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xi = 0. We conjecture that for n ≥ 3, the answer is (n −1)!
for odd n, and n(n − 2)! for even n. We prove that if p is 
the largest prime with p ≤ n, then maxv,H |H ∩ Snv| ≤ n!

p
. 

In particular, this proves the conjecture when n or n − 1 is 
prime.
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1. Introduction

Given a linear action of a Lie group G on a finite-dimensional vector space W , a 
question of central importance is to determine when the quotient W/G is smooth. This 
problem and variants of it have a long history in invariant theory with fundamental 
classification results having been obtained in [1,3,5–7,9,11]. In a recent preprint [4], cf. [8], 
Edidin and the third author considered the problem of giving an effective group theoretic 
characterization for when W/G is smooth, and related it to a variant of the following 
concrete question.

Question 1.1. Let G be a finite group and V a finite-dimensional G-representation over 
a field k. Let V =

⊕
i Vi be the decomposition into irreducible representations. What is

max
v,H

|H ∩Gv|

as H ⊂ V ranges over all hyperplanes through the origin, and v ∈ V �
⋃

i Vi ranges over 
all vectors whose orbit satisfies |Gv| = |G|?

In [4], the authors were primarily concerned with the case where G = Sn and k = R, 
and obtained bounds sufficient for their purposes, but the question of a general bound 
remained. We make the following conjecture:

Conjecture 1.2. Let n ≥ 3. As v ranges over all vectors in Rn with distinct coordinates 
not in the hyperplane 

∑
i xi = 0, and as H ⊂ Rn ranges over all hyperplanes through 

the origin, we have

max
v,H

|H ∩ Snv| =
{

(n− 1)!, n is odd
n(n− 2)!, n is even

Let us motivate how these specific bounds arise.

Example 1.3. Given any v = (c1, . . . , cn) with distinct coordinates, consider the 
hyperplane H whose normal vector is (cn, cn, . . . , cn, − 

∑n−1
i=1 ci). Then H contains 

(cσ(1), . . . , cσ(n−1), cn) for all σ ∈ Sn−1, so |H ∩ Snv| ≥ (n − 1)!. �

Example 1.4. Let n ≥ 3. Consider the vector v = (1, 2, . . . , n) and the hyperplane H with 
normal vector (− 

∑n−1
i=2 i, − 

∑n−1
i=2 i, 1 +n, . . . , 1 +n). Then H contains every element of 
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Snv whose first two coordinates sum to 1 + n. When n is odd, there are (n − 1)! such 
elements of Snv. When n is even, there are n(n − 2)! such elements. �

By the above two examples, the bounds in Conjecture 1.2 are the smallest possible. 
The main result of this paper is:

Theorem 1.5. Let n ≥ 2 and let p be the largest prime with p ≤ n. Then

max
v,H

|H ∩ Snv| ≤
n!
p
.

In particular, if n = p or n = p + 1, then Conjecture 1.2 is true.

The proof of Theorem 1.5 involves tools from algebraic geometry, representation 
theory, combinatorics, and graph theory. The proof proceeds in several steps. Using tech-
niques from algebraic geometry, we reduce the problem to one concerning intersections 
of hyperplanes with a specific curve C. We then divide the proof into two cases depend-
ing on whether or not the irreducible components Ci of C have dihedral stabilizers. We 
handle the non-dihedral case using techniques from combinatorics and representation 
theory. The dihedral case is the most involved. We construct a graph whose vertices are 
the irreducible components Ci ⊂ H. Assuming the existence of a hyperplane H that 
violates Theorem 1.5, we show the existence of a vertex C0 whose neighbors have large 
degree relative to C0. A careful analysis of the second order neighborhood of C0 yields 
a contradiction.

Additionally, we prove the following two results. The first shows that the conjecture 
holds for generic v and the second gives an inductive statement, showing that the case 
of even n follows from that of odd n.

Proposition 1.6. Let n ≥ 2. There is a nonempty Zariski open subset U of Rn such that 
for any v ∈ U ⊂ Rn, we have maxH |H∩Snv| = (n −1)! as H ranges over all hyperplanes 
in Rn.

Proposition 1.7. Let k ≤ n be positive integers. If maxH |H ∩ Snv| ≤ n!/k, then for all 
m ≥ n, we have maxH |H ∩ Smv| ≤ m!/k.

In particular, if Conjecture 1.2 holds for an odd number n, then it is also holds for 
n + 1.
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2. Proof of Propositions 1.6 and 1.7

We begin this section by analyzing the behaviour of maxH |H ∩ Snv| where v is a 
generic vector:

Proof of Proposition 1.6. By Example 1.3, we know that for every v with distinct coor-
dinates, there exists a hyperplane H with |H∩Snv| ≥ (n −1)!. So, it remains to show that 
for generic v we have |H ∩ Snv| ≤ (n − 1)! for every hyperplane H. Let v = (x1, . . . , xn)
where x1, . . . xn are indeterminates, and let Ω be the set of all subsets of Snv consisting 
of (n − 1)! + 1 elements. For every ω ∈ Ω, let Mω be the matrix whose columns are the 
vectors in the set ω (with some ordering of the set ω whose choice will not affect the 
proof). Then we must show that for every ω ∈ Ω, the n × n minors of Mω do not simul-
taneously vanish. Let Vω ⊆ An be the variety defined by the simultaneous vanishing of 
the n × n minors of Mω. We need to show 

⋃
ω∈Ω Vω 	= An, so it is enough to show that 

for each ω ∈ Ω, there exists some v ∈ An with v /∈ Vω.
We prove this by induction. When n = 2, we must have ω = {(x1, x2), (x2, x1)}, so 

v = (1, 0) will suffice.
Now suppose n > 2. Consider the appearance of xn in the rows of Mω. If xn shows 

up at least once in each row, let v = (0, . . . , 0, 1); then the column vectors in Mω will 
contain the standard basis vectors, so the n × n minors will not vanish. If xn does not 
appear in some row, then it only occurs in at most n − 1 of the rows; hence, some row 
contains at least (n−1)!+1

n−1 > (n − 2)! copies of xn. By permuting rows of Mω, we may 
assume there is a subset of ω′ ⊂ ω such that |ω′| = (n − 2)! + 1 and every vector in ω′

has xn as its last entry.
By induction, we can specialize the variables x1, . . . , xn−1 to be distinct real numbers 

in such a way that the column vectors in ω′ span a space of dimension at least n − 1. 
Choose xn so that 

∑
i xi 	= 0 and xn 	= xi for i = 1, . . . , n − 1. Since the column 

vectors of Mω′ have the same last coordinate, they are all contained in the hyperplane 
H constructed in Example 1.3. We have therefore shown that if the n ×n minors of Mω

vanish, then the span of the column vectors of Mω is H. However, since |ω| > (n −1)! and 
the xi are distinct real numbers, some column vector of Mω must have last coordinate 
not equal to xn; this vector is not in H and therefore the n × n minors of Mω do not 
simultaneously vanish. �

We turn next to Proposition 1.7.

Proof of Proposition 1.7. We prove the result by induction on n. We assume there exists 
k ≤ n −1 such that for all w ∈ Rn−1 with distinct coordinates not summing to 0, and all 
hyperplanes H ′ ⊂ Rn−1, we have |Sn−1w∩H ′| ≤ (n − 1)!/k. Now, let v = (v1, . . . , vn) ∈
Rn with distinct coordinates not summing to 0. Suppose there exists T ⊆ Snv and a 
hyperplane H ⊂ Rn such that
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|T | = |T ∩H| > n!
k
.

Since Sn is the disjoint union of the cosets (in)Sn−1 for 1 ≤ i ≤ n, there exists i with 
|T ∩ (in)Sn−1v ∩H| > (n − 1)!/k. Relabeling the coordinates of Rn if necessary, we can 
assume i = n. Let

U = T ∩ Sn−1v

and π : Rn � Rn−1 be the projection map π(x1, . . . , xn) = (x1, . . . , xn−1). Note that 
π(v) has distinct coordinates and that π(U) ⊆ Sn−1π(v). Moreover, π|U : U � π(U) is 
a bijection, so |π(U)| > (n − 1)!/k.

If v1 + . . .+ vn−1 	= 0, then by induction, π(U) is not contained in a hyperplane, and 
must therefore span Rn−1. As a result, Span(U) is either a hyperplane or Rn. Notice 
that U is contained in the hyperplane H ′ given by cxn = vn(x1 + . . . + xn−1) with c =
v1 + . . .+vn−1, i.e. the hyperplane constructed in Example 1.3. Thus, Span(U) = H ′ and 
hence H ′ = H ⊃ T . However, |Snv ∩H ′| = (n − 1)! which implies (n − 1)! ≥ |T | > n!/k, 
a contradiction.

If v1 + . . .+ vn−1 = 0, then π(U) is contained in the hyperplane x1 + . . .+ xn−1 = 0. 
Let w = π(v) + (1, . . . , 1) ∈ Rn−1. Then the coordinates of w are distinct and do not 
sum to 0, so by induction, π(U + (1, . . . , 1)) spans Rn−1. In particular, π(U) spans the 
hyperplane x1 + . . .+ xn−1 = 0. This implies that U is not contained in any affine space 
of dimension less than n − 2. Notice that U is contained in the affine space A given by 
x1 + . . . + xn−1 = xn − vn = 0, and that A has dimension exactly n − 2. Note further 
that A is not a linear space since vn 	= 0, and so U is not contained in any linear space of 
dimension n −2. Thus, U must span an (n −1)-dimensional space and since U is contained 
in the hyperplane H ′ given by x1 + . . . + xn−1 = 0, we must have Span(U) = H ′, and 
so H = H ′. However, we see (in)Sn−1v ∩ H ′ = ∅ for all i 	= n. Thus, we again find 
(n − 1)! ≥ |H ′ ∩ T | = |T | > n!/k, a contradiction. �

As a result of Proposition 1.7, we only need to consider the case when n = p for the 
proof of Theorem 1.5.

3. An analysis via algebraic geometry

Let v = (c1, . . . , cn) ∈ Rn with distinct coordinates. Consider the elementary sym-
metric functions ek(x1, . . . , xn) for 1 ≤ k ≤ n, and the following system of equations:

e1(x1, . . . , xn) = e1(c1, . . . , cn)

...

et(x1, . . . , xn) = et(c1, . . . , cn)
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The set Snv is precisely the solution set of this system when t = n.
It will be convenient to work in projective rather than affine space in what follows, so 

we homogenize these equations by adding an additional variable z:

e1(x1, . . . , xn) = e1(c1, . . . , cn)z
...

et(x1, . . . , xn) = et(c1, . . . , cn)zt

Definition 3.1. Let C ⊂ Pn
C be the algebraic variety cut out by the above system of 

equations where we take t = n − 1. We refer to C as the elementary symmetric curve 
associated to v.

The elementary symmetric curve plays a fundamental role in this paper. Throughout 
the rest of this section, we let C be the elementary symmetric curve associated to v and 
let

C = C1 ∪ · · · ∪ Cr

be the decomposition of C into its irreducible components.
If there is a hyperplane H which contains many conjugates of v, then it will have a 

large intersection with C. If H intersects C properly (that is, in a finite set of points), 
then H cannot intersect C in more than (n − 1)! points, and therefore H cannot contain 
more than (n − 1)! conjugates of v.

Write C = C1∪ . . .∪Cr as a union of irreducible curves. (Note that C cannot have any 
components of dimension greater than one, because its intersection with the hypersurface 
en(x1, . . . , xn) = en(c1, . . . , cn) is a finite set of points, namely Snv.) If H contains more 
than (n − 1)! conjugates of v, then it must contain some irreducible component Ci of C.

Lemma 3.2. We have the following properties:

(1) Each Ci has dimension 1.
(2) If H ⊂ Rn is a hyperplane that intersects C properly, i.e. in a finite set of points, 

then |H ∩ C| ≤ (n − 1)!.
(3) If H ⊂ Rn is a hyperplane satisfying |H ∩ C| > (n − 1)!, then H contains some Ci.

Proof. Notice that the intersection of C with the hypersurface en(x1, . . . , xn) =
en(c1, . . . , cn) is a finite set of points, namely Snv. Since intersecting with a hypersurface 
decreases dimension by at most 1, we see each Ci has dimension at most 1. On the other 
hand, C is defined as the intersection of n − 1 hypersurfaces, so each Ci has dimension 
at least 1. This proves (1).

Statements (2) and (3) follow immediately from Bézout’s Theorem since C is inter-
section of hypersurfaces of degrees 1, 2, . . . , n − 1, and hence has degree (n − 1)!. �
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Lemma 3.3. The Sn-action on Rn induces a transitive action on the set of irreducible 
components {C1, . . . , Cr}. Moreover, for each i, we have deg(Ci) = (n−1)!

r and |Ci ∩
Snv| = n!

r .

Proof. Since Y ∩C = Snv consists of n! = deg(Y ) deg(C) distinct points, Y intersects C
properly and transversely. In particular, Y cannot intersect C at any point of intersection 
of two irreducible components of C. So, we find

deg(Y ) deg(C) = |Y ∩ C| =
∑
i

|Y ∩ Ci| ≤
∑
i

deg(Y ) deg(Ci) = deg(Y ) deg(C)

from which we see

|Ci ∩ Snv| = |Y ∩ Ci| = deg(Y ) deg(Ci)

for every i. It follows that Ci∩Snv 	= ∅ and so the Sn-action on {C1, . . . , Cr} is transitive. 
As a result, each Ci has the same degree and contains the same number of elements of 
Snv, so we must have deg(Ci) = (n−1)!

r and |Ci ∩ Snv| = n!
r . �

Lemma 3.4. Let n = p be prime and Stab(Ci) be the stabilizer of Ci under the Sp-action 
on the set of irreducible components of C. Then Stab(Ci) contains a p-cycle.

Proof. By Lemma 3.3, Sp acts transitively on the set of irreducible components of C. 
By Lemma 3.3, | Stab(Ci)| = p!

r = p deg(Ci), so p divides | Stab(Ci)|. It follows from 
Cauchy’s Theorem that Stab(Ci) contains an element π whose order is p; since π ∈ Sp, 
it is necessarily a p-cycle. �
Corollary 3.5. Let n = p be prime and w = (ζ, . . . , ζp) where ζ = e2πi/p. Then the 
complex linear span of any irreducible component C0 of C contains σw for some σ ∈ Sp.

Proof. Since Stab(C0) contains a p-cycle π, the complex linear span of C0 contains 
a subrepresentation of the permutation representation of 〈π〉. This subrepresentation 
is non-trivial since v has distinct coordinates. Thus, it contains a non-trivial complex 
irreducible 〈π〉-representation, which is necessarily spanned by σw for some σ ∈ Sp. �

We conclude this section with a key lemma used in the proof of Theorem 1.5. We 
know from Lemma 3.2 (3) that if H ⊂ Rn is a hyperplane with |H ∩ Snv| > (n − 1)!, 
then H must contain an irreducible component Ci. In the proof of Theorem 1.5, we show 
that for each Ci ⊂ H, there are n − 1 other irreducible components of C that are not 
contained in H. We then apply the following:

Lemma 3.6. Let H ⊂ Rn be a hyperplane. Suppose that for each irreducible component 
Ci of C satisfying Ci ⊂ H, there are irreducible components Ci1, . . . , Ci,n−1 with the 
following properties:
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(i) H ∩ Cij ∩ Snv = ∅ and
(ii) Cik = Cj� if and only if i = j and k = �.

Then |H ∩ Snv| ≤ (n − 1)!.

Proof. Say H contains exactly m of the irreducible components of C. By Lemma 3.3
and Bézout’s Theorem, we then have:

|H ∩ Snv| ≤
∑

Ci⊂H

n!
r

+
∑

Ck �⊂H
Ck∩H∩Snv �=∅

(n− 1)!
r

≤ m
n!
r

+ (r −mn) (n− 1)!
r

= (n− 1)! �
4. Lemmas concerning 2-cycles, 3-cycles, and 2-2-cycles

In this section, we collect several results concerning the structure of hyperplanes that 
simultaneously contain v and σv, where σ is a 2-cycle, a 3-cycle, or a 2-2-cycle. We also 
prove Theorem 1.5 for p = 3, 5.

Lemma 4.1. Let n ≥ 3 and v = (c1, . . . , cn) ∈ Rn with distinct coordinates. Let H =
(a1, . . . , an)⊥ be a hyperplane containing v. If τ = (ij) is a transposition and τv ∈ H, 
then ai = aj.

Let σ = (ijk) be a 3-cycle and π an n-cycle. If H contains πmv and σπmv for all m, 
then ai = aj = ak.

Proof. By permuting coordinates, we can assume τ = (12). Then τv− v = (c2 − c1, c1 −
c2, 0, . . . , 0) is contained in H. Since c2 	= c1, we have a1 = a2.

For the second claim of the lemma, we first permute coordinates to assume σ =
(123)−1 = (132). Then for all i, we have1

di := σπ−iv − π−iv = (cπi(2) − cπi(1), cπi(3) − cπi(2), cπi(1) − cπi(3), 0, . . . , 0) ∈ H.

Let m be such that cm = minl cl. Choose i, j, k so that πi(1) = m, πj(2) = m, and 
πk(3) = m. We claim that di, dj , and dk span a space of dimension at least 2. Indeed, the 
first three entries of di, dj , and dk have signs (+, ∗1, −), (−, +, ∗2), (∗3, −, +) respectively, 
where ∗l is unknown. So, if di is a multiple of dj , then ∗1 must be negative and ∗2 must 
be positive. This then shows that dk is not a multiple of dj .

1 Recall that if ε ∈ Sn, then the j-th coordinate of ε(v) is cε−1(j).
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Next, note that di, dj , dk are contained in the two dimensional space W =
{(w1, . . . , wn) : w1+w2+w3 = w4 = · · · = wn = 0}. So, di, dj , dk span W and so W ⊂ H. 
In particular, (1, −1, 0, . . . , 0), (1, 0, −1, . . . , 0) ∈ H which implies a1 = a2 = a3. �

As an application of Lemma 4.1, we prove Theorem 1.5 for hyperplanes whose normal 
vector has a distinct entry.

Corollary 4.2. Let p ≥ 3 be a prime. Let H = (a1, . . . , ap)⊥ be a hyperplane and assume 
there exists i such that for all j 	= i we have aj 	= ai. Then |H ∩ Spv| ≤ (p − 1)! for all 
v ∈ Rp with distinct coordinates.

Proof. After permuting coordinates, we may assume i = 1. We will prove the Corollary 
by applying Lemma 3.6. Let C be the elementary symmetric curve associated to v and 
let C1, . . . , Cr be its irreducible components. For each Ci in H, let Cij := (1j)Ci where 
j 	= 1. Since σ(Ci) ∩ Spv = σ(Ci ∩ Spv) for all σ ∈ Sp, the first part of Lemma 4.1
shows H ∩ Cij ∩ Spv = ∅. If Ci and Ck are contained in H, and if Cij = Ckl, then 
(1l)(1j)Ci = Ck. If j 	= l, then (1jl)Ci = Ck; this is not possible by the second claim in 
Lemma 4.1, where we take π ∈ Stab(Ci) to be the p-cycle constructed in Lemma 3.4. If 
j = l, then Ci = Ck and so i = k. The result follows by Lemma 3.6. �

The rest of this section is concerned with the case where H contains v and σv for 
some 2-2-cycle σ. We start with the following preliminary result and as an application, 
prove Theorem 1.5 for special classes of hyperplanes.

Lemma 4.3. Let p ≥ 5 be prime, v ∈ Rp have distinct coordinates, and C be the 
elementary symmetric curve associated to v with some irreducible component C0. Sup-
pose (ij)(kl) is a 2-2-cycle and H = (a1, . . . , ap)⊥ is a hyperplane containing C0, and 
(ij)(kl)C0. If ai = ak = a and aj = al = b, then a = b.

Proof. By permuting coordinates, we can assume v ∈ C0. From Corollary 3.5, we 
know SpanC C0 contains σw for some σ ∈ Sp, where w = (ζ, . . . , ζp) and ζ = e2πi/p. 
Thus H contains both σw and (ij)(kl)σw. Subtracting we find w − (ij)(kl)σw ∈ H =
(a1, . . . , ap)⊥. Set α′ = σ−1(α), we have

(a− b)(ζi
′ − ζj

′
+ ζk

′ − ζl
′
) = a(ζi

′ − ζj
′
) + b(ζj

′ − ζi
′
) + a(ζk

′ − ζl
′
) + b(ζl

′ − ζk
′
) = 0.

Since p ≥ 5 and i, j, k, l are distinct, we must have a = b. �
Corollary 4.4. Let p ≥ 5 be a prime and H = (a1, . . . , ap)⊥ be a hyperplane. Suppose 
i1, . . . , im are distinct, j1, . . . , jn are distinct, ai1 = · · · = aim , aj1 = · · · = ajn , and 
ai1 	= aj1 . If nm ≥ p − 1, then |H ∩ Spv| ≤ (p − 1)! for all v ∈ Rp with distinct 
coordinates.
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Proof. Let C be the elementary symmetric curve associated to v. We will prove the 
corollary by applying Lemma 3.6. For each irreducible component C0 of C satisfying 
C0 ⊂ H, consider the nm ≥ p − 1 curves

{(ik, jl)C0 : 1 ≤ k ≤ m, 1 ≤ l ≤ n}.

By Lemma 4.1, we see H ∩ (ik, jl)C0 ∩ Spv = ∅.
Next, if C0 ⊂ H and (ik, jl)C0 = (ik′ , jl′)C0, then H contains both C0 and 

(ik′ , jl′)(ik, jl)C0. Similarly, if H contains distinct irreducible component C ′
0 and C0, 

and if (ik, jl)C0 = (ik′ , jl′)C ′
0, then H contains both C0 and (ik′ , jl′)(ik, jl)C0. By Lem-

mas 4.1 and 4.3, this is not possible as (ik′ , jl′)(ik, jl) is either a 2-2-cycle or a 3-cycle; 
in the case of a 3-cycle, we apply Lemma 4.1 by taking π ∈ Stab(C0) to be the p-cycle 
constructed in Lemma 3.4. �

As a further application, we prove Theorem 1.5 for p = 3, 5.

Corollary 4.5. Let p ∈ {3, 5} and H = (a1, . . . , ap)⊥ be a hyperplane of Rp. If v ∈ Rp

has distinct coordinates not summing to 0, then |H ∩ Spv| ≤ (p − 1)!.

Proof. Since the coordinates of v do not sum to 0, we know H 	= (1, . . . , 1)⊥. For p = 3, 
our desired result then follows directly from Corollary 4.2. When p = 5, Corollary 4.2
reduces us to the case H = (a, a, b, b, b)⊥ for some distinct a, b ∈ R. Our result then 
follows from Corollary 4.4. �

We end this section with some more refined results concerning the structure of hyper-
planes that contain v and σv with σ a 2-2-cycle.

Lemma 4.6. Let p ≥ 5 be prime, v ∈ Rp have distinct coordinates, and H = (a1, . . . , ap)⊥
be a hyperplane. Suppose σ = (ij)(kl) is a 2-2-cycle and π is an p-cycle. Let G ⊂ Sp be 
a subgroup that contains π and assume dim Span(Gv) > 3. If H contains Gv and σGv, 
then ai = aj and ak = al.

Proof. By permuting coordinates we can assume π = (12 . . . p). Note that the subspace 
Span(Gv) ⊂ Rp is invariant under the action of 〈π〉 � Z/p. Since dim Span(Gv) > 3, 
when viewed as a complex Z/p-representation, it contains w1 = (1, ζ, . . . , ζp−1), w2 =
(1, ζ−1, . . . , ζ−(p−1)), and w3 = (1, ζm, . . . , ζm(p−1)) for some primitive p-th root of unity 
ζ and some m 	= 0, ±1 mod p.

For d ∈ {1, 2, 3}, let td be such that the i-th coordinate of ud := ζtdwd is 1, where i is as 
in the statement of the lemma. Since ud ∈ 〈π〉wd ⊂ Span(Gv), we see σud ∈ Span(σGv), 
so in particular,

σud − ud ∈ H.
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Let x be the j-th coordinate of u1. Then the k-th and l-th coordinates of u1 are, respec-
tively, xa and xb for distinct a, b ∈ {2, . . . , p − 1}. The j-th, k-th, and l-th coordinates of 
u2 are then x−1, x−a, and x−b, respectively. The j-th, k-th, and l-th coordinates of u3
are xm, xma, and xmb, respectively. Letting α = 1 − x, β = xa − xb, α′ = 1 − x−1, and 
β′ = x−a − x−b, we find

(. . . , α, . . . ,−α, . . . , β, . . . ,−β, . . . ) = σu1 − u1 ∈ H

and

(. . . , α′, . . . ,−α′, . . . , β′, . . . ,−β′, . . . ) = σu2 − u2 ∈ H

where the omitted entries are 0, and the four non-zero entries are in the j, i, l, k-th 
positions respectively.

If (α, β), (α′, β′) are linearly independent, then have (. . . , 1, . . . , −1, . . . , 0, . . . , 0, . . . ) ∈
H which implies ai = aj , and consequently ak = al.

Next suppose (α, β) and (α′, β′) are linearly dependent. Then

xa − xb

1 − x
= β

α
= β′

α′ = x−a − x−b

1 − x−1 = x1−a − x1−b

x− 1

and hence

xa − xb = x1−b − x1−a. (4.7)

Since b 	= a, this is a contradiction by the linear independence of roots of unity over Q, 
unless a + b = 1 mod p.

So, we may suppose a + b = 1 mod p. Consider

(. . . , α′′, . . . ,−α′′, . . . , β′′, . . . ,−β′′, . . . ) = σu3 − u3 ∈ H

where α′′ = 1 − xm and β′′ = xma − xmb. If (α, β), (α′′, β′′) are linearly independent, 
we again arrive at our desired conclusion that ai = aj and ak = al, so we may assume 
(α, β), (α′′, β′′) are linearly dependent. Then

1 − x

xa − x1−a
= α

β
= α′′

β′′ = 1 − xm

xma − xm(1−a)

and so

xma − xm(1−a) − xma+1 + xm−ma+1 − xa + x1−a + xm+a − x1−a+m = 0. (4.8)

Let f(x) be the polynomial (4.8), where the exponents are taken to be numbers between 
0 and p by reducing mod p, and we now view x as an indeterminate. Since f(x) has 
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integer coefficients, has degree less than p, and has a primitive p-th root of unity as a 
root, it is a constant multiple of the p-th cyclotomic polynomial. Note the term xma

cannot be cancelled by any other term since m 	= 0, ±1 mod p, so f(x) is a non-zero 
polynomial with at most 8 terms. In particular, it is not a multiple of the cyclotomic 
polynomial for p ≥ 11.

When p = 5, 7, since f(x) is a non-zero constant multiple of the p-th cyclotomic 
polynomial, some of the terms in f(x) must cancel to yield exactly p terms all with 
the same non-zero coefficient. This is impossible, however, as f(x) has 4 terms with 
coefficient equal to 1 and 4 terms with coefficient equal to −1. �
Lemma 4.9. Let p ≥ 7 be a prime, ζ = e2πi/p, w = (ζ, ζ2, . . . , ζp), and σ ∈ Sp. 
If a1, . . . , ap ∈ R and H = (a1, . . . , ap)⊥ is a hyperplane that contains both σw and 
(ij)(kl)σw with i, j, k, l distinct, then either

σ−1(i) + σ−1(j) = σ−1(k) + σ−1(l) mod p

or ai = aj and ak = al.

Proof. For ease of notation, we let α′ = σ−1(α) for α = 1, . . . , p. First note that H
contains the element

σw − (ij)(kl)σw = (. . . , ζj
′ − ζi

′
, . . . , ζi

′ − ζj
′
, . . . , ζl

′ − ζk
′
, . . . , ζk

′ − ζl
′
, . . . )

where the omitted entries are 0, and the four non-zero entries are in the j, i, l, k-th 
positions respectively. Since (a1, . . . , ap) is a real vector, H also contains the complex 
conjugate vector

(. . . , ζ−j′ − ζ−i′ , . . . , ζ−i′ − ζ−j′ , . . . , ζ−l′ − ζ−k′
, . . . , ζ−k′ − ζ−l′ , . . . ).

Now, if the two vectors (ζj′ − ζi
′
, ζl

′ − ζk
′), (ζ−j′ − ζ−i′ , ζ−l′ − ζ−k′) are linearly 

independent, then (. . . , 1, . . . , −1, . . . , 0, . . . , 0, . . . ) ∈ H, which means ai = aj , from 
which it follows that ak = al. Otherwise,

ζj
′ − ζi

′

ζl′ − ζk′ = ζ−j′ − ζ−i′

ζ−l′ − ζ−k′

and hence

−ζj
′−k′

+ ζj
′−l′ + ζ−k′+i′ − ζ−l′+i′ + ζk

′−j′ − ζl
′−j′ − ζk

′−i′ + ζl
′−i′ = 0.

Consider the polynomial

f(z) := −zj
′−k′

+ zj
′−l′ + z−k′+i′ − z−l′+i′ + zk

′−j′ − zl
′−j′ − zk

′−i′ + zl
′−i′
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where we view the exponents as numbers between 0 and p by reducing mod p. Since 
deg f(z) < p and since f(z) is a polynomial with integer coefficients satisfying f(ζ) = 0, 
it must be the case that f(z) is a constant multiple of the p-th cyclotomic polynomial. 
For p ≥ 11, since f(z) has at most 8 terms, this forces f(z) = 0; in particular two terms 
of f(z) must cancel. Similarly, for p = 7, we know f(z) has at most 6 terms, and so 
two terms in the above expression must cancel. In all cases, when p ≥ 7, we must have 
zj

′−k′ = zl
′−i′ since i, j, k, l are distinct mod p. So, j′ − k′ = l′ − i′ mod p, and hence 

i′ + j′ = k′ + l′ mod p. �
5. Theorem 1.5 in the non-dihedral case

Given the algebro-geometric results in Section 3, the proof of Theorem 1.5 is divided 
into two cases, depending on whether or not the stabilizer of C1 is the dihedral group 
D2p with 2p elements. In this section, we prove the following result, which handles the 
non-dihedral case:

Theorem 5.1. Let p be a prime and v ∈ Rp have distinct coordinates that do not sum to 
0. If Stab(C1) 	� D2p, then maxH |H ∩ Snv| = (p − 1)!.

Given a subgroup G′ of G, we let NG(G′) denote the normalizer of G′ in G. We recall 
the following two theorems, which we use to obtain a structure result for Stab(C1).

Theorem 5.2 (Burnside, [2]). For p prime, a transitive subgroup of Sp is either doubly 
transitive or contains a normal Sylow p-subgroup.

Theorem 5.3 ([10, Exercise 2.6]). If G is a doubly transitive subgroup of Sn, then the 
permutation representation Rn is the direct sum of two irreducible G-representations: 
the trivial representation and the standard representation of Sn.

Proposition 5.4. Let p be prime, v ∈ Rp have distinct coordinates that do not sum to 0. 
Suppose v ∈ C0 ⊂ H where H is a hyperplane of Rp and C0 is an irreducible component 
of the elementary symmetric curve associated to v. Then

Stab(C0) = 〈π, σ〉 ⊂ NSp
(〈π〉)

where π is a p-cycle, and σ is a power of some (p − 1)-cycle.

Proof. To ease notation, let G = Stab(C0). By Lemma 3.4, G contains a p-cycle π and 
hence is a transitive subgroup of Sp. Note that 〈π〉 is a Sylow p-subgroup of G.

Our first goal is to show G ⊂ NSp
(〈π〉). If this is not the case, then 〈π〉 is not normal 

in G, and so G is doubly transitive by Theorem 5.2. Notice that

(1, . . . , 1) = 1∑
vi

p−1∑
πiv ∈ Span(〈π〉v) ⊂ Span(Gv)
i i=0
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so Span(Gv) contains the trivial representation. Since v ∈ Span(Gv) and v has distinct 
coordinates, we see Span(Gv) cannot equal the trivial representation. It follows then 
from Theorem 5.3 that Span(Gv) = Rp. On the other hand,

Rp = Span(Gv) ⊂ Span(GC0) = Span(C0) ⊂ H

which contradicts the fact that H is a hyperplane. We have therefore proven our claim 
that G ⊂ NSp

(〈π〉).
Next, one readily checks that NSp

(〈π〉) = 〈π, τ〉 where τ is a (p − 1)-cycle such that 
τ−1πτ = πk with k a generator for (Z/p)∗. In particular, NSp

(〈π〉) � 〈π〉 � (Z/p)∗
where (Z/p)∗ acts on 〈π〉 � Z/p in the natural way. Since G is a subgroup of NSp

(〈π〉)
that contains π, we see G = 〈π〉 � Q, where Q is a subgroup of (Z/p)∗. It follows that 
G = 〈π, σ〉 where σ = τ i for some i. �

Given the above structure result for Stab(C0), we next understand how Cp decomposes 
as a Stab(C0)-representation.

Lemma 5.5. Let p be prime, π ∈ Sp be a p-cycle, and G be a subgroup of NSp
(〈π〉). Then 

every non-trivial complex irreducible G-subrepresentation of the permutation representa-
tion Cp has dimension |G/〈π〉|.

Proof. As in the proof of Proposition 5.4, we know G = 〈π, σ〉 where σ−1πσ = πk. Fix 
a primitive p-th root of unity ζ. Decomposing Cp into irreducible subrepresentations 
of 〈π〉 � Z/p, we have Cp =

⊕
i∈Z/p Vi where Vi = Span(ωi) and πωi = ζiωi. We 

find πσωi = σπkωi = ζikσωi and hence σVi = Vik. So, the non-trivial irreducible G-
subrepresentations of Cp are given by Span(GVi) =

⊕
j Vikj , where the sum runs over 

0 ≤ j < ord(k) and ord(k) is the order of k in (Z/p)∗, i.e. the order of G/〈π〉. �
Proof of Theorem 5.1. By Corollary 4.5, we may assume p ≥ 7. Let C be elementary 
symmetric curve associated to v and let C1, . . . , Cr be its irreducible components. By 
Lemma 3.2, we may assume that H contains an irreducible component of C; without 
loss of generality, v ∈ C1 ⊂ H. Letting G = Stab(C1), we know from Proposition 5.4
that G = 〈π, σ〉 where π is a p-cycle and σ−1πσ = πk. Since G � D2p, the order of σ, 
ord(σ), cannot equal 2.

Next, note that Span(〈π〉v) contains the trivial representation, as (1, . . . , 1) =
1∑
i vi

∑p−1
i=0 πiv. On the other hand, Span(〈π〉v) cannot equal the trivial representation 

since it contains v, which has distinct coordinates. So, Span(Gv) contains both the trivial 
and a non-trivial G-subrepresentation of Rp.

If σ = 1, then G = 〈π〉 and since r = p!/|G| = (p − 1)!, we see from Lemma 3.3
that deg(C1) = 1, i.e. the curve C1 is a line. Since the non-trivial irreducible 〈π〉-
subrepresentations of Rp are all 2-dimensional, it follows that dim Span(〈π〉v) ≥ 3. In 
particular, the line C1 cannot contain 〈π〉v.
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So, we may assume ord(σ) ≥ 3. Let H = (a1, . . . , ap)⊥. Again by Lemma 4.1, (ij)H =
H if and only if ai = aj . Since the coordinates of v do not sum to 0, not all of the 
ai are equal. From this, it is straightforward to check that there are at least p − 1
distinct transpositions τ1, . . . , τp−1 such that τkH 	= H. For each Ci contained in H, let 
Cij = τjCi. We will check that the conditions in Lemma 3.6 are satisfied, and conclude 
|H ∩ Spv| ≤ (p − 1)!.

It follows directly from Lemma 4.1 that H ∩Cij ∩Spv = ∅. Next, suppose H contains 
Ci and Cj , and that we have Cik = Cjl. If k 	= l, then H contains both Cj and Ci =
τkτlCj . Now, τkτl cannot be a 3-cycle as this would contradict Lemma 4.1. So, τkτl
must be a 2-2-cycle, in which case we note that Span(Gv) contains the trivial and a 
non-trivial irreducible G-subrepresentation of Rp. So dim Span(Gv) ≥ ord(σ) +1 > 3 by 
Lemma 5.5, which gives a contradiction by Lemma 4.6. It follows that k = l, so Ci = Cj

and i = j. �
6. Completing the proof of Theorem 1.5

To finish the proof of Theorem 1.5, we must now handle the case not covered by 
Theorem 5.1 and Corollary 4.5, namely when p ≥ 7 and the irreducible components of 
C have stabilizers isomorphic to D2p, the dihedral group with 2p elements. Note that by 
Lemma 3.3, this implies the irreducible components of C have degree 2.

Let H = (b1, . . . , bp)⊥ be any hyperplane. We fix the following notation. Let 
{1, . . . , p} = λ1 ∪ · · ·∪λK be the partition defined by the domains on which the function 
j �� bj are constant. In other words, we have distinct a1, . . . , aK ∈ R such that bj = aJ
if and only if j ∈ λJ . Let

m := min
J

|λJ | and |λM | = m

for some fixed choice of M . By Corollaries 4.2 and 4.4, we can assume

2 ≤ m <
√

p− 1.

If aM 	= 0, we may scale to assume aM = 1.
We prove Theorem 1.5 by studying properties of a graph Γ which we now define. 

Throughout the rest of Section 6, we fix two distinct elements i, k ∈ λM and let

T := {(ij) : j /∈ λM} ∪ {(kj) : j /∈ λM}.

Let Γ := Γik be the graph whose vertices and edges are defined as follows. Let C be 
the elementary symmetric curve associated to v. The vertices of Γ are the irreducible 
components Ca of C for which Ca ⊂ H. Let |Γ| denote the number of vertices in Γ. If 
C1, C2 ∈ Γ are two vertices, we write C1 ∼ C2 when C1 and C2 are connected by an 
edge. The edges of Γ are defined by
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C1 ∼ C2 ⇐⇒ (ij)(kl)C1 = C2 for distinct j, l /∈ λM ;

here i, k are the elements that we have fixed above.
We observe that for each C0 ∈ Γ, if σ, τ ∈ T and σC0 = τC0, then σ−1τ ∈ Stab(C0) �

D2p. Since σ−1τ is a product of two transpositions, it is not a p-cycle nor is it a product 
of (p − 1)/2 disjoint 2-cycles, so σ−1τ = 1. Thus, we find

|{σC0 : σ ∈ T}| = |T | = 2(p−m).

For the rest of the section, we let

w = (ζ, . . . , ζp),

where ζ = e2πi/p.

Lemma 6.1. If C1, C2 ∈ Γ and C1 ∼ C2, then (ij)(kl)C1 = C2 for a unique pair (j, l).

Proof. Suppose (ij)(kl)C1 = (ij′)(kl′)C1 = C2 ⊂ H, where j 	= j′ or l 	= l′. Then

(ij)(kl)(ij′)(kl′) ∈ Stab(C1) � D2p.

By Corollary 3.5, SpanC C1 contains σw for some σ ∈ Sp. Then H contains σw, 
(ij)(kl)σw, and (ij′)(kl′)σw, so by Lemma 4.9, the following two equations hold:

σ−1(i) + σ−1(j) = σ−1(k) + σ−1(l) mod p

σ−1(i) + σ−1(j′) = σ−1(k) + σ−1(l′) mod p.

Subtracting the equations, we find

σ−1(j′) − σ−1(j) = σ−1(l′) − σ−1(l) mod p.

This implies that j = j′ if and only if l = l′, and hence j 	= j′. In addition j′ = l′ implies 
j = l mod p and i = k mod p, which is also not true. Recall that neither i nor j′ is 
equal to k or l mod p.

Putting these observations together we see that (ij)(kl)(ij′)(kl′) is not the identity, as 
it sends j′ to j. We see that (ij)(kl)(ij′)(kl′) also does not permute p ≥ 7 elements. So as 
an element of D2p, it must be a product of (p −1)/2 disjoint transpositions, which is only 
possible when p = 7 and (p −1)/2 = 3. However, (ij)(kl)(ij′)(kl′) is an even permutation 
so this is also not possible when p = 7. We have thus established our claim. �

Finally, we let

T = {σC0 : σ ∈ T,C0 ∈ Γ}.
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Note that Γ ∩ T = ∅ by Lemma 4.1.
We divide the proof of Theorem 1.5 into two cases depending on the size of T . The 

following result easily dispenses with the case where T is big.

Lemma 6.2. If |T | ≥ (p − 1)|Γ|, then |H ∩ Spv| ≤ (p − 1)!.

Proof. If D is an irreducible component of C and D ⊂ H, then |H ∩D ∩ Spv| = p!
r . If 

D 	⊂ H, then by Bézout’s Theorem and Lemma 3.3, we have |H ∩ D ∩ Spv| ≤ (p−1)!
r . 

Furthermore, if D ∈ T , then by Lemma 4.1, we have H ∩D ∩ Spv = ∅. Putting these 
bounds together, and making use of the fact that Γ ∩ T = ∅, we find

|H ∩ Spv| ≤
∑
D⊂H

p!
r

+
∑
D �⊂H
D/∈T

(p− 1)!
r

+
∑
D �⊂H
D∈T

0

≤ p!
r
|Γ| + (r − |Γ| − (p− 1)|Γ|) (p− 1)!

r

= (p− 1)!. �
The goal of the rest of Section 6 is to prove that |T | ≥ (p −1)|Γ|, and hence Theorem 1.5

holds in light of Lemma 6.2. To this end, we assume throughout the rest of Section 6
that

|T | < (p− 1)|Γ|

and aim to arrive at a contradiction.

Lemma 6.3. If D ∈ Γ is a vertex, let d(D) be its degree in Γ. Then there exists C0 ∈ Γ
such that

∑
D∼C0

d(D) ≥ κ + 2d(C0),

where κ = (p − 2m)2 − 1.

Proof. We begin by counting the number of elements in T . Note that if C1, C2 ∈ Γ
are distinct, then we cannot have (ij)C1 = (il)C2 since this would imply j 	= l and 
C2 = (ijl)C1, contradicting Lemma 4.1. Next notice that if (ij)C1 = (kl)C2, then 
(kl)(ij)C1 = C2 and so Lemma 4.1 shows we must have j 	= l, i.e. C1 ∼ C2. Conversely, 
if C1 ∼ C2, then we have already established that there is a unique pair (j, l) for which 
(ij)(kl)C1 = C2; it follows that (ij)C1 = (kl)C2 and (kl)C1 = (ij)C2. Putting these 
observations together, we see that if e is the number of edges of Γ, then

|T | = |T ||Γ| − 2e = 2(p−m)|Γ| − 2e.
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Since |T | < (p − 1)|Γ|, we have

e >
(p− 2m + 1)|Γ|

2 .

Suppose that 
∑

D∼C d(D) < κ + 2d(C) for all vertices C ∈ Γ. Then we see
∑
C∈Γ

∑
D∼C

d(D) <
∑
C∈Γ

(κ + 2d(C)) = κ|Γ| + 2
∑
C∈Γ

d(C) = κ|Γ| + 4e.

One readily checks that
∑
C∈Γ

∑
D∼C

d(D) =
∑
C∈Γ

d(C)2.

By the Cauchy–Schwartz inequality, we see

∑
C∈Γ

d(C)2 ≥ |Γ|
(

1
|Γ|

∑
C∈Γ

d(C)
)2

= 4e2

|Γ| .

Thus, κ|Γ| + 4e > 4e2/|Γ| and so

κ|Γ|2 > 4e(e− |Γ|) > 4|Γ|p− 2m + 1
2

(
|Γ| (p− 2m + 1)

2 − |Γ|
)

= |Γ|2(p− 2m + 1)(p− 2m− 1) = κ|Γ|2,

a contradiction. �
Throughout the rest of this section, we fix C0, κ, and d := d(C0) as in Lemma 6.3. 

We prove

Proposition 6.4. 
∑

D∼C0
d(D) ≤ p −m + 2d.

Assuming Proposition 6.4 for the moment, let us complete the proof of Theorem 1.5. 
By Lemma 6.3 and Proposition 6.4, we have κ ≤

∑
D∼C0

d(D) − 2d ≤ p − m. Now, if 
p = 7, then 2 ≤ m <

√
p− 1 implies m = 2 and hence κ = (7 −4)2−1 = 8 > 7 −2 = p −m, 

a contradiction. If p > 7, then

κ = (p− 2m)2 − 1 > (p− 2√p)2 − 1 > p− 2 ≥ p−m,

again a contradiction.
The rest of Section 6 is devoted to the proof of Proposition 6.4. The proof is based 

on an analysis of the edges in the second-order neighborhood of C0. By definition of C0, 
it has d neighbors C1, . . . , Cd such that the sum of the degrees of these neighbors is at 
least κ + 2d. We have j1, . . . , jd, l1, . . . , ld /∈ λM with ja 	= la such that
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Ca := (ija)(kla)C0.

For notational convenience, let j0 = k and l0 = i so that C0 = (ij0)(kl0)C0.

Lemma 6.5. We have the following:

(1) For 0 ≤ a ≤ d,

σ−1(i) + σ−1(ja) = σ−1(k) + σ−1(la) mod p.

In particular, ja determines la, and la determines ja.
(2) j0, . . . , jd are distinct and l0, . . . , ld are distinct.

Proof. From Corollary 3.5, there exists σ ∈ Sp such that σw = (ζσ−1(1), . . . , ζσ
−1(p)) ∈

SpanC0. It follows that the linear span of Ca contains (ija)(kla)σw. Since C0 and Ca

are contained in H, Lemma 4.9 then tells us that σ−1(i) + σ−1(ja) = σ−1(k) + σ−1(la)
mod p, proving (1).

To prove (2), first let a, b ∈ {1, . . . , d} and assume ja = jb. From (1), we know 
la = lb, and so Ca = (ija)(kla)C0 = (ijb)(klb)C0 = Cb, so a = b. As for j0, recall that 
j1, . . . , jd /∈ λM and j0 = k ∈ λM , so they are necessarily distinct. �

We next define a set of pairs

R ⊂ {(j,D) : j /∈ λM , D ∈ {C0, . . . , Cd}}

that will be used to parameterize a subset of edges emanating from the Ca. Let 1 ≤ a ≤ d. 
Then we define (ja, C0) ∈ R. We also define (j, Ca) ∈ R if there exists l for which 
Ca ∼ (il)(kj)Ca and {j, l} ∩ {ja, la} = ∅. Consider the map

e : R ↪−�
d⋃

a=1
{edges out of Ca}

defined as follows: e(ja, C0) is the edge between Ca and C0; otherwise e(j, Ca) is the 
edge between Ca and (il)(kj)Ca where l /∈ λM is uniquely determined by Lemma 6.5
(1). Note that the map e is injective by Lemma 6.1.

Lemma 6.6. 
∑

D∼C0
d(D) ≤ |R| + 2d.

Proof. To prove the lemma, we fix a ∈ {1, . . . , d} and consider every edge out of Ca. We 
show that there are at most 2 edges out of Ca which are not in the image of the map 
e. Hence, 

∑
D∼C0

d(D), which is the total number of edges out of C1, . . . , Cd, is at most 
|R| + 2d.
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Consider an edge that is not in the image of e. Then it is of the form Ca ∼ (il)(kj)Ca

with {j, l} ∩ {ja, la} 	= ∅. This breaks up into several cases:
Case 1: j = ja. If Ca ∼ (il)(kja)Ca, then l is uniquely determined by Lemma 4.9. Thus 
there is at most one edge, out of Ca, with j = ja, that is not in the image of e.
Case 2: l = la. This is similar to Case 1.
Case 3: j = la or l = ja. Then since C0 = (ija)(kla)Ca ∼ Ca, and since j, l uniquely 
determine each other, we must have both j = la and l = ja. Thus (il)(kj)Ca = C0 and 
this edge is equal to e(ja, C0), so it is in the image of e.

We have therefore shown that for fixed 1 ≤ a ≤ d, there are at most 2 edges not in 
the image of the map e, corresponding to Cases 1 and 2. �

To complete the proof of Proposition 6.4, we need only show |R| ≤ p −m. This follows 
from:

Proposition 6.7. The projection map

R−� {1, 2, . . . , p}� λM

defined by (j, Ca) �� j is injective.

We prove this after a preliminary lemma. For ease of notation, throughout the rest of 
this section, we let

j′ := σ−1(j)

for j ∈ {1, . . . , p}. Consider the function f : {j + pZ : j 	= 2k′ − i′ mod p} � C defined 
by

f(j) = ζi
′ − ζj

ζk′ − ζi′+j−k′ .

Lemma 6.8. f is injective.

Proof. Note that

f(j′) = ζi
′ − ζj

′

ζk′ − ζi′+j′−k′ = ζi
′

ζk′ ·
1 − ζj

′−i′

1 − ζi′+j′−2k′

Note further that since i 	= k, we have i′ 	= k′ and so −i′ 	= i′ − 2k′ mod p. Thus, it 
suffices to show more generally that if 0 ≤ a, b < p with a 	= b, then the function

g(x) = 1 − ζa+x

b+x
1 − ζ
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is injective for x ∈ {0, 1, . . . , p − 1} � {p − b}. Now, if g(x) = g(y) for some x, y ∈
{0, 1, . . . , p − 1} � {p − b}, then

1 − ζa+x

1 − ζb+x
= 1 − ζa+y

1 − ζb+y

and hence

ζa+y − ζa+x + ζb+x − ζb+y = 0.

As a result, if we take the exponents of the polynomial za+y − za+x + zb+x − za+x to 
be integers between 0 and p by reducing mod p, then it must be the zero polynomial; 
indeed, it is divisible by the p-th cyclotomic polynomial but has degree less than p. In 
particular, the za+y term must cancel with za+x or zb+y, and hence

a + y = a + x or a + y = b + y mod p.

Since a 	= b, we see x = y, and so g is injective. �
Proof of Proposition 6.7. Let the aJ and bj be as in the first few paragraphs of Section 6. 
Consider the binary operation � : {aJ : J 	= M}×2 � R defined by

aJ � aL = −aL − aM
aJ − aM

.

We will show that if (j, Ca) ∈ R, then

bj � bl = f(j′ + i′ − l′a), (6.9)

where l is the unique element satisfying l′ = i′ + j′ − k′. Assuming this for the moment, 
we see j determines l, which then determines bj � bl = f(j′ + i′− l′a). Since f is injective 
by Lemma 6.8, we see j determines l′a. Since l0, . . . , ld are distinct, by Lemma 6.5 (2), 
we find that there is at most one value 0 ≤ a ≤ d for which (j, Ca) ∈ R, thereby proving 
the proposition.

It remains to prove (6.9). We first consider elements of form (ja, C0) ∈ R. In this 
case, j = ja, l = la, and bi = bk = aM /∈ {bj , bl}. Since H contains both C0 and Ca =
(ija)(kla)C0, Lemma 4.9 shows that i′ + j′ = k′ + l′ mod p. Since σw ∈ Span(C0) ⊂ H

and (ij)(kl)σw ∈ Span((ij)(kl)C0) ⊂ H, we find

(. . . , ζj
′ − ζi

′
, . . . , ζi

′ − ζj
′
, . . . , ζl

′ − ζk
′
, . . . , ζk

′ − ζl
′
, . . . ) = σw − (ij)(kl)σw ∈ H

where the omitted entries are 0, and the non-zero entries are in the j, i, l, k-th positions, 
respectively. As H = (b1, . . . , bp)⊥, we have

bj(ζj
′ − ζi

′
) + bi(ζi

′ − ζj
′
) + bl(ζl

′ − ζk
′
) + bk(ζk

′ − ζl
′
) = 0
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and so

bl = (ζj′ − ζi
′ + ζl

′ − ζk
′)aM − bj(ζj

′ − ζi
′)

ζl′ − ζk′ .

Since l′ = i′ + j′ − k′ mod p, we have ζl
′ = ζi

′+j′−k′ . Note that j′ 	= 2k′ − i′ mod p since 
otherwise we would have k′ = l′ mod p, which is not possible as k 	= l. As a result, f(j′)
is well-defined and

bl = aM + (aM − bj)f(j′).

As a result, we have our desired equality

bj � bl = − bl − aM
bj − aM

= f(j′) = f(j′ + i′ − l′0).

We next consider an element of the form (j, Ca) ∈ R for some 1 ≤ a ≤ d. 
Then, by definition, we have Ca ∼ (il)(kj)Ca for some {j, l} ∩ {ja, la} = ∅. Let 
wa := (ija)(kla)σw ∈ Ca ⊂ H and note (il)(kj)wa ∈ (ij)(kl)Ca ⊂ H. So,

(. . . , ζj
′
a − ζl

′
, . . . , ζl

′
a − ζj

′
, . . . ., ζj

′ − ζl
′
a , . . . , ζl

′ − ζj
′
a , . . . ) = wa − (il)(kj)wa ∈ H

where the omitted entries are 0, and the non-zero entries are in the i, k, j, l-th position, 
respectively. As a result,

bi(ζj
′
a − ζl

′
) + bk(ζl

′
a − ζj

′
) + bj(ζj

′ − ζl
′
a) + bl(ζl

′ − ζj
′
a) = 0.

It follows that

bl = (ζl′ − ζj
′
a + ζj

′ − ζl
′
a)aM − bj(ζj

′ − ζl
′
a)

ζl′ − ζj
′
a

and hence

bj � bl = ζj
′ − ζl

′
a

ζl′ − ζj
′
a
.

It remains to prove this expression equals f(j′ + i′ − l′a).
Since i′ + j′a = k′ + l′a mod p and i′ + j′ = l′ + k′ mod p, we have

l′ − l′a + i′ = i′ + (j′ + i′ − l′a) − k′ mod p.

As a result,

f(j′ + i′ − l′a) = ζi
′ − ζj

′−l′a+i′

ζk′ − ζi
′+(j′+i′−l′a)−k′ = ζi

′ − ζj
′−l′a+i′

ζj
′
a−l′a+i′ − ζl

′−l′a+i′
= ζl

′
a − ζj

′

ζj
′
a − ζl′

thereby finishing the proof. �
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