

|d(�/Z)|
≥

{
2n(n−1)41m(m−1)(2.852)n

2
(Cr1,d )

n2
, n ≥ 30

p(n
2−n)

1 p(m
2−m)

2 (eCh(p1,2)+Ch(p2,2)Cr1,d)
n2
, 2 ≤ n ≤ 26
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Corollary 3: Let K be a number field of signature (r1, r2)
with r1 ≥ 2, A be a central division algebra over k of degree
n = 2m (with m odd) and � be a maximal order of A. Lastly,
let (p1, p2) be the relevant pair of prime powers from Table III.

1) If d > N2, then

|d(�/Z)|
≥

{
372m(m−1)(1.803)n

2
(Cr1,d)

n2
, n ≥ 118

(p1 p2)
m2−m(eCh(p1,0.1)+Ch(p2,0.1)Cr1,d)

n2
, 6 ≤ n ≤114

2) If d > N1, then

|d(�/Z)| ≥
{

92m(m−1)(1.189)n
2
(Cr1,d)

n2
, n ≥ 14

(11)2m(m−1)(1.091)n
2
(Cr1,d)

n2
, n = 6, 10

We can now immediately see the difference between our
bounds and the trivial ones. Both involve (Cr1,d)

n2
, but while

the naive bound uses the multiplicative term 4n(n−1), we have
a considerably larger term. Our bounds are therefore much
stronger when the degree n of the algebra is large.

A. Finding Optimal Algebras

Through computer simulations we see that when the
degree of the center is less than 7 the value of yr1,d that
maximizes (25) is larger than 2 and therefore our bounds
do not apply. However, for these cases we do not need
discriminant bounds as we can simply perform brute force
searches for optimal algebras. Let us now explain how these
searches can be carried out.

Suppose that K is a totally complex field of degree d , and
that P1 and P2 are a pair of smallest prime ideals in K . Then
there exists a degree n division algebra A with maximal
Z-order � having discriminant

d(�/Z) = (Nk/Q(P1)NK/Q(P2))
n(n−1)d(OK /Z)

n2
. (28)

Moreover, this is the smallest possible discriminant of
a maximal Z-order given that the center of A is K
[30, Th. 2.4.26].

This formula allows us to perform a brute force search for
optimal algebras. The key point is that given a degree d and a
real number M , there are only finitely many number fields of
degree d with discriminant smaller than M . We may therefore
limit ourselves to the finite search space of degree d fields K
with discriminant smaller than

|(NK/Q(P1)NK/Q(P2))
(1−1/n)d(OK /Z)|, (29)

and make use of existing tables which contain all number fields
of sufficiently small degree and discriminant [17]. For each
such field, we find the smallest primes and compute the value
of the Z-discriminant given in equation (28). We then simply
choose the center which minimizes this value.

Example 1: Let us demonstrate how this search can be
performed in the case of degree n central division algebras
defined over a totally complex number field of degree 4.

When n = 2 a search through the tables of number
fields with signature (0, 2) yields a field K of discriminant
d(K ) = 32 · 13 with primitive element having minimal
polynomial x4 − x3 − x2 + x + 1. The field K has primes

TABLE IV

THE OPTIMAL ALGEBRAS WITH DEGREE 4 TOTALLY COMPLEX CENTERS

P1 and P2 both of norm 7. Hence, there is a degree 2 division
algebra A containing an order � such that

d(�/Z) = 74(32 · 13)4 = 449920319121.

We can similarly find the optimal centers for every n.
The results appear in the following table.

Here we can see that the optimal center varies as a function
of n and the degree of the algebra, but stabilizes to the field
K of discriminant 24 · 41 which has two prime ideals with
norm 2.

Remark 11: If we use the algebra described in the first line
of Table IV together with the construction of Proposition 5,
we obtain a 16-dimensional lattice code for the
(2, 2, 2)-multiblock channel.

Previously the best discriminant achieved [9] corresponded
to the center K of discriminant d(K ) = 24 · 32 and primitive
element of minimal polynomial x4 − x2 + 1. The minimal
primes in this field have norms 4 and 9. The corresponding
discriminant therefore is of the form

(4 · 9)2 · (24 · 32)4 = 557256278016,

revealing that we managed to find an algebra with the smallest
known discriminant and therefore also the multiblock code
with the largest possible minimum determinant. However, we
point out that in [9] the authors were concentrating only on
fields K that have Q(i) as a subfield, while we optimized over
all totally complex fields.

B. Minimum Determinant Bounds From Discriminant Bounds

We conclude the paper by showing how discriminant bounds
can be transformed into minimum determinant bounds. As a
concrete example, we concentrate on the (2, 2, k)-multiblock
channel. To apply the construction given in Proposition 5,
we need a d = 2k-dimensional totally complex field and a
degree 2 division algebra A. The minimum determinant of any
Z-order � in A is then given by

δ(ψreg2(�)) =
(

24d

|d(�/Z)|
)1/8

.

By Corollary 1, we have

|d(�/Z)| ≥ (p1 p2)
n(n−1)(eCh(7,2)+Ch(7,2))n

2
(C ′

r1,d)
n2

≥ (7)4(1.4121)4(C ′
0,d)

4.

Combining the two previous formulas we see

δ(ψreg2(�)) ≤ 2d/2
√
(9.8847)(C ′

0,d)
.
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According to tables in [27] we find that (C ′
0,8) ≥ 5.68 and

(C ′
0,10) ≥ 6.610.
In the following table we consider example algebras. When

d ≤ 6 our example algebras are already optimal. When d = 8
or d = 10 the algebras were found through experimentation
and we do not make any claims of their optimality.

As stated earlier, our bounds are only relevant for degrees
d > 7. When d = 8 we have an upper bound 0.52 for
δ(ψreg2(�))

1/d . When d = 10 the corresponding upper
bound is 0.50. Assuming that our bounds are quite tight, the
suggested algebra for d = 8 is quite close to optimal, but
when d = 10 there likely exists a better option.
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