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1 Introduction

Originally thermodynamics was only concerned with
the macroscopically observed values of physical quan-
tities, which in statistical mechanics are given by av-
erages. However, Brownian motion showed that ther-
modynamics is not the whole story. In fact, Gibbs
statistical treatment led to fluctuations about these
averages. (Subsequently Einstein noticed that the re-
lation S = k log W enables one to treat these fluctu-
ations thermodynamically as well). But these are the
instantaneous values of the physical quantities, and
their theory is well known. We are here concerned
with the behaviour of the fluctuations as functions of

time. Their study is much harder, because it involves
not only the equilibrium description, but also the evo-
lution in time, which in principle requires the solution
of the equations of motion of the physical system con-
sidered.

There are several reasons why interest in fluctuations
has grown in recent times. First, they form the obsta-
cle in precise measurements and delicate experiments,
and techniques to eliminate their effects are of prac-
tical importance. Secondly they may be used as a
source of information concerning the system; the most
striking example being the fluctuations of the electro-
magnetic field usually referred to as the 3K radiation.
Thirdly they may give rise to macroscopic effects such
as the Van-der-Waals force.

The proper framework for describing fluctuations is
the theory of stochastic processes; they are treated
in sections 2-4. and the master equation for Markov
processes is derived. Subsequently, in sections 5-8
an expansion of the master equation is given, which
makes its application to practical cases possible. The
final sections contain an introduction to the theory of
stochastic differential equations.
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2 Stochastic processes

A stochastic variable X is defined by the set of its
values x(= set of states = range), and a probability
distribution over this set. Once such a stochastic vari-
able is given, any related quantity Y = f (X) is also
a stochastic variable. Y may be any kind of mathe-
matical object, in particular a function of an auxiliary
variable t, that is, Y (t) = f (X, t). Such Y (t) is called
a stochastic process. It may be regarded as a collec-
tion of sample functions or realizations y (t) = f (x, t),
each of which is obtained by assigning to X one of its
possible valuesx.

Consider a classical dynamical system; its
instantaneous state is given by a point
(q1, q2, ..., qf , p1, p2, ..., pf ) in its phase space.
In statistical mechanics one replaces the individual
system by an ensemble. This amounts to defining
a stochastic variable X, whose range consists of all
points x = (q, p) in phase space and whose proba-
bility distribution is specified by the ensemble. The
ensemble may be chosen freely at one particular time
t = 0 and the equations of motion then determine
the probability of finding a particular state at a later
(or earlier) time t.

A dynamical quantity is a function of the state (q, p).
Its value at any time t is determined by the equations
of motion together with the initial state x at t = 0,
and may be written f (x, t). By the introduction of an
ensemble, each dynamical variable is turned into a sto-
chastic process Y (t) = f (X, t). In this way stochastic
processes enter into physics. So far this is nothing but
a reformulation, which does not bring us any nearer to
solving the equations of motion. However, it will ap-
pear that the theory of stochastic processes suggests
certain assumptions, hopefully called approximations,
which make it possible to obtain results without hav-
ing to solve the equations of motion. Some of these
results, for instance the theory of Brownian motion,
have proved very successful.

In quantum statistical mechanics the possible values



of X are the unit vectors1 in the Hilbert space of
the system , although for describing equilibrium it
is sufficient to take only the eigenstates of the Hamil-
tonian operator. The probability distribution is given
by means of a density matrix. The functions Y (t) are
the expectation values of the various operators. The
theory of stochastic processes does not ask whether
the system is classical or quantum mechanical, but,
of course, the specific properties of the observables
need not be the same in both cases.

3 The Markov assumption

A stochastic process Y (t), defined by means of an X

as above, leads to a hierarchy of probability densities.
We write

Pn (y1, t1; y2, t2; ...; yn, tn) dy1dy2...dyn

for the probability that Y (t1) lies between y1 and
y1 + dy1, and also that Y (t1) lies between y2 and
y2 + dy2, etc. The Pn are defined for n = 1, 2, 3, ...

and only for unequal times. Clearly one has

1. Pn ≥ 0;

2. Pn invariant for interchange of the pair yi, ti with
the pair yj , tj for any i, j ;

3.
∫

Pndyn = Pn−1, and
∫

P1dy1 = 1.

Kolmogorov [1] has proved that the reverse is also
true. Any set of functions Pn obeying these three
restrictions defines a stochastic process. For future
use we note that the process may also be characterized
by the hierarchy of its moments, defined by

µn (t1, t2, ..., tn) ≡ 〈Y (t1)Y (t2) ...Y (tn)〉
=

∫
y1y2...ynPn (y1, t1; y2, t2; ...; yn, tn) dy1dy2...dyn.

The conditional probability density Pn|ν for finding y1

at t1, and y2 at t2, etc., given that one has Y (τ1) = η1,
Y (τ2) = η2,..., is determined by

Pn|ν (y1, t1; ...; yn, tn|η1, τ1; ...; ην , τν)P (η1, τ1; ...; ην , τν)
= Pn+ν (y1, t1; ...; yn, tn; η1, τ1; ...; ην , τν) .

Clearly, Pn|ν is symmetric in the pairs yi, ti and also
in the pairs ηj , τj . It is therefore no restriction to
write the τj in chronological order, τ1 < τ2 < ... < τν .
Suppose that all ti are later than τν ; a Markov process

1More precisely all rays in Hilbert space, that is, all unit
vectors disregarding a phase factor.

is defined as a process for which Pn|ν does not depend
on the earlier data η1, ..., ην−1, but only on ην . More
explicitly

Pn|ν (y1, t1; ...; yn, tn|η1, τ1; ...; ην , τν)
= Pn|1 (y1, t1; ...; yn, tn|ην , τν) .

It follows that, if t1 < t2 < ... < tn,

Pn (y1, t1; y2, t2; ...; yn, tn)
= P1 (y1, t1) P1|1 (y2, t2|y1, t1) ...P1|1 (yn, tn|yn−1, tn−1)

This shows that, in the case of a Markov process,
the whole hierarchy is determined by only its first
member P1 and the transition probability P1|1. The
Markov property is a very strong restriction, but it
has the effect of making the hierarchy tractable. It
often happens that one has reason to believe that a
physical quantity, in whose fluctuating behaviour one
is interested, is approximately a Markov process. It
then becomes possible to find all the stochastic prop-
erties of that quantity; the need for solving the actual
equations of motion of the whole system has been
sidestepped by assuming Markov character. Before
demonstrating this technique we still have to develop
the formalism somewhat further.

4 The master equation

From the Markov character follows for t1 < t2 < t3

P3 (y1, t1; y2, t2; y3, t3)
= P2 (y2, t2|y1, t1)P1|1 (y3, t3|y2, t2) .

On integrating over y2 and dividing by P1 (y1, t1) one
obtains an integral equation for the transition proba-
bility

P1|1 (y3, t3|y1, t1)
=

∫
P1|1 (y3, t3|y2, t2) P1|1 (y2, t2|y1, t1) dy2.

This is the Chapman-Kolmogorov equation. One eas-
ily verifies that for example

P1|1 (y2, t2|y1, t1) = [2π (t2 − t1)]
−

1
2 exp

[
(y2 − y1)

2

2 (t2 − t1)

]

obeys this equation. Together with

P1 (y1, t1) = [2πt1]
−

1
2 exp

[
−

y2
1

2t1

]

it defines a Markov process for t > 0, which is called
the Wiener process and describes the random dis-
placement of a Brownian particle.
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If one takes t3 − t2 ≡ ∆t small, one expects that the
probability that any transition at all has taken place
is proportional to ∆t. Accordingly we now assume

P1|1 (y3, t2 + ∆t|y2, t2) = Aδ (y3 − y2)+∆t Wt2 (y3|y2) .

Here Wt2 is the transition probability per unit time
at the time t2, and conservation of probability tells us

A = 1 − ∆t

∫
Wt2 (y′|y2) dy′.

REMARK: The Wiener process does not obey this
assumption. The reason is that it contains in each
∆t infinitely many infinitely small transitions. That
roughly coincides with the definition of continuous
stochastic processes [2]. Our assumption applies to
discontinuous processes, in which finite jumps are
made, but such that the probability for any jump to
take place in ∆t is of order ∆t. Our contention is that
this is the correct description of physical processes,
and that the Wiener process can at best be regarded
as a first step in an approximating expansion scheme
(see section 6).

Substitution leads to the differential form of the
Chapman-Kolmogorov equation,

∂P1|1 (y, t|y1, t1)

∂t
=

∫
Wt (y|y′)P1|1 (y′, t|y1, t1) dy′

−P1|1 (y, t|y1, t1)

∫
Wt (y′|y) dy′

To make the meaning of this result more transparent,
we multiply the equation by P1 (y1, t1) and integrate
over y1,

∂P1 (y, t)

∂t
=

∫
{Wt (y|y′)P1 (y′, t)

−Wt (y′|y)P1 (y, t)} dy′

This is the celebrated master equation; it is a linear
homogeneous equation describing the evolution of the
probability density of a Markov process. Its physical
importance derives from the fact that W refers to the
short time behaviour of the total system and there-
fore can often be computed; the master equation then
serves to deduce the long time behaviour from this.

Although the Wiener process did not obey the as-
sumption used in deriving the master equation, we
see in retrospect that it does obey a master equation
with a singular kernel W ,

∂P1 (y, t)

∂t
=

1

2

∂2P1 (y, t)

∂y2
.

This equation can be solved explicitly (Fourier); more
generally, the master equation can be solved when-
ever it is invariant for shifts in y and t, i.e., when
y ranges from −∞ to ∞ and Wt (y|y′) is a function
of y − y′ alone. The reason is that in that case the
successive jumps are statistically independent of each
other. Another solvable master equation is the lin-
ear Fokker-Planck equation, which gives rise to the
Ornstein-Uhlenbeck process,

∂P1 (y, t)

∂t
=

∂

∂y
yP1 (y, t) +

1

2

∂2P1 (y, t)

∂y2
.

However, for most master equations an approximation
method is needed; this will now be developed.

5 Expansion of the master equation

We suppose that Wt (y|y′) is independent of t and
rewrite it as a function W (y′; ξ) of the starting point
y′ and the jump length ξ,

∂P1(y,t)
∂t =

∫
{W (y − ξ; ξ)P1 (y − ξ, t)

− W (y; ξ)P1 (y, t)} dξ

Expanding the first term on the right in powers of ξ

one obtains the Kramers-Moyal expansion

∂P1 (y, t)

∂t
=

∞∑

ν=1

(−1)ν

ν!

(
∂

∂y

)ν

αν (y)P1 (y, t),

where the αν are the moments of the jump probability,

αν (y) =

∞∫

−∞

ξνW (y; ξ) dξ.

It is tempting to break off after two terms and adopt
the resulting nonlinear Fokker-Planck equation

∂P1

∂t
= −

∂

∂y
α1 (y)P1 +

1

2

∂2

∂y2
α2 (y)P1

as an approximation to the master equation. This
equation appears in most textbooks and is often called
after Kolmogorov ([3],[4]). However, it is derived by
means of the same unphysical assumptions on which
the Wiener process is based. Actually this equation is
NOT a systematic approximation to the master equa-
tion and has caused a great deal of confusion [5]. Our
purpose is to provide a systematic expansion in pow-
ers of a parameter which obviates these difficulties.

To find the proper expansion parameter we note that
the size of a jump ξ is properly expressed in an ex-

tensive quantity, while the variable y occurring in
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Figure 1: A small volume Ω attached to an infi-

nite reservoir.

W (y; ξ) expresses the dependence of the probability
on the over-all state of the system and is therefore
properly expressed in terms of an intensive variable2.
This suggests that, if Ω is the size of the system, one
may make the dependence of W on Ω explicit by set-
ting

W (y; ξ) = Φ
(

y
Ω ; ξ

)
,

in such a way that Φ no longer depends implicitly on
Ω. This turns out to be true.

As an example, consider an ideal gas in a virtually in-
finite reservoir with fixed density ρ. A smaller volume
Ω is connected with it through a hole, see Figure 1.

The probability that in a given dt the number n of
molecules in Ω increases by one unit is αρ dt. The
probability that n decreases by one unit is α n

Ω dt.
Hence

W (n; ξ) = αρ δξ,1 + α
n

Ω
δξ,−1.

Clearly this depends on n only through the intensive
variable n

Ω and no other Ω occurs. This turns out to
be the general pattern, although minor modifications
are sometimes required. For instance, additional fac-
tors Ω may appear in Φ, but they can be absorbed in
the time unit. Or it may happen that Φ is not inde-
pendent of Ω but consists of a power series in Ω−1;
this gives rise to additional terms but does not upset
the general scheme. Finally it is not necessary that
Ω has the physical meaning of a volume. In the case
of Brownian motion, Ω is the mass of the particle, its
momentum has the role of the extensive quantity, and
its velocity is the intensive quantity 3.

2Extensive properties depend upon the size of the system,
for example the mass and volume. Intensive properties are
independent of the system size, for example the temperature
and density. Doubling the system size does not double the
temperature.

3No relation to the fact that Aristotle also regarded velocity

6 A paradigm

Rather than formulate the expansion method in gen-
eral terms we demonstrate it on a simple example,
which we borrow from the theory of population statis-
tics. Let n be the number of individuals in a popula-
tion (of bacteria or other organisms). Each individual
produces offspring at a rate α and has a probability
β per unit time to die. This leads to

ṅ = αn − βn,

which is Malthuss law, assuming α > β. In order
to include the struggle for life, Verhulst added for
each individual a death probability proportional to
the number of individuals present. More precisely,
this probability should be taken proportional to the
density n

Ω , where Ω is the size of the test tube, or the
amount of food. This leads to the Malthus-Verhulst
equation

dn

dt
= (α − β)n − γ

n2

Ω
,

which fits surprisingly well [6]. This is the macro-
scopic, phenomenological equation or rate equation,
and ignores fluctuations.

In order to describe fluctuations one has to introduce
the probability P (n, t) for having n individuals at
time t. It obeys the master equation

Ṗ (n, t) = α (n − 1)P (n − 1, t) − αnP (n, t)
+β (n + 1)P (n + 1, t) − βnP (n, t)

+ γ
Ω

{
(n + 1)

2
P (n + 1, t) − n2P (n, t)

}
.

The Markov character has been introduced by assum-
ing that each individual has fixed probabilities for
breeding or dying, regardless of age and gestation pe-
riod.

The Kramers-Moyal expansion of the master equation
is

∂P (n, t)

∂t
=

=

∞∑

ν=1

1

ν!

∂ν

∂nν

{
(−1)

ν
αn + βn +

γ

Ω
n2

}
P (n, t) .

Notice that α and β occur separately, no longer in the
combination α − β alone. Thus the master equation
involves more detailed information about the process
than the macroscopic rate equations. This is generally
true and explains why the observation of fluctuations
may lead to new information, not obtainable from the

as an intensity.
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Figure 2: Fluctuations about the macroscopic

trajectory Ωϕ (t).

measurement of the rates. For our present purpose,
however, it suffices to take β = 0; moreover, we change
the time unit so as to have α = 1, and the unit of Ω
so that γ = 1.

7 The Ω-expansion

It is necessary to write the powers of Ω explicitly.
We anticipate that n consists of a macroscopic part

of order Ω and fluctuations around it of order Ω
1/2.

Accordingly we transform from the variable n to a
new variable x by setting

n = Ωϕ (t) + Ω
1/2x

where ϕ (t) is a function yet to be determined. The
rationale is that the probability distribution P (n, t)
is represented by a sharp peak, which slides bodily

along the n-axis. Its width is of order Ω
1/2 at all times,

and its position Ωϕ (t) is the macroscopically observed
value of n (see Figure 2).

The transformation of the probability distribution
reads

P (n, t) = P
(
Ωϕ (t) + Ω

1/2x, t
)
≡ Π(x, t)

Actually, there ought to be an additional factor Ω
1/2

on the right in order that Π be normalized, but we
omit it for convenience.

We write the Kramers-Moyal expansion in the new
variables, and order the terms according to the powers

of Ω:

∂Π

∂t
−

∂Π

∂x
Ω

1/2ϕ′ (t) = −Ω
1/2

(
ϕ − ϕ2

) ∂Π

∂x

+ (−1 + 2ϕ)
∂

∂x
xΠ +

1

2

(
ϕ + ϕ2

) ∂2Π

∂x2
+ O

(
Ω

−1/2
)

.

The largest terms are those involving Ω
1/2. The fact

that the derivative ∂Π/∂t is not one of them means
that we are dealing with a singular perturbation prob-
lem. However, the two large terms can be caused to
cancel by choosing

ϕ′ (t) = ϕ − ϕ2.

This is the macroscopic rate equation

dn

dt
= n −

n2

Ω
.

Thus we have deduced the macroscopic law from the
master equation; it is simply the equation that de-
scribes how the peak P (n, t) slides along the n-axis.
Note that the macroscopic equation may well be non-
linear, although the master equation is of course linear
in P (n, t).

Having disposed of the terms of order Ω
1/2, we collect

the terms of next order

∂Π

∂t
= (−1 + 2ϕ)

∂

∂x
xΠ +

ϕ + ϕ2

2

∂2Π

∂x2
.

This equation governs the fluctuations around the
macroscopic value Ωϕ (t) found in the previous step.
It is similar to the equation for the Ornstein-
Uhlenbeck process, but its coefficients depend on
time. Yet it can be solved explicitly [7].

For t = ∞ the coefficients become constant and the
equation reduces to

∂Π

∂t
=

∂

∂x
xΠ +

∂2Π

∂x2
.

This is the familiar (linear) Fokker-Planck equation
for the equilibrium fluctuations, as used in the stan-
dard theory of Rayleigh, Einstein, Smoluchowski, and
many others.

The macroscopic equation also has the particular so-
lution ϕ (t) = 0. The fluctuations around it obey

∂Π

∂t
= −

∂

∂x
xΠ.

This leads to 〈x〉t = 〈x〉0 et, which demonstrates that
the solution ϕ = 0 is unstable. Thus the non-existence
of unicorns is an unstable situation.
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8 Some critical remarks

We have found that the fluctuations are governed
in lowest order by a second-order equation, whose
first coefficient is linear in x and whose second coeffi-
cient is a constant. It turns out that the next order
adds a quadratic term in the first coefficient, a linear
term in the second coefficient, and also a third-order

derivative with a constant coefficient; and so on [8].
It follows that it is inconsistent to use the nonlin-

ear Fokker-Planck equation without including at the

same time higher derivatives. To put it differently,
the single parameter Ω governs both the validity of
the Fokker-Planck approximation and the influence
of the nonlinearity on the fluctuations; it is inconsis-
tent to add nonlinear terms without improving on the
Fokker-Planck approximation as well. In particular,
it is incorrect to conclude from the first two terms of
the Kramers-Moyal series that the equilibrium distri-
bution is

P eq (y) =
const.

α2 (y)
exp




y∫

0

2α1 (y′)

α2 (y′)
dy′


 .

Another way of describing fluctuations was originated
by Langevin, who wrote for the velocity v of a Brown-
ian particle

v̇ = −γv + η (t) .

γ is the friction coefficient and η (t) is assumed to be
a rapidly fluctuating force, due to the random colli-
sions of the gas molecules. The rapidly fluctuating
and irregular character of η (t) is taken into account
by treating η (t) as a random process having the prop-
erties

〈η (t)〉 = 0 〈η (t1) η (t2)〉 = Cδ (t1 − t2)

Of course this does not yet fully specify the stochas-
tic process; for this reason one sometimes completes
the definition by stipulating that η (t) is a Gaussian
process, but that is an ad hoc assumption, and fortu-
nately superfluous for deriving the properties of the
Brownian particle.

The success of Langevins treatment of Brownian mo-
tion has given rise to a popular idea that, for every
macroscopically known phenomenon in nature, fluc-
tuations can be taken into account simply by supple-
menting the macroscopic rate equation by a Langevin
term, even though its physical meaning may be ob-
scure. Inasmuch as the present Ω-expansion provides
a systematic treatment of the fluctuations, it is now

possible to verify this idea ex post facto. Our para-
digm will serve us to show that the Langevin assump-
tion cannot be correct in the case that the macroscopic
equation is nonlinear.

Following the popular idea we write the Langevin
equation

dn

dt
= n −

n2

Ω
+ η (t) .

Thus 〈η (t)〉 can be found from

Ωϕ′ + Ω
1/2

d

dt
〈x〉 = Ωϕ + Ω

1/2 〈x〉

−

〈(
Ωϕ + Ω

1/2x
)2

〉

Ω
+ 〈η (t)〉

On substituting the results of section 7 this reduces
to

〈η (t)〉 =
〈
x2

〉

The fact that 〈η (t)〉 does not vanish may not yet be
so bad, but the fact that it depends on the solution
itself is fatal to the Langevin approach. Even if one
tries to save the Langevin assumption by noting that
〈η (t)〉 has one factor Ω less than the other terms in
the above Langevin equation, the same evil reappears
when computing C.

9 Stochastic differential equations

This name denotes differential equations in which one
or more of the coefficients are stochastic variables.
Thus a stochastic differential equation stands for an
ensemble of differential equations, each with some val-
ues for the coefficients. The solution of a stochas-
tic differential equation with given initial condition
(which may be stochastic too) is a stochastic function.
The problem is to derive its stochastic properties from
those of the coefficients of the equation.

An example is Langevins differential equation for the
Brownian particle, in which the coefficient η (t) is sto-
chastic. The solution is well known, and can rigor-
ously be proved to be a Wiener process when η (t)
is assumed to be Gaussian. Note that, whereas the
value of η at two different times are uncorrelated, this
is not true for the Wiener process; thus the solution of
the equation involves more memory than its stochas-
tic coefficient. This is a general feature of stochastic
differential equations, since the solutions are obtained
by integrations.
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Other examples are: the current in a an electric net-
work due to a noisy source ([9],[10]), the response of
a control system to random perturbations [11], line
broadening [12], and the effect on a photoconductor
of correlations in the incoming photon beam [13]. Ex-
amples of stochastic partial differential equations are:
the Brownian motion of a string or drumhead [14]
and the propagation of sound waves or radio waves
through a turbulent medium [15]. The twinkling of
stars and the propagation of ultrasound in the ocean
have been treated in the approximation of geometri-
cal optics and belong therefore to stochastic ordinary
differential equations [16].

A rigorous solution of a stochastic equation consists
of two steps: first solve the equation for y, with each
possible value of the coefficients, and subsequently av-
erage the resulting y and products thereof. This can
be carried out explicitly only in rare cases; one of-
ten has to be satisfied with an approximate solution.
A much bolder approach to problems that cannot be
solved rigorously is the following.

First take an average of the equation as it stands. In
the Langevin case this yields a closed equation for
〈y (t)〉, but in general averages of products of higher
powers of y and the coefficients will arise. Next,
guided by physical insight and mathematical needs,
assume that some of these averages of products may
be replaced with the product of the averages, for ex-
ample

〈
y2

〉
→ 〈y〉

2
. In this way one arrives at a

closed equation for 〈y (t)〉, whose solution hopefully
approximates the actual 〈y (t)〉. Boltzmann’s famous
Stosszahlansatz and later forms of molecular chaos or
random phase approximations are assumptions of that
ilk4. However, we shall not use such methods. Nor are
we concerned with stochastic boundary value prob-
lems and the probability distribution of their eigen-
values ([18],[19]).

10 First example

Consider the first-order linear differential equation

ẏ = ivy, y (0) = 1.

Let v be a random real constant with probability den-
sity ϕ (v). This example describes a set of harmonic

4J. B. Keller [16] has called this the dishonest method, but
that term seems too disparaging for a method which has led to
the greatest achievements of statistical mechanics. I propose
to restrict this qualification to work in which such an assump-
tion is made but concealed. According to this definition linear
response theory should be called dishonest [17].

oscillators with different frequencies. For each v the
solution is e−ivt, and hence

〈y (t)〉 =
〈
e−ivt

〉
=

∞∫

−∞

ϕ (v) e−ivtdv.

It is instructive to look at a few special cases; in the
following list v0 and γ are fixed parameters.

1. Lorentz:

ϕ (v) = γ/π

γ2+(v−v0)2

〈y〉 = e−iv0t−γt

2. Gaussian:

ϕ (v) = (2πγ)
1/2 e

−(v − v0)
2

/2γ

〈y〉 = e−iv0t−γt2

3. Laplace:

ϕ (v) = 1
2γe−γ|v−v0|

〈y〉 = e−iv0t γ2

γ2+t2 .

In each case the averaged solution tends to zero as
t → ∞.This damping is due to the fact that the har-
monic oscillators of the ensemble gradually lose the
phase coherence they had at t = 0. In plasma physics
this is called phase mixing, in mathematics Riemann-
Lebesque theorem. The modulus of y is not subject
to phase mixing and does not tend to zero; in fact,

|y (t)| = 1, hence
〈
|y (t)|2

〉
= 1.

The form of the damping factor is determined by ϕ.
Only for one particular ϕ does it have the form that
corresponds to a complex frequency. It is therefore in-
correct to make the Ansatz 〈y (t)〉 = e−iωt and search
for eigenfrequencies ω [20]. The problem is not in-
variant for time translations owing to the fixed initial
time.

Note that 〈y (t)〉 is identical with the characteristic
function χ (t) of the distribution ϕ (v). Hence under
rather weak restrictions it can have almost any reason-
able dependence on t [21]. The fact that 〈y (t)〉 = χ (t)
suggests the use of the cumulant expansion

〈y (t)〉 =
〈
e−ivt

〉
= exp

[
∞∑

m=1

(−it)
m

m!
vm

]
,
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where vm stands for the mth-cumulant. We shall make
ample use of cumulant expansions, but one has to bear
in mind that not all probability distributions have one.
For instance, the above formula suggests that there
exists no ϕ for which 〈y (t)〉 has the form e−iv0t−γt;
but we have seen that that conclusion is wrong.

To characterize the stochastic process y more fully we
compute the higher moments,

〈y (t1) ...y (tn) y∗ (s1) ...y∗ (sm)〉 =

=
〈
e−iv(t1+...+tn−s1−...−sm)

〉

= χ (t1 + ... + tn − s1 − ... − sm) .

Thus we have succeeded in this simple instance in
providing a complete solution of the problem of de-
riving the stochastic properties of y (t) from those of
v. The solution may be written in a condensed form
by means of a characteristic functional X [ϑ] involving
an auxiliary dummy function ϑ (t),

X [ϑ] ≡

〈
exp

[
i

∫
{ϑ (t) y (t) + ϑ∗ (t) y∗ (t)} dt

]〉

=

〈
exp

[
i

∫ {
ϑ (t) e−ivt + ϑ∗ (t) eivt

}
dt

]〉
.

11 Second example

Take the same equation with the same initial condi-
tion, but let v be a stochastic function of time. Then

〈y (t)〉 =

〈
exp


−i

t∫

0

v (t′) dt′



〉

.

This is the characteristic function belonging to the
stochastic variable represented by the integral. It can
be written in the form of a cumulant expansion

〈y (t)〉 =

= exp




∞∑

m=1

(−i)m

m!

t∫

0

v (t1) v (t2) ...v (tm) dt1dt2...dtm


 ,

where the cumulants of v (t) are given by the usual
cluster expansion [22]

〈v (t1)〉 = v (t1)

〈v (t1) v (t2)〉 = v (t1) v (t2) + v (t1) v (t2)

〈v (t1) v (t2) v (t3)〉 = v (t1) v (t2) v (t3)+v (t1) v (t2) v (t3)

+... + v (t1) v (t2) v (t3) etc.

The following specialization of this general formula is
often used. Suppose v (t) = v0 + εv1 (t) with fixed
constant v0 and random v1 (t) having 〈v1 (t)〉 = 0.
Then the first cumulant is simply equal to v0, and

〈y (t)〉 = e−iv0t×

× exp


−ε2

2

t∫

0

∫
〈v1 (t1) v1 (t2)〉 dt1dt2 + ...


 .

Note that the expansion in ε occurs in the exponent,
which greatly diminishes the danger of secular terms.

If the functions v1 (t) in the ensemble are all, or al-
most all, so slowly varying that they are practically
constant during the time t we are interested in, the
present case reduces to that of the previous section.
Let us consider the opposite case of rapidly varying
v1 (t). That describes an harmonic oscillator whose
basic frequency v0 is perturbed by a rapidly varying
influence, for instance an atom undergoing collisions
while emitting light.

Accordingly we suppose that the correlation between
v1 (t1) and v1 (t2) depends on t1 t2 alone and vanishes
for |t1 − t2| > τ . Then for t >> τ the double integral
is approximately equal to Dt with [23]

D =

∞∫

−∞

〈v1 (0) v1 (t)〉 dt.

Hence in this case 〈y (t)〉 does have the form e−iv0t−γt,
corresponding to a complex frequency v0 − iγ ≡
v0 − 1

2 iε2D. This shows that short lasting collisions
give rise to line broadening with Lorentz profile, as
was originally shown by Lorentz. The higher orders
alternately add corrections to v0 and γ, but that is
only true up to some order n with nτ << t.

A simple trick enables us to find higher moments of
y. One has, for instance, taking 0 ≤ t ≤ s,

〈y (t) y (s)〉 =

〈
exp


−i

t∫

0

v (t′) dt′ − i

s∫

0

v (t′) dt′




〉

=

〈
exp


−i

∞∫

0

ϑ (t′) v (t′) dt′



〉

.

Here we have defined ϑ (t′) by setting

ϑ (t′) =





= 2 0 < t′ < t

= 1 t < t′ < s

= 0 s < t′.
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It is again possible to use the cumulant expansion; if
we also use an expression in ε for convenience, we find

〈y (t) y (s)〉 = e−iv0t−iv0s×

× exp


−ε2

2

∞∫

0

∞∫

0

ϑ (t′)ϑ (t′) 〈v1 (t′) v1 (t′′)〉 dt′dt′′


 .

Similar equations hold for the other moments; in par-
ticular

〈y (t) y∗ (s)〉 =

〈
exp


−i

t∫

s

v (t′) dt′



〉

= exp


−ε2

2

t∫

s

∫
〈v1 (t′) v1 (t′′)〉 dt′dt′′


 .

12 The general formula for 〈y (t)〉

As the final complication we suppose that y is a vector
and take instead of v a random matrix V (t),

ẏ = −iV (t) y, y (0) = a.

The initial value is some fixed vector a. For given
V (t) the solution is

y (t) =



1 − i

t∫

0

V (t1) dt1 −

−

t∫

0

V (t1)

t1∫

0

V (t2) dt2dt1 + ...



 a.

In each term the factors V (t) appear in chronological
order with the latest time on the left. No error is made
by writing the factors in arbitrary order, provided one
adds a reminder that they should actually be read
chronologically:

y (t) =



1 − i

t∫

0

V (t1) dt1 −

−
1

2

t∫

0

t∫

0

dV (t1)V (t2)e dt2dt1 + ...



 a.

Where d·e denotes the time-ordered product. More
generally

y (t) =



1 +

∞∑

n=1

(−i)
n

n!

t∫

0

dt1...dtn dV (t1) ...V (tn)e



 a

=



exp



−i

t∫

0

V (t′) dt′








a.

The last expression is nothing but a symbolic way of
writing the previous one: the time ordering has to be
performed after expanding the exponential.

Having written the solution of the ordinary differential
equation in a suitable way we take the average,

〈y (t)〉 =




〈
exp



−i

t∫

0

V (t′) dt′





〉


a

=



exp





∞∑

m=1

(−i)
m

m!

t∫

0

dt1...dtm V (t1) ...V (tm)








a,

where the bar denotes the cumulant. This is our gen-
eral formula for the averaged solution of a stochastic
linear differential equation. It is a condensed way of
writing the result, but the actual evaluation of the
right-hand side is not always easy 5. It reduces to the
result of the previous section when all factors V (t)
commute, not merely at all times but also for all sam-
ples in the ensemble.

Let V (t) = V0+εV1 (t) with fixed V0 and 〈V1 (t)〉 =
0. Then the first cumulant can again be written sep-
arately,

〈y (t)〉 =

⌈
exp



−i

t∫

0

V0 (t1) dt1 +

+

∞∑

m=2

(−iε)
m

m!

t∫

0

dt1...dtm V (t1) ...V (tm)





⌉
a.

Although V0 does not depend on time it has been
provided with a label t1, which is required to assign
to each factor V0 its proper place in the time-ordered
product. An equivalent expression is [24]

〈y (t)〉 = eiV0t

⌈
exp

{
∞∑

m=2

(−iε)
m

m!
×

t∫

0

dt1...dtm W1 (t1) ...W1 (tm)





⌉
a,

where W1 (t) stands for the operator V1 (t) in the
interaction representation,

W1 (t) = eiV0tV1 (t) e−iV0t.

5The equation is mentioned by R. Kubo [12] and a modified
form of it was used by J. T. Ubbink [13].
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Neglecting third and higher powers of ε in the expo-
nent

〈y (t)〉 = exp



−iV0t − ε2

t∫

0

eiV0t1dt1×

×

t1∫

0

〈
V1 (t1) e−iV0(t1−t2)V1 (t2)

〉
e−iV0t2dt2



 a.

Actually the exponential should still be time-ordered,
but that only affects higher orders in ε.

Suppose the correlation depends on t1 - t2 alone, so
that

〈
V1 (t1) e−i V0(t1−t2)V1 (t2)

〉
= R (t1 − t2) .

Moreover suppose that the correlation is practically
zero for |t1 − t2| > τ , so that for t ¿¿ τ

t1∫

0

R (t1 − t2) e−iV0t2dt2 =




t1∫

0

R (t′) e−iV0t′dt′


 e−i V0t1

≈




∞∫

0

R (t′) e−i V0t′dt′


 e−iV0t1 = De−i V0t1 .

And, if t is much larger than the periods contained in
V0,

t∫

0

ei V0t1dt1De−i V0t1 = t D̃,

where D̃ is the diagonal part of D with respect to V0.
Then

〈y (t)〉 = e−iV0t−ε2
D̃ ta,

which is a superposition of waves with complex fre-
quencies.

13 Application to the transmission of

waves

An electromagnetic wave propagating in the direction
x through the troposphere may roughly be described
by the Helmholtz equation

d2u

dx2
+ k2

0n
2u = 0.

k0 is the wave number for the average density of air,
and n2 (x) = 1+εµ (x) is the variation in the refractive
index due to density fluctuations. In practice, εµ ∼

10−6; the fluctuations extend over some 50 meters
and they vary slowly compared to the passage time
of a radio signal. The wave length is supposed to be
small compared to them, because derivatives of n have
been neglected in the equation. This approximation
amounts to taking into account the local variations of
wave length and amplitude, but not reflection (WKB
approximation). Hence one may consider separately
the wave going to the right; putting du/dx+ik0nu = y

one has in the same approximation

dy

dx
= ik0n (x) y.

One is interested in the effect of many signals trans-
mitted over a fixed distance x much longer than 50 m.
Hence µ (x) is a stochastic function and the problem
is the type treated in section (ref 11), except that x is
substituted for t. The mean amplitude is attenuated
by a factor e−γx with

γ =
1

2
ε2k2

0

∞∫

−∞

〈µ (0)µ (x′)〉 dx′.

The intensity of the signal decreases proportionally to
e−2γx , the increase in noise is 1 − e−2γx.

Another problem is the passage of a wave through
a space with randomly located scatterers. We take
one dimension and y1,y2 for the amplitudes of the
waves going to the right and to the left. The scatterers
are located at random positions ξs and are otherwise
identical. Each of them is represented by a two-by-
two matrix A such that

y (ξs + 0) = Ay (ξs − 0) .

When we set A = 1 − iεB the equation for y is

dy

dx
=

(
ik0 0
0 −ik0

)
y − iε

∑

s

δ (x − ξs)By.

It can be verified that B is real when the scatterer is
elastic and symmetric. The operator on the right has
the form −iV = −iV0 − iεV1, where V0 is constant
and V1 (x) is random and depends on x. Hence the
general formula says

〈y (x)〉 =

⌈
exp



−i

x∫

0

[V0 (x′) + εV1 (x′)] dx′+

+

∞∑

m=2

(−iε)
m

m!

x∫

0

V1 (x1) ...V1 (xm) dx1...dxm





⌉
.
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In order to compute the cumulants we have to employ
a suitable way of describing the random location of the
scatterers (ref 9). Let fn (x1, ..., xn) be the probability
density for finding a scatterer at each of the locations
x1, ..., xn, regardless of all other scatterers. Then, if
all x1, ..., xn are different,

fn (x1, ..., xn) =

〈
∑

s1,...,sn

δ (x1 − ξs1
) ...δ (x1 − ξs1

)

〉
.

Subsequently the correlation functions gn are defined
by the usual cluster expansion

f1 (x1) = g1 (x1)

f2 (x1, x2) = g1 (x1) g1 (x1) + g2 (x1, x2) , etc.

We suppose that the distribution is homogeneous in
space, so that f1=g1=const. and f2 and g2 only de-
pend on x1 - x2.

Returning to the general formula we first note

V0 + εV1 (x) = V0 + ε 〈V1 (x)〉 = V0 + εf1B.

Call this constant matrix W0 and define the interac-
tion representation by

W1 (x) = ei W0xV1 (x) e−iW0x.

The general formula may then be written to second
order in ε

〈y (x)〉 = e−i(V0+εf1B)x×

× exp



−ε2

x∫

0

x1∫

0

dx1dx2W1 (x1)W1 (x1)



 a.

The term εf1B is the averaged effect of single scatter-
ers, while the double integral describes the additional
effect of pairs. With some algebra one finds for it

x∫

0

x1∫

0

dx1dx2g2 (x1, x2) ei W0x1BeiW0(x1−x2)×

×BeiW0x2 =

=

x∫

0

ei W0x1





x1∫

0

g2 (x′)Be−iW0x′

BeiW0x′

dx′



×

×e−iW0x1dx1

It is by a similar calculation that Ubbink [13] managed
to solve the problem of a photoconductor subject to
randomly incident photons.

Various limiting cases of this formula may be recog-
nized. First suppose that the positions ξs are uncorre-
lated; then g2=0 and the total effect of the scatterers
is the sum of their individual effects. Next suppose
that the range of g2 (x) is much less than the period
of e−iW0x; that is, the correlation length is small com-
pared to the wavelength. Then the integral reduces
to




x∫

0

ei W0x1B2e−i W0x1dx1







∞∫

0

g2 (x′) dx′


 .

This represents the coherent scattering by neighbour-
ing pairs of scatterers. For large x this is proportional

to xB̃2 where the tilde denotes the diagonal part of B2

with respect to W0. Finally let g2 have a long range
and vary smoothly compared to wavelength. The the
integral reduces to incoherent scattering by pairs,

xB̃2

∞∫

0

g2 (x′) dx′.

In all these cases 〈y (x)〉 depends exponentially on x

owing to the assumption that x is much larger than
any of the other lengths involved in the problem.
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