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Abstract

The density of particles in space or in phase space
varies in time through continuous flow and through dis-
crete jumps, due to collisions, chemical reactions, ra-
dioactive decay, or births and deaths [41]. A method
is developed for computing the fluctuations arising from
the random jumps and influenced by the flow. It
equally applies to equilibrium, stationary states, and
time-dependent situations, both in linear and nonlinear
systems. The method is based on the master equation
and does not require the additional assumptions needed
in the Langevin approach, although the correct form of
the Langevin force can be deduced from it a posteriori.
Factorial cumulants turn out to be a convenient tool.
As applications the fluctuations inherent in the diffusion
process are computed and a controversial chemical reac-
tion is discussed.

I. INTRODUCTION

The validity of macroscopic transport laws or rate
equations is subject to restrictions due to the discrete
nature of matter. The deviations from the macroscopic
behavior show up in the fluctuations. In principle all the
properties of the fluctuations are implied in the micro-
scopic equations of motion of all particles, but the road
from the microscopic starting point to the observed fluc-
tuations is long and hazardous. It involves all the diffi-
culties connected with the appearance of irreversibility,
and cannot, therefore, dispense with some statistical as-
sumptions. In practice one starts from an intermediate
level of description, more detailed than the macroscopic
picture, but less detailed than the microscopic one, and
introduces some suitable and physically reasonable as-
sumptions and the behavior on that level. “Mesoscopic”
is a suitable term for this approach.

One way of computing fluctuations mesoscopically con-
sists in supplementing the macroscopic equations with a
fluctuating Langevin term and to assume certain stochas-
tic properties for it. However, the physical justification
for these assumptions is dubious, unless the Langevin
term corresponds to an actual force, as in the Brownian
particle case. Moreover, in time-dependent situations the
Langevin method can only be saved by allowing the sto-
chastic properties to depend on the special solution under
consideration [1].

More satisfactory is the mesoscopic approach that
starts by setting up the master equation. It equally ap-
plies to stationary and time-dependent states, and often
requires no other assumptions than have already been

used in establishing the macroscopic equations. All that
is needed is to frame them in an equation for the proba-
bility distribution, i.e., the master equation. One is then
left, however, with the problem of solving it.

Exact solutions of the master equation are available
only in a restricted class of problems, to be identified
in Section II as linear master equations. For nonlinear
master equations an approximation method has been de-
veloped, which produces solutions in the form of an ex-
pansion in reciprocal powers of a parameter measuring
the size of the system. This method was first formulated
for the case of a single fluctuating variable [2–7], and
subsequently generalized to the multivariate case [1, 8].
The present article studies the case of infinitely many
variables; more precisely, the case that the fluctuating
quantity is itself a function of a continuously varying co-
ordinate. Examples of such quantities are the density of
particles in space, or in one-particle phase space.

Density fluctuations in equilibrium can of course be
calculated by the usual phase-space methods [9], an ex-
ample is given in Section VII. Non-equilibrium fluctua-
tions in continuous systems have appeared in the liter-
ature in connection with various special problems, such
as the derivation of the Onsager relations [10, 11], the
theory of noise in electron beams [12], and the study of
hot electrons [13–16]; and in connection with transport
processes [17, 18], generalized hydrodynamics [19, 20],
the electromagnetic field in dielectrics [21], lasers [22],
chemical reactions [23–26], and even sociology [22, 27].
Often, however, recourse had to be taken to ad hoc
methods, involving assumptions and simplifications (op-
timistically called “approximations”), which sometimes
lead to ambiguities and controversies [23–26, 28–31]. A
more general systematic, if rather cumbersome, treat-
ment was given by Van Vliet [32], who obtained several
of the results that will be derived here. His method,
however, is based on the Langevin equation and is there-
fore subject to the objections mentioned above. Recently
Mori [33] has treated continuous variables by Fourier
transformation, which reduces them to a set of discrete
variables.

Our aim is to provide a general method that permits to
calculate without ambiguities the fluctuations in station-
ary or time-dependent states of linear and nonlinear sys-
tems with continuous variables, using no other assump-
tions than those that are indispensable for a mesoscopic
treatment. Of course this does not mean that we claim
to have resolved all difficulties; in particular the effect of
space charge has yet to be worked out.

The difficulty in dealing with continuous variables is
that discrete jumps, such as excitations or reactive col-
lisions, have to be combined with the continuous change
due to flow in the phase space. Although it is actually
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possible to construct a master equation that incorporates
both aspects, in this article a simpler approach will be
used, based on the moments. The first and second mo-
ments vary as a consequence of both discrete and contin-
uous processes. It is therefore possible to compute the
two kinds of processes separately and compound them in
the equations for the moments.

Our interest is focused on the correlations of the fluc-
tuations at two points in space or phase space at the
same time. We do not consider the correlations at dif-
ferent times needed to find the fluctuation spectrum. In
stationary states, they can be derived from our results
using the linearized macroscopic equations together with
Onsager’s assumption [10, 11].

The equation for the first moment (or average) is the
macroscopic equation. The second moments (also called
density-density or two-point correlation functions) de-
scribe the fluctuations. Equivalent with the second mo-
ments, but often more convenient, are the variance and
covariance (also called the second cumulants). Even more
convenient in many cases, however, are the less familiar
‘factorial cumulants’, whose properties are reviewed in
Appendix A.

Our strategy will be, rather than to formulate the
method in full generality, to demonstrate it on a series
of examples so as to introduce successively various gen-
eralizations and complications. Inevitably the examples
are somewhat artificial, because most applications to re-
alistic cases require lengthier calculations than would be
consistent with the purpose of elucidating the basic idea
of the method. Yet the derivation of the fluctuating term
inherent in the diffusion equation (see Section V) and
the calculation of the fluctuations in the much discussed
chemical reaction in Sections VIII and IX may be of prac-
tical interest.

II. DECAY WITH DIFFUSION

The aim of this section is to demonstrate the method of
compounding moments on the simplest possible example.
Take the dissociation of a chemical compound, or the
decay of a radioactive isotope

X
a−→ A, (1)

where A is inert and does not enter into the equations.
Let N = 0, 1, 2, . . . be the number of active particles X.
The macroscopic rate equation for N as a function of t
is of course

dN

dt
= −aN. (2)

This is an approximate law, valid when the number N is
large. The actual value of N fluctuates around the value
given by Eq. 2 owing to the statistical character of the
individual decays. In order to describe the fluctuations
one introduces the probability P (N, t) for having N ac-

tive particles at time t. The evolution of P is governed
by the master equation

dP

dt
= a · (N + 1) · P (N + 1, t)− a ·N · P (N, t), (3)

which is simply a gain-loss equation for the probability.
For its justification one only needs the same assumption
on which Eq. 2 is based: each active particle has a fixed
probability a per unit time to decay. Of course this im-
plies the Markov property in that a does not depend on
the history of the particle.

The object is to solve Eq. 3 with arbitrary initial value
P (N, 0); it clearly suffices to take

P (N, 0) = δN,N0 , N0 arbitrary. (4)

The solution will determine the average of N , and the
fluctuations around it at all t > 0. For our purposes it
suffices to find the average and the mean square of N .

It is convenient to introduce the step operator E de-
fined by

Ef(N) = f(N + 1),

for an arbitrary function f . Note the identity

∞∑
N=0

g(N)Ef(N) =
∞∑

N=0

f(N)E−1g(N) (5)

for any pair of functions f, g such that the sum converges
and that g(0) = 0. With the aid of this step operator the
master equation Eq. 3 may be written

dP

dt
= a · (E− 1) ·N · P. (6)

By definition the master equation is linear in the un-
known function P . The term “linear” is therefore avail-
able and will now be used to denote the fact that the
coefficients in Eqs. 3 and 6 are linear functions of N .
Linear master equations describe collections of particles
that do not interfere with each other – neither by actual
forces nor through Bose or Fermi statistics. It will appear
that they lead to linear macroscopic laws.

From a mathematical point of view linear master equa-
tions have an especially simple structure and can be
solved by deriving equations from them for the succes-
sive moments. Multiply Eq. 6 with N and sum over all
N , using Eq. 5,

d〈N〉
dt

= a
∞∑

N=0

N(E− 1)NP = a〈N(E−1 − 1)N〉

= −a〈N〉. (7)

The angular brackets denote averages. Thus the rate of
change of the first moment depends on that same moment
alone. In fact, Eq. 7 is nothing but the macroscopic Eq. 2.
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Similarily one finds for the second moment

d〈N2〉
dt

= 2a〈N2〉+ a〈N〉. (8)

Thus its rate of change depends on the first and second
moments, but not on higher ones, so that the Eqs. 7 and
8 can be solved successively.

The solutions corresponding to the initial condition
Eq. 4 are

〈N〉t = N0e
−at,

〈N2〉t = N2
0 e−2at + N0e

−at(1− e−at). (9)

Hence it is possible to obtain the desired information,
without determining the complete solution of the mas-
ter equation. For nonlinear master equations a different
approach will be needed (Section VIII).

Although the two moments contain all the information
we need, two auxiliary quantities will be useful. The
variance or second cumulant, to be denoted by double
brackets

〈〈N2〉〉 = 〈N2〉 − 〈N〉2,

describes more directly the fluctuations and vanishes for
the initial state Eq. 4. The ‘factorial cumulant’ will be
denoted by square brackets and is defined by (compare
Appendix A)[

N2
]

= 〈〈N2〉〉 − 〈N〉 = 〈N2〉 − 〈N〉2 − 〈N〉.

It often obeys a simpler equation than either the second
moment or the variance. For instance in the present case

d〈〈N2〉〉
dt

= −2a〈〈N2〉〉+ a〈N〉,

d
[
N2

]
dt

= −2a
[
N2

]
.

The fact that the latter equation does not have an in-
homogeneous term will turn out to greatly simplify the
solution in more complicated examples. So far only the
total number N of active particles X has been studied.
In order to take into account the location in space, we
subdivide the total volume in cells ∆, labelled with a
Greek subscipt[42]. The number of particles in each cell
λ is Nλ and P is a function of the set {Nλ}. The time
dependence will no longer be indicated explicitly. The
master equation is

dP ({Nλ})
dt

= a
∑

λ

(Eλ − 1)NλP, (10)

where Eλ is the step operator acting on the variable Nλ.

The equations for the first two moments are again ob-
tained by multiplying Eq. 10 with Nα and NαNβ respec-

Nλ Nµ

Each cell is a well-
mixed reaction vessel

( ) ( )1, , 1w NN N N Nµλ λ
λ µ λ µ+ → +

Transport between cells

FIG. 1: Subdivision of the total volume. The total vol-
ume is subdivided into cells of volume ∆. The number of
particles in each cell λ is Nλ. We assume the volume is small
enough that each cell is a well-mixed, homogeneous reaction
vessel; however, we assume Nλ is large enough that the linear
noise approximation can be applied within each cell.

tively and summing over all {Nλ},

d〈Nα〉
dt

= −a〈Nα〉, (11)

and,

d〈NαNβ〉
dt

= −2a〈NαNβ〉+ a〈Nα〉δα,β . (12)

These equations might be surmised directly from Eqs. 7
and 8 by noting that there is no statistical correlation
among the cells, since so far no transport of particles
between them has been included. The solutions can again
easily be obtained, but that is not our aim.

The following step is the elimination of the cells by
going to a continuous description. Denote the density
Nα/∆ in cell α by n(r), where r is the position vector of
that cell. Then Eq. 11 may be written, on dividing by
∆,

d〈n(r)〉
dt

= −a〈n(r)〉. (13)

Of course the functions n(r) and 〈n(r)〉 are only defined
on a coarse-grained grid in r-space, determined by the
cell size ∆. In the present example, however, this is not
a restriction, because ∆ may be taken as small as one
wishes. As a check we integrate over an arbitrary volume
V to obtain for the number NV of active particles in V

〈NV 〉 =
∫

V

〈n(r)〉dr.
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When V is taken to be one of the cells, integration of
Eq. 13 reproduces Eq. 11.

Similarly we divide Eq. 12 by ∆2. The Kronecker sym-
bol δα,β considered as a function of β, vanishes every-
where except inside the cell α. Hence its integral over
space equals ∆, so that δα,β/∆ may be identified with
Dirac’s delta function. Thus Eq. 12 becomes

d〈n(r1)n(r2)〉
dt

= −2a〈n(r1)n(r2)〉+ a〈n(r1)〉δ(r1 − r2).

(14)

This can again be justified by integrating r1 over cell α
and r2 over cell β, which reproduces Eq. 12.

The second cumulant now turns into a mixed cumulant
or covariance matrix

〈〈NαNβ〉〉 = 〈NαNβ〉 − 〈Nα〉〈Nβ〉,

which obeys

d〈〈NαNβ〉〉
dt

= −2a〈〈NαNβ〉〉+ a〈Nα〉δα,β . (15)

The factorial cumulant is by definition

[NαNβ ] = 〈〈NαNβ〉〉 − 〈Nα〉δα,β , (16)

and obeys

d [NαNβ ]
dt

= −2a [NαNβ ] .

Again on dividing by ∆2, one has in the continuous de-
scription

d〈〈n(r1)n(r2)〉〉
dt

= −2a〈〈n(r1)n(r2)〉〉+ a〈n(r1)〉δ(r1 − r2),

d [n(r1)n(r2)]
dt

= −2a [n(r1)n(r2)] . (17)

Either of these equations may be used instead of Eq. 14.
Having obtained the rates at which the first and sec-

ond moments vary as a result of the decay process, we
may now combine them with those caused by transport.
Suppose the particles X are molecules in a fluid in which
they diffuse with diffusion coefficient D. If only diffusion
took place without decay, one would expect

d〈n(r)〉
dt

= D∇2〈n(r)〉, (18)

and

d〈n(r1)n(r2)〉
dt

= D(∇2
1 +∇2

2)〈n(r1)n(r2)〉, (19)

where∇2
1 and∇2

2 are Laplace operators with respect to r1

and r2. Eq. 19, however, is not correct, because it treats
diffusion as a deterministic process. Actually the diffu-
sion Eq. 18 is the average of a random process. Hence

the diffusion is a source of additional noise, which has to
be taken into account by adding suitable terms to Eq. 19.
This will be done in Section V and we here anticipate the
result: The noisy character of diffusion is correctly taken
into account by writing instead of Eq. 19

d[n(r1)n(r2)]
dt

= D(∇2
1 +∇2

2)[n(r1)n(r2)]. (20)

Finally, we obtain the combined effect of decay and
diffusion by adding the effects that each of them has on
the moments. First Eqs. 13 and 18 lead to

d〈n(r)〉
dt

= −a〈n(r)〉+ D∇2〈n(r)〉, (21)

which is the macroscopic equation. Secondly, we com-
pound Eqs. 17 and 20 to obtain

d [n(r1)n(r2)]
dt

=

−2a [n(r1)n(r2)] + D(∇2
1 +∇2

2)[n(r1)n(r2)]. (22)

The Eqs. 21 and 22 together describe the macroscopic
behavior of the density of particles X and the fluctua-
tions around it caused by the statistical character of the
individual decay events, and by the stochastic nature of
diffusion.

It is easy to solve Eqs. 21 and 22 for given initial den-
sity n0(r). The solution of Eq. 21 is readily seen to be

〈n(r)〉t =
e−at

(4πDt)3/2

∫
exp

[
− (r− r′)2

4Dt

]
n0(r)dr. (23)

Similarly the general solution of Eq. 22 is

[n(r1)n(r2)]t =
e−2at

(4πDt)3
×

×
∫

exp
[
− (r1 − r′1)

2 + (r2 − r′2)
2

4Dt

]
[n(r′1)n(r′2)]0dr

′
1dr

′
2.

As the initial value is given by [n(r1)n(r2)]0 =
−δ(r1 − r2)n0(r1), this reduces to

[n(r1)n(r2)]t =
−e−2at

(4πDt)3
exp

[
−r2

1 + r2
2

4Dt

]
×

×
∫

exp
[
− (r′2 − (r1 + r2) · r′)

2Dt

]
n0(r′)dr′ =

=
−e−2at

(4πDt)3
exp

[
− (r1 − r2)2

8Dt

]
×

×
∫

exp
[
− r′2

2Dt

]
n0

(
r′ +

r1 + r2

2

)
dr′. (24)

The covariance of the fluctuations 〈〈n(r1)n(r2)〉〉 is ob-
tained by multiplying Eq. 23 with δ(r1 − r2) and adding
it to Eq. 24. We give the result for the special case
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n0(r) =constant= n0:

〈〈n(r1)n(r2)〉〉 = δ(r1 − r2)n0e
−at−

− n0e
−2at

(8πDt)3/2
exp

[
− (r1 − r2)2

8Dt

]
.

Obviously, it only depends on |r1 − r2|. On integrat-
ing over r1 and r2, one obtains the variance in the total
number N in agreement with Eq. 9.

III. THE DENSITY IN PHASE SPACE

In this section the method of compounding moments
is extended to a distribution in phase space, rather than
just coordinate space. As an example, we consider the
same decay process described by Eq. 1, but suppose that
the particles move freely in space rather than diffusing
in a medium. It is then necessary to distinguish them
according to both their position r and velocity v. Ac-
cordingly, the cells ∆ are now six-dimensional cells in the
one-particle phase space and n(r,v) is the phase space
density. For chemical reactions, it is more realistic to al-
low a to depend on |v| = v. The master equation for the
cell distribution then takes the form

dP ({Nλ})
dt

=
∑

λ

aλ (Eλ − 1) NλP. (25)

The equations for the moments are

d〈Nα〉
dt

= −aα〈Nα〉,

d〈NαNβ〉
dt

= − (aα + aβ) 〈NαNβ〉+ aα〈Nα〉δα,β .

In the continuous description, one now has to put

δα,β

∆
7→ δ(r1 − r2)δ(v1 − v2).

The result is

d〈n(r,v)〉
dt

= −a(v)〈n(r,v)〉,

d〈n(r1,v1)n(r2,v2)〉
dt

= − [a(v1) + a(v2)] 〈n(r1,v1)n(r2,v2)〉

+a(v1)〈n(r1,v1)〉δ(r1 − r2)δ(v1 − v2).

The last equation again simplifies when written in terms
of the factorial cumulant:

d [n(r1,v1)n(r2,v2)]
dt

= − [a(v1) + a(v2)] [n(r1,v1)n(r2,v2)] .

(26)

These equations are now compounded with the flow

term:

d〈n(r,v)〉
dt

= −v · ∇ − a(v)〈n(r,v)〉, (27)

and,

d〈n(r1,v1)n(r2,v2)〉
dt

=

(−v1 · ∇1 − v2 · ∇2) 〈n(r1,v1)n(r2,v2)〉
− [a(v1) + a(v2)] 〈n(r1,v1)n(r2,v2)〉

+a(v1)〈n(r1,v1)〉δ(r1 − r2)δ(v1 − v2). (28)

In this case, the flow terms are to be inserted in the
second moment rather than in the factorial cumulant,
since the flow in phase space is a deterministic process
and not an additional noise source (Appendix B). The
Eqs. 27 and 28 determine the average flow in phase space
and the fluctuations around it.

It is again somewhat simpler to rewrite Eq. 28 in terms
of the factorial cumulant. After some algebra, one finds
the simple result

d [n(r1,v1)n(r2,v2)]
dt

=

− [v1 · ∇1 + v2 · ∇2 + a(v1) + a(v2)] [n(r1,v1)n(r2,v2)] .
(29)

On comparing this with Eq. 26 one observes that actually
no error is made by inserting the flow terms in the equa-
tion for the factorial cumulant instead of in the equation
for the second moment. This fact is proved generally in
Appendix B.

The solution of Eq. 27 with given initial n0(r,v) is

〈n(r,v)〉t = e−a(v)tn0(r− vt,v).

Similarly, Eq. 29 is solved by

[n(r1,v1)n(r2,v2)]t = e−[a(v1)+a(v2)]t [n(r1,v1)n(r2,v2)]0
= e−2a(v1)tn0(r− vt,v)δ(r1 − r2)δ(v1 − v2).

Hence the correlation of the fluctuations in phase space
are

〈〈n(r1,v1)n(r2,v2)〉〉t =[
1− e−a(v1)t

]
〈n(r1,v1)〉δ(r1 − r2)δ(v1 − v2).

It appears that there is no correlation between the fluc-
tuations at different points of phase space. The reason is
again that the particles do not interfere with one another.

IV. FLUCTUATIONS IN A STATIONARY
STATE

The decay process in the previous two sections tends
to an equilibrium in which everything vanishes. In this
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section we add a term that creates particles, so as to
make a nontrivial stationary state possible. The scheme
is

B
b−→ X, X

a−→ A, (30)

and may be regarded as an intermediate stage of the
radioactive decay process, or as a chemical reaction. B is
supposed to be a reservoir of practically constant amount.
The probability per unit time that an X is created in a
given cell λ is proportional to the amount of B in that
cell and will therefore be denoted by b∆. The master
equation describing Eq. 30 is

dP ({Nλ})
dt

= b∆
∑

λ

(
E−1

λ − 1
)
P + a

∑
λ

(Eλ − 1) NλP.

(31)

where Nλ is again the number of particles X in cell λ.
As this master equation is still linear it is possible to

derive from it equations for separate moments

d〈Nα〉
dt

= b∆− a〈Nα〉,

d〈NαNβ〉
dt

= b∆ [〈Nα〉+ 〈Nβ〉+ δα,β ]

+a [−2〈NαNβ〉+ 〈Nα〉δα,β ] .

In terms of the variance, the latter equation simplifies to

d〈〈NαNβ〉〉
dt

= −2a〈〈NαNβ〉〉+ [b∆ + a〈Nα〉] δα,β ,

and in terms of the factorial cumulant as

d[NαNβ ]
dt

= −2a[NαNβ ]. (32)

Dividing by ∆ and ∆2, respectively, and using the con-
tinuous notation, one gets

d〈n(r)〉
dt

= b− a〈n(r)〉,

d[n(r1)n(r2)]
dt

= −2a[n(r1)n(r2)].

Now suppose again that the reaction occurs in a diffu-
sive medium and add the corresponding terms:

d〈n(r)〉
dt

= b− a〈n(r)〉+ D∇2〈n(r)〉, (33)

d[n(r1)n(r2)]
dt

=
{
−2a + D

(
∇2

1 +∇2
2

)}
[n(r1)n(r2)].

(34)

These equations are easily solved; the solution of Eq. 33
is obtained from Eq. 23 by replacing n with n−b/a, while
the solution of Eq. 34 is identical with Eq. 24. However,

we here merely want to study the stationary state given
by

〈n(r)〉st = b/a,

D
(
∇2

1 +∇2
2

)
[n(r1)n(r2)]st = −2a[n(r1)n(r2)]st.

It is easily seen that the latter equation has only one
solution that does not grow exponentially for large |r1|
or |r2|, viz.,

[n(r1)n(r2)]st = 0.

The variance of the fluctuations is therefore

〈〈n(r1)n(r2)〉〉st = 〈n(r1)〉stδ(r1 − r2). (35)

Conclusions: (i) in the stationary state, there is no cor-
relation between fluctuations at different points in space;
(ii) the diffusion does not affect the fluctuations; (iii) the
fluctuations are the same as for a Poisson distribution,
in agreement with the fact that the individual particles
X are independent of each other.

Instead of diffusion we now suppose that the particles
move freely in space, as in Section III, and accordingly
study the phase space density n(r,v). The probability
for generating a particle will depend on v, but it will still
be supposed independent of r. In lieu of the two Eqs. 33
and 34, we now have

d〈n(r,v)〉
dt

= b(v)− a(v)〈n(r,v)〉 − v · ∇〈n(r,v)〉,

d[n(r1,v1)n(r2,v2)]
dt

= −{a(v1) + a(v2)} [n(r1,v1)n(r2,v2)]

−{v1 · ∇1 + v2 · ∇2} [n(r1,v1)n(r2,v2)].

The solutions can again be obtained explicitly, but we
are interested in the stationary state,

〈n(r,v)〉st = b(v)/a(v),

[n(r1,v1)n(r2,v2)]st = 0,

〈〈n(r1,v1)n(r2,v2)〉〉st = 〈n(r1,v1)〉stδ(r1 − r2)δ(v1 − v2).

This result is similar to Eq. 35 and shows that the prop-
agation does not affect the fluctuations in the stationary
state.

V. DIFFUSION AS A STOCHASTIC PROCESS

Let coordinate space be subdivided in cells ∆, and sup-
pose that there is a probability wλµdt for a particle that
is in cell µ at time t to find itself in cell λ at time t + dt.
The probability distribution P ({Nλ}) of the occupation
numbers of the cells obeys the master equation

dP ({Nλ})
dt

=
∑
λ,µ

wλµ

(
E−1

λ Eµ − 1
)
NµP. (36)
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The first moment obeys the equation, cf. Eq. 5,

d〈Nα〉
dt

=
∑
λ,µ

wλµ〈Nµ

(
EλE−1

µ − 1
)
Nα〉

=
∑
λ,µ

wλµ〈Nµ (Nα + δα,λ − δα,µ −Nα)

=
∑

µ

wαµ〈Nµ〉 −
∑

λ

wλα〈Nα〉. (37)

To save writing, we define the matrix

Wαβ = wαβ − δα,β

∑
λ

wλα.

Then the equation for the first moments may be written

d〈Nα〉
dt

=
∑

µ

Wαµ〈Nµ〉. (38)

For the second moments one finds in a similar way

d〈NαNβ〉
dt

=
∑

µ

Wαµ〈NµNβ〉+
∑

µ

Wβµ〈NαNµ〉

−wαβ〈Nβ〉 − wβα〈Nα〉

+δα,β

{∑
µ

wαµ〈Nµ〉+
∑

λ

wλα〈Nα〉

}
. (39)

Again this equation simplifies when written in the facto-
rial cumulant

d[NαNβ ]
dt

=
∑

µ

Wαµ[NµNβ ] +
∑

µ

Wβµ[NαNµ]. (40)

Writing W for the matrix Wαβ and Θ for the matrix
[NαNβ ] one has the matrix equation

dΘ
dt

= W ·Θ + Θ · W̃, (41)

where the tilde denotes transposition.

In order to go to the continuous description one should
realize that wλµ is proportional to the size of the receiving
cell λ and therefore involves a factor ∆. This provides
the dr needed to change the sums into integrals

wλµ → w(r|r′),

Wλµ →
{

w(r|r′)− δ(r− r′)
∫

dr′′w(r′′|r)
}

dr. (42)

The Eqs. 37 and 38 therefore become

d〈n(r)〉
dt

=
∫

w(r|r′)〈n(r′)〉dr′ − 〈n(r)〉
∫

w(r′|r)dr′

=
∫

W(r|r′)〈n(r′)〉dr′. (43)

Similarly, Eq. 40 takes the form

d[n(r1)n(r2)]
dt

=
∫

W(r1|r′)[n(r′)n(r2)]dr′+∫
W(r2|r′)[n(r1)n(r′)]dr′, (44)

which is also covered by the symbolic form Eq. 41.

In order that the average density obeys the diffusion
equation, one must identify the operator W in Eq. 43
with D∇2. It then follows from Eq. 44 that [n(r1)n(r2)]
obeys

d[n(r1)n(r2)]
dt

= D
(
∇2

1 +∇2
2

)
[n(r1)n(r2)]. (45)

This is the result anticipated in Section II. Note that
Eq. 19 is indeed incorrect since the second moment obeys
the more complicated Eq. 39. The equivalent equation in
continuous variables is most easily obtained from Eq. 45:(

d

dt
−D∇2

1 −D∇2
2

)
〈n(r1)n(r2)〉 =

2D∇1 · ∇2 {δ(r1 − r2)〈n(r1)〉} . (46)

In Appendix C, this result is shown to agree with the one
obtained by Van der Ziel [34] and Van Vliet [32] using the
Langevin approach.

Electrical conduction is often described as a diffusion
process biased by an external field F. The macroscopic
equation for the electron density then obeys

∂n

∂t
= −µF · ∇n + D∇2n, (47)

where µ is the mobility while charge effects have been
ignored. The same Eqs. 43 and 44 remain valid, but the
operator W is now to be identified with −µF · ∇+ D∇2.
Hence

d[n(r1)n(r2)]
dt

= (48){
−µF · (∇1 +∇2) + D

(
∇2

1 +∇2
2

)}
[n(r1)n(r2)].

Rewriting this in terms of the second moment, one ob-
tains{

d

dt
+ µF · (∇1 +∇2)−D

(
∇2

1 +∇2
2

)}
〈n(r1)n(r2)〉 =

= −2D∇1 · ∇2δ(r1 − r2)〈n(r1)〉. (49)

The term on the right is identical with the one in Eq. 46.
The fact that it turns out to be unaffected by the field
constitutes a justification for considering it as a noise
source inherent in the diffusion process. The mathemati-
cal reason why the field does not affect the noise is seen on
performing the algebra that leads from Eq. 48 to Eq. 49:
the field term in W involves a first rather than a second
derivative.
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VI. CONDUCTION BETWEEN ELECTRODES

The Eqs. 47 and 48 for electrical conduction cannot be
solved unless one knows the boundary conditions. They
are provided by the nature of the surface of the material,
in particular the electrodes attached to it. For simplic-
ity, we take a long wire with two electrodes at the ends,
so that the problem may be treated as one-dimensional.
The precise effect of the electrodes depends on the phys-
ical properties of the contact. We choose a simple model
for it in order to minimize the algebra [35].

The wire, 0 < x < L, is subdivided in cells of length
∆ with occupation numbers Nλ with λ = 0, 1, 2, . . . ,Λ =
L/(N+1). The probability distribution P ({Nλ}) obeys a
master equation whose main term is Eq. refeq:5.1, where
W has the form given in Eq. 47. Additional terms arise
from the ends, where the electrons spill over from the
electrodes and also disappear into them. The end at x =
0 is responsible for two additional terms in the master
equation,

∆
∑

λ

bλ

(
E−1

λ − 1
)
P +

∑
λ

aλ (Eλ − 1) NλP.

They are similar to Eq. 31, but the coefficients for cre-
ation and annihilation now depend on the cell λ, and are
practically zero for cells that are more than a few mean
free paths from the end. Adding the same term for the
other end one obtains the master equation,

dP ({Nλ})
dt

=
∑
λ,µ

wλµ

(
E−1

λ Eµ − 1
)
NµP+

+∆
∑

λ

bλ

(
E−1

λ − 1
)
P +

∑
λ

aλ (Eλ − 1) P+

+∆
∑

λ

bΛ−λ

(
E−1

λ − 1
)
P +

∑
λ

aΛ−λ (Eλ − 1) P. (50)

First compute the rate equation for the average:

d〈Nα〉
dt

=
∑

µ

Wαµ〈Nµ〉+ ∆ (bα − bΛ−α)−

− (aα − aΛ−α) 〈Nα〉.

In the continuous description

∂〈n(x)〉
∂t

= −µF
∂〈n(x)〉

∂x
+ D

∂2〈n(x)〉
∂x2

+ (51)

+ {b(x) + b(L− x)} − {a(x) + a(L− x)} 〈n(x)〉.

In principle this equation can be solved if b(x) and a(x)
are known. It is clear, however, that the precise form
of these functions cannot be important for the actual
problem since they have a very short range. To utilize
that fact, we let their range go to zero, and at the same
time increase their magnitude so as to not loose their

effect altogether. More precisely, we take

b(x) =
1
ε

b, a(x) =
1
ε

a, (0 < x < ε);

b(x) = 0, a(x) = 0, (x > ε). (52)

In the limit ε → 0, the result is that the boundary values
of 〈n(x)〉 are fixed,

〈n(0)〉 = 〈n(L)〉 = b/a ≡ ρ.

Thus the effect of our electrodes on the macroscopic dif-
fusion equation is simply to assign fixed boundary values
to n(x).

The solution of the equation consisting of the first line
of Eq. 51 with boundary values ρ is a standard prob-
lem. The stationary solution is particularly easy: clearly
〈n(x)〉 = ρ obeys all requirements. That gives for the
average electrical current the familiar expression

〈J〉 = eµF 〈n〉 − eD
d〈n〉
dx

= eµFρ.

Of course, knowing that the Boltzmann equilibrium
〈n〉 = exp(eFx/kT ) carries no current, one finds from
this eD = µkT . (This should have come out automati-
cally if we had specified the transition probabilities wλµ

in Section V, but we have taken a shortcut by replacing
the matrix W rightaway with the differential operator
Eq. 51.)

The fluctuations obey Eq. 48, or, in one dimension,

∂[n(x1)n(x2)]
∂t

= (53){
−µF

(
∂

∂x1
+

∂

∂x2

)
+ D

(
∂2

∂x2
1

+
∂2

∂x2
2

)}
[n(x1)n(x2)].

To find the proper boundary conditions, however, it is
necessary to return to the master equation, (50). One
obtains in the usual way, compare Eqs. 40 and 32,

d[NαNβ ]
dt

=
∑

µ

Wαµ[NµNβ ] +
∑

µ

Wβµ[NαNµ]−

− (aα + aβ + aΛ−α + aΛ−β) [NαNβ ].

Even without writing this out in the continuous descrip-
tion one sees that the last term has no effect unless at
least one of the cells α, β, Λ − α, Λ − β is near a bound-
ary. In that case, however, the corresponding coefficient
is large, of order α/ε, so that [NαNβ ] goes to zero in a
negligibly short time. Hence the limit ε → 0 in Eq. 52
leads to the boundary values

[n(0)n(x)] = [n(L)n(x)] = 0.

Clearly, with these boundary conditions the only station-



9

xL0 ∆

( )n x

FIG. 2: Electron transport through a long wire. The
wire is subdivided into cells of length ∆. The number of
particles in each cell λ is Nλ. In the continuum limit (∆→ 0),
we replace the discrete index λ by a continuously varying
function Nλ → n(x).

ary solution of Eq. 53 is [n(x1)n(x2)] = 0, so that

〈n(x1)n(x2)〉 = 〈n(x1)〉〈n(x2)〉+
δ(x1 − x2)〈n(x1)〉. (54)

This result states that the density fluctuations are Pois-
sonian, just as in Eq. 35. This is not surprising because
the electrons are injected and retrieved by the electrodes
independently from each other.

Thus we have found the two-point correlations of the
density of the charge carriers. Unfortunately this is not
enough information for finding the current fluctuations.
For that purpose, one needs to know the velocity of the
carriers, so that a description in terms of the phase space
density n(r,v) is required. Its average obeys the flow
equation(

∂

∂t
+ v · ∂

∂r
+ F · ∂

∂v

)
〈n(r,v)〉 = W〈n(r,v)〉,

where W is the same collision operator as in the next
section. It would therefore be necessary to tie up this
flow in r,v space with the diffusion equation in r space.
This task will not be undertaken here [15, 16, 36].

VII. THE LORENTZ GAS

Consider a classical gas of N identical and independent
molecules, each endowed with a velocity v and having a
probability w(v′|v) per unit time to change to a veloc-
ity v′ through the collision with a scatterer. At first we
suppose that the scatterers are also moving, so that in
general |v′| 6= |v|.The macroscopic equation for the den-
sity n(v) in velocity space is

n(v)
dt

=
∫
{w(v|v′)n(v′)− w(v′|v)n(v)} dv′

=
∫

W(v|v′)n(v′)dv′. (55)

This model has been employed for describing electrons
in a semiconductor. The solution for given initial density

n0(v) is formally

n(v, t) = eWtn0(v).

As Eq. 55 has the form of a master equation, we may con-
clude that all solutions tend to an equilibrium, which is
the same function χ(v) for all, apart from normalization.
Taking χ(v) normalized according to

∫
χ(v)dv = 1, one

has

eWtn0 → χ(v)N = χ(v)
∫

n0(v′)dv′. (56)

Thus eWt tends to a projection operator[43].

In order to describe the fluctuations around the macro-
scopic behavior, we subdivide velocity space in cells ∆,
with occupation numbers Nλ and write the master equa-
tion for P ({Nλ}). It is the same Eq. 36 as for diffusion in
coordinate space. Hence, we can skip the various steps
and write immediately the equation for the average by
substituting v for r in Eq. 43:

d〈n(v)〉
dt

=
∫

W(v|v′)〈n(v′)〉dv′. (57)

This has, of course, the same form as the macroscopic
Eq. 55. Similarly, the equation for the fluctuations can
be read off from Eq. 44:

d[n(v1)n(v2)]
dt

=
∫

W(v1|v′)[n(v′)n(v2)]dv′+∫
W(v2|v′)[n(v1)n(v′)]dv′. (58)

In principle this solves the problem of finding the fluc-
tuations in an arbitrary time-dependent situation, but
one cannot make the result more explicit without solving
Eq. 57. The fluctuations in equilibrium, however, can
readily be found. Equation 58 has the from of Eq. 41
and is solved formally by

Θ(t) = eWt ·Θ(0) · eeWt, (59)

as can be checked by direct substitution. With the aid
of Eq. 56, one obtains for t →∞,

Θ(∞) = [n(v1)n(v2)]eq

= χ(v1)χ(v2)
∫ ∫

[n(v′
1)n(v′

2)]0dv
′
1dv

′
2

= χ(v1)χ(v2)N.

This gives for the covariance of the density

〈〈n(v1)n(v2)〉〉eq = N {δ(v1 − v2)χ(v1)− χ(v1)χ(v2)} ,
(60)
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and for the second moment

〈n(v1)n(v2)〉eq =
(
1−N−1

)
〈n(v1)〉eq〈n(v2)〉eq

+δ(v1 − v2)〈n(v1)〉eq. (61)

This result agrees with the familiar counting argument
of equilibrium statistical mechanics. Subdivide velocity
space cells λ each having an a priori probability pλ. Dis-
tribute the N molecules over these cells; the probability
for a set of occupation numbers {Nλ} with

∑
Nλ = N is

N !
N1!N2! . . .

pN1
1 pN2

2 . . . = N !
∏
λ

pNλ

λ

Nλ!
.

The average 〈Nα〉 is Npα and

〈NαNβ〉 = N(N − 1)pαpβ + δα,βNpα

=
(
1−N−1

)
〈Nα〉〈Nβ〉+ δα,β〈Nα〉,

in agreement with Eq. 61. It deviates from the Poisson
distribution because of the term involving 1/N , which is
due to the fact that the total number is fixed.

Now modify the model by supposing that the scatterers
are fixed. As a consequence no transitions occur with
|v| 6= |v′|, so that

W(v|v′) = v−2δ(v − v′)Wv(Ω/Ω′), (62)

where Ω is the unit vector v/v. The factor v−2 has
been inserted for convenience in normalizing, in agree-
ment with

δ(v − v′) = v−2δ(v − v′)δ(Ω− Ω′). (63)

We set Nvdv for the number of molecules between v and
v + dv,

Nv =
∫

δ(v − |v|)n(v′)dv′.

Equation 55 no longer has a unique equilibrium solu-
tion, because the collisions are unable to alter Nv. As-
suming that there are no other constants of the motion,
one has an equilibrium distribution χ(v,Ω) for each sep-
arate v, which is of course independent of the direction
Ω, and properly normalized equals 1/4π. Hence in the
limit

eWtn0(v) → Nv

4π
=

1
4π

∫
δ(v − v′)n0(v′)dv′,

which is again a projection operator. Thus 〈n(v)〉(t)
tends to 〈n(v)〉∞ = Nv/4π.

The solution Eq. 59 for Θ yields in the limit

[n(v1)n(v2)]∞ =

= −(4π)−2

∫
δ(v1 − v′1)dv

′
1×

×
∫

δ(v2 − v′2)δ(v
′
1 − v′

2)n0(v′
2)dv

′
2

= −(4π)−2δ(v1 − v2)Nv1 .

Hence, using Eq. 63,

〈〈n(v1)n(v2)〉〉∞ =

−(4π)−2δ(v1 − v2)Nv1 + (4π)−1δ(v1 − v2)Nv1

= δ(v1 − v2)Nv1

{
1

4πv2
1

− 1
(4π)2

}
This is analogous to Eq. 60, but has a delta function
in front, which states that no correlation exists between
subspaces belonging to different v. The second moment
can also be written in a form analogous to Eq. 61,

〈n(v1)n(v2)〉∞ =
{

1− δ(v1 − v2)
Nv1

}
〈n(v1)〉∞〈n(v2)〉∞+

+δ(v1 − v2)〈n(v1)〉∞.

VIII. THE EXPANSION OF THE NONLINEAR
MASTER EQUATION

So far the examples were all governed by linear master
equations, from which closed equations could be obtained
for the first and second moments. As a first example of a
nonlinear master equation, we take the simple chemical
reaction

B
b−→ X, 2X

a−→ A. (64)

The compound A may well be the molecule X2, provided
that it doeas not dissociate again. This model has been
the subject of some discussion [23–26, 30, 31]. In the ho-
mogeneous stationary state, the fluctuations in the total
number of molecules X can be calculated without diffi-
culty [1], but we are now in a position to compute the
spatial correlations between local fluctuations as well.

Subdivide the total volume into cells ∆, with occupa-
tion numbers Nλ. The master equation for the probabil-
ity distribution P ({Nλ}) is, ignoring transport,

dP ({Nλ})
dt

= b∆
∑

λ

(
E−1

λ − 1
)
P − a∆−1

∑
λ

(
E2

λ − 1
)
N2

λP.

(65)

The first term is the same as in Eq. 31. The second term
expresses that each of the Nλ molecules X in cell λ has
a probability proportional to Nλ/∆ to meet another one
in unit time. Actually, the number of pairs is of course
1
2Nλ(Nλ−1), but the 1 is immaterial in the order that we
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shall calculate [1, 30], and the factor 1
2 has been absorbed

in the reaction rate a, as is customary when using the law
of mass action.

It is no longer possible to deduce from Eq. 65 exact
closed equations for the first and second moments, but
an expansion method exists, based on the idea that Nλ is
large [2–8]. Note that it is therefore no longer possible to
take ∆ arbitrarily small. Nevertheless, the language of
continuously varying variables can be employed, provided
one does not claim to describe fluctuations on a scale
comparable with the mean distance between molecules
X. We shall now demonstrate this expansion method on
Eq. 65.

Transform from the variable Nλ to new variables ζλ by
setting

Nλ = ∆φλ(t) + ∆1/2ζλ, (66)

where the φλ are functions of time to be specified
presently. This substitution decomposes Nλ into a
macroscopic part proportional to ∆ and a fluctuating
part proportional to ∆1/2. In chemical parlance, φλ is
the concentration.

The distribution function P ({Nλ}, t) transforms into a
distribution Π({ζλ}, t),

P ({∆φλ(t) + ∆1/2ζλ}, t) = ∆−Λ
2 Π({ζλ}, t).

The factor ∆−Λ
2 , where Λ is the total number of cells, is

needed for the normalization of Π, but will not enter into
the equations. The operator Eλ acting on an arbitrary
function f(ζλ) takes the form

Eλf(ζλ) = f(ζλ + ∆−1/2)

=
{

1 + ∆−1/2 ∂

∂ζλ
+

∆−1

2
∂2

∂ζ2
λ

+ . . .

}
f(ζλ).

Rewriting the master Eq. 65 in the new variables one
obtains

∂Π
∂t

−∆1/2
∑

λ

dφλ

dt

∂Π
∂ζλ

= b∆
1
2

∑
λ

{
− ∂

∂ζλ
+

∆− 1
2

2
∂2

∂ζ2
λ

}
Π

+a∆
1
2

∑
λ

2
{

∂

∂ζλ
+ ∆− 1

2
∂2

∂ζ2
λ

} (
φλ + ∆− 1

2 ζλ

)2

Π.

(67)

It is now possible to separate the successive orders in ∆.
Terms of higher order in ∆− 1

2 than we are interested in
have already been omitted in Eq. 67.

The terms of order ∆
1
2 are all proportional to ∂Π/∂ζλ

and can therefore be caused to cancel by setting (for each
λ)

−dφλ

dt
= −b + 2aφ2

λ. (68)

These equations determine the behavior of the macro-

scopic parts of the Nλ and, in fact, they are the familiar
rate equations for Eq. 64. Remember that transfer be-
tween cells is till ignored.

The terms of order ∆0 in Eq. 67 are

∂Π
∂t

=
b

2

∑
λ

∂2Π
∂ζ2

λ

+ 2a
∑

λ

φ2
λ

∂2Π
∂ζ2

λ

+

+4a
∑

λ

φλ
∂

∂ζλ
ζλΠ. (69)

This is a multivariate Fokker-Planck equation with coef-
ficients that are linear in the ζλ, but will depend on time
through the φλ. It can readily be solved [44], but all we
need are the first and second moments of the ζλ. One
easily deduces

d〈ζα〉
dt

= −4aφα(t)〈ζα〉, (70)

and

d〈ζαζβ〉
dt

= −4a (φα + φβ) 〈ζαζβ〉+ δα,β

(
b + 4aφ2

α

)
.

(71)

In Eq. 69 – and therefore also in Eqs. 70 and 71 – terms
of relative order ∆− 1

2 are neglected. Note that Eq. 70 is
the variational equation associated with Eq. 68.

Substituting the results Eqs. 68 and 70 into Eq. 66,
one obtains

d〈Nα〉
dt

= b∆− 2a∆−1〈Nα〉2 + O(∆0). (72)

In addition, one obtains from Eq. 71 an equation, which
is more easily written in terms of the covariance matrix,

d〈〈NαNβ〉〉
dt

= −4a∆−1 (〈Nα〉+ 〈Nβ〉) 〈〈NαNβ〉〉+

+δα,β

{
b∆ + 4a∆−1〈Nα〉2

}
+ O(∆

1
2 ).

In order to write these equations with continuous space
variables so as to eliminate the cell size ∆, we divide
them by ∆ and ∆2, respectively, and obtain

d〈n(r)〉
dt

= b− 2a〈n(r)〉2, (73)

and

d〈〈n(r1)n(r2)〉〉
dt

= −4a {〈n(r1)〉+ 〈n(r2)〉} 〈〈n(r1)n(r2)〉〉+

+δ(r1 − r2)
{
b + 4a〈n(r1)〉2

}
. (74)

The equation for the factorial cumulant is

d[n(r1)n(r2)]
dt

= −4a {〈n(r1)〉+ 〈n(r2)〉} [n(r1)n(r2)]−

−2aδ(r1 − r2)〈n(r1)〉2. (75)
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It is clear that the use of factorial cumulants no longer
gives a worthwhile simplification. Yet Eq. 75 is needed
for our next task: compounding these equations with the
flow.

IX. THE SAME REACTION WITH DIFFUSION

It is now possible to add the effect of transfer between
cells. We take the case of transfer by diffusion. These
Eqs. 73 and 75 are now extended into

d〈n(r)〉
dt

= b− 2a〈n(r)〉2 + D∇2〈n(r)〉, (76)

and,

d[n(r1)n(r2)]
dt

={
(−4a〈n(r1)〉+ 〈n(r2)〉) + D

(
∇2

1 +∇2
2

)}
×

×[n(r1)n(r2)]− 2aδ(r1 − r2)〈n(r1)〉2. (77)

As it does not seem possible to obtain explicit solutions
of these time dependent equations, we must apply them
to the homogeneous stationary case. First one gets from
Eq. 76

〈n〉st =
√

b/2a,

so that Eq. 77 becomes

D
(
∇2

1 +∇2
2

)
[n(r1)n(r2)] =

4
√

2ab [n(r1)n(r2)] + bδ(r1 − r2). (78)

A particular solution can be obtained by taking for
[n(r1)n(r2)] a function ϑ(r) of r = r1 − r2 alone, which
then must satisfy

∇2ϑ(r) = κ2ϑ(r) + (b/2D)δ(r),

where κ2 = 2
√

2ab/D. Consequently

ϑ(r) = − b

8πD

e−κr

r
, (79)

is a solution of Eq. 78. Other solutions differ from it
by a solution of the homogeneous equation and it is eas-
ily seen that they have to be excluded since they grow
exponentially with |r1| and |r2|.

Thus the fluctuations in the homogeneous stationary
state are determined by Eq. 79, or in the more familiar
terms of the covariance

〈〈n(r1)n(r2)〉〉 = − b

8πD

e−κ|r1−r2|

|r1 − r2|
+

√
b

2a
δ(r1 − r2)

= 〈n〉st

{
δ(r1 − r2)−

1
4

κ2e−κ|r1−r2|

4π|r1 − r2|

}
. (80)

The rate at which a given molecule X disappears into
A is seen from Eq. 72 to be 2a〈n〉st =

√
2ab. Hence

κ−1 measures the distance over which it diffuses before
decayng. We now apply Eq. 80 to two limiting cases.

Take a region V whose linear dimensions are much
larger than κ−1. The variance of the number NV of mole-
cules X in that region is

〈〈N2
V 〉〉st =

∫
V

∫
V

〈〈n(r1)n(r2)〉〉dr1dr2 (81)

= 〈n〉st

{
1− 1

4

}
V =

3
4
〈NV 〉st. (82)

This is the same result as obtained by Nitzan and
Ross [30], and by Kuramoto [26], although they did not
use a systematic expansion. The effect of diffusion has
disappeared, as was to be expected since most of the
molecules produced in V have no time to diffuse away.
The fact that the variance is less than that of a Pois-
son distribution can be understood on the grounds that
molecules are not independent, but are annihilated in
pairs [1].

On the other hand, when V is small compared to κ−1

the diffusion is important, but its effect on the fluctua-
tions depends on the precise shape of V . Yet an estimate
of the integral Eq. 81 can be obtained

〈n〉st

{
V − κ2

16π

V 2

L

}
= 〈NV 〉st

{
1− a

4πL
〈NV 〉st

}
,

where L is of the order of the diameter of V . It is seen
that when the size of V is reduced this tends to 〈NV 〉st, in
agreement with the Poisson distribution. In this situation
the fluctuations are mainly determined by the diffusion,
so that the interaction between the molecules becomes
irrelevant.

This distinction between large and small V was pointed
out by Kuramoto [31], albeit that he used D as a parame-
ter to separate both cases. Also he expressed his results
in the Fourier transform of the variance, for which we
find from Eq. 80∫

〈〈n(r1)n(r1 + r)〉〉steiq·rdr = 〈n〉st 3 + 4q2/κ2

4 + 4q2/κ2
.

This is identical with equation (4) in reference [26].

X. A POPULATION PROBLEM

The Malthus-Verhulst equation for a population of N
individuals is [37–39]

dN

dt
= bN − aN − cN2/Ω. (83)

The parameter b is the natural birth rate per individ-
ual, a is the death rate, and cN/Ω the additional death
rate due to overcrowding, which is taken to be propor-
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tional to the density N/Ω of the population present, Ω
being the size of the habitat. This is of course the macro-
scopic equation, which does not account for the fluctu-
ations caused by the statistical nature of the individual
birth and death events. They are described by the mas-
ter equation for this problem, which can easily be con-
structed without any other assumptions than those used
in arriving at Eq. 83.

So far the total population N was considered. We now
want to include the effect of migration and therefore have
to divide Ω in cells ∆ with their own population numbers
Nλ. The resulting multivariate master equation is easily
seen to be

dP ({Nλ})
dt

= b
∑

λ

(
E−1

λ − 1
)
NλP+∑

λ

(Eλ − 1)
{
aNλ + cN2

λ/∆
}

NλP. (84)

We proceed to deduce the equations for the first and sec-
ond moments, which will enable us to add the migration
terms.

As Eq. 84 is nonlinear, the transformation Eq. 66 has
to be carried out. The result is a master equation for
Π({ζλ}, t) similar to Eq. 67

∂Π
∂t

−∆1/2
∑

λ

dφλ

dt

∂Π
∂ζλ

=

b∆
∑

λ

{
−∆− 1

2
∂

∂ζλ
+

∆−1

2
∂2

∂ζ2
λ

}
Π

+∆
∑

λ

{
∆− 1

2
∂

∂ζλ
+ ∆−1 ∂2

∂ζ2
λ

}
×

×
{

aφλ + cφ2
λ + ∆− 1

2 (a + 2cφλ) ζλ

}
Π.

The terms proportional to ∆
1
2 are caused to cancel by

choosing for the φλ solutions of

−dφλ

dt
= −bφλ + aφλ + cφ2

λ. (85)

The terms proportional to ∆0 give rise to a linear,
multivariate, time-dependent Fokker-Planck equation for
Π,

∂Π
∂t

=
∑

λ

(−b + a + 2cφλ)
∂

∂ζλ
ζλΠ+

1
2

∑
λ

(
bφλ + aφλ + cφ2

λ

) ∂2Π
∂ζ2

λ

. (86)

The equations for the averages are

d〈ζλ〉
dt

= (b− a− 2cφλ) 〈ζλ〉. (87)

They are the variational equations associated with

Eq. 85. Together with Eq. 85 they give

d〈Nλ〉
dt

= (b− a)〈Nλ〉 −
c

∆
〈Nλ〉2.

This is simply the macroscopic Eq. 83 for each separate
cell. In the continuous description they take the form

d〈n(r)〉
dt

= (b− a)〈n(r)〉 − c〈n(r)〉2.

The equation for the second moments obtained from
Eq. 86 is

d〈ζαζβ〉
dt

= 2 (b− a− cφα − cφβ) 〈ζαζβ〉+

+δα,β

(
bφα + aφα − cφ2

α

)
.

The same equation is obeyed by the covariance matrix
〈〈ζαζβ〉〉 and one subsequently finds

d〈〈NαNβ〉〉
dt

= 2 (b− a− c〈Nα〉/Ω− c〈Nβ〉/Ω) 〈〈NαNβ〉〉+

+δα,β

(
bφα + aφα − cφ2

α

)
.

In the continuous description

d〈〈n(r1)n(r2)〉〉
dt

=

2 (b− a− c〈n(r1)〉 − c〈n(r2)〉) 〈〈n(r1)n(r2)〉〉+
+δ(r1 − r2)〈n(r1)〉 (b + a− c〈n(r1)〉) . (88)

We also need the equation for the factorial cumulants,

d[n(r1)n(r2)]
dt

=

2 (b− a− c〈n(r1)〉 − c〈n(r2)〉) [n(r1)n(r2)]+
+δ(r1 − r2)〈n(r1)〉 (2b− 2c〈n(r1)〉) .

After this preliminary work, it is now possible to add
the migration terms. We suppose that the migration oc-
curs by diffusion and write accordingly for the total rate
of change of the average

d〈n(r)〉
dt

= (b− a)〈n(r)〉 − c〈n(r)〉2 + D∇2〈n(r1)〉, (89)

and the factorial cumulant

d[n(r1)n(r2)]
dt

=

2 (b− a− c〈n(r1)〉 − c〈n(r2)〉) [n(r1)n(r2)]+
+δ(r1 − r2)〈n(r1)〉 (2b− 2c〈n(r1)〉) +

+D
(
∇2

1 +∇2
2

)
[n(r1)n(r2)]. (90)

The solution of these equations contains all information
concerning the local average density of the population
and the fluctuations about this average. Unfortunately
they cannot be solved analytically and we therefore re-
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strict ourselves to computing the fluctuations in the sta-
tionary state.

Suppose that the birth rate b is larger than the natural
death rate a; then Eq. 89 has the stationary solution

〈n(r)〉st =
b− a

c
.

Substitution in Eq. 90 yields{
D

(
∇2

1 +∇2
2

)
− 2(b− a)

}
[n(r1)n(r2)]st =

−2(b− a)(a/c)δ(r1 − r2).

Observe that this equation has the same form as Eq. 78.
Its solution is, in analogy with Eq. 79,

[n(r1)n(r2)]st =
a(b− a)
4πcD

e−κ|r1−r2|

|r1 − r2|
,

where κ2 = (b− a)/D. Consequently,

〈〈n(r1)n(r2)〉〉st = 〈n〉st

{
δ(r1 − r2) +

a

4πD

e−κ|r1−r2|

|r1 − r2|

}
.

Note that the fluctuations are larger than for a Poisson
distribution. Integration over a volume V with diameter
large compared to κ−1 yields

〈〈N2
V 〉〉st = 〈NV 〉st b

b− a
=

b

c
.

As another interesting example, Nicolis et al. [23] stud-
ied the Lotka-Volterra model for two interacting popula-
tions. They endowed each species with some internal
“fitness parameter,” which varies continuously. In their
calculations, they made use of various approximations,
and it would be of interest to know whether the present
systematic method leads to the same results. Unfortu-
nately, the calculations are too lengthy to be included in
this article.

Appendix A: Factorial Cumulants

A probability distribution over the integers N =
0, 1, 2, . . . whose ordinary moments 〈Nr〉 exists, also has
cumulants 〈〈Nr〉〉 and factorial moments,

〈N(N − 1)(N − 2) · · · (N − r + 1)〉, (91)

which are certain combinations of the moments. The
factorial cumulants [40], Θ(r) ≡ [Nr], are obtained by
writing out Eq. 91 in the moments 〈Nr−s〉 and replacing
each moment by the corresponding cumulant 〈〈Nr−s〉〉.
They are generated by the logrithm of the generating
function H(v) of the factorial moments,

log H(v) = log〈(1 + v)N 〉 =
∞∑

r=1

vr

r!
Θ(r).

H(v) is related to the characteristic function g(t) by

H(eit − 1) = G(t). (92)

The first factorial cumulant is the same as the first mo-
ment: Θ(1) = 〈N〉; the Poisson distribution is character-
ized by the vanishing of all higher Θ(r).

The generalization to a multivariate distribution is
trivial, but requires a more elaborate notation.

log〈
∏
λ

(1 + vλ)Nλ〉 =
∑
{rλ}

′ vr1
1 vr2

2 · · ·
r1!r2! · · ·

Θ(r1,r2,...). (93)

The prime indicates that the term with all rλ equal to
zero is absent. Alternatively, the right-hand side may be
written∑

λ

vλΘλ +
1
2

∑
λ,µ

vλvµΘλµ +
1
3!

∑
λ,µ,κ

vλvµvκΘλµκ + · · · ,

where, for instance, in agreement with Eq. 16,

Θλµ ≡ [NλNµ] = 〈NλNµ〉 − 〈Nλ〉〈Nµ〉 − δλ,µ〈Nλ〉.

Note that Θλµ = 0 when Nλ and Nµ are uncorrelated,
and in general all factorial cumulants involving groups
of statistically independent variables vanish, just as or-
dinary cumulants. The factorial cumulant of the sum of
two independent variables is the sum of their factorial cu-
mulants; owing to Eq. 92 this follows immediately from
the corresponding theorem for ordinary cumulants.

The relevance for the present work derives from the
following property. The most general linear multivariate
master equation contains four types of terms:

1. Particles λ are created in singles with probability
bλ, or in twins bλµ, etc. The corresponding term is∑
λ

bλ(E−1
λ − 1) +

∑
λ,µ

bλµ(E−1
λ E−1

µ − 1) + . . .

 P.

2. Particles are annihilated with probability aλ per
particle per unit time:∑

λ

aλ(Eλ − 1)NλP.

3. Particles are transferred from µ to λ∑
λ,µ

wλµ(E−1
λ Eµ − 1)NµP.

4. Particles are created auto-catalytically (or born in
litters): ∑

λ,µ,κ

cλ
µκ(E−1

µ,κEλ − 1)Nλ +
∑

λ,µ,κ,ρ

cλ
µκρ(E

−1
µ,κ,ρEλ − 1)Nλ

 P,
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where E−1
µ,κ,ρ ≡ E−1

µ E−1
κ E−1

ρ has been written as
short-hand.

The solution of the master equation,

dP ({Nλ})
dt

= (i) + (ii) + (iii) + (iv), (94)

can be done exactly, but is facilitated by the use of the
factorial cumulants.

From Eq. 94, an equation for the factorial moment
generating function H({vλ}) may be derived. The term
(i) yields,

dH

dt
=

∑
λ

bλvλ +
∑
λ,µ

bλµ (vλ + vµ) + . . .

 H.

Divide by H and expand the left-hand side in powers of
the v. The result is a set of uncoupled equations for the
several factorial cumulants, for instance

dΘα

dt
=

bα +
∑

µ

bαµ +
∑

λ

bλα +
∑
λ,µ

(bαλµ + bλαµ + bλµα) + · · · ,

dΘαβ

dt
= bαβ + bβα + · · ·

The birth term added in Section IV only involves a bα,
but no bαβ ; that is the reason why in that section Θαβ

obeys the same equation as in Section II.

The term (ii) in Eq. 94 adds the contribution

dH

dt
=

∑
λ

aλ

(
1

1 + vλ
− 1

)
(1 + vλ)

∂H

∂vλ

= −
∑

λ

aλvλ
∂H

∂vλ
.

It affects all factorial cumulants, but in a simple way:

dΘαβγ···

dt
= − (aα + aβ + aγ + · · ·) Θαβγ···.

This is the reason why in Section II, the factorial cu-
mulants Θαβ obeyed a homogeneous equation. Similarly,
term (iii) yields

dH

dt
=

∑
λ,µ

wλµ (vλ − vµ)
∂H

∂vµ
,

and couples the factorial cumulants of the same order
with each other. This is the reason why in Section V, the
factorial cumulant matrix Θ obeyed the homogeneous
Eq. 41.

Finally, a typical contribution of (iv) to dH/dt is∑
cλ
µκρ (vµ + vκ + vρ)

∂H

∂vλ

+
∑

cλ
µκρ (vµvκ + vκvρ + vρvµ)

∂H

∂vλ∑
cλ
µκρ (vµvκvρ − vλ)

∂H

∂vλ
,

which couples each factorial cumulant to others of the
same, and lower, orders. However, the same can be said
about the second moments or the covariances, so that at
this stage the factorial cumulant ceases to have a clear-
cut advantage. As to nonlinear master equations, it is
pointed out in Section VIII that for them, the use of
factorial cumulants no longer gives a worthwhile simpli-
fication. Yet it is convenient to use for the purpose of
adding the effect of diffusion, as in Sections IX and X.

Appendix B: The Addition of Flow Terms

Consider a collection of independent particles subject
to a force field F(r). In the single particle phase space,
they constitute a cloud with density n(r,v) obeying the
equation,

∂n

∂t
= −v · ∂n

∂r
− F(r) · ∂n

∂v
≡ Ln. (95)

Obviously the product n(r1,v1)n(r2,v2) obeys

d

dt
{n(r1,v1)n(r2,v2)} = (L1 + L2) {n(r1,v1)n(r2,v2)} ,

(96)

where L1 and L2 are the same differential operator as in
Eq. 95, but acting on r1,v1 and r2,v2, respectively.

Next, consider an ensemble of such collections of
particles. Obviously the ensemble average 〈n(r,v)〉
of the particle density obeys the same Eq. 95 and
〈n(r1,v1)n(r2,v2)〉 obeys Eq. 96. It is easy to derive
from this that the cumulant 〈〈n(r1,v1)n(r2,v2)〉〉 also
obeys Eq. 96.

Subsequently, one obtains for the factorial cumulant

d[n(r1,v1)n(r2,v2)]
dt

=

d〈〈n(r1,v1)n(r2,v2)〉〉
dt

− δ(r1 − r2)δ(v1 − v2)
d〈n(r1,v1)〉

dt
= (L1 + L2) [n(r1,v1)n(r2,v2)]+

+ (L1 + L2) {δ(r1 − r2)δ(v1 − v2)〈n(r1,v1)〉}−
−δ(r1 − r2)δ(v1 − v2)L1〈n(r1,v1)〉
= (L1 + L2) [n(r1,v1)n(r2,v2)] + R



16

The remainder R is

(L1 + L2) δ(r1 − r2)δ(v1 − v2)〈n(r1,v1)〉−
−δ(r1 − r2)δ(v1 − v2)L1〈n(r1,v1)〉

= 〈n(r1,v1)〉 (L1 + L2) δ(r1 − r2)δ(v1 − v2).

However, L1 + L2 acting on the delta functions equals(
v1 ·

∂

∂r1
− v2 ·

∂

∂r1
+ F(r1) ·

∂

∂v1
− F(r2) ·

∂

∂v1

)
×

δ(r1 − r2)δ(v1 − v2) = 0.

Thus, in the case of pure flow it makes no difference
whether one adds the flow terms to the second moment,
the covariance, or the factorial cumulant. In the case
of diffusion, it is shown in Section V that it does make a
difference, and it is necessary to add them to the factorial
cumulant, in order to account for the stochastic character
of the diffusion process.

Appendix C: Connection with the Langevin
Equation

Let u be a vector in a finite or infinite dimensional
Banach space. Suppose it varies with time according to
the linear equation

du
dt

= A · u + $(t). (97)

A is a linear operator, which may depend upon time, and
$(t) is a stochastic vector with the statistical properties

〈$(t)〉 = 0, 〈$(t1)$̃(t2)〉 = δ(t1 − t2)Γ(t1), (98)

where $̃ is the transposed vector and Γ is a symmetric
matrix.

The Langevin Eq. 97 can be solved in terms of the
evolution operator (or ‘propagator’ or ‘Green’s function’)
Y(t|t′) defined by

d

dt
Y(t|t′) = A(t) ·Y(t|t′), Y(t|t′) = 1. (99)

The solution with given initial value u(0) is,

u(t) = Y(t|0) · u(0) +

t∫
0

Y(t|t′) ·$(t′) dt′.

It follows that the covariance matrix of u(t) is

〈〈u(t)ũ(t′)〉〉 =

=
∫ t

0

dt′
∫ t

0

dt′′Y(t|t′) · 〈$(t′)$̃(t′′)〉Ỹ(t|t′′)

=
∫ t

0

dt′Y(t|t′) · Γ(t′) · Ỹ(t|t′).

From this expression one derives a differential equation
for the covariance matrix by inspection:

d

dt
〈〈u(t)ũ(t)〉〉 −A · 〈〈u(t)ũ(t)〉〉 − 〈〈u(t)ũ(t)〉〉 · Ã = Γ(t),

(100)

where use has been made of Eq. 99. It is easily seen that
the equation remains true when the covariance matrix
〈〈u(t)ũ(t)〉〉 is replaced with the second moment matrix
〈u(t)ũ(t)〉.

Our applications of the master equation also led in
each case to an equation of type (100) for the covariance
matrix. We now see the same result can be reproduced
by a Langevin Eq. 97 with Eq. 98, provided Γ is chosen
correctly.

For example, in Section V it was shown that the den-
sity of a diffusing substance obeys Eq. 46. It now follows
that the same result can be obtained by supplementing
the diffusion equation with a Langevin term

dn

dt
= D∇2n + $(r, t),

where 〈$(r, t)〉 = 0 and

〈$(r1, t1)$(r2, t2)〉 =
= 2Dδ(t1 − t2)∇1 · ∇2δ(r1 − r2)〈n(r, t)〉. (101)

Thus we have justified the use of a Langevin equation and
derived the correlation function for the Langevin force
by showing that it leads to the correct result, which has
been derived in Section V using no other assumptions
than those by which the macroscopic diffusion equation
is derived.

In summary, the conclusion from the calculation in this
Appendix is that for linear or linearized equations, every
result obtained for the covariance can be reproduced by a
Langevin Eq. 97, combined with a suitable choice for the
matrix Γ. However, as appears in Eq. 101, the correct
Γ may have to depend on time, and on the particular
macroscopic solution for which one is investigating the
fluctuations. It is therefore no easy matter to know a
priori the correct form of Γ; except in equilibrium where
the fluctuation-dissipation theorem can be utilized. This
is why authors who use the Langevin approach for com-
puting fluctuations in other than equilibrium states have
to resort to an ad hoc and often rather doubtful guess
about the form of Γ.
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