
Journal of Algebra 516 (2018) 245–270
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

New classes of examples satisfying the three matrix 

analog of Gerstenhaber’s theorem

Jenna Rajchgot a,1, Matthew Satriano b,2

a Department of Mathematics and Statistics, University of Saskatchewan, 
Saskatoon, SK S7N 5E6, Canada
b Department of Pure Mathematics, University of Waterloo, Waterloo, 
ON N2L 3G1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 December 2017
Available online 22 September 2018
Communicated by Steven Dale 
Cutkosky

MSC:
15A27
13H10
13C05

Keywords:
Commuting matrices
Gerstenhaber’s theorem
Commuting scheme

In 1961, Gerstenhaber proved the following theorem: if k is a 
field and X and Y are commuting d × d matrices with entries 
in k, then the unital k-algebra generated by these matrices has 
dimension at most d. The analog of this statement for four or 
more commuting matrices is false. The three matrix version 
remains open. We use commutative–algebraic techniques to 
prove that the three matrix analog of Gerstenhaber’s theorem 
is true for some new classes of examples.
In particular, we translate this three commuting matrix 
statement into an equivalent statement about certain maps 
between modules, and prove that this commutative–algebraic 
reformulation is true in special cases. We end with ideas for 
an inductive approach intended to handle the three matrix 
analog of Gerstenhaber’s theorem more generally.

© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: rajchgot@math.usask.ca (J. Rajchgot), msatrian@uwaterloo.ca (M. Satriano).
1 J.R. is partially supported by NSERC grant RGPIN-2017-05732.
2 M.S. is partially supported by NSERC grant RGPIN-2015-05631.
https://doi.org/10.1016/j.jalgebra.2018.09.020
0021-8693/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2018.09.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:rajchgot@math.usask.ca
mailto:msatrian@uwaterloo.ca
https://doi.org/10.1016/j.jalgebra.2018.09.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2018.09.020&domain=pdf


246 J. Rajchgot, M. Satriano / Journal of Algebra 516 (2018) 245–270
Contents

1. Introduction and statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
2. Reformulating Statement 1.2 in terms of module morphisms . . . . . . . . . . . . . . . . . . . . . 250
3. Reducing Theorem 1.5 to a special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
4. Completing the proof of Theorem 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
5. Proof of Theorem 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
6. Some other instances where Statement 1.2 holds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7. An inductive approach to Statement 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
8. Contrasting the present approach with established approaches: a series of examples . . . . . 267

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

1. Introduction and statement of results

1.1. An overview of Gerstenhaber’s theorem and its three matrix analog

Let k be a field and let Md(k) denote the space of d × d matrices with entries in k.

Question 1.1. Let X1, . . . , Xn ∈ Md(k) be pairwise commuting matrices. Must the uni-
tal k-algebra that they generate be a finite-dimensional vector space of dimension at 
most d?

When n = 1, the answer to Question 1.1 is “yes” by the Cayley–Hamilton theorem: 
X ∈ Md(k) satisfies its characteristic polynomial, thus I, X, X2, . . . , Xd−1 is a vector 
space spanning set for the algebra generated by X.

When n ≥ 4, the answer is “no” in general. The standard n = 4 counter-example is 
given by the matrices E13, E14, E23, E24 ∈ M4(k), where Eij denotes the matrix with a 
1 in position (i, j) and 0s elsewhere. These 4 matrices generate a 5-dimensional algebra.

The first interesting case is n = 2. Here the answer to Question 1.1 is “yes.” This result 
is often called Gerstenhaber’s theorem and was proved in [7]. Gerstenhaber’s proof was 
algebro-geometric, and relied on the irreducibility of the commuting scheme C(2, d) of 
pairs of d × d commuting matrices (a fact also proved in the earlier paper [16]). Some 
years later, linear algebraic proofs (see [2,15]) and commutative algebraic proofs (see 
[22,1]) of Gerstenhaber’s theorem were found. More detailed summaries on the history 
and approaches to Gerstenhaber’s theorem can be found in [19,12,18].

The case n = 3 is still open, and is the subject of this paper. We refer to the follow-
ing statement (Statement 1.2) as the three matrix analog of Gerstenhaber’s theorem. 
Determining whether or not Statement 1.2 is true is sometimes called the Gerstenhaber 
problem.

Statement 1.2. If X, Y, Z ∈ Md(k) are matrices which pairwise commute, then the unital 
k-algebra generated by X, Y , and Z is a finite-dimensional vector space of dimension at 
most d.
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To prove Statement 1.2, one might try to mimic the algebro-geometric proof of Ger-
stenhaber’s theorem. This approach succeeds whenever the affine scheme of triples of 
commuting d ×d matrices, denoted C(3, d), is irreducible. Consequently, Statement 1.2 is 
true when d ≤ 10 and k is of characteristic 0 (see [21] and references therein).3 However, 
since C(3, d) has multiple irreducible components when d ≥ 29 (see [9,11,18]), a different 
approach is necessary to handle the general case.

1.2. Summary of the main results

In this paper, we use commutative–algebraic methods to study the three matrix analog 
of Gerstenhaber’s theorem. We do so by reformulating Statement 1.2 in terms of mor-
phisms of modules, our key technical tools being Propositions 1.8 and 1.10. Although 
this is nothing more than a simple reformulation, an approach along these lines appears 
to be new.

We work over an arbitrary field k and let S = k[x1, . . . , xn] denote a polynomial ring 
in n variables. One can easily rephrase Question 1.1 on n commuting matrices in terms 
of S-modules. We provide a proof of this in Section 2 (see also [1, §5]).

Proposition 1.3. Question 1.1 has answer “yes” if and only if for all S-modules N which 
are finite-dimensional over k, we have

dimS/Ann(N) ≤ dimN. (1.4)

Thus, Statement 1.2 is true if and only if inequality (1.4) holds for all finite-dimensional 
k[x, y, z]-modules N .

From the perspective of Proposition 1.3, one can approach Statement 1.2 by succes-
sively considering modules of increasing complexity. The simplest modules to consider 
are cyclic ones: when N = S/I it is obvious that equation (1.4) holds. The next simplest 
case to consider is extensions

0 → S/I → N → S/m → 0,

where m ⊆ S is a maximal ideal. This case is much less obvious, and is the central focus 
of this paper. Our main result is that Statement 1.2 holds for such modules:

Theorem 1.5. Let S = k[x, y, z], I ⊆ S an ideal of finite colength, and m ⊆ S a maximal 
ideal. If N is an extension of S-modules

3 In [12], the authors remark that C(3, d) is also known to be irreducible when d = 11 although a proof of 
this result has not yet been publicly circulated.
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0 → S/I → N → S/m → 0,

then the inequality (1.4) holds for N .

Using Theorem 1.5, we also obtain the following more general result.

Theorem 1.6. Let S = k[x, y, z] and N an S-module which is finite dimension over k. 
Suppose N = N1 ⊕ · · · ⊕Nr where for each i, one of the following holds:

(1) Ni is a cyclic module, or
(2) Ni is local with socle of dimension 1 over k, or
(3) there is an extension

0 → Mi → Ni → S/mi → 0

where mi ⊆ S is a maximal ideal and Mi =
⊕

� Mi,� with each Mi,� a cyclic module 
or having socle of dimension 1 over k.

Then the inequality (1.4) holds for N .

Before discussing the technique of proof, it is worth remarking why Theorems 1.5
and 1.6 are more difficult than the cyclic case N = S/I. One reason is that the cyclic 
case holds over polynomial rings S = k[x1, . . . , xn] in arbitrarily many variables, whereas 
Theorem 1.5 is specific to 3 variables. Indeed, the technique of proof must be specific to 
3 variables since there are counter-examples of this form in 4 variables:

Example 1.7 (Theorems 1.5 and 1.6 are false for 4 variables). Let S = k[x, y, z, w] and 
m = (x, y, z, w) and consider the S-module N given as follows: we have an extension

0 → S/((x, y) + m2) → N
π→ S/m → 0

so that N is generated by the elements of M := S/((x, y) +m2) and an additional element 
f ∈ N such that π(f) = 1 ∈ S/m. The S-module structure is given by

zf = wf = 0, xf = z ∈ M, yf = w ∈ M.

One checks Ann(N) = m2 so that

dimS/Ann(N) = 5 > 4 = dimN

which violates the inequality of Proposition 1.3.
Observe that z, w, 1 ∈ M , and f form an (ordered) basis of N . In this basis, multiplica-

tion by x, y, z, and w are given by the 4 ×4 matrices E14, E24, E13, and E23 respectively. 
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These are the matrices from the standard n = 4 counterexample discussed above. See 
the proof of Proposition 1.3 for further detail on the connection between commuting 
matrices and S-modules. �

The proof of Theorem 1.5 consists of two steps. The first (see Theorem 3.2) is showing 
that if a counter-example of this form exists, then we can reduce to the case where 
I = (F12, F13, F23, g), the Fij are the maximal minors of a specific 2 × 3 matrix, g is a 
non-zero divisor, and N satisfies certain additional properties. The second step (see §4) 
consists of showing that no such counter-example exists.

The case of modules with 1-dimensional socle, and extensions of S/m by such modules, 
are handled in Section 5. This, together with some preliminary results in Section 2, 
quickly reduces Theorem 1.6 to the case of Theorem 1.5.

As mentioned above, the following is a key tool we use in the proofs of Theorems 1.5
and 1.6.

Proposition 1.8. Let S = k[x, y, z] be a polynomial ring and m = (x, y, z). Then State-
ment 1.2 is true if and only if for all finite-dimensional S-modules M with 

√
AnnM = m, 

and all S-module maps β : m → M , we have

dimS/Ann(M) + dim β(AnnM) ≤ dimM + 1. (1.9)

From the perspective of Proposition 1.8, Statement 1.2 is an assertion about bounding 
the dimension of the image of Ann(M) under a module map. Along these lines, we obtain 
an inductive approach to Statement 1.2:

Proposition 1.10. Let S = k[x, y, z] and m = (x, y, z). Then Statement 1.2 is equivalent 
to the following assertion: for all finite-dimensional S-modules M with 

√
AnnM = m, 

all submodules M ′ ⊆ M with dim(M/M ′) = 1, all ideals J ⊆ m, and all S-module maps 
β : J → M ′, if

dim J/(J ∩ AnnM ′) + dim β(J ∩ AnnM ′) ≤ dimM ′

then

dim J/(J ∩ AnnM) + dim β(J ∩ AnnM) ≤ dimM.

We prove Proposition 1.8 in Section 2, and Proposition 1.10 in Section 7.
In Section 8, we end the paper by contrasting the present commutative–algebraic 

approach to the Gerstenhaber problem with other approaches in the literature. We do 
this via a series of examples.

Notation. All rings in this paper are commutative with unit. We will let Supp(M) and 
Soc(M) denote the support, respectively the socle, of a module M . Unless otherwise 
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specified, dim(M) and the word dimension will refer to the dimension of a module M as 
a vector space over a given base field.

Acknowledgments. It is a pleasure to thank Jason Bell, Mel Hochster, and Steven Sam 
for many enlightening conversations. We also thank Kevin O’Meara and the anonymous 
referee for helpful comments on an earlier version of this paper. We thank the Casa 
Mathemática Oaxaca for the wonderful accommodations where part of this work took 
place. We are especially grateful to Matt Kennedy for suggesting this problem. We 
performed many computations in Macaulay2 [8], which inspired several ideas.

2. Reformulating Statement 1.2 in terms of module morphisms

Throughout this section, we fix a field k, let S = k[x1, . . . , xn] and m = (x1, . . . , xn). 
Although our primary focus is the three matrix analog of Gerstenhaber’s theorem, our 
proofs work for arbitrary fields and arbitrarily many matrices. For convenience, consider 
the following:

Statement 2.1. The algebra generated by commuting matrices X1, X2, . . . , Xn ∈ Md(k)
has dimension at most d.

For n > 3 this statement is false, n < 3 it is true, and the case when n = 3 is 
Statement 1.2. Our goal in this section is to prove the following version of Proposition 1.8
which is valid for n commuting matrices.

Proposition 2.2. Statement 2.1 is true if and only if for all finite-dimensional S-modules 
M with 

√
AnnM = m, and S-module maps β : m → M , we have

dimS/Ann(M) + dim β(AnnM) ≤ dimM + 1. (2.3)

We begin with a different module-theoretic reformulation of Statement 2.1. This ap-
peared as Proposition 1.3 in the introduction.

Proposition 2.4. Statement 2.1 holds if and only if for all S-modules N which are finite-
dimensional over k, we have

dimS/Ann(N) ≤ dimN.

Proof. Given commuting matrices X1, . . . , Xn ∈ Md(k), we obtain an S-module struc-
ture on k⊕d where we define multiplication by xi to be the action of Xi. Conversely, 
given any S-module N of dimension d over k, after fixing a basis we have N � k⊕d

as k-vector spaces; multiplication by x1, . . . , xn on N can then be viewed as matrices 
X1, . . . , Xn ∈ Md(k) which commute since xixj = xjxi.
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Let A denote the unital k-algebra generated by our commuting matrices. We then 
have a surjection π : S → A given by π(xi) = Xi, and so A � S/ kerπ as S-modules. 
Under the correspondence in the previous paragraph, we have kerπ = Ann(N) and so 
A = S/ Ann(N). Therefore, the inequality dimA ≤ d is equivalent to the inequality 
dimS/ Ann(N) ≤ dimN . �
Example 2.5. Following the above proof, we describe some triples of commuting matrices 
associated to the modules from Theorem 1.5. Let S = k[x, y, z] and m = (x, y, z). Fix an 
ideal I ⊆ S of colength d − 1, and an ordered basis m1, . . . , md−1 of S/I. Each module 
N that fits into a short exact sequence

0 → S/I
i−→ N

π−→ S/m → 0

has an ordered basis of the form i(m1), . . . , i(md−1), f where π(f) = 1 in S/m. Let 
nj = i(mj). Let X, Y, Z ∈ Md(k) be the matrices of multiplication by x, y, z in N in the 
given basis. Then X, Y , and Z take the form

X =

⎛⎜⎜⎜⎝ X ′
a1...

ad−1

0 · · · 0 0

⎞⎟⎟⎟⎠ , Y =

⎛⎜⎜⎝ Y ′
b1...

bd−1

0 · · · 0 0

⎞⎟⎟⎠ , Z =

⎛⎜⎜⎝ Z ′
c1...

cd−1

0 · · · 0 0

⎞⎟⎟⎠ , (2.6)

where X ′, Y ′, Z ′ ∈ Md−1(k) are determined by multiplication in S/I by x, y, and z
respectively, and the final column of each of X, Y , and Z is determined by the particular 
choice of extension N : the extension which yields the matrices in (2.6) is defined via

xf = a1n1 + · · · + ad−1nd−1,

yf = b1n1 + · · · + bd−1nd−1,

zf = c1n1 + · · · + cd−1nd−1.

(2.7)

Conversely, one may ask which triples of the form appearing in (2.6) correspond to 
S-module extensions of S/I by S/m. Since S/I along with basis m1, . . . , md−1 has been 
fixed, the matrices X ′, Y ′, and Z ′ are pre-determined. However, the last column of X, 
Y , and Z can be chosen almost arbitrarily; the only restriction is that X, Y , and Z must 
pairwise commute. The corresponding S-module extension N is then determined by the 
equations (2.7).

See Section 8 for some explicit examples. Our examples will show that X ′, Y ′, and Z ′

can have interesting matrix-theoretic properties. �

The next observation allows us to handle the case of direct sums of modules and in 
particular, reduce to the local case.
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Lemma 2.8. Let N = N1 ⊕ · · · ⊕ Nr where each Ni is an S-module which is finite-
dimensional over k. If dimS/ Ann(Ni) ≤ dimNi for all i, then dimS/ Ann(N) ≤ dimN .

Proof. We have Ann(N) =
⋂

i Ann(Ni), so the diagonal map

S/Ann(N) →
⊕
i

S/Ann(Ni)

is injective. As a result,

dimS/Ann(N) ≤
∑
i

dimS/Ann(Ni) ≤
∑
i

dimNi = dimN. �

Corollary 2.9. If N is an S-module that is finite-dimensional over k, and dimS/

Ann(N ′) ≤ dimN ′ for all localizations N ′ of N , then dimS/ Ann(N) ≤ dimN . In par-
ticular, Statement 2.1 is true if and only if dimS/ Ann(N) ≤ dimN for all S-modules 
N which are finite-dimensional over k and such that SuppN is a point.

Proof. Since N is finite-dimensional as a k-vector space, its support consists of finitely 
many points, and N can be written as a direct sum N1 ⊕ · · · ⊕ Nr where Ni are the 
localizations of N . By Lemma 2.8, the desired inequality for N is implied by that for each 
of the Ni. In particular, dimS/ Ann(N) ≤ dimN for all N if and only if it holds for those 
N which are supported at a point. The corollary then follows from Proposition 2.4. �
Remark 2.10. Corollary 2.9 is equivalent to the following statement about commut-
ing matrices: “Statement 2.1 holds for all choices of pairwise commuting matrices 
X1, X2, . . . , Xn ∈ Md(k) if and only if it holds for all choices of n pairwise commut-
ing nilpotent matrices.” To see this, we follow the proof of Proposition 2.4, using the 
same notation: if the matrices Xi are nilpotent then one easily checks that S/ AnnN is 
a local ring with maximal ideal m. Conversely, if S/ AnnN is local with maximal ideal 
m then AnnN ⊇ mc for some large enough c. Identifying the variable xi ∈ S with the 
matrix Xi as in the proof of Proposition 2.4, and recalling that S/ AnnN ∼= A, we see 
that each Xi satisfies Xc

i = 0, hence is nilpotent.

We next prove Proposition 2.2, and hence Proposition 1.8.

Proof of Proposition 2.2. By Corollary 2.9, we need only show that the inequality in 
the statement of the theorem is equivalent to dimS/ Ann(N) ≤ dimN for all S-modules 
N which are finite-dimensional over k and such that SuppN is a point. Let N be such 
a module. By translation, we can assume without loss of generality that its support is 
the origin, i.e.

√
AnnN = m. Then the Jordan–Hölder filtration yields a short exact 

sequence
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0 → M → N → S/m → 0

and this corresponds to a class α ∈ Ext1(S/m, M).
From the short exact sequence

0 → m → S → S/m → 0

we have a long exact sequence

0 → Hom(S/m,M) → M → Hom(m,M) → Ext1(S/m,M) → 0.

So, Ext1(S/m, M) � Hom(m, M)/M . Thus, our class α lifts to an S-module map 
β : m → M . It is easy to check that Ann(N) = Ann(M) ∩ kerβ, so

dimS/Ann(N) = dimS/Ann(M) + dim Ann(M)/(Ann(M) ∩ kerβ)

= dimS/Ann(M) + dim β(AnnM).

Since dimN = dimM + 1, the inequality

dimS/Ann(M) + dim β(AnnM) ≤ dimM + 1

is equivalent to dimS/ Ann(N) ≤ dimN . �
Remark 2.11. The proof of Proposition 2.2 shows that if

0 → M → N → S/m → 0

is the extension corresponding to the map β : m → M , then the inequality (2.3) holds 
if and only if the inequality (1.4) holds for N . Note that N only depends on the class 
[β] ∈ Ext1(S/m, M). Consequently, whether or not the inequality (2.3) holds depends 
only on the class [β] rather than the map β itself.

In light of Proposition 2.2, we make the following definition:

Definition 2.12. Let M be an S-module which is finite-dimensional as a k-vector space 
with 

√
AnnM = m. If β : m → M is an S-module map, we say that (β, M) is a counter-

example if dimS/ Ann(M) + dim β(AnnM) > dimM + 1.

Corollary 2.13. If I ⊆ S is an ideal with S/I finite-dimensional over k, then (β, S/I) is 
a counter-example if and only if dim β(I) ≥ 2.

Proof. Let M = S/I and notice that Ann(S/I) = I. By definition, (β, S/I) is a counter-
example if and only if
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dimS/I + dim β(I) = dimS/Ann(M) + dim β(AnnM) > dimM + 1 = dimS/I + 1.

In other words, it is a counter-example if and only if dimβ(I) > 1. �
We end with the following result which reduces our search for counter-examples (β, M)

to the case where M is indecomposable. Note the distinction from Lemma 2.8: the 
lemma concerns the inequality dimS/ Ann(M) ≤ dimM whereas the proposition below 
concerns the inequality dimS/ Ann(M̃) ≤ dim M̃ , where M̃ is the extension of S/m by 
M defined by β.

Proposition 2.14. Let β : m → M be an S-module map with M finite-dimensional over 
k and satisfying 

√
AnnM = m. Suppose M = N1 ⊕N2 and let πj : M → Nj be the two 

projections. If neither (π1β, N1) nor (π2β, N2) is a counter-example, then (β, M) is also 
not a counter-example.

Proof. Let M̃ be the extension defined by β, and let M̃j be the extension defined by 
πjβ. We must show dimS/ Ann(M̃) ≤ dim M̃ . We know that

Ann(M̃) = kerβ ∩ Ann(M) =
⋂
j

ker(πjβ) ∩
⋂
j

Ann(Nj) =
⋂
j

Ann(M̃j),

so we have

dimS/Ann(M̃) =
∑
j

dimS/Ann(M̃j) − dimS/(Ann(M̃1) + Ann(M̃2)).

Since (πjβ, Nj) is not a counter-example, we have dimS/ Ann(M̃j) ≤ dim M̃j . Also 
notice that 

√
AnnM = m implies Ann(M̃1) +Ann(M̃2) ⊆ m. Hence, dimS/(Ann(M̃1) +

Ann(M̃2)) ≥ 1. Since

dim M̃ = 1 +
∑
j

dimNj = −1 +
∑
j

dim M̃j ,

we have our desired inequality dimS/ Ann(M̃) ≤ dim M̃ . �
3. Reducing Theorem 1.5 to a special case

Throughout this section, we fix a field k, let S = k[x1, x2, x3] and m = (x1, x2, x3). 
The goal of the next two sections is to prove Theorem 1.5. It suffices to replace k by an 
extension field, and so we may assume k is infinite. By Lemma 2.8, we reduce immediately 
to the case where Supp(S/I) = m, so we must prove:

Theorem 3.1. If M is cyclic and SuppM = m, then (β, M) is not a counter-example in 
the sense of Definition 2.12.
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The focus of this section is to prove the following theorem, which reduces Theorem 3.1
to a special case:

Theorem 3.2. Suppose (β, M) is a counter-example over k with M cyclic and√
AnnM = m. Then there exist f1, f2, f3 ∈ m and g, h ∈ Ann(M) with the follow-

ing properties:

(1) letting Fij = xifj − xjfi and J = (F12, F13, F23, g), we have h /∈ J , the module S/J
is finite-dimensional over k, and m ∈ Supp(S/J),

(2) letting β′ : m → S/J be the S-module map defined by β′(xi) = fi, the elements β′(g)
and β′(h) are linearly independent in the localization of S/(J + 〈h〉) at m, and

(3) dim Soc(Sm/Jm) = 2.

This theorem is proved over the course of §§3.1–3.2. We begin with some preliminary 
results. Since M is cyclic, it is of the form S/I where I is an ideal of S with 

√
I = m. 

By Corollary 2.13, we know dim β(I) ≥ 2. Furthermore, we can make a minimality 
assumption: we may assume that S/I is the cyclic module of smallest dimension for which 
there exists a counter-example (β, S/I), i.e. for all cyclic modules S/K with dimS/K <

dimS/I and all pairs (γ, S/K), we can assume dim γ(K) ≤ 1.
Let fi ∈ S such that β(xi) = fi mod I. Letting Fij = xifj − xjfi, we see Fij ∈ I. So, 

we can write

I = (F12, F13, F23, g1, . . . , gs)

for some polynomials g1, . . . , gs ∈ m.

Lemma 3.3. β(I) ⊆ Soc(S/I) is the vector space spanned by the β(gi). Moreover, there 
exist i �= j such that β(gi) and β(gj) are linearly independent.

Proof. Notice that if p ∈ I, then xiβ(p) = pβ(xi) = 0 in S/I. This shows that β(I) ⊆
Soc(S/I). Next observe that

β(Fij) = β(xi)fj − β(xj)fi = fifj − fjfi = 0.

As a result, β(I) is the ideal generated by the β(gj) and since the β(gj) are contained in 
Soc(S/I), this ideal is nothing more than the vector space they span. Since dimβ(I) ≥ 2, 
there must be i �= j such that β(gi) and β(gj) are linearly independent. �
Proposition 3.4. For each 1 ≤ i ≤ 3, we have fi ∈ m.

Proof. Without loss of generality, assume that f1 /∈ m. Since 
√
I = m, we see S/I is an 

Artin local ring, and so f1 is a unit in S/I. Since x2f1 − x1f2 = F12 is 0 in S/I, we see 
x2 = x1f2f

−1
1 ∈ (x1). Similarly for x3.
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Thus, the maximal ideal m/I of S/I is principally generated by x1. Any Artin local 
ring with principal maximal ideal has the property that all ideals are of the form (m/I)n, 
hence principal. Since Soc(S/I) is an ideal, it is principal and so 1-dimensional. This 
contradicts Lemma 3.3 which shows that dim Soc(S/I) ≥ 2. �
3.1. Showing the existence of a non-zero divisor

In this subsection, we show the existence of g and h in the statement of Theorem 3.2. 
Let us give an outline of how we proceed. We begin by showing that S/(F12, F13, F23) is 
Cohen–Macaulay of Krull dimension 1. Now there are of course many choices of g such 
that S/(F12, F13, F23, g) has Krull dimension 0 (i.e. finite dimensional over k), however 
to prove Theorem 3.2, we need to guarantee that dim Soc(Sm/Jm) = 2 and that β′(g)
and β′(h) are linearly independent. This is accomplished by choosing g to be a suitable 
non-zero divisor in S/(F12, F13, F23).

Proposition 3.5. Every minimal prime of S over (F12, F13, F23) has height 2.

Proof. For convenience, let L = (F12, F13, F23). As F12, F13, F23 are the minors of the 
2 × 3 matrix (

x1 x2 x3
f1 f2 f3

)
,

the height of each minimal prime over L is at most 2. So assume that there is a minimal 
prime p over L of height ≤ 1.

If p has height 0, then p = {0} and so L = {0}. Then Fij = 0, so xifj = xjfi for 
each i, j. From this it follows that there exists q ∈ S such that fi = xiq for all i. Thus, 
given any h ∈ m, we have β(h) = hq. In particular, for h ∈ I we see β(h) = hq ∈ I, so 
dim β(I) = 0, which contradicts dim β(I) ≥ 2.

If p has height 1, then there exists p ∈ S irreducible with p = (p). By Bertini’s 
theorem, we know that for a generic linear combination y =

∑
i λixi, the ideal (p, y) is 

prime. Choose y so that (p, y) is prime and so that (the open conditions) λ3 �= 0 and 
y /∈ (p) are satisfied. Let fy =

∑
i λifi, and let F1y = x1fy − yf1, F2y = x2fy − yf2. 

Observe that L = (F12, F1y, F2y).
Next, since F1y, F2y ∈ L ⊆ (p) � (p, y), we have x1fy, x2fy ∈ (p, y). Recalling that 

(p, y) is prime, we see fy ∈ (p, y), or both x1, x2 ∈ (p, y). In the latter case, we have that 
(x1, x2, x3) = (x1, x2, y) ⊆ (p, y), which is impossible as the vanishing locus V (p, y) ⊆ A3

is irreducible of dimension at least 1. We must therefore have fy ∈ (p, y).
Since fy ∈ (p, y), we have fy = qy + ryp for some q, ry ∈ S. Using that p divides 

F1y = x1fy − yf1 = (x1q − f1)y + x1ryp, we see that p divides (x1q − f1)y. Since (p) is 
prime and y /∈ p, we have x1q − f1 ∈ (p) and so f1 = qx1 + r1p for some r1. Similarly, 
f2 = qx2 + r2p for some r2. As a result, β = β′ + β′′ where β′(h) = qh for all h ∈ m, and 
β′′(xi) = pri. By Remark 2.11, whether or not (β, S/I) is a counter-example depends 
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only on the value of [β] ∈ Ext1(S/m, S/I) and since [β′] = 0, we can assume β = β′′. As 
a result, we can assume the image of β factors through (p) � S/I. Since (p) is generated 
by a single element, we have (p) � S/J where J = Ann(p). Since dimS/J < dimS/I, 
by our minimality assumption at the start of §3, we know that β : m → (p) = S/J

is not a counter-example, and so dim β(J) ≤ 1. But, I ⊆ J because I kills p. So, 
dim β(I) ≤ dim β(J) ≤ 1. �
Corollary 3.6. S/(F12, F13, F23) is Cohen–Macaulay of Krull dimension 1.

Proof. By Proposition 3.5, the variety cut out by (F12, F13, F23) has codimension 2 in 
A3, so S/(F12, F13, F23) has Krull dimension 1. Since F12, F13, F23 are the 2 ×2 minors of 
a 2 ×3 matrix, we know that S/(F12, F13, F23) is Cohen–Macaulay, see [5, Theorem 18.18]
or [10]. �

The following proposition establishes the existence of our desired g, h ∈ m.

Proposition 3.7. There exist g, h ∈ I such that g is a non-zero divisor in S/(F12, F13, F23)
and β(g) and β(h) are linearly independent. Furthermore, we necessarily have h /∈
(F12, F13, F23, g).

Proof. Recall our notation I = (F12, F13, F23, g1, . . . , gs). Our first goal is to show that 
I contains a non-zero divisor in S/(F12, F13, F23).

We know from Corollary 3.6 that S/(F12, F13, F23) is Cohen–Macaulay, so its as-
sociated primes are its minimal primes. Consequently, the set of zero divisors of 
S/(F12, F13, F23) is the union of minimal primes over (F12, F13, F23). If I is contained in 
this union of minimal primes then, by the prime avoidance lemma, I is contained in one 
of these minimal primes. But this is impossible as S/(F12, F13, F23) is Cohen–Macaulay 
of Krull dimension 1 by Corollary 3.6, and S/I has Krull dimension 0 by assumption. 
Thus, I is not contained in the union of minimal primes over (F12, F13, F23) and so I
contains a non-zero divisor of S/(F12, F13, F23).

Next, by Lemma 3.3, there exist i �= j such that β(gi) and β(gj) are linearly indepen-
dent in S/I. Let q ∈ I be a non-zero divisor of S/(F12, F13, F23). If c, d ∈ k � {0} with 
c �= d, and if q+ cgi and q+dgi are in the same minimal prime over (F12, F13, F23), then 
q and gi are also in that minimal prime, a contradiction to q being a non-zero divisor. 
Thus, since there are only finitely many minimal primes, we see that for all but finitely 
many c ∈ k, the polynomial q + cgi is a non-zero divisor.

Since q ∈ I, we know from Lemma 3.3 that β(q) ∈ Soc(S/I). Then β(gi) and β(q) are 
elements of the vector space Soc(S/I) which has dimension at least 2 and β(gi) �= 0, so 
for infinitely many c ∈ k, we see β(q + cgi) = β(q) + cβ(gi) �= 0. Combining this with 
our conclusion from the previous paragraph that q + cgi is a non-zero divisor for all but 
finitely many c ∈ k, we see we can find a non-zero divisor g := q + cgi ∈ I such that 
β(g) �= 0. Now choose h ∈ m to be any linear combination of gi and gj such that β(h)
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is not a scalar multiple of β(g); this is possible by Lemma 3.3 as β(gi) and β(gj) span a 
2-dimensional subspace of Soc(S/I).

Lastly, we show h /∈ J := (F12, F13, F23, g). From Lemma 3.3, we know 0 �= β(g) ∈
Soc(S/I) and we see that β(Fij) = 0. Thus, β(J) is 1-dimensional, generated by β(g). 
Since β(g) and β(h) are linearly independent, it follows that h /∈ J . �
Remark 3.8 (Hypothesis that k is infinite). Proposition 3.7 is the only step in the proof 
of Theorem 3.1 that assumes that k is infinite.

With the choice of g and h from Proposition 3.7, we have:

Corollary 3.9. Conditions (1) and (2) of Theorem 3.2 hold.

Proof. From Proposition 3.7, g is a non-zero divisor of S/(F12, F13, F23), which is Cohen–
Macaulay of Krull dimension 1 by Corollary 3.6. Thus, S/J = S/(F12, F13, F23, g) has 
Krull dimension 0, so it is finite-dimensional over k. Since S/J surjects onto S/I and √
I = m, we know that m ∈ Supp(S/J), which proves condition (1).
Next since h ∈ I, we have surjections S/J → S/(J + 〈h〉) → S/I. After localizing 

at m, these remain surjections. Since 
√
I = m, we know Sm/Im = S/I and so

m
β′

−→ S/J → Sm/Jm → Sm/(J + 〈h〉)m

is a lift of β, meaning that after post-composing the above map by Sm/(J + 〈h〉)m →
Sm/Im = S/I, we obtain β. Since β(g) and β(h) are linearly independent in S/I, it must 
also be the case that β′(g) and β′(h) are linearly independent in Sm/(J + 〈h〉)m, proving 
condition (2). �
3.2. Computing the socle

In this subsection we compute the socle of Sm/Jm, thereby showing condition (3) of 
Theorem 3.2 and finishing the proof.

Proposition 3.10. dim Soc(Sm/Jm) = 2.

Proof. From Corollary 3.6 we know that S/(F12, F13, F23) is Cohen–Macaulay of di-
mension 1. Thus, the Eagon–Northcott complex yields a minimal free resolution [6, 
Theorem A2.60]:

0 → S2 A−→ S3 B−→ S → S/〈F12, F13, F23〉 → 0,

A =
(
x3 f3
x2 f2
x1 f1

)
, B = (F12 −F13 F23 )

is an exact sequence.
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Since g ∈ m is a non-zero divisor in S/(F12, F13, F23), we can use the above resolution 
to obtain the minimal free resolution of S/J :

0 → S2 A′
−−→ S5 B′

−−→ S4 C′
−−→ S → S/J → 0,

A′ =

⎛⎜⎜⎜⎝
g 0
0 g
x3 f3
x2 f2
x1 f1

⎞⎟⎟⎟⎠ , B′ =

⎛⎜⎝x3 f3 −g 0 0
x2 f2 0 −g 0
x1 f1 0 0 −g
0 0 F12 −F13 F23

⎞⎟⎠ , C ′ = (F12 −F13 F23 g ) .

Localizing at m, we obtain the minimal free resolution

0 → S2
m → S5

m → S4
m → Sm → (S/J)m → 0.

Consequently, dim Soc(Sm/Jm) = 2, as the left-most term in the above resolution is of 
rank 2. �
4. Completing the proof of Theorem 1.5

Having now proved Theorem 3.2, we have reduced Theorem 3.1 to showing the follow-
ing. Let f1, f2, f3, g ∈ m, Fij = xifj − xjfi, and J = (F12, F13, F23, g) such that S/J is 
finite-dimensional with dim Soc(Sm/Jm) = 2. Let β : m → S/J be defined by β(xi) = fi. 
Then it is impossible to find h ∈ m �J such that β(g) and β(h) are linearly independent 
in Sm/(Jm + 〈h〉).

We begin with two well-known lemmas.

Lemma 4.1. If R is an Artinian Gorenstein local ring, and I1 and I2 are ideals of R, 
then Ann(I1) + Ann(I2) = Ann(I1 ∩ I2).

Proof. In any commutative ring, we have the equality Ann(K1 + K2) = Ann(K1) ∩
Ann(K2) for all ideals K1 and K2. For Artinian Gorenstein local rings, we have 
Ann(Ann(K)) = K for all ideals K, see e.g. [3, Exercise 3.2.15]. So letting Kj = Ann(Ij), 
we see in our case that Ann(Ann(I1) + Ann(I2)) = I1 ∩ I2. Taking annihilators of both 
sides then proves the result. �
Lemma 4.2. Let R be any Artinian local ring and 0 �= r ∈ R. If s1, . . . , sm form a basis 
for Soc(R), then there is a linear dependence relation among the si in R/r.

Proof. Since every non-zero ideal of R intersects the socle non-trivially, (r) ∩ Soc(R)
contains a non-trivial element s. We can write s =

∑
aisi with (a1, . . . , am) ∈ km � 0. 

Then in R/r we have the linear dependence relation 
∑

aisi = 0. �
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Proposition 4.3. Let K ⊆ S = k[x1, x2, x3] be an ideal with S/K an Artinian Gorenstein 
local ring, and γ : m → S/K an S-module map. If γ(q) is divisible by q for all q ∈ m, 
then there exists r ∈ S/K such that for all q ∈ m, we have γ(q) = qr.

Proof. For every r ∈ S/K, let δr : m → S/K be the map δr(q) = qr. To prove the result, 
it suffices to replace γ by γ − δr for any r. Let γ(xi) = xipi. Replacing γ by γ − δp3 , 
we can assume p3 = 0, i.e. γ(x3) = 0. Then x1x3p1 = x3γ(x1) = x1γ(x3) = 0. In other 
words,

p1 ∈ Ann(x1x3).

Similarly,

p2 ∈ Ann(x2x3) and p1 − p2 ∈ Ann(x1x2).

Our first goal is to show that p2 ∈ Ann(x2) + Ann(x3). By Lemma 4.1, we have 
Ann(x2) + Ann(x3) = Ann((x2) ∩ (x3)). So, let q ∈ (x2) ∩ (x3) and we must show 
p2q = 0. Since q is divisible by both x2 and x3, we can write q = x3q

′ and q = x2q
′′. We 

can further write q′′ = a(x2) +x3b(x2, x3) +x1c(x1, x2, x3) where a ∈ k[x2], b ∈ k[x2, x3], 
and c ∈ k[x1, x2, x3]. Then using p2 ∈ Ann(x2x3) and p1 − p2 ∈ Ann(x1x2), we have

p2q = p2x2a(x2) + p2x1x2c(x1, x2, x3) = p2x2a(x2) + p1x1x2c(x1, x2, x3)

= γ(x2a(x2) + x1x2c(x1, x2, x3) + x3d)

for any choice of d. Choosing d = x2b(x2, x3) − q′, we see

s := x2a(x2) + x1x2c(x1, x2, x3) + x3d = q − x3q
′ = 0.

But, by assumption p2q = γ(s) is divisible by s = 0, and hence p2q = 0. We have 
therefore shown

p2 ∈ Ann(x2) + Ann(x3).

Thus, we can write p2 = (p2 − r) + r with r ∈ Ann(x3) and p2 − r ∈ Ann(x2). Then 
(γ − δr)(x2) = x2(p2 − r) = 0 and (γ − δr)(x3) = −x3r = 0, and so we can assume

p2 = p3 = 0.

Then

p1 ∈ Ann(x1x2) ∩ Ann(x1x3).

To finish the proof we need only show that p1 ∈ Ann(x1) + Ann(x2, x3). Indeed, upon 
doing so, we can write p1 = (p1−r) +r with r ∈ Ann(x2, x3) and p1−r ∈ Ann(x1). Then 
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(γ− δr)(x1) = x1(p1 − r) = 0, (γ− δr)(x2) = −x2r = 0, and (γ− δr)(x3) = −x3r = 0. In 
other words, we will have found r ∈ S such that γ − δr = 0, i.e. γ(q) = qr for all q ∈ m.

To show that p1 ∈ Ann(x1) + Ann(x2, x3), and thereby finish the proof, we again 
note by Lemma 4.1 that Ann(x1) + Ann(x2, x3) = Ann((x1) ∩ (x2, x3)). We let q ∈
(x1) ∩(x2, x3) and must show that p1q = 0. We can then write q = x1(a(x1) +x2b(x1, x2) +
x3c(x1, x2, x3)) and q = x2q

′ + x3q
′′. Then using that p1 ∈ Ann(x1x2) ∩ Ann(x1x3), we 

have

p1q = p1x1a(x1) = γ(x1a(x1) + x2d + x3e)

for any choice of d and e. As before, choosing d = x1b(x1, x2) −q′ and e = x1c(x1, x2, x3) −
q′′ yields s := x1a(x1) + x2d + x3e = 0, and since p1q = γ(s) is divisible by s = 0, we 
have p1q = 0. �

Finally, we turn to the proof of the main theorem.

Proof of Theorem 3.1. Since S/J is finite-dimensional over k, we know that Sm/Jm =
S/K for some ideal K. Recall that dim Soc(S/K) = 2 and our goal is to show that for all 
h ∈ m �J there is a linear dependence relation between β(g) and β(h) in Sm/(Jm+〈h〉) =
S/(K + 〈h〉). In particular, we may assume β(g) �= 0 in S/(K + 〈h〉).

To begin, we show β(h) /∈ Soc(S/K). If β(h) were in the socle, then since 
dim Soc(S/K) = 2 and β(g) ∈ Soc(S/K), either we have our desired linear depen-
dence relation between β(g) and β(h) in S/K (and hence in S/(K + 〈h〉)), or β(g) and 
β(h) form a basis for Soc(S/K). In the latter case, Lemma 4.2 shows there is a linear 
dependence relation between β(g) and β(h) in S/(K+ 〈h〉). So, we have shown our claim 
that β(h) /∈ Soc(S/K). Further note that h ∈ Soc(S/K) implies β(h) ∈ Soc(S/K), since 
xiβ(h) = hβ(xi) ∈ hm = 0. So, we conclude

h, β(h) /∈ Soc(S/K).

Next, notice that β(h) does not divide β(g) in S/K. Indeed, suppose to the contrary 
that β(g) = qβ(h) with q ∈ S. If q ∈ k, then we have a linear dependence relation in 
S/K and hence in S/(K + 〈h〉). If q ∈ m, then β(g) = qβ(h) = hβ(q) ∈ 〈h〉 so β(g) = 0
in S/(K + 〈h〉), which is again a linear dependence relation. This shows our claim that

β(g) /∈ Sβ(h).

Now, Sβ(h) is an ideal of S/K, so it intersects Soc(S/K) non-trivially. Since dim Soc(S/
K) = 2, we know Sβ(h) ∩Soc(S/K) has dimension 1 or 2, but β(g) /∈ Sβ(h) ∩Soc(S/K), 
and so Sβ(h) ∩Soc(S/K) is 1-dimensional. Let q0 ∈ S such that q0β(h) is a basis vector 
for Sβ(h) ∩ Soc(S/K). Then

β(g) and q0β(h) form a basis for Soc(S/K).
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Since h /∈ Soc(S/K), we can induct on the smallest � for which m�h ∈ Soc(S/K). 
That is, we can assume the result for qh for all q ∈ m, i.e. we can assume that β(g) and 
β(qh) are linearly dependent in S/(K + 〈qh〉) for all q ∈ m. So for all q ∈ m, there exists 
p ∈ S/K and a, b ∈ k such that (a, b) �= (0, 0) and

aβ(g) + bβ(qh) = pqh.

Note that β(qh) = hβ(q) ∈ 〈h〉, so the above equality shows aβ(g) ∈ 〈h〉. This yields our 
desired linear dependence relation among β(g) and β(h) in S/(K + 〈h〉) unless a = 0, in 
which case after rescaling we can assume b = 1. We can therefore assume that

β(qh) ∈ Sqh ∀q ∈ m.

Next, let

γ : m → 〈h〉 ⊆ S/K, γ(q) = β(qh).

Since 〈h〉 ∩Soc(S/K) is non-trivial, it has dimension 1 or 2. If β(g) is in this intersection, 
then we have our desired linear dependence relation among β(g) and β(h) in S/(K+〈h〉), 
so we can assume this is not the case. Thus, 〈h〉 ∩ Soc(S/K) does not contain β(g), so 
it is 1-dimensional, and hence 〈h〉 is Gorenstein. Notice that 〈h〉 � S/ AnnS/K(h) and 
via this identification, the condition β(qh) ∈ 〈qh〉 is equivalent to the condition that q
divides γ(q). Applying Proposition 4.3, there is r ∈ S/ AnnS/K(h) such that γ(q) = qr. 
Translating this back into a statement about 〈h〉 via our identification with S/ Ann(h), 
this says

∃ r ∈ S such that β(qh) = qhr ∀q ∈ m.

As a result, β(h) − hr ∈ Ann(m) = Soc(S/K), and so there exist a, b ∈ k such that

β(h) − hr = aβ(g) + bq0β(h).

If q0 ∈ m, then we see β(h) − aβ(g) = h(bβ(q0) + r) = 0 in S/(K + 〈h〉) and gives our 
linear dependence relation. So, q0 /∈ m, i.e. q0 is a unit. By construction β(g) and q0β(h)
form a basis for Soc(S/K), and q0 is a unit, so β(g) and β(h) form a basis for Soc(S/K). 
Then by Lemma 4.2, they have a linear dependence relation in S/(K + 〈h〉). �
5. Proof of Theorem 1.6

We begin with the following result which holds for arbitrarily many variables:

Proposition 5.1. Let S = k[x1, . . . , xn] and let m = (x1, . . . , xn). Suppose that M is a 
finite-dimensional S-module with SuppM = m and dim Soc(M) = 1. Then the following 
hold:
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(1) dimS/ AnnM ≤ dimM ,
(2) for every short exact sequence

0 → M → N → S/m → 0,

we have dimS/ AnnN ≤ dimN .

Proof. We first prove (1) by induction on the dimension of M . If dimM = 1 then 
M � S/m and the result holds trivially. For higher dimensional M , recall that M has a 
composition series

0 ⊆ M1 ⊆ · · · ⊆ Mr−1 ⊆ M

where Mi/Mi−1 � S/m. Since the socle of Mr−1 is contained in the socle of M , 
we also have that dim Soc(Mr−1) = 1, and we may apply induction to see that 
dimS/ AnnMr−1 ≤ dimMr−1. Then we have a short exact sequence

0 → Mr−1 → Mr → S/m → 0

which corresponds to a map β : m → Mr−1. By Remark 2.11, we need only show

dimS/AnnMr−1 + dim β(AnnMr−1) ≤ dimMr−1 + 1.

By induction, we know dimS/ AnnMr−1 ≤ dimMr−1. Furthermore, β(AnnMr−1) ⊆
Soc(Mr−1), so has dimension at most 1. This proves the desired inequality.

The proof of (2) is entirely analogous. We know that the short exact sequence defining 
N corresponds to a map β : m → M . By (1), we know dimS/ Ann(M) ≤ dimM . Since 
β(AnnM) ⊆ Soc(M), we have dim β(AnnM) ≤ 1. Combining these two statements, 
inequality (2.3) holds for β, and so dimS/ AnnN ≤ dimN by Remark 2.11. �

We now turn to the proof of the second main result of this paper.

Proof of Theorem 1.6. By Lemma 2.8, we reduce immediately to the case where: (i) N is 
either cyclic, or (ii) N has 1-dimensional socle, or (iii) there is an extension

0 → M → N → S/m → 0 (5.2)

where m ⊆ S is a maximal ideal and M =
⊕

� M� with each M� a cyclic module or having 
1-dimensional socle. For case (i), inequality (1.4) holds trivially. Case (ii) is handled by 
Proposition 5.1 (1).

It remains to handle case (iii). Further decomposing if necessary, we can assume each 
M� is local. Next, letting L be the set of � for which Supp(M�) = m, we can write 
N = N ′ ⊕

⊕
�/∈L M� where we have a short exact sequence
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0 →
⊕
�∈L

M� → N ′ → S/m → 0.

Since M� is cyclic or has 1-dimensional socle for every � /∈ L, another application of 
Lemma 2.8 combined with cases (i) and (ii) above allows us to assume N = N ′, i.e. we can 
assume that Supp(M�) = m for all �. Proposition 2.14 then reduces us to the case where 
there is only one �; that is, we need only consider extensions (5.2) where 

√
AnnM = m

and M itself is cyclic or has 1-dimensional socle. If M has 1-dimensional socle, then 
inequality (1.4) holds by Proposition 5.1 (2). If M is cyclic, then the inequality holds by 
Theorem 1.5. �
6. Some other instances where Statement 1.2 holds

In this short section we record a couple of additional situations where a finite-
dimensional module M over S = k[x1, . . . , xn] satisfies dimS/ AnnM ≤ dimM .

Proposition 6.1. If β : m → M is surjective, then the pair (β, M) is not a counterexample. 
Moreover, if N is the extension of M defined by β then

dimS/Ann(N) = dimN.

Proof. Since Ann(N) = Ann(M) ∩ ker(β), we see

dimS/Ann(N) = dimS/m + dimm/ ker(β) + dim ker(β)/(Ann(N) ∩ ker(β))

= 1 + dimM + dim ker(β)/(Ann(N) ∩ ker(β)).

Since dimN = 1 + dimM , we must show ker(β) ⊆ Ann(M). Given m ∈ M and f ∈
ker(β), we know β is surjective, so m = β(g) for some g ∈ m. Then fm = fβ(g) =
gβ(f) = 0, and so f ∈ Ann(M). �
Proposition 6.2. If there exists m ∈ N such that Ann(m) = Ann(N), then

dimS/AnnN ≤ dimN.

Proof. In this case, dimS/ Ann(N) = dimS/ Ann(m) and since S/ Ann(m) is isomorphic 
to the cyclic submodule Sm ⊆ N , we necessarily have dimS/ Ann(m) = dimSm ≤
dimN . �

We end this section with an example where Theorem 1.5 applies but Proposition 6.2
does not.

Example 6.3. Let I = (x, y2, z) ⊆ k[x, y, z]. Let N = (xy, z)/(yz, x2, z2, xy2 − xz) and 
observe that N fits into a short exact sequence
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0 → S/I → N → S/m → 0

where the injective map sends 1 to xy. We know by Theorem 1.5 that inequality (1.4)
holds for N . Proposition 6.2, however does not apply here: every element of N can be 
represented as m = az + bxy + cxz, for some a, b, c ∈ k, and one checks that there is 
no choice of a, b, c ∈ k such that Ann(m) agrees with AnnN = (z, y2, xy, x2). Indeed, if 
a �= 0, then y − (b/a)x ∈ Ann(m) and if a = 0, then x ∈ Ann(m). �

7. An inductive approach to Statement 1.2

Our goal is to prove Proposition 1.10 stated in the introduction. We do so after a 
preliminary lemma.

Lemma 7.1. Let S = k[x1, . . . , xn] and m = (x1, . . . , xn). Then Statement 2.1 is true if 
and only if for all ideals J ⊆ m, all finite-dimensional S-modules M with 

√
AnnM = m, 

and all S-module morphisms β : J → M , we have

dim J/(J ∩ AnnM) + dim β(J ∩ AnnM) ≤ dimM. (7.2)

Proof. Notice that if J = m, then J∩AnnM = AnnM , and so the inequalities (2.3) and 
(7.2) are equivalent. So by Proposition 2.2, the inequality (7.2) implies Statement 2.1.

Thus, it remains to show that Statement 2.1 implies inequality (7.2). To see this, fix 
J ⊆ m and an S-module map β : J → M . As in the proof of Proposition 2.2, the map β
defines an extension

0 → M → N → S/J → 0

with Ann(N) = Ann(M) ∩ kerβ. By Proposition 2.4, we know Statement 2.1 implies 
inequality (1.4) for N . Now note that

dimS/Ann(N) = dimS/(J ∩ AnnM) + dim(J ∩ AnnM)/(kerβ ∩ AnnM)

= dimS/(J ∩ AnnM) + dim β(J ∩ AnnM).

Since dimN = dimM + dimS/J , we obtain inequality (7.2) by subtracting dimS/J

from both sides of the inequality (1.4). �
Remark 7.3. The proof of Lemma 7.1 shows that if

0 → M → N → S/J → 0

is the extension corresponding to the map β : J → M , then the inequality (7.2) holds if 
and only if the inequality (1.4) holds for N .



266 J. Rajchgot, M. Satriano / Journal of Algebra 516 (2018) 245–270
Proof of Proposition 1.10. Let S = k[x, y, z] be a polynomial ring and m = (x, y, z). We 
know by Lemma 7.1 that Statement 1.2 is true if and only if inequality (7.2) holds for all 
J , M , and maps β : J → M . So, if Statement 1.2 is true, then both of the inequalities in 
the statement of Proposition 1.10 are true, hence the first inequality implies the second.

We now show that if the implication of inequalities in the statement of Proposition 1.10
holds, then Statement 1.2 is true. By virtue of Lemma 7.1, we need only show that 
inequality (7.2) holds for all J , M , and β : J → M . We prove this latter statement by 
induction on dimM , the base case being trivial. So, we need only handle the induction 
step. For this, we can choose a submodule M ′ ⊆ M such that dim(M/M ′) = 1. Then 
M/M ′ � S/m and we let π : M → S/m be the quotient map.

Suppose first that πβ : J → S/m is surjective. Then letting I = ker(πβ), we have a 
map of short exact sequences

0 I

α

J

β

S/m

�

0

0 M ′ M
π

S/m 0

The maps α and β define extensions

0 → M ′ → N ′ → S/I → 0 and 0 → M → N → S/J → 0,

respectively, and one checks that N ′ � N . Since dimM ′ < dimM , we can assume by 
induction that

dim I/(I ∩ AnnM ′) + dimα(I ∩ AnnM ′) ≤ dimM ′.

By Remark 7.3, this is equivalent to the inequality dimS/ Ann(N ′) ≤ dimN ′. Since 
N � N ′ we obtain the inequality dimS/ Ann(N) ≤ dimN , and applying Remark 7.3
again, we have

dim J/(J ∩ AnnM) + dim β(J ∩ AnnM) ≤ dimM.

It remains to handle the case when πβ : J → S/m is not surjective. In this case 
πβ = 0 and so β factors through M ′. We are thus in the situation β : J → M ′ ⊆ M . By 
induction, we can assume

dim J/(J ∩ AnnM ′) + dim β(J ∩ AnnM ′) ≤ dimM ′

and we want to show

dim J/(J ∩ AnnM) + dim β(J ∩ AnnM) ≤ dimM.

This is precisely the implication of inequalities in the hypothesis of Proposition 1.10. �
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8. Contrasting the present approach with established approaches: a series of examples

As outlined in the introduction, the two primary methods used to attack the Ger-
stenhaber problem have been matrix-theoretic and algebro-geometric. In this section, we 
show how our approach produces examples which are new from each of these perspec-
tives. Many of the results we reference in this section are only stated over C and so we 
assume here that the field k = C.

There are a number of interesting results on the Gerstenhaber problem stated in terms 
of matrix-theoretic properties. For example, the three matrix analog of Gerstenhaber’s 
theorem holds for a commuting triple of nilpotent matrices X, Y, Z ∈ Md(k) whenever 
one of the three matrices has nullity strictly less than 4 (see [20], also [17]), or index 
strictly less than 3 [11]. Recall that the index of a nilpotent matrix A is the smallest 
k ∈ N for which Ak = 0. Via our method, it is straightforward to produce examples 
of triples of nilpotent matrices all of which have arbitrarily large nullity and index, as 
illustrated in the following example.

Example 8.1 (Arbitrarily large nullity and index). Let I = (xr, ys, zt) and let N = S/I. 
Let X, Y, Z ∈ Mrst(k) be the matrices of multiplication by x, y, z in N in some fixed 
basis of N . The kernel of the multiplication by x map is (I : (x))/I. Thus, the nullity 
of X is dim(I : (x))/I, which is st. Similarly, the nullities of Y and Z are rt and rs
respectively. The indexes of X, Y , and Z are r, s, and t respectively.

Notice that N is cyclic, but it already illustrates how to produce triples of matrices 
with arbitrarily large nullity and index where the Gerstenhaber problem is satisfied. 
Furthermore, since index and nullity can only increase when taking extensions, we know 
by Theorem 1.5 that any module M sitting within an extension

0 → N → M → S/m → 0

also yields matrices satisfying the Gerstenhaber problem, and can be made to have 
arbitrarily large rank and nullity, i.e. we can produce triples of matrices of the form (2.6)
satisfying the Gerstenhaber problem and having arbitrarily large rank and nullity. �

We next show that the Weyr form of X can be chosen arbitrarily. If we furthermore 
wish for nullities and indexes of X, Y , Z to be large, then the Weyr form of X can be 
chosen nearly arbitrarily.

Example 8.2 (Arbitrary Weyr form and arbitrarily large nullity and index). We begin 
this example by showing how to produce triples of commuting matrices (X, Y, Z) where 
the Gerstenhaber problem holds and where X has arbitrary Weyr form. Let n0 ≥ n1 ≥
· · · ≥ n� be any sequence of positive integers. Let I ⊂ S be any monomial ideal with the 
following property: for each i ≥ 0, there are precisely ni linearly independent monomials 
xiyjzk ∈ N := S/I; such a monomial ideal I always exists. Let X, Y , Z be the matrices 
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of multiplication by x, y, z in N in some fixed basis of N . It is not difficult to see that 
dim(I : (xi))/I = n0 + n1 + · · · + ni−1, and so the Weyr form for X is (n0, n1, . . . , n�).

We next show that if we wish for the nullities and indexes of X, Y , and Z to be 
arbitrarily large, then we can choose the Weyr form of X to be almost arbitrary. To this 
end, fix positive integers r, s, t, and fix any sequence of positive integers n0 ≥ n1 ≥ · · · ≥
n� with nr−1 ≥ st. We can then find a monomial ideal I as in the previous paragraph 
with the additional property that I ⊆ (xr, ys, zt). It follows that:

(1) X, Y , and Z have nullities at least st, rt, and rs respectively, and indexes at least 
r, s, and t respectively,

(2) X has Weyr form (n0, n1, . . . , n�).

Finally, applying Theorem 1.5 to an extension of N = S/I of the form

0 → N → M → S/m → 0

yields matrices X, Y , Z satisfying the Gerstenhaber problem. If we write these matrices 
in the form (2.6), then X ′, Y ′, Z ′ correspond to multiplication by x, y, z on N . In 
particular, we see that X ′, Y ′, Z ′ satisfy properties (1) and (2) above, i.e. the nullities 
and indexes of X ′, Y ′, Z ′ can be chosen to be arbitrarily large and the Weyr form of X ′

is arbitrary subject to the one constraint nr−1 ≥ st. �

A concrete example of an extension module appears below. We provide the nullity 
and index of each of the resulting commuting matrices, as well as the Weyr form of X.

Example 8.3. Let I = (x4, y4, z4, x2y2, x2z2, y2z2, xyz). This is a colength 25 ideal. Let 
a1, . . . , a8, b1, . . . , b8, and c1, . . . , c8 be arbitrary elements of k. Consider the extension

0 → S/I −→ N
π−→ S/m → 0

where N is generated by the elements of S/I and an element f satisfying π(f) = 1 and

xf = a1x
2y + a2x

2z + a3xy
3 + a4x

3y + a5y
3z + a6x

3z + a7xz
3 + a8yz

3,

yf = b1xy
3 + b2xy

2 + b3x
3y + b4x

3z + b5y
2z + b6y

3z + b7xz
3 + b8yz

3,

zf = c1xy
3 + c2x

3y + c3x
3z + c4y

3z + c5xz
2 + c6yz

2 + c7xz
3 + c8yz

3.

Let X, Y , Z be the matrices given by multiplication by x, y, z on N . Then X, Y , and 
Z all have nullity 12 and index 4. Moreover, after choosing an appropriate basis, we can 
assume X is a Weyr matrix. If a1 = a2 = 0 then X has Weyr type (12, 8, 3, 3); otherwise, 
it has Weyr type (12, 7, 4, 3). �

Next we consider results on the Gerstenhaber problem stated in algebro-geometric 
language. Recall that C(3, d) denotes the commuting scheme of triples of d ×d commuting 
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matrices; let P(3, d) denote the irreducible component of C(3, d) consisting of those triples 
which can be perturbed to simultaneously diagonalizable matrices. (See [18] or [12] for 
further explanation.) We refer to P(3, d) as the main component of C(3, d). The three 
matrix analog of Gerstenhaber’s theorem is known to hold for any commuting triple 
of matrices on the main component P(3, d) (see [18, Section 7]), but it is not known 
whether the three matrix analog of Gerstenhaber’s theorem holds on other irreducible 
components of C(3, d).

By considering cyclic modules of length d ≥ 78, one naturally obtains infinitely many 
examples of triples of commuting matrices on irreducible components other than P(3, d). 
Indeed, using the close relationship between C(3, d) and the Hilbert scheme of d-points in 
affine 3-space established in [4], one notes that if N1 and N2 are length d cyclic modules 
which are on two different components of the Hilbert scheme of d points in 3-space, 
then a triple of commuting matrices corresponding to N1 is necessarily on a different 
component of C(3, d) than a triple of commuting matrices corresponding to N2. Since 
the Hilbert scheme of d points in 3-space is known to be reducible for d ≥ 78 [13,14], 
this allows us to produce infinitely many examples which are not on P(3, d) and where 
the three matrix analog of Gerstenhaber holds. Let us give a specific such example for 
d = 96.

Example 8.4. Consider the Hilbert scheme Hilb96(A3) of 96 points in affine 3-space. Let 
I = m8+(r1, . . . , r24) with the following properties: each ri ∈ m is a homogeneous degree 
7 polynomial, r1, . . . , r24 generate a 24-dimensional subspace of m7/m8, and N = S/I is a 
smooth point of Hilb96(A3). Let X, Y, Z ∈ M96(k) be the triple of matrices corresponding 
to multiplication by x, y, z on N after fixing a choice of basis for N . As shown in [13], 
N cannot be deformed to the coordinate ring of 96 reduced points, i.e. N does not live on 
the main component of Hilb96(A3). By our discussion preceding Example 8.4, it follows 
that the triple of matrices X, Y , Z is a point of C(3, 96) which does not live on the 
component P(3, 96).

Observe that this is an example where the three matrix analog of Gerstenhaber’s 
theorem trivially holds from the commutative–algebraic perspective, but the triple of 
matrices has nullity at least 4, index at least 3, and cannot be perturbed to simultaneously 
diagonalizable matrices. �
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