
The Diffusion Approximation for Markov Processes
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“Warem willest du dich von uns allen
Und unsrer Meinung entfernen?”
Ich schreibe nicht, euch zu gefallen,
Ihr sollt was lernen! – Goethe

Markov processes in physics, chemistry and biology
are often regarded as generalized diffusion and ac-
cordingly described by a Kolmogorov equation or a
Langevin equation. This procedure is exact if the
Lindeberg condition is obeyed. It is here argued, how-
ever, that it is at best only approximately obeyed and
that therefore the mathematical theory derived from
it should be replaced with an approximation proce-
dure. Such a procedure, in the form of a power series
expansion in a parameter Ω, is described. The con-
clusion is that the diffusion approximation is inconsis-
tent, except for a special subclass of Markov processes.
This distinction has nothing to do with the distinction
between discrete and continuous variables.

Markov Processes and the Diffusion Ap-
proximation

Let Y (t) be a continuous time Markov process whose
range consists of the real numbers. The range may
be a discrete countable set, or it may be continuous,
covering a finite or infinite interval on the real line. A
combination of both may also occur, but will not be
considered here.

For t > t0, let P (y, t|y0, t0) be the transition prob-
ability, i.e., the probability (or probability density)
of Y (t) conditional on Y (t0) = y0. As a conse-
quence of the Markov property it obeys the Chapman-
Kolmogorov or master equation

∂P (y, t|y0, t0)
∂t

= W · P (y, t|y0, t0), (1)

where W is a linear operator acting on the y-
dependence. Its matrix element W (y|y′) for y 6= y′
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is the transition probability per unit time from y′ to
y and for simplicity is here supposed to be indepen-
dent of time.

The continuous range Markov processes contain a sub-
class of those for which W has the form of a differen-
tial operator

∂P

∂t
= − ∂

∂y
a(y)P +

1
2

∂2

∂y2
b(y)P, (2)

with two functions a(y), b(y) with b(y) > 0. It has
been proved that higher-order differential operators
cannot occur (Pawula, 1967). The conditions that
characterize this subclass are

lim
∆t→0

〈∆Y 〉
∆t

= a (y) ; lim
∆t→0

〈
(∆Y )2

〉
∆t

= b (y) ;

lim
∆t→0

〈(∆Y )ν〉
∆t

= 0

where y is the value of Y at any time t, ∆Y =
Y (t + ∆t) − Y (t), the averages are taken with fixed
y, the limits refer to ∆t → 0 and ν = 3, 4, . . .. Under
these conditions, Kolmogorov (Kolmogorov, 1931) de-
rived Eq. 2, which is called the (second) Kolmogorov
equation1, the (nonlinear) Fokker-Planck equation, or
the (generalized) diffusion equation. The third condi-
tion was later replaced by the Lindeberg condition

Prob. {|Y (t + ∆t)− Y (t)| > δ} = O(∆t) (3)

for any δ > 0 (Feller, 1971). Conversely, when Eq. 2
holds these conditions are satisfied.

Unfortunately the impeccable mathematics of Kol-
mogorov’s proof have obscured the question of the
validity of the Lindeberg condition for physical
processes. Some physicists are under the assumption
that Eq. 2 must hold whenever the range of Y is con-
tinuous (Horsthemke, Brenig, 1977). This misconcep-
tion is abetted by the fact that the term continuous
process has been used as the name for precisely that
subclass of continuous range processes that obey the
condition Eq. 3 (Gnedenko, 1962).

1but this name has also been used for the general master
equation, Eq. 1



We shall argue that for physical processes the Linde-
berg condition is at best only approximately obeyed.
Hence replacing W with a second-order differential
operator is not just a mathematical identity but an
approximation. To justify it one must perform a sys-
tematic expansion of the master equation. It then
turns out that one is not led to Eq. 2, except in a
special case treated at the end of this article. In other
cases Eq. 2 is inconsistent, inasmuch as it contains
terms of the same order in the expansion as those
that are neglected by omitting higher derivatives.

Incidentally, it may be added that Eq. 2 is mathemat-
ically equivalent with the (nonlinear) Langevin equa-
tion

ẏ = a (y) +
√

b (y) l (t)

where l (t) is Gaussian white noise. This equation may
alternatively be written in the Itô form

dy = a (y) dt +
√

b (y) dW (t)

where W (t) is a Wiener process. As a corollary to
our result we therefore also find that this equation
is at best only approximately fulfilled and only in a
special case. It is merely a step in the systematic
approximation scheme, rather than a fundamental
starting point for fluctuation theory (Graham, 1973,
1978). Thus the discussion about the correct mathe-
matical interpretation of the Itô equation (Mortensen,
1969) is moot, because the expansion of the master
equation automatically leads to well-defined equations
(van Kampen, 1981).

To avoid confusion we add the obvious remark that
for any given stochastic process Y (t) one may write

ẏ = a (y) + f(t)

thereby defining the stochastic term f(t). But not
only will f(t) in general not be Gaussian white noise,
also its stochastic properties depend on those of Y
(Akcasu, 1977; Bedeaux, 1977; Agarwal et al., 1978;
Onuki, 1978). This device is therefore of no use in
finding the fluctuation of Y .

Critique of the Lindeberg Condition

For a continuous range process one must have

P (y, t|y0, t0) → δ(y − y0) as t → t0.

The question is: How is this “limit” approached, i.e.,
how does P (y, t|y0, t0) behave when t − t0 = ∆t is
small? There are two fundamentally different classes.

a b c
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Figure 1: Initial evolution of P (y, t0 + ∆t|y0, t0)
a) Initial delta distribution at time t = 0.
b) Distribution at ∆t > 0 for class 1 obeying Eq. 5.
c) Distribution at ∆t > 0 for class 2 obeying Eq. 3.

1. Jumps in Y have some average size, independent
of ∆t, but the probability of a jump to occur be-
comes small as ∆t → 0. (The only difference with
discrete range processes is that here the jump
size is not restricted to discrete values.) For very
small ∆t the probability that a jump from y0 to
y occurs is W (y|y0)∆t, and the probability that
two or more jumps occur is of higher-order in ∆t.
The transition probability per unit time W (y|y0)
is the probability distribution for jumps of vari-
ous sizes. For any δ > 0 and small ∆t one has
therefore

Prob. {|Y (t + ∆t)− Y (t)| > δ} ∝ ∆t

and therefore the Lindeberg condition, Eq. 3,
does not hold.

2. Even for small ∆t there are still very many, very
small jumps in Y . The central limit theorem
leads one to expect a Gaussian:

P (y, t0 + ∆t|y0, t0) =
1√

4πD∆t
exp

[
− (y − y0)

2

4D∆t

]

with some constant D. In this case the Lindeberg
condition is obeyed and of course this P does
obey a differential equation

∂P

∂t
= D

∂2P

∂y2
. (4)

However, this is the ordinary diffusion equation,
which is homogeneous in y. The essential as-
sumption implied by the Lindeberg condition is
that one can choose ∆t so small that: (a) many
jumps occur in ∆t; and (b) the width σ2∆t cov-
ered by them is small enough that the dependence
of the coefficients on y is not yet felt.
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Figure 2: The one-dimensional Rayleigh particle

The difference between both classes is clarified in Fig-
ure 1. In class 1, after a small ∆t the initial delta
function is still visible since there is a chance that no
jump took place. However, it has developed a foothill
whose shape is W (y|y0) and accordingly the height of
the delta function has decreased. In fact, to order ∆t,
one has

P (y, t0 + ∆t|y0, t0) = W (y|y0) ∆t

+δ (y − y0)
[
1−∆t

∫
W (y′|y) dy′

]
. (5)

In class 2, however, the initial delta function starts
to broaden immediately, and after any ∆t, however
small, it has changed into a narrow but smooth
Gaussian-like peak. In other words, Y (t) varies
through infinitely many infinitely small jumps. Which
picture applies to physics?

Here is an example of a physical Markov process with
continuous range that belongs to class 1 and does not
obey the Lindeberg condition (Figure 2). Let Y (t)
be the velocity V of a Brownian particle, in this con-
nection often called the Rayleigh particle (Rayleigh,
1891; Hoare, Rahman, 1973). Let M be its mass, m
the mass of the surrounding fluid molecules, T their
temperature, and v =

√
kT/m their thermal velocity.

Obviously the number of collisions in any finite time
interval will be finite (with probability one) and the
jumps in V are of order

m

M
v =

1
M

√
mkT . (6)

For small intervals ∆t the probability for a jump to
occur is proportional to ∆t, but the size of the jumps
that do occur is determined by Eq. 6.

By similar considerations one can convince oneself
that the Lindeberg condition is not satisfied either
by the position of a Brownian particle, the current

fluctuations in a resistor, the fluctuations of the elec-
tromagnetic field in a medium, etc. The basic reason
is that fluctuations in physical processes are due to the
particulate nature of matter, and the magnitude of the
individual jumps is determined by the mass, charge,
or spin of the particles involved and cannot therefore
be infinitely small. It is obviously not satisfied by
such processes as radioactive decay, emission and ab-
sorption of photons, and chemical reactions, because
they have a discrete range. For the same reason prob-
lems in population dynamics and epidemiology do not
satisfy Kolmogorov’s requirement.

Linear and Nonlinear Problems

Write the transition probability W (y|y′) as a func-
tion W (y′;∆y) of the starting point y′ and the length
∆y = y − y′ of the jump. As a function of ∆y it is a
more or less narrow peak, whose width is a measure
for the size of the jumps. As to the dependence on y′,
we distinguish various cases.

1. Homogeneous case: W (y′;∆y) for fixed ∆y does
not depend on y′. The only quantity with which
the jump size can be compared has to be a
property of the solution, viz., the distance over
which P (y, t) varies appreciably. For homoge-
neous problems any solution becomes flat in the
course of time, and hence Eq. 2 holds in the limit
of long time. This is the reason why Einstein and
Smoluchowski could use this equation for the po-
sition of a Brownian particle.

2. Linear case: W (y′;∆y) depends linearly on y′.
In this case the solutions tend typically to an
equilibrium solution P eq(y) with a finite width.
The validity of the diffusion approximation is now
determined by the ratio of the jump size to the
variation distance of P eq(y). This ratio is an in-
herent property of W ; i.e., it is determined by
the parameters in W . In this case, therefore, a
systematic approximation must be based on the
expansion in powers of such a parameter. For in-
stance, for the Rayleigh particle the equilibrium
distribution is

P eq (V ) ∝ exp
[
−MV 2

2kT

]
,

and has therefore a variation distance
√

kT/M .
In order to ensure that the jump size, Eq. 6, is
small, one is forced to consider values of M for
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which
√

m/M � 1. This is the well-known con-
dition for the validity of a Fokker-Planck equa-
tion for P (V, t).

3. Nonlinear case: W (y′;∆y) is a nonlinear func-
tion of y′. This gives rise to the additional re-
quirement that the jump size be small compared
to the variation distance of W itself as a function
of y′. Unless the jump size is much smaller one
cannot hope to construct a general approxima-
tion method. Hence one has to find an expansion
parameter by which one can reduce the jump size
with respect to the scale inherent in the nonlin-
earity. Evidently that will lead in lowest approx-
imation to a description of the fluctuations as if
the system were linear. That is the reason for the
success of the linear noise approximation in many
nonlinear electronic devices. However, in order to
include the effect of the nonlinearity on the fluc-
tuation one has to go to the next approximation.
Inevitably this also brings corrections due to the
fact that the jumps are not infinitely small. As a
result it turns out to be inconsistent to use Eq. 2
with nonlinear functions a(y), b(y) without at the
same time adding higher-order derivatives. These
inconsistencies were responsible for the confusion
in the early attempts to treat noise in nonlinear
resistors (van Kampen, 1965).

For example, the velocity fluctuations of a
Rayleigh particle in equilibrium are described in
the linear noise approximation by the familiar lin-
ear Fokker-Planck equation

∂P (V, t|V0, t0)
∂t

= γ

{
∂

∂V
V P +

kT

M

∂2P

∂V 2

}
. (7)

This corresponds to the linear damping law V̇ =
−γV . In the case of an ideal gas one can compute
from kinetic theory

γ =
4ρA

M

[
2mkT

π

] 1
2

where A is the surface area of the particle and
ρ the number density of the gas molecules. One
can also find the first nonlinear correction

V̇ = −γV
[
1 +

m

6kT
V 2 + · · ·

]
. (8)

This correction is of the relative order m/M
which is the same parameter that measures the
size of the jumps. In fact, we had to suppose
m/M � 1 in order to approximate the mas-
ter equation by a second order differential equa-
tion. It is therefore inconsistent to modify Eq. 7

so as to take the nonlinear correction Eq. 8 into
account without adding at the same time higher
derivatives to account for the fact that the jumps
are no longer infinitely small. In fact, m/M is the
only parameter in the problem, and one should
therefore start from the master equation, expand
systematically in powers of m/M , and expect to
obtain successive nonlinear correlations and si-
multaneous higher derivative terms (van Kam-
pen, 1961).

The Expansion of the Master Equation

This section describes the expansion of the master
equation in general terms; for details the reader is
referred to the original literature (van Kampen, 1961,
1976; McNeil, 1972; Kubo et al., 1973; Kurtz, 1976;
Fox, Kac, 1977). Our starting point is the master
equation, Eq. 1. It is not necessary to differentiate
between discrete and continuous range processes. For
most actual cases in physics, chemistry, and biology
it turns out that W involves a parameter Ω in such a
way that for Ω →∞ the magnitude of the individual
jumps goes to zero relative to the distance in the Y -
scale over which the nonlinearity becomes appreciable.
In many cases, for instance the kinetics of chemical
reactions, Ω is simply the size of the system, but in the
example of the Rayleigh particle Ω ≡ M . In electric
circuits Ω is often the capacity of a condenser (van
Kampen, 1960, 1961).

The precise condition on how W must depend on Ω
is specified in the literature. For chemical reactions
it roughly says that the kernel W (y|y′) ≡ W (y′;∆y)
must depend on the jump size ∆y through an exten-
sive variable, and on the starting point y′ through an
intensive variable. When no such parameter can be
found the following expansion method cannot be used.
Examples where no such parameter is available: the
random velocity of one of the molecules of an ideal
gas; the random walk of a diatomic molecule along its
vibrational levels due to collisions (Montroll, Shuler,
1958).

When a parameter with the required properties is
available it is possible to give a systematic expansion
of the master equation in powers of Ω−

1
2 . In order to

describe the result, we define the jump moments for
ν = 1, 2, . . . in the usual way

αν (y) =
∫

(∆y)ν
W (y;∆y) d (∆y)

= αν,0 (y) + Ω−1αν,1 (y) + . . .
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The expansion then leads to the following conse-
quences.

1. The largest terms (lowest order in Ω−
1
2 ) yield

∂P (y, t)
∂t

= − ∂

∂y
α1,0(y) P. (9)

This is the Liouville equation corresponding to
the deterministic equation

∂ty = α1,0(y). (10)

This equation contains no fluctuations because it
is obtained in the thermodynamic limit Ω →∞.
It is therefore the macroscopic equation, which in
the case of a chemical reaction is the familiar rate
equation. Thus the deterministic, macroscopic,
or phenomenological equation is a consequence
of the master equation. Evidently it may well be
nonlinear even though the master equation itself
is always linear in its unknown variable P .

2. The next order in Ω−
1
2 describes to lowest order

the fluctuations of Y about the macroscopic value
determined by Eq. 10. More precisely, let φ(t) be
a solution of the macroscopic equation, Eq. 10.
If one sets

y = φ(t) + Ω−
1
2 ξ (11)

the Ω-expansion gives the probability distribu-
tion Π(ξ, t) of ξ

∂Π (ξ, t)
∂t

=

−α′1,0 (φ (t))
∂

∂ξ
ξΠ +

1
2
α2,0 (φ (t))

∂2Π
∂ξ2

. (12)

(The prime denotes the derivative of α1,0 with
respect to its argument φ.) This is the Fokker-
Planck equation whose arguments are linear in ξ
but depend on time. The solution is a Gaussian
and describes the fluctuations in the linear noise
approximation. In the special case that φ is a sta-
tionary solution of Eq. 10, that is, α1,0(φst) = 0,
the coefficients of Eq. 12 are independent of time
and it reduces to the familiar equation for equilib-
rium fluctuations, of which Eq. 7 is an example.

3. Higher-orders in Ω−
1
2 add higher order terms to

Eq. 12. For example, to order Ω−1

∂Π (ξ, t)
∂t

=

− ∂

∂ξ

[
α′1,0ξ +

Ω−
1
2

2
α′′1,0ξ

2 +
Ω−1

3!
α′′′1,0ξ

3

]
Π

+
1
2

∂2

∂ξ2

[
α2,0 + Ω−

1
2 α′2,0ξ +

Ω−1

2
α′′2,0ξ

2

]
Π

− 1
3!

∂3

∂ξ3

[
Ω−

1
2 α3,0 + Ω−1α′3,0ξ

]
Π +

Ω−1

4!
∂4

∂ξ4
α4,0Π

−Ω−1

[
α′1,1

∂

∂ξ
ξΠ +

1
2
α2,1

∂2Π
∂ξ2

]
. (13)

All the αi,j ’s are functions of φ(t). This equation
leads to the following comments.

• The higher order terms do not only add
nonlinear corrections to the coefficients of
Eq. 12, but at the same time higher deriva-
tives appear. At no stage of the expansion
does the nonlinear Fokker-Planck equation,
Eq. 2, emerge: it is inconsistent to take the
nonlinearity of a(y) and b(y) into account
while neglecting higher derivatives.

• The fluctuations are no longer Gaussian,
and the equilibrium auto-correlation func-
tion is no longer a simple exponential.
Rather, each order of Ω−1 adds one more
exponential, and therefore one more Debye
relaxation term to the spectral density of the
fluctuations.

• To order Ω−1 it is no longer true that 〈ξ〉 =
0, and hence 〈Y (t)〉 no longer coincides with
the solution φ(t) of the macroscopic equa-
tion. To put it differently, 〈Y (t)〉 is not a so-
lution of the macroscopic equation, Eq. 10.
Nor can one find some modified differential
equation for 〈Y (t)〉 that includes the correc-
tions of order Ω−1. Instead one has to solve
two coupled equations for the average and
the variance of Y (t) (Kubo et al., 1973).

• As mentioned before, the fourth order equa-
tion, Eq. 13, cannot serve as an exact master
equation of any Markov process. It is there-
fore not the exact equation for a Markov
process that in some way approximates the
original process; rather it is an approximate
equation for the exact P . Only those so-
lutions of Eq. 13 are meaningful for which
the higher derivative terms, not included
in Eq. 13, are actually small. Taken at
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face value, the equation has also other so-
lutions, which may become negative or infi-
nite, but they are not approximations to the
actual solution of Eq. 1. The safest way to
avoid them is to treat the higher order terms
in Eq. 13 by means of perturbation theory
(Siegel, 1960).

The Diffusion Type

The Ansatz, Eq. 11, is based on the anticipation that
the fluctuations will be of relative order Ω−

1
2 . Its a

posteriori justification is provided by the fact that ac-
cording to Eq. 12 the vales of ξ are in fact of order
unity. Nonetheless it can happen that they grow in
time and become so large that the formal expansion
in powers of Ω−

1
2 becomes illusory after a certain ini-

tial period. It is easily seen from Eq. 12 that this
will not be so provided that α′1,0(φ(t)) < 0. This in-
equality is also the condition that the solution φ(t) of
Eq. 10 is stable (asymptotically stable in the sense of
Lyapunov). When the macroscopic solution is stable
the fluctuations do not grow and the Ω-expansion can
be used for all times. The physical reason for this is
clear. For the precise statement of this criterion one
has to distinguish between local and global stability,
but these complications are not relevant here. Nor do
we want to discuss the various cases in which the cri-
terion is violated, such as critical points (Kubo et al.,
1973) and bistable systems (Suzuki, 1977, 1978; van
Kampen, 1978), but only one special case.

If it happens that α1,0(y) ≡ 0, the macroscopic solu-
tions are: φ(t) = constant. They are not asymptoti-
cally stable, not even locally. According to the linear
noise approximation, Eq. 12, the fluctuations grow
proportionally with

√
t, just as in Brownian motion.

The above expansion can therefore be used only for
a limited time, roughly for t < Ω. For master equa-
tions of this type, however, the Ω-expansion takes a
different form.

The point is that it is no longer true that Eq. 10 is
the leading term in the expansion, because this term
vanishes. Consequently, it is no longer possible to split
off a macroscopic part as in Eq. 11, and this affects
the orders of the remaining terms. Rearranging them
accordingly one now obtains as the leading term in
the Ω-expansion of the master equation (van Kampen,

1n − n 1n +

( )V x

( ) ( )V x U x+

εεεε

Figure 3: The potential for a particle diffusing
through a crystal.

1977)

∂P

∂t
= Ω−1

[
− ∂

∂y
α1,1 (y) P +

1
2

∂2

∂y2
α2,0 (y) P

]
,

(14)

which is precisely the generalized diffusion equation,
Eq 2. The variation occurs on a slower time scale
than in Eq. 9, because it is now purely a net effect of
fluctuations, rather than due to a concerted drift.

To show that the occurrence of α1,0 ≡ 0 is not just
a freak, consider the following model for diffusion in
a solid (Figure 3). A particle moves in a periodic
potential V (x) by jumping from each equilibrium site
n to either n + 1 or n− 1 with probabilities per unit
time an and bn. Thus it performs a continuous time
random walk with jump probability per unit time

W (n|n′) = an′δn,n′−1 + bn′δn,n′+1

an = bn = A exp[−ε/kT ].

Now let the particles be charged and subject to an
external field U . The fact that U is supposed to vary
on a macroscopic scale is expressed by writing it as a
function of y = n/Ω, where Ω is the number of sites
n per cm. The field U(y) modifies the height of the
potential peaks, so that the new jump probabilities
are

an = A exp
{
− 1

kT

[
ε + U

(
n− 1

2

Ω

)
− U

( n

Ω

)]}
bn = A exp

{
− 1

kT

[
ε + U

(
n + 1

2

Ω

)
− U

( n

Ω

)]}
.

Hence the first jump moment is

α1 (y) = −an + bn = A exp
[
− ε

kT

]
×

×
{

exp
[
U ′ (y)
2kTΩ

+ O
(
Ω−2

)]
− exp

[
−U ′ (y)
2kTΩ

+ O
(
Ω−2

)]}
.
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On expanding the exponential one sees that the lowest
order α1,0(y) cancels so that the diffusion approxima-
tion applies.

To find the explicit formula we need the next term

Ω−1α1,1(y) = A exp
[
− ε

kT

]
× U ′ (y)

kTΩ
.

Also one has

α2(y) = an + bn = 2A exp
[
− ε

kT

]
+ O

(
Ω−2

)
.

Hence the diffusion equation, Eq. 14, has the form

∂P

∂τ
= − ∂

∂y
U ′(y)P + kT

∂2P

∂y2
, (15)

where the constant factor (A/ΩkT ) exp[−ε/kT ] has
been absorbed in the time scale. The conclusion is
that Eq. 15 is a consistent first approximation for dif-
fusion in an external field U(y) when the jump size is
small compared to the variation distance of U(y). In
the limit it is of course exact (Feller, 1968).

The example indicates the basic reason for the ap-
plicability of the diffusion approximation. In contrast
with e.g. the Rayleigh particle here the nonlinear-
ity is due to some external agency, physically distin-
guished from the noise source. That makes it possible
to choose Ω in such a way that for large Ω the jumps
become arbitrarily small compared to the variation
length of the nonlinear field U . Another example is
a nonlinear pendulum with damping and fluctuations
caused by the surrounding air. It has not yet been
investigated whether or not the nonlinearities in hy-
drodynamics can be disentangled in this way from the
fluctuations associated with the transport coefficients.

Summary

1. In physical situations that can be described by
a continuous range Markov process the Linde-
berg condition is not satisfied. One can therefore
not conclude as a mathematical theorem that the
diffusion equation, Eq. 2, must hold, (nor that
the corresponding Langevin equation holds) by
means of a systematic method. The Ω-expansion
appears to be rather universally applicable.

2. For the Ω-expansion no distinction need be made
between continuous and discrete ranges. The first
term yields the macroscopic equation, Eq. 10, and
the next one the linear Fokker-Planck equation,
Eq. 12, for the fluctuations. Higher-orders add

nonlinear terms to the coefficients of this equa-
tion but simultaneously also higher derivatives.
The result is valid for all times provided that
α′1,0 < 0.

3. At no stage does Eq. 2 appear: it is not a
consistent approximation in this expansion. Of
course Eq. 2 may lead to correct results, namely
if one merely uses it in the linear approximation,
such as to make use only of those features of it
which coincide with the linear noise approxima-
tion. But it is incorrect to take it seriously be-
yond that, and for instance to conclude from it

P eq(y) =
constant

b(y)
exp

−2

y∫
a (y′)
b (y′)

dy′

 . (16)

4. In the special case α′1,0 ≡ 0 however, the low-
est term in the Ω-expansion does have the form
of Eq. 2, or more precisely Eq. 14. Typically
this happens when the nonlinearity stems from
a different physical cause than the fluctuations,
so that both can be disentangled by a suitable
choise of Ω. In this case, Eq. 16 is valid apart
from corrections of order Ω−1.
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