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TORIC STACKS II: INTRINSIC CHARACTERIZATION

OF TORIC STACKS

ANTON GERASCHENKO AND MATTHEW SATRIANO

Abstract. The purpose of this paper and its prequel is to introduce and
develop a theory of toric stacks which encompasses and extends several notions
of toric stacks defined in the literature, as well as classical toric varieties.

While the focus of the prequel is on how to work with toric stacks, the focus
of this paper is how to show a stack is toric. For toric varieties, a classical
result says that a finite type scheme with an action of a dense open torus arises
from a fan if and only if it is normal and separated. In the same spirit, the
main result of this paper is that any Artin stack with an action of a dense

open torus arises from a stacky fan under reasonable hypotheses.
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1. Introduction

This paper, together with its prequel [GS11a], introduces a theory of toric stacks
which encompasses and extends the many pre-existing theories in the literature
[Laf02, BCS05, FMN10, Iwa09, Sat12, Tyo12]. Recall from [GS11a, Definition 1.1]
that a toric stack is defined to be the stack quotient [X/G] of a normal toric
variety X by a subgroup G of the torus of X. As with toric varieties, one can
understand toric stacks through a combinatorial theory of stacky fans. In Toric
Stacks I [GS11a], we introduce the notion of stacky fan, show that every toric stack
comes from a stacky fan, and develop a rich dictionary between stacky fans and
their associated toric stacks, thereby allowing one to easily read off properties of a
toric stack from its stacky fan.

In contrast to [GS11a], which develops the tools to study a toric stack, the focus
of this paper is how to show that a given stack is toric in the first place. A classical
result (see for example [CLS11, Corollary 3.1.8]) shows that if X is a finite type
scheme with a dense open torus T whose action on itself extends to X, then X is a
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1074 ANTON GERASCHENKO AND MATTHEW SATRIANO

toric variety if and only if it is normal and separated. Similarly, the main result of
this paper states that with suitable hypotheses, if X is an Artin stack with a dense
open torus T whose action on itself extends to an action of X , then X is a toric
stack:

Theorem 6.1. Let X be an Artin stack of finite type over an algebraically closed
field k of characteristic 0. Suppose X has an action of a torus T and a dense open
substack which is T -equivariantly isomorphic to T . Then X is a toric stack if and
only if the following conditions hold:

(1) X is normal,
(2) X has affine diagonal,
(3) geometric points of X have linearly reductive stabilizers, and
(4) every point of [X/T ] is in the image of an étale representable map from a

stack of the form [U/G], where U is quasi-affine and G is an affine group.
(See Definition 4.2 and Remark 4.4; a forthcoming result of Alper, Hall,
and Rydh shows that this condition is automatically satisfied.)

Note that unlike the classical result about toric varieties, we cannot require our
stacks to be separated. Indeed, algebraic stacks which are not Deligne-Mumford are
hardly ever separated. The condition that the stack have affine diagonal essentially
replaces the separatedness condition (see Remark 5.5). In particular, there exist
“toric schemes”: toric stacks which are schemes, but which are not toric varieties
because they are not separated (see Example 5.6).

A forthcoming result of Alper, Hall, and Rydh implies that condition (4) follows
from the other hypotheses and can therefore be removed (see Remark 4.4(0)). Given
that result, we recover new proofs (in the case of trivial generic stabilizer) of [Iwa09,
Theorem 1.3] and [FMN10, Theorem 7.24], which establish the analogous result for
toric stacks which are smooth, separated, and Deligne-Mumford.

Notably, the results in [Iwa09] and [FMN10] impose the hypothesis that the stack
has a coarse space which is a scheme. In contrast, the characterization given by
Theorem 6.1 does not assume that X has a coarse (or good) moduli space at all.
As a corollary, we see that any toric algebraic space satisfying the conditions of the
theorem is in fact a scheme (see Remark 6.3 and Example 6.4).

Remark 1.1. The techniques in this paper work over any separably closed field, but
we work over an algebraically closed field k of characteristic zero to avoid confusing
hypotheses (e.g. that every group we consider is smooth).

Logical dependence of sections. The logical dependence of sections is roughly
as follows:
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TORIC STACKS II: INTRINSIC CHARACTERIZATION OF TORIC STACKS 1075

2. Local construction of toric stacks

The main goal of this section is to prove Theorem 2.13.

2.1. Colimits of toric monoids.

Definition 2.1. A toric monoid is any monoid of the form σ ∩ L, where σ is a
pointed cone in a lattice L.

Remark 2.2. Toric monoids are precisely the finitely generated, commutative,
torsion-free monoids M so that M → Mgp is injective and saturated.

Remark 2.3. Colimits exist in the category of toric monoids. A diagram of toric
monoids D induces a diagram of free abelian groups Dgp. Let L be the colimit of
Dgp in the category of free abelian groups. Then the colimit of D is the image in L
of the direct sum of all the objects of D. In particular, colim(D)gp = colim(Dgp).

Definition 2.4. A face of a monoid M is a submonoid F so that a+ b ∈ F implies
a, b ∈ F .

Remark 2.5. For a toric monoid σ ∩ L, the faces are precisely submonoids of the
form τ ∩L, where τ is a face of σ. So the faces of σ∩L are obtained as the vanishing
loci of linear functionals on L which are non-negative on σ.

Remark 2.6. If F is a face of a toric monoid M , then F gp → Mgp is a saturated
inclusion, so it is the inclusion of a direct summand. In particular, any linear
functional on F gp can be extended to a linear functional on Mgp. Since F is a
face of M , there is a linear functional χ on Mgp which is non-negative on M and
vanishes precisely on F . Given any linear functional on F gp which is non-negative
on F , we extend it arbitrarily to a linear functional on Mgp. By then adding a
large multiple of χ, we can guarantee that the extension is positive away from F .

Definition 2.7. Let D be a finite diagram in the category of toric monoids (i.e. D
is a collection of toric monoids Di and a collection of morphisms between the
monoids). We say D is tight if

(1) every morphism is an inclusion of a proper face,
(2) if Di appears in D, then all the faces of Di appear in D,
(3) the diagram commutes, and
(4) any two objects Di and Dj in D have a unique maximal common face in

D.

Remark 2.8. The motivation for Definition 2.7 is that for any fan Σ on a lattice L,
the diagram of toric monoids {σ ∩ L|σ ∈ Σ} is tight. The goal of this subsection
is to show that any tight diagram of toric monoids is realized by a fan in this
way. Indeed, Corollary 2.12 shows that any tight diagram of toric monoids can be
realized by a subfan of the fan generated by a single cone.

Definition 2.9. A tight subdiagram D0 of a tight diagram D is join-closed if
whenever two objects of D0 have a join in the poset D, they have the same join in
the poset D0. That is, for every pair of objects Di and Dj of D0, if they are both
faces of an object Dk of D, then the smallest face of Dk containing Di and Dj is
in D0.

Lemma 2.10. Let D0 be a join-closed subdiagram of a tight diagram D. Suppose χ
is a linear functional on colim(D0)gp. Then χ can be extended to a linear functional
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1076 ANTON GERASCHENKO AND MATTHEW SATRIANO

on colim(D)gp. Moreover, if χ induces non-negative functions on all objects of D0,
then the extension can be chosen to be non-negative on all objects of D, and it can
be chosen to be strictly positive away from D0.

Remark 2.11. By the universal property of a colimit, a linear functional on a colimit
of groups is equivalent to a compatible collection of linear functionals on the groups
in the diagram.

Proof. We induct on the size of D�D0. If it is empty, the result is clear. Otherwise,
let Db be a maximal object of D which is not in D0. Let D1 be the subdiagram of D
consisting of D0 and all the faces of Db (including Db itself). Since Db is maximal,
D1 is a join-closed subdiagram of D. It suffices to extend the linear functional to
colim(D1)gp.

Since D0 is join-closed, there is a maximum object Dm of D0 which is a face of
Db. We may extend χ|Dm

to a linear functional on Db as in Remark 2.6. If χ|Dm

is non-negative, we may choose the extension to be positive away from Dm. �

Corollary 2.12. Let D be a tight diagram of toric monoids with colimit M . Then
for every object Di of D, Di → M is an inclusion of a face.

Proof. To show that Di → M is an inclusion, it suffices to show that Dgp
i → Mgp

is an inclusion, for which it suffices to show that the dual map is surjective. The
subdiagram consisting of all the faces of Di is join-closed, so every linear functional
on Dgp

i can be extended to a linear functional on Mgp by Lemma 2.10, so the dual
map is surjective.

To show that Di is a face, it suffices to find a linear functional on Mgp which is
non-negative on M and vanishes exactly on Di. Such a linear functional exists by
Lemma 2.10. �

2.2. Constructing toric stacks locally. We saw in [GS11a, §5] that every toric
stack is a good moduli space of a canonical smooth toric stack. In this subsection,
we show that we can construct a toric stack by starting with a smooth toric stack
and specifying compatible good moduli space maps from an open cover. In other
words, given a canonical stack morphism from a smooth toric stack, the property
of being a toric stack can be checked locally. This result will be important in the
proof of Theorem 6.1.

Theorem 2.13. Let X be a stack with an action of a torus T and a dense open
T -orbit which is T -equivariantly isomorphic to T . Let Y → X be a morphism from
a toric stack. Suppose X has a cover by T -invariant open substacks Xi which are
toric stacks with torus T , and that the maps Y ×X Xi → Xi are canonical stack
morphisms (see [GS11a, Definition 5.1]). Then X is a toric stack.

Proof. Let N = homgp(Gm, T ) be the lattice of 1-parameter subgroups of T . Re-
fining the cover, we may assume each Xi is of the form Xσi,βi : Li→N with σi a single
cone. Moreover, we may assume that if Xσi,βi

is in the open cover, then the open
substacks corresponding to the faces of σi are as well. Then X is the colimit of this
diagram of open immersions of toric stacks.

The diagram of open immersions of the Xσi,βi
induces a diagram D of toric

monoids σi ∩ Li (these monoids are well defined by [GS11a, Lemma B.16]). We
wish to show thatD is tight. By construction, the first three conditions of Definition
2.7 are satisfied. We need only to show that any two objects in D have a unique
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TORIC STACKS II: INTRINSIC CHARACTERIZATION OF TORIC STACKS 1077

maximal common face in D. For this, it suffices to show that the intersection
of any two of the Xσi,βi

is cohomologically affine (and therefore corresponds to
an element of the diagram). For each Xσi,βi

, Y ×X Xσi,βi
is a cohomologically

affine toric open substack of Y . Since Y is a toric stack, the intersection of two
such substacks is cohomologically affine. By [GS11a, Remark 5.4], the intersection
(Y×XXσi,βi

)∩(Y×XXσj ,βj
) is the canonical stack over Xσi,βi

∩Xσj ,βj
. In particular,

Xσi,βi
∩Xσj ,βj

has a toric surjection from a cohomologically affine toric stack, so it
is cohomologically affine by [GS11a, Lemma B.7].

The colimit of toric monoids σi∩Li is of the form σ∩L, where L is the colimit of
the Li. By Corollary 2.12, the σi are faces of σ. By [GS11a, Proposition B.21], the
induced morphisms Xσi,βi

→ Xσ,β are the open immersions corresponding to the
inclusions of the faces σi → σ. The diagram of open immersions of the Xσi,βi

can
therefore be realized as the diagram of inclusions of open substacks of Xσ,β . There-
fore, X is the union of these torus-invariant open substacks of Xσ,β . In particular,
it is toric. �

Remark 2.14. Note that the proof shows that X is an open substack of a coho-
mologically affine toric stack. An interesting consequence is that any toric stack
XΣ′,β′ : L′→N is an open substack of a cohomologically affine toric stack. Moreover,
if Σ′ spans L′ (i.e. XΣ′ has no torus factors), then by applying the proof to the open
cover of cohomologically affine torus-invariant open substacks, we see that XΣ′,β′

is an open substack of a canonical cohomologically affine toric stack Xσ,β (i.e. one
that depends only on XΣ′,β′ , not the stacky fan (Σ′, β′)). The corresponding stacky
subfan of (σ, β) is initial among all stacky fans which give rise to the toric stack
XΣ′,β′ (cf. [GS11a, Appendix B]).

3. Preliminary technical results

In this section, we gather technical results that will be used in the proofs of
Theorems 4.5, 5.2, and 6.1.

3.1. Some facts about stacks.

Lemma 3.1. Let Z be an irreducible Weil divisor (i.e. a reduced irreducible closed
substack of codimension 1) of a stack X . Suppose U → X is a smooth cover. Then
Z is a Cartier divisor of X if and only if Z ×X U is a Cartier divisor of U . In
particular, on any smooth stack, every Weil divisor is Cartier.

Proof. If I is the ideal sheaf of the Weil divisor Z, then Z is Cartier if and only
if I is a line bundle. One may verify that a quasi-coherent sheaf is locally free of
a given rank locally in the smooth topology [Mil, Theorem 11.4]. Since smooth
morphisms are flat, the pullback to U of ideal sheaf I is the ideal sheaf of the fiber
product Z ×X U . �

Proposition 3.2. Suppose f : X → Y is a quasi-compact representable étale mor-
phism of quasi-separated algebraic stacks. Then f induces finite-index inclusions
on stabilizers of geometric points.

Proof. Since f is representable, it is faithful [LMB00, Proposition 2.4.1.3 with
Corollary 8.1.2], so the induced maps on stabilizers are inclusions. Suppose that
x : SpecK → X is a geometric point, and let G be the stabilizer of f(x). The
residual gerbe of Y at f(x) must be trivial since K is separably closed, so we have
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1078 ANTON GERASCHENKO AND MATTHEW SATRIANO

a stabilizer-preserving morphism [Alp10, Definition 2.1] BG → Y through which
f(x) factors. Since stabilizer-preserving morphisms are stable under base change, it
suffices to show that the morphism BG×Y X → BG induces finite-index inclusions
on stabilizers. Base changing along the G-torsor SpecK → BG, we get a quasi-
compact étale cover U of SpecK, which must be a finite disjoint union of copies of
SpecK:

U ��

��

BG×Y X ��

ét, rep

��

X

f

��

SpecK �� BG �� Y
We have that U is a G-torsor over BG×Y X . If H ⊆ G is the stabilizer of a point of
U , then the orbit is isomorphic to G/H. Since U is finite, any such G/H must be
finite, so H must have finite index inside of G. The stabilizers at points of BG×YX
are precisely such H. �

Lemma 3.3. Suppose X is an algebraic stack with affine diagonal. Suppose G is
an affine algebraic group with an action on X . Then [X/G] has affine diagonal.

Proof. The following diagram is cartesian:

G×X ∼= X ×[X/G] X
δ ��

��

X × X

��

[X/G]
Δ[X/G]

�� [X/G]× [X/G]

Since X ×X → [X/G]× [X/G] is a smooth cover, it suffices to verify that the action
morphism δ : G×X → X ×X is affine.

Composing δ with the projections X × X → X gives the projection and action
maps p2, α : G × X → X . The projection p2 is affine because G is affine, and α
is isomorphic to p2, so it is also affine. We have that δ is then the composition

G × X Δ−→ (G × X ) × (G × X )
α×p2−−−→ X × X . Since α × p2 is a product of affine

maps, it is affine. Since G is affine, it has affine diagonal. By assumption, X also
has affine diagonal, so G × X has affine diagonal. So δ is a composition of affine
morphisms. �

Lemma 3.4. If X has affine diagonal and Y → X is a canonical stack morphism
(in the sense of [GS11a, Definition 5.6]), then Y has affine diagonal.

Proof. Consider the following diagram, in which the square is cartesian:

Y
ΔY/X

��

ΔY

��

Y ×X Y ��

��

Y × Y

��

X ΔX �� X × X
Since ΔY is a composition of ΔY/X and a pullback of ΔX (which is assumed to be
affine), it suffices to show that ΔY/X is affine.

Affineness can be verified locally on the base in the smooth topology, so we may
assume Y = [X

˜Σ/GΦ] and X = XΣ (see [GS11a, Remark 5.2]). In this case, Y has
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TORIC STACKS II: INTRINSIC CHARACTERIZATION OF TORIC STACKS 1079

affine diagonal by Lemma 3.3, so in the above diagram Y and Y ×X Y are both
affine over Y × Y , so ΔY/X is affine. �

Lemma 3.5. If X → Y is a good moduli space morphism and X has affine diagonal,
then Y has affine diagonal.

Proof. We must show that if U1 and U2 are affine schemes, and we have morphisms
Ui → Y , then U1 ×Y U2 is an affine scheme. Since X ×Y Ui → Ui is a good moduli
space morphism, X ×Y Ui is cohomologically affine. Note that

X ×Y (U1 ×Y U2) ∼= X ×ΔX ,X×X (X ×Y U1)× (X ×Y U2),

so X ×Y (U1 ×Y U2) is cohomologically affine, as ΔX is affine. Since

X ×Y (U1 ×Y U2) → U1 ×Y U2

is a good moduli space morphism, [GS11a, Lemma 6.9(2)] shows that U1 ×Y U2 is
affine. �

Lemma 3.6. Let X be an algebraic stack over a field k, with reductive stabilizers
at geometric points, and let G be a diagonalizable group over k which acts on X .
Then [X/G] has reductive stabilizers at geometric points.

Proof. Let f : SpecK → [X/G] be a geometric point (i.e. K be a separably closed

extension of the field k). Then f is the image of some geometric point f̃ : SpecK →
X . We have the following diagram, in which the square is cartesian:

SpecK

f
���

��
��

��
��

f̃
�� X ��

��

Spec k

��

[X/G]
π �� BG

An automorphism φ of f in [X/G] induces an automorphism of π ◦ f , which is a
K-point of G. Since the square is cartesian, this image in G is the identity if and
only if φ is induced by an automorphism of f̃ , so we get an exact sequence

1 → AutX (f̃) → Aut[X/G](f) → G

(exactness on the left follows from the fact that X → [X/G] is representable). So the
stabilizer of the point of [X/G] is an extension of a subgroup of G by the stabilizer
of a pre-image in X . Since G is diagonalizable, any subgroup is diagonalizable, and
so is reductive. An extension of reductive groups is reductive. �

Recall that a morphism f : X → Y is Stein if f∗OX = OY .

Lemma 3.7. Let X be a normal noetherian algebraic stack, and let U ⊆ X be an
open substack whose complement is of codimension at least 2. Then the inclusion
U ↪→ X is Stein.

Proof. By cohomology and base change [Har77, Proposition 9.3], the property of
being Stein is local on the base in the smooth topology, so we may assume X =
SpecR, with R a normal noetherian domain. Then U is a scheme, and we must
show that any regular function on U arises as an element of R. Any regular function
on U is a rational function on R, so it is of the form f/g, with f, g ∈ R. Since
the complement of U is of codimension at least 2, we see that f/g ∈ Rp for any
codimension 1 prime p. A noetherian normal domain is the intersection in its
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1080 ANTON GERASCHENKO AND MATTHEW SATRIANO

fraction field of its localizations at codimension 1 primes [Eis95, Corollary 11.4], so
f/g ∈ R. �

Corollary 3.8. Let f : X → Y be a morphism of normal noetherian algebraic
stacks. Suppose there is an open substack U ⊆ X so that f |U is an isomorphism
and so that U ⊆ X and f(U) ⊆ Y have complements of codimension at least 2.
Then f is Stein.

Proof. Let i : U → X be the inclusion. By Lemma 3.7, we have that i and f ◦ i are
Stein. It follows that f∗OX = f∗i∗OU = OY , so f is Stein. �

Proposition 3.9. Let D1, . . . , Dn be effective Cartier divisors on a locally finite
type scheme X over a field k. Let x ∈ X be a point at which X is smooth and at
which the Di have simple normal crossings. Then the induced morphism φ : X →
[An/Gn

m] is smooth at x.

Remark 3.10. Smoothness of X and the divisors at x can be checked on a smooth
cover of X, as can the property of having simple normal crossings. Therefore, this
smoothness criterion applies to stacks as well.

However, note that smoothness of the map φ : X → [An/Gn
m] does not entail

representability of the map. It simply means that for any smooth cover by a scheme
U → X , the composite map U → [An/Gn

m] is smooth.

Proof. If some Di does not pass through x, then there is an open neighborhood of
x such that φ factors through [(An−1×Gm)/Gn

m] = [An−1/Gn−1
m ]. Smoothness can

be checked on this neighborhood. We may therefore assume that all the divisors
pass through x.

We may verify formal smoothness at x after restricting to the completed local

ring ÔX,x. Since X is locally of finite type, formal smoothness implies smoothness.

By the Cohen structure theorem [Eis95, Theorem 7.7], ÔX,x = k[[x1, . . . , xr]], and
since the divisors have simple normal crossing, we may choose coordinates so that
the divisor Di is the vanishing locus of the coordinate xi. Then φ is a composition
of three formally smooth morphisms: the “inclusion” of the complete local ring

Spec ÔX,x → Ar, the coordinate projection Ar → An, and the quotient morphism
An → [An/Gn

m]. �

3.2. The weak étale slice argument. Here we prove a weak form of Luna’s slice
theorem. Our hypotheses are weaker than those in Luna’s slice theorem (e.g. we do
not assume an action of a reductive group, only that the stabilizers are reductive),
as is the conclusion (we do not get strong étaleness). Since the hypotheses differ
from the standard result significantly, we reproduce the proof here.

Definition 3.11. Let Z be a scheme with an action of a group scheme H, and let
H ⊆ G be a subgroup. Then Z ×H G (or G×H Z) denotes (G× Z)/H, where the
action of H is given by h · (g, z) = (gh−1, h · z).

Lemma 3.12. Let Z be a scheme over a field k of characteristic 0. Let G be a
group scheme over k, and let H ⊆ G be a subgroup. The tangent space to G×H Z
at the image of (g, z) is (TgG⊕TzZ)/TeH, where the inclusion TeH → TgG⊕TzZ
is induced by the inclusion H → G× Z, h 	→ (gh−1, h · z).

Moreover, G×H Z is smooth at the image of a k-point (g, z) if and only if Z is
smooth at z.
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TORIC STACKS II: INTRINSIC CHARACTERIZATION OF TORIC STACKS 1081

Proof. We have a smooth map G × Z → G ×H Z whose fiber over the image of
(g, z) is {(gh−1, h · z)|h ∈ H}. For any smooth map, the tangent space of an image
point is the quotient of the tangent space of the point by the tangent space of the
fiber at that point. This proves the first statement.

We have that G×Z is an H-torsor over G×H Z and a G-torsor over Z. Smooth-
ness can be checked locally in the smooth topology. G and H are smooth as we
are over a field of characteristic zero, so we see that Z is smooth at z if and only if
G×Z is smooth at (g, z) if and only if G×H Z is smooth at the image of (g, z). �

Lemma 3.13. Let f : Y → X be a quasi-compact morphism of schemes and x ∈ X
a point so that f is étale at every point in the pre-image of x. Then there is an
open neighborhood U ⊆ X of x so that the restriction f−1(U) → U is étale.

Proof. For every point y ∈ f−1(x), let Vy ⊆ Y be an open neighborhood of y so
that f |Vy

is étale. Since étale morphisms are open, f(Vy) ⊆ X is open. Since

the fiber f−1(x) is quasi-compact and étale over the point x, it is finite. Let
U =

⋂
y∈f−1(x) f(Vy). Then U is an open neighborhood of x such that f−1(U) ⊆⋃

y∈f−1(x) Vy, so the induced morphism f−1(U) → U is étale. �

Proposition 3.14 (Weak étale slice argument). Let G be an affine algebraic group
acting on a quasi-affine scheme X of finite type over an algebraically closed field k
of characteristic 0. Suppose x ∈ X is a k-point whose stabilizer H ⊆ G is linearly
reductive. Then there exists a connected locally closed H-invariant subscheme Z ⊆
X such that x ∈ Z and such that the induced morphism Z ×H G → X is étale.

This roughly says that at a point with linearly reductive stabilizer H, a quo-
tient stack [X/G] is étale locally a quotient by H. Explicitly, we have the étale
representable morphism [Z/H] ∼= [(Z ×H G)/G] → [X/G].

Proof. We first consider the case where X is smooth. Let A = OX(X). By [StPrj,
Lemma 01P9], the natural map X → SpecA is an open immersion, so we identify X
with an open subscheme of SpecA. Let m be the maximal ideal in A corresponding
to x ∈ X. The surjectionm → m/m2 ∼= (TxX)∗ isH-equivariant. SinceH is linearly
reductive, there is an H-equivariant splitting, which induces an H-equivariant ring
homomorphism Sym∗(m/m2) → A sending the positive degree ideal into m. This
corresponds to an H-equivariant map SpecA → TxX sending x to 0 and inducing
an isomorphism on tangent spaces at x. Since X and TxX are smooth, the map is
étale at x [BLR90, §2.2, Corollary 10].

The tangent space TxX has a natural action of H. The tangent space to the
G-orbit through x is an H-invariant subspace of TxX. Since H is linearly reductive,
this subspace has an H-invariant complement V .

V � �

��

Z ′H-eq
�� � �

��

� � �� G×H Z ′

��

TxX X
H-eq

�� X

We define Z ′ as V ×TxX X. This is a closed H-invariant subscheme of X which
contains x. The map Z ′ → V is H-equivariant and is étale over V at x. In
particular, Z ′ is smooth at x. The action of G induces a morphism G×H Z ′ → X.
By Lemma 3.12, G×HZ ′ is smooth at the image of (e, x), X is smooth at x, and the
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map induces an isomorphism of tangent spaces since TxZ
′ ∼= V is complementary

to Tx(G ·x). By [BLR90, §2.2, Corollary 10], the map G×H Z ′ → X is étale at the
image of (e, x). Since the morphism is G-equivariant and every point in the fiber
over x is in a single G-orbit, it is étale at every point in the fiber, and therefore étale
over a neighborhood of x ∈ X by Lemma 3.13. Since this map is G-equivariant,
the locus in X where it is étale is a G-invariant open neighborhood U of x. Setting
Z = Z ′ ∩ U , we get that Z ×H G → X is étale. This completes the proof in the
case when X is smooth.

Now consider the case where X is not smooth. We may choose a G-equivariant
immersion of X into a smooth scheme X0. Indeed, X0 can be chosen to be a finite-
dimensional representation of G [PV94, Theorem 1.5]. As shown above, there are
representations V ⊆ W of H, a G-invariant open neighborhood U0 of x, and a
closed subscheme Z0 ⊆ U0 such that Z0 = V ×W U0 and Z0 ×H G → U0 is étale.
Setting U = U0 ×X0

X and Z = Z0 ∩X, we have the following cartesian diagram:

Z ×H G ��

��

Z0 ×H G

��

U ��

��

U0

��

X �� X0

Since Z0 ×H G → U0 is étale, so is Z ×H G → U .
Finally, since x is fixed by H, the connected component of Z which contains x

is H-invariant. We may replace Z by this connected component. �
3.3. A characterization of pointed toric varieties. The proof of the following
proposition is due to Vera Serganova (see [Ger]).

Proposition 3.15. Let V be a representation of a linearly reductive group G over
a field k of characteristic 0, and let Z = G · v ⊆ V be the closure of an unstable
G-orbit (i.e. 0 ∈ Z). If Z is not contained in a direct sum of 1-dimensional rep-
resentations of G, then it contains a positive highest weight vector (with respect to
some Borel subgroup of G).

Proof. Note that v itself cannot be in a direct sum of 1-dimensional representations.
By the Hilbert-Mumford criterion [GIT, Proposition 2.4], there is a 1-parameter
subgroup γ : Gm → G so that γ(t) · v contains 0 in its closure. We have the
weight space decomposition V =

⊕
i∈Z

Vi, where Vi = {x ∈ V |γ(t)x = tix}. Let
v =

∑
i≥p vi, where vi ∈ Vi and vp 
= 0. We may assume p > 0 (replacing γ by its

inverse if necessary).
Let T be a maximal torus containing the image of γ, and let B ⊆ H be a Borel

subgroup containing T so that γ pairs non-negatively with all positive roots. Since
only a finite number of weights appear in V , we may modify γ so that it pairs
positively with all positive roots. If v is a highest weight vector with respect to B,
then we are done. Otherwise, there is some positive root α so that eα · v 
= 0, with
eα ∈ gα, where gα is the root space corresponding to α in the Lie algebra of G. Let
exp(teα) · v =

∑
i≥p fi(t), where fi(t) ∈ Vi ⊗ k[t]. Let mi = deg fi. Since α pairs

positively with γ (and eα · Vi ⊆ Vi+〈γ,α〉), we have eα · v ∈
⊕

i>p Vi, so mp = 0.
Moreover, since eα · v 
= 0, some mi is positive.
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Let a
b ∈ Q be the rational number so that mi ≤ a

b i

for all i and mj =
a
b j for some j. Consider the function

g : A1 → V given by g(t) =
∑

ta·ifi(t
−b). Note that

this is well defined since deg fi = mi ≤ a
b i for all i, so

deg
(
ta·ifi(t

−b)
)
= a · i − b · mi ≥ 0. Note also that

g(0) 
= 0 since mj = a
b j for some j. For t 
= 0, we have

that g(t) = γ(ta) · exp(t−beα) · v ∈ Z. Since Z is closed,
i

mi

p

slope = a/b

we have that g(0) ∈ Z. Note that the minimal weight (with respect to γ) appearing
in g(0) is greater than p and that g(0) does not lie in a direct sum of 1-dimensional
representations since it is in the image of eα. Since V is finite-dimensional, repeating
this procedure a finite number of times produces a positive highest weight vector
in Z. �

Proposition 3.16. Suppose Z is an irreducible affine scheme of finite type over an
algebraically closed field k of characteristic 0, with an action of a linearly reductive
group H. Suppose that x ∈ Z is an H-invariant k-point, that Z contains a dense
open stabilizer-free orbit, and that the stabilizer of each k-point of Z is linearly
reductive. Then H is a torus. In particular, if Z is reduced and normal, it is a
toric variety.

Proof. Since H is isomorphic to a dense open subscheme of Z, it is irreducible. Let
Z = SpecA, and let m ⊆ A be the maximal ideal corresponding to x. We may
choose a finite-dimensional H-invariant subspace V ∗ ⊆ m such that V ∗ generates
A as a k-algebra. Then SpecA → Spec(Sym∗(V ∗)) = V is a closed H-equivariant
immersion of Z into a finite-dimensional representation of H, sending x to the ori-
gin. Since Z contains a dense open stabilizer-free H-orbit, the subrepresentation
spanned by Z is faithful. If Z is contained in a direct sum of 1-dimensional rep-
resentations, then H is diagonalizable, so it is a torus. Otherwise, Z contains a
positive highest weight vector v by Proposition 3.15. Then v is stabilized by the
unipotent radical of some Borel subgroup of H. Since v has reductive stabilizer,
it must also be stabilized by the unipotent radical of the opposite Borel subgroup,
and so by the derived group of H, contradicting the assumption that it is a positive
weight vector. �

4. The local structure theorem

The main result of this section is Theorem 4.5. Together with Lemma 4.1, this
theorem serves as our main tool for showing that a stack is toric.

Lemma 4.1. Let X be an algebraic stack over a field k with an action of a torus
T and a dense open substack which is T -equivariantly isomorphic to T . Then X is
a toric stack if and only if [X/T ] is a toric stack.

Proof. If X = [X/G] is a toric stack, where X is a toric variety and G ⊆ TX is a
subgroup of the torus, then T = TX/G. We see that [X/T ] ∼= [X/TX ] is a toric
stack.

Now suppose [X/T ] = [X/G] is a toric stack, where X is a toric variety and
G ⊆ TX is a subgroup of the torus. Since [X/T ] has a dense open point, we have
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that G = TX is the torus of X. Consider the following cartesian diagram:

TX × T � �

		��
���

���
�

��

�� T � �

		��
���

���
���

��

��

X ×[X/T ] X ��

��

X

T -torsor

��

TX � �

		��
���

���
���

�
�� [TX/TX ] = [T/T ] = ∗

� �

		��
���

���

X �� [X/TX ] ∼= [X/T ]

The stack X×[X/T ]X has an action of the torus TX ×T and a dense open substack
isomorphic to TX × T . Since X ×[X/T ] X is a T -torsor over X, it is a normal
separated scheme, so it is a toric variety with torus TX × T . It is also a TX -torsor
over X , so X = [(X ×[X/T ] X )/TX ] is a toric stack. �

Definition 4.2. A finite type stack X over a field k is of global type if every
geometric point is in the image of an étale representable map [U/G] → X , where
U is a quasi-affine k-scheme and G is an affine algebraic group.

The following lemma shows that Definition 4.2 agrees with [Ryd10, Definition
2.1].

Lemma 4.3. A finite type stack X over a field k is of global type if and only if
there is a finitely presented étale representable surjection [U/GLn] → X , where U
is a quasi-affine k-scheme.

Proof. It is clear that every stack satisfying this condition is of global type.
For the converse, we first show that G can always be taken to be GLn. By [Tot04,

Lemma 3.1], every affine algebraic group G over a field has a faithful representation
G ↪→ GLn so that GLn/G is quasi-affine. The projection U × GLn → GLn is
quasi-affine, so the induced quotient map U ×G GLn → GLn/G is quasi-affine
(quasi-affineness of a morphism can be checked fppf locally), so U ×GGLn is quasi-
affine. We now have that [U/G] ∼= [(U×GGLn)/GLn] is a quotient of a quasi-affine
scheme by GLn.

Next, since X is of finite type over a field, it is quasi-compact, so it has an étale
surjection from a finite number of [Ui/GLni

], where the Ui are quasi-affine. We show
that the ni may be increased until they are all equal. If U is quasi-affine with affine
envelope W = SpecOU (U), an action of GLn on U induces an action of GLn on W .
The GLn-equivariant immersion U → W induces a GLn+1-equivariant immersion
U×GLn GLn+1 → W×GLn GLn+1, but since W×GLn GLn+1 = (W×GLn+1)/GLn

is a quotient of an affine scheme by a free action of a linearly reductive group, it is
affine, so U×GLn GLn+1 is quasi-affine, and [U/GLn] = [(U×GLn GLn+1)/GLn+1].

Thus any stack X which is of global type has a representable étale surjection
[V/GLn] → X , where V =

⊔
i Ui is a finite union of quasi-affine schemes. So V is

quasi-affine, and therefore quasi-compact (recall that quasi-compactness is part of
the definition of quasi-affineness). Since X is of finite type and V is smooth over
X , V is of finite type, so the morphism [V/GLn] → X is finitely presented. �
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Remark 4.4. We know of no stack of finite type over a field which has affine diagonal
and is not of global type. Here we summarize what is known:

(0) As this paper went to press, we learned of a forthcoming result of Alper,
Hall, and Rydh which implies that for a finite type stack X with affine diag-
onal over an algebraically closed field, any closed point with linearly reduc-
tive stabilizer is in the image of a representable étale morphism [U/G] → X ,
where U is affine and G is the stabilizer of the point. Since the images of
such morphisms are open, this shows that all global type hypotheses in this
paper are automatically satisfied.

(1) If X is covered by étale representable morphisms from stacks of the form
[X/G], where X is a normal noetherian scheme over k and G is an affine
algebraic group, then X is of global type. To see this, let G◦ ⊆ G be the
connected component of the identity, and let H = G/G◦. Then [X/G◦] is
of global type by [Ryd10, Remark 2.3], and [X/G◦] → [[X/G◦]/H] = [X/G]
is étale and representable since it is a torsor under the discrete finite group
H, so [X/G] is of global type.

(2) Totaro has shown [Tot04, Theorem 1.1] that a normal noetherian stack X is
of the form [U/GLn] with U quasi-affine if and only if X has the resolution
property. Thus, a stack is of global type if and only if every point has a
representable étale neighborhood which has the resolution property.

(3) Suppose X = [X/G] with X a quasi-affine scheme and G an affine algebraic
group, and suppose X has an action of an algebraic group T . We do not
know if [X/T ] must be of global type. In practice, the action of T on X is

usually induced by an action of G̃ on X, where G̃ is an extension of T by

G. Then G̃ is a G-torsor over T , so G̃ is affine. Hence, [X/T ] = [X/G̃] is
of global type by (1) above.

(4) In [Ryd10, Questions 2.12], Rydh asks if every quasi-compact stack with
quasi-affine diagonal is of global type.

Theorem 4.5. Suppose X is an Artin stack of finite type over an algebraically
closed field k of characteristic 0, with a dense open (non-stacky) k-point. Let
ξ : Spec k → X be a point. Suppose

(1) X is normal,
(2) X has affine diagonal,
(3) X has linearly reductive stabilizers at geometric points, and
(4) X is of global type (see Remark 4.4).

Then there is an affine toric variety X with torus T and an open immersion
[X/T ] ↪→ X sending the distinguished closed point of [X/T ] to ξ.1

Proof. Let [U/G] → X be a representable étale morphism with ξ in its image,
where U is a quasi-affine scheme and G is an affine algebraic group. Let x ∈ U be
a k-point mapping to ξ, and let H ⊆ G be the stabilizer of x. Since the morphism
[U/G] → X is étale representable, Proposition 3.2 implies that the stabilizers of
geometric points of [U/G] are finite index subgroups of the stabilizers of geometric
points of X . That is, given a point y : Spec k → [U/G], StabX (y)/ Stab[U/G](y) is
finite, and therefore affine. Since the stabilizers of geometric points of X are linearly

1Note that [X/T ] has a distinguished closed point, even if X does not. An affine toric variety
X can only fail to have a distinguished closed point if it is of the form X′ × T0, where X′ has a
distinguished closed point and T0 is a torus. In this case, [X/T ] ∼= [X′/(T/T0)].
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1086 ANTON GERASCHENKO AND MATTHEW SATRIANO

reductive, Matsushima’s criterion (see [Alp09, Proposition 12.15(i)]) implies that
the stabilizers of geometric points of [U/G] are linearly reductive.

Applying Proposition 3.14, there is a connected locally closed H-invariant sub-
scheme Z ⊆ U so that x ∈ Z and Z ×H G → U is étale. The morphism
Z → X is smooth, as it is the composition of smooth morphisms Z → [Z/H] ∼=
[(Z ×H G)/G] → [U/G] → X . Since X is normal, and normality is local in the
smooth topology, Z is normal. Since Z is also connected, it is irreducible.

The map [Z/H] → [U/G] → X is étale and representable. Base changing
[Z/H] → X to the dense open k-point of X , we get an irreducible étale cover
of Spec k, which must be trivial since k is algebraically closed. In particular, [Z/H]
has a dense open k-point, so Z contains a dense open stabilizer-free H-orbit.

Next we show that Z must be affine. Let A = OZ(Z). Since Z is quasi-affine, it
is a dense open subscheme of SpecA [StPrj, Lemma 01P9]. The action of H on Z
induces an action ofH on SpecA. By [GIT, Theorem 1.1], (SpecA)/H = Spec(AH)
is a good quotient. Since SpecA contains a dense open copy of H, any H-invariant
regular function must be constant, so the good quotient is Spec k. It follows that
the closures of any two H-orbits intersect. But, x ∈ Z is a closed H-orbit and
Z ⊆ SpecA is an H-invariant open neighborhood of x, so Z = SpecA.

By the same argument we used in the first paragraph of this proof, the stabilizers
of [Z/H] are linearly reductive. Since Z is smooth over X , it is normal and reduced.
By Proposition 3.16, H is a torus and Z is a toric variety.

Finally, we have an étale representable map [Z/H] → X whose image is an
open substack. Replacing X by this open substack, we may assume the map is
surjective. Now we have that Z → X is a smooth cover. Consider the following
cartesian diagram:

Z ×X Z

��

�� Z

H-torsor

��

Y ��

��

[Z/H]

��

Z �� X

Since Z is affine and X has affine diagonal, we have that Z×XZ is affine. This affine
space is the total space of an H-torsor over Y . Since [Z/H] → X is representable,
Y is an algebraic space. Since H is linearly reductive, Y is an affine scheme [GIT,
Theorem 1.1]. Since Y and Z are both affine, Y → Z is separated. Separatedness
is local on the base in the smooth topology, so [Z/H] → X is separated.

Now [Z/H] → X is representable, separated, étale, birational, and surjective, so
it is an isomorphism by Zariski’s Main Theorem [LMB00, Theorem 16.5]. �

5. Main theorem: Smooth case

In this section, we show that every smooth “abstract toric stack” is actually a
toric stack. That is, we show that with suitable hypotheses, a smooth Artin stack
X with dense open torus T whose action on itself extends to X comes from a stacky
fan.
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Lemma 5.1. Suppose f : X → Y is a smooth (but not necessarily representable)
morphism of Artin stacks. Then f is codimension-preserving: if Z ⊆ Y is a closed
substack of codimension d, then Z ×Y X ⊆ X is of codimension d.

Proof. Let π : U → X be a smooth cover by a scheme. Then g = f ◦ π : U → Y is
smooth and representable, so it is open and codimension-preserving. If Z ⊆ Y is a
closed substack of codimension d, then Z ×Y U ⊆ U is closed of codimension d. On
the other hand, U → X is codimension-preserving, and Z ×Y U = (Z ×Y X )×X U ,
so Z ×Y X ⊆ X is of codimension d. �

Theorem 5.2. Let X be a smooth Artin stack of finite type over an algebraically
closed field k of characteristic 0. Suppose X has an action of a torus T and a dense
open substack which is T -equivariantly isomorphic to T . Then X is a toric stack if
and only if the following conditions hold:

(1) X has affine diagonal,
(2) geometric points of X have linearly reductive stabilizers, and
(3) [X/T ] is of global type (see Remark 4.4).

Proof. It is clear that smooth toric stacks satisfy the conditions, so we focus on the
converse.

By Lemma 4.1, it suffices to check that [X/T ] is a toric stack. By Lemma 3.3,
[X/T ] has affine diagonal. By Lemma 3.6, [X/T ] has linearly reductive stabilizers.
Thus, we have reduced to the case where T is trivial and X has a dense open
k-point.

Consider the (finite) set of irreducible divisors of X . By Lemma 3.1, these
divisors are Cartier, so they are induced by line bundles L1, . . . ,Ln with non-zero
global sections si ∈ Γ(X ,Li). These line bundles and sections induce a morphism
X → [An/Gn

m]. We will show that this morphism is an open immersion—and
therefore that X is a toric stack—by induction on n.

The case n = 0. If X has no divisors, then we claim that X = Spec k. By Theorem
4.5, every point of X has an open neighborhood of the form [X/TX ], where X is
a toric variety and TX is its torus. Every point of a toric variety lies either in
the torus or on a torus-invariant divisor. Since X has no divisors, X can have no
torus-invariant divisors. It follows that X must be a torus, and so X is covered by
its dense open point.

The case n = 1. Suppose D ⊆ X is the unique divisor. Our aim is to show that
the morphism X → [A1/Gm] is an isomorphism.

Applying Theorem 4.5 to points of D, we see that D has a dense (stacky) geo-
metric point and that any other point must lie on the intersection of two or more
distinct divisors (because this is true for torus-invariant divisors on a smooth toric
variety). Since D is the unique divisor of X , it has only one geometric point p.
Aside from this point, X has only one other point: the dense open point. Applying
Theorem 4.5 around p, we get an open neighborhood of the form [X/T ], where X
is a toric variety and T is its torus. But any open neighborhood p must be all of
X , so X = [X/T ] is a toric stack. Moreover, the toric variety X has precisely one
torus-invariant divisor, so [X/T ] = [A1/Gm].
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The general case n ≥ 2. Suppose D1, . . . ,Dn are the divisors cut out by the sections
si ∈ Γ(X ,Li). By induction on n, X �Di is a smooth toric stack, so the morphism
X �Di → [An−1/Gn−1

m ] is an open immersion. On the other hand, this morphism
is part of the following cartesian diagram:

X �Di
� � ��

��

X

��

[Gm/Gm]× [An−1/Gn−1
m ] [An−1/Gn−1

m ] �
�

�� [An/Gn
m]

Therefore, we see that the morphism X → [An/Gn
m] restricts to an open immersion

U := X � (D1 ∩ · · · ∩ Dn) → [(An � {0})/Gn
m]. If D1 ∩ · · · ∩ Dn = ∅, then we

are done, so we may assume Z = D1 ∩ · · · ∩ Dn is non-empty. Then any subset of
divisors intersect, but the divisors are distinct, so X → [An/Gn

m] is set-theoretically
surjective. In particular, U → [(An � {0})/Gn

m] is an isomorphism. By Theorem
4.5, Z is of codimension n ≥ 2. So by Lemma 3.7, X → [An/Gn

m] is Stein.
By Theorem 4.5, X is Zariski locally a quotient of a smooth toric variety.

In particular, the divisors are smooth and have simple normal crossings, so by
Proposition 3.9, X → [An/Gn

m] is smooth (but may not be representable). So
X ×[An/Gn

m] X → [An/Gn
m] is smooth and is an isomorphism over the complement

of the closed point of [An/Gn
m]. Since smooth maps are codimension preserving

(Lemma 5.1), the complement of U ∼= U ×[An/Gn
m] U ⊆ X ×[An/Gn

m] X is of codimen-
sion n ≥ 2. In particular, the diagonal ΔX/[An/Gn

m] is Stein by Lemma 3.7.
Consider the following diagram, in which the square is cartesian:

X
ΔX/[An/Gn

m]

��

ΔX





X ×[An/Gn
m] X ��

��

X × X

��

[An/Gn
m]

Δ[An/Gn
m]

�� [An/Gn
m]× [An/Gn

m]

Since ΔX and Δ[An/Gn
m] are affine, we see that ΔX/[An/Gn

m] is affine.
Now ΔX/[An/Gn

m] is Stein and affine, so it is an isomorphism. Thus, X →
[An/Gn

m] is a monomorphism, so it is representable [LMB00, Corollary 8.1.2],
separated, and quasi-finite. Since [An/Gn

m] is normal, Zariski’s Main Theorem
[LMB00, Theorem 16.5] implies that X → [An/Gn

m] is an open immersion. �

5.1. Counterexamples. This subsection gives interesting examples of stacks which
look like they might be toric stacks, but are not. For each example, we show how
the conditions of Theorem 5.2 fail.

To begin, there are varieties X that contain a dense open torus T , on which
T cannot possibly act. For example, blowing up a torus-non-invariant point on a
divisor of a toric variety will produce such a variety. When working with algebraic
spaces and stacks, the action can fail to extend for more subtle reasons.

Example 5.3 (Torus action does not always extend). Let U be the affine line with
a doubled origin over a field of characteristic not equal to 2. Let Z/2 act on U by
x 	→ −x and switching the two origins. Then X = [U/(Z/2)] is a smooth algebraic
space with a dense open torus [Gm/(Z/2)] ∼= Gm. This space is a “bug-eyed cover”
of A1 [Kol92]. We claim that the torus cannot act on X.
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If it did, the étale cover A1 → X would be toric, inducing the degree 2 map of
tori Gm → Gm/(Z/2). This map induces an isomorphism of Gm-representations
between the tangent space to A1 at 0 and the tangent space to X at “the bug
eye”. It would follow that the 1-dimensional weight 1 representation of Gm (i.e. the
tangent space to A1 at 0) factors through the degree 2 map Gm → Gm/(Z/2),
which it clearly does not.

Although we have shown that the previous example is not a toric stack, it is
nonetheless interesting to observe that it can be extended.

Example 5.4. Consider the stack X = [A2/(Z/2�Gm)], with the action given by
(0, t) · (x, y) = (tx, t−1y) and (1, 1) · (x, y) = (−y, x). This contains the “bug-eyed
cover” from the previous example as an open substack (it is the image of A2�{0}).

What makes X particularly interesting is that it is a smooth stack with a dense
open torus (whose action does not extend, of course) so that the complement of the
torus is a single singular divisor (the union of the axes in A2 is smooth over this
divisor).

Remark 5.5. A notable difference between toric stacks and toric varieties is that
toric varieties are required to be separated. Artin stacks are almost never sepa-
rated, but the affine diagonal condition seems to play the role of separatedness.
Heuristically, toric stacks are entirely controlled by their torus-invariant divisors
(this is made precise by [GS11a, Theorem 7.7] and the canonical stack construction
in [GS11a, Section 5]). The condition that a stack have affine diagonal “forces all
non-separatedness to occur in codimension 1” and therefore be controlled by the
combinatorics.

Example 5.6 (Non-affine diagonal). The affine plane with a doubled origin is a
scheme with a torus action satisfying nearly all the conditions of Theorem 5.2,
except it does not have affine diagonal.

Note however, that the affine line with a double origin does have affine diagonal,
and is in fact a toric stack. It is [(A2 � {0})/Gm], where Gm acts by t · (x, y) =
(tx, t−1y).

In the world of stacks, non-affine diagonals can occur in stranger ways as well.

Example 5.7 (Non-separated diagonal). Let G be the affine line with a doubled
origin, regarded as a relative group over A1. The fibers away from the origin are
trivial, and the fiber over the origin is given the structure of Z/2. We see that
G → A1 is an étale relative group scheme.

Let X = [A1/G], where G acts trivially on A1. Since X has a representable étale
cover by A1, it is of finite type, normal, and of global type. Moreover, it has linearly
reductive stabilizers at geometric points. It contains a dense open torus T ∼= Gm

which acts on it. However, X has non-separated diagonal, so it is not a toric stack.

In Theorem 5.2, the condition that X have linearly reductive stabilizers is nec-
essary. It is easy to produce many examples of stacks that satisfy all the other
conditions of the theorem, but fail to be toric stacks.

Example 5.8 (Non-reductive stabilizers). If X is any smooth scheme of finite type
with an action of an affine group G and a dense open copy of G, then X = [X/G]
has a dense open torus (the trivial torus [G/G]) which acts (trivially). Since G is
affine, X has affine diagonal by Lemma 3.3. By Remark 4.4(1), X is of global type.
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As a concrete case, consider the stack X = [M2×2/GL2], where the action of
GL2 on M2×2

∼= A4 is given by left multiplication. This stack does not satisfy
the conditions of Theorem 5.2 since not all stabilizers are linearly reductive. For
example, Stab ( 1 0

0 0 )
∼= Gm �Ga.

6. Main theorem: Non-smooth case

We now extend the results of the previous section to handle the case of singular
stacks. In the introduction of [GS11a], we mentioned that smooth toric stacks can
serve as better-behaved substitutes for toric varieties: sometimes it is easier to prove
a result on the canonical smooth stack overlying a toric variety (see [GS11a, §5])
and then “push the result down” to the toric variety. This section yields a concrete
instance of this philosophy. Indeed, we will prove our main theorem for singular
toric stacks X by making use of the canonical stack over X and Theorem 5.2.

Theorem 6.1. Let X be an Artin stack of finite type over an algebraically closed
field k of characteristic 0. Suppose X has an action of a torus T and a dense open
substack which is T -equivariantly isomorphic to T . Then X is a toric stack if and
only if the following conditions hold:

(1) X is normal,
(2) X has affine diagonal,
(3) geometric points of X have linearly reductive stabilizers, and
(4) [X/T ] is of global type (see Remark 4.4).

Proof. It is clear that any toric stack satisfies the conditions.
As in the proof of Theorem 5.2, we immediately reduce to the case where T

is trivial and X has a dense open point. By Lemma 4.1, it suffices to check that
[X/T ] is a toric stack. By Lemma 3.3, [X/T ] has affine diagonal. By Lemma 3.6,
[X/T ] has linearly reductive stabilizers. Normality and reducedness are local in the
smooth topology, so those hypotheses descend from X to [X/T ].

Applying Theorem 4.5, we obtain an open cover
⊔
Xi → X , where each Xi is of

the form [Xi/Ti], with Xi an affine toric variety. Let Yi be the canonical smooth
toric stack over Xi (see [GS11a, §5]). Since the maps Yi → Xi have the universal
property in [GS11a, Proposition 5.5], they are canonically isomorphic when pulled
back to intersections, so they glue together into a smooth stack Y → X .

The diagonal of Y is affine by Lemma 3.4, and it satisfies the other hypotheses of
Theorem 5.2 by construction (they are local conditions which all canonical stacks
satisfy), so Y is a smooth toric stack. So by Theorem 2.13, X is a toric stack. �

Remark 6.2. As an application of Theorem 6.1, we see that the toric stacks defined
by Tyomkin in [Tyo12, §4] via gluing are in fact globally quotients of toric varieties
by subgroups of their tori. The fact that Tyomkin’s stacks are constructed from
toric stacky data ([Tyo12, Definition 4.1]) implies that they have affine diagonal.
The other conditions of Theorem 6.1 are clearly satisfied.

Remark 6.3 (There are no “toric algebraic spaces”). Suppose X is a toric variety
and G is a subgroup of the torus of X such that the toric stack [X/G] is an algebraic
space (i.e. G acts freely on X). Then [X/G] is a scheme. This can be seen by noting
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that X is covered by torus invariant (and therefore G-invariant) open affines; the
stack quotient of an affine scheme by a free action of G is an affine scheme, so [X/G]
has a Zariski open cover by affine schemes. Theorem 6.1 therefore shows that any
toric algebraic space satisfying the conditions of the theorem is a scheme.

Any separated toric algebraic space over C is a toric variety [Hau00, Theorem
1]. By reducing to C, Skowera has shown that any separated toric algebraic space
over an algebraically closed field of characteristic 0 satisfies condition (4) (the other
conditions are immediate), and therefore that any such algebraic space is a toric
variety [Sko, Theorem 3.7].

Example 6.4 (A (non-normal) toric algebraic space). If the conditions of Theorem
6.1 are not imposed, then there are toric algebraic spaces which are not schemes.
For example, the “line with a doubled tangent direction” [Knu71, Example 1 in the
Introduction] is a toric algebraic space. Note that the normalization of this algebraic
space is the non-separated line, which does arise from a stacky fan [GS11a, Example
2.12].

7. Application: A good moduli space of a toric stack is toric

As an application of Theorem 6.1, we show that if a toric stack X has a good
moduli space X, then X must be toric and the good moduli space morphism X →
X is toric. This is used in the proof of [GS11a, Corollary 6.5], which gives a
combinatorial criterion for when a toric stack has a variety as a good moduli space.
See also [GS11a, Remark 6.7], which gives a criterion for when a toric stack has a
good moduli space.

Lemma 7.1. Suppose f : X → Y is a good moduli space morphism from a smooth
stack. Let Z ⊆ Y be a closed substack of codimension at least 2, and let D ⊆ X be
the union of the components of f−1(Z) which are of codimension 1 in X . Then the
restriction g : X �D → Y is a good moduli space morphism.

Proof. Every divisor of a smooth stack is Cartier by Lemma 3.1, so the inclusion
X � D → X is cohomologically affine. As cohomologically affine morphisms are
stable under composition, g is cohomologically affine.

To see that g is Stein, consider the following diagram, in which the outer square
is cartesian:

X � f−1(Z)

f ′

��

� � j
�� X �D � � j′

�� X

f

��

Y � Z � � i �� Y

By assumption, i and j are inclusions of open substacks whose complements have
codimension at least 2, so these maps are Stein by Lemma 3.7. Since good moduli
space morphisms are stable under base change [Alp09, Proposition 4.7(i)], f ′ is
Stein. We then have that

g∗OX�D = f∗j
′
∗OX�D = f∗j

′
∗j∗OX�f−1(Z) = i∗f

′
∗OX�f−1(Z) = OY . �
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Proposition 7.2. Suppose X is a toric stack, f : X → Y is a good moduli space
morphism, and Y is an algebraic space. Then Y is a toric stack (and therefore a
scheme by Remark 6.3)2 and f is a toric morphism.

Proof. To prove the result, we may replace X by its canonical stack, so we may
assume X is smooth. By Lemma 7.1, we may remove all torus-invariant divisors in
X whose image in Y have codimension larger than 1, so we may assume the image
of every torus-invariant divisor of X is either a divisor or equal to Y .

By [Alp09, Proposition 4.16(viii)], Y is normal. The stabilizers of points of Y
are trivial and therefore linearly reductive. By Lemma 3.5, Y has affine diagonal.
To show Y is toric by Theorem 6.1, it remains to show that Y has an action of a
dense open torus and that the quotient by that torus is of global type.

Let T ⊆ X be the dense torus. Since good moduli space morphisms from locally
noetherian stacks are initial among maps to algebraic spaces [Alp09, Theorem 6.6],
the action of T on X induces an action of T on Y , making f a T -equivariant
morphism.

We induct on the number of T -invariant divisors of X . If X has no T -invariant
divisors, then X = T has good moduli space Y = T , so f is an isomorphism.

If there is an irreducible T -invariant divisor D ⊆ X which dominates Y , then
by [Alp09, Lemma 4.14], D → Y is a good moduli space morphism. By [GS11a,
Proposition 7.20], D is an essentially trivial gerbe over a smooth toric stack D. We
then have the induced good moduli space morphism D → Y . Since D has fewer
torus-invariant divisors than X , we have by the inductive hypothesis that Y is toric
and that D → Y is a toric morphism. Since the torus of D is a quotient of the
torus of X , the map X → Y is toric.

We may therefore assume that the image of every T -invariant divisor Di of X
is a divisor Di in Y . By induction, the complement of any Di in Y is toric and
the good moduli space morphism from X � f−1(Di) is toric. In particular, Y has
a dense open torus TY whose multiplication extends to an action on Y �

⋂
Di. If⋂

Di = ∅, then Y is Zariski locally a toric stack, so [Y/TY ] is of global type.
We may therefore assume that

⋂
Di 
= ∅. By [Alp09, Theorem 4.16(iii)],

⋂
Di 
=

∅, so X is cohomologically affine. Since X is smooth, we have that X = [An/G]
for some subgroup G ⊆ Gn

m. It follows that Y = An/G is toric and the map
[An/G] → An/G is toric. �
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