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1 Introductory Section

1.1 Introduction

Thermodynamics deals with macroscopic quantities
(such as density, energy, pressure) and ascribes well-
defined values to them. This is only an approxima-
tion, since matter is not really continuous, but con-
sists of discrete particles. The approximate nature
is exhibited by the existence of fluctuations. Classi-
cal statistical mechanics enables one to compute the
mean square of the deviations from the thermodynam-
ical values in the equilibrium state. However, we are
interested in time-dependent fluctuations (also called
noise, or Brownian movement in a generalized sense);
that is, we want to know how the deviations at differ-
ent times are correlated with each other. Since the di-
mension time enters, this problem is outside the scope
of equilibrium statistical mechanics, and belongs to
the statistical mechanics of nonequilibrium processes.
Yet the earlier treatments, like Langevin’s treatment
of Brownian movement, were able to short-cut the
general theory of nonequilibrium processes, by means
of an inspired guess. This short cut has turned out to
be only possible for systems with a linear response; in
Section 1.3 it will be shown how the attempts to do
the same for nonlinear systems have failed. To find
a reliable starting point for the theory of nonlinear
fluctuations we shall therefore have to go back to the
general theory (Section 3).

In order to define what is meant by nonlinear fluctu-
ations, consider the simple electric circuit of Fig. 1,
consisting of a condenser C, and a dissipative element
R, which is in thermal equilibrium with a heat bath
at temperature T . If the resistance R is constant, i.e.,
independent of the current, the I − V characteristic
is given by Ohm’s law, so that the response of the re-
sistor to an impressed potential difference V is linear.
To put it differently, the charge Q on the condenser
obeys a linear differential equation

dQ

dt
= −V

R
= − Q

RC
. (1)

In this case, the fluctuations in the current, or in
the charge, are called linear fluctuations, and may
be treated by the standard linear noise theory.
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Figure 1: MacDonald’s circuit.

Of course, in Eq. 1 the fluctuations have been ne-
glected: this equation is valid only on a macroscopic,
thermodynamic level. For definiteness we shall call
such equations “phenomenological laws”(without im-
plying that no other phenomena can be observed).

If, on the other hand, the dissipative element consists
of a semiconductor, the I −V characteristic may well
be nonlinear. This can be described by allowing R
to depend on V . It is more convenient to use the
conductivity G(V ) = 1/R(V ), so that Q now obeys
the nonlinear phenomenological law

dQ

dt
= −Q

C
G

(
Q

C

)
. (2)

Yet, even in this case the linear noise theory is a very
good approximation because the fluctuations are nor-
mally so small that V ·G(V ) may be regarded as lin-
ear in the range of V that is covered by them (Fig. 2).
However, the theory of nonlinear fluctuations goes be-
yond this approximation, and studies the effect of the
curvature of the characteristic on the fluctuations.

( )V G V⋅

V

dQ

dt
−

Figure 2: Nonlinear response and its effect on
fluctuations.

It should be emphasized that this problem is differ-
ent from the purely mathematical one of noise with
known statistical properties passing through a non-
linear device (Middleton, 1951; Deutsch, 1962). It is
also different from Brownian movement in an external,
nonlinear field of force (Kramers, 1940; Rytov, 1955;
Brinkman, 1957, 1958). In our case the dissipative
element, which produces the noise, is itself nonlinear,
and one has to find the statistical properties of the
noise it produces. This is essentially a physical prob-
lem belonging to nonequilibrium statistical mechan-
ics. We shall only study the case of one variable. Ac-
cordingly, we do not discuss the closely related prob-
lem of Onsager relations for nonlinear systems (van
Kampen, 1957; Uhlhorn, 1960; Stratonovich, 1960).

1.2 Linear Fluctuation Theory

This section briefly reviews the linear theory, insofar
as it is needed for later work.

Let Q be a physical quantity obeying a linear phenol-
menological law

Q̇ = −γ0Q, (3)

γ0 being a constant. For example, Q may be the
charge on a condenser in Fig. 1, with γ0 = 1/RC. Or
Q may be one velocity component of a heavy parti-
cle suspended in a gas or liquid. In order to describe
also the fluctuations, one write for the precise, mi-
croscopic value q of the same physical quantity the
Langevin equation

q̇ = −γ0q + κ(t). (4)

This equation is only meaningful if some information
about the “random force” κ(t) is added. Since κ(t)
is pictured as a very rapidly and irregularly varying
function of time, it can only be described by its sto-
chastic properties. Specifically one assumes

〈κ(t)〉 = 0, (5)

where 〈 〉 denotes the average over a time inter-
val long compared to the rapid variations in κ(t),
but short compared to the phenomenological damp-
ing time 1/γ0. It is often convenient ot visualize it as
an ensemble average. In addition one assumes

〈κ(t)κ(t′)〉 = Γδ(t− t′), (6)

where Γ is a constant independent of t and q. The
delta-function is actually a sharply peaked but finite
function, whose width is the autocorrelation time of
κ(t). These assumptions about κ(t) constitute the
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short cut replacing the general theory of nonequilib-
rium processes.

From Eqs. 4 and 5 it follows immediately that 〈q〉 sat-
isfies the phenomenological law (3), and may therefore
be identified with the macroscopic Q. This identifi-
cation being made, it may be concluded that Eq. 4
correctly describes the phenomenology of the system
in or outside equilibrium.

In equilibrium, one has Q = 0 according to Eq. 3.
Hence also 〈q〉 = 0, but q will be a fluctuating function
of t. Its principal stochastic properties are described
by the autocorrelation function

〈q(0)q(t)〉eq ≡ 〈q(0)〈q(t)〉q(0)〉eq. (7)

This notation is meant to indicate the following defin-
ition: Take a certain value q(0) at t = 0, calculate the
average 〈q(t)〉q(0) conditional on the given value q(0),
multiply this conditional average by q(0), and finally
average this product over all values q(0) as they oc-
cur in the equilibrium distribution. One readily finds
from Eq. 4 using Eq. 5

〈q(t)〉q(0) = q(0)e−γ0t, (8)

so that the autocorrelation function is found to be

〈q(0)q(t)〉eq = 〈q2〉eqe−γ0t. (9)

〈q2〉eq is determined by equilibrium statistical me-
chanics (law of equipartition) and will therefore be
regarded as a known quantity. Thus we have found
the autocorrelation function, even without using as-
sumption (6).

The spectral density of fluctuations, or briefly fluctu-
ation spectrum, Sq(ω), is, according to the theorem of
Wiener-Khintchine, equal to the Fourier transform of
the autocorrelation function1

Sq (ω) =
2
π

∫ ∞

0

〈q (0) q (t)〉eq cos ωt dt. (10)

This fluctuation spectrum is the quantity usually mea-
sured. For the present linear case one finds using Eq. 9

Sq(ω) =
2
π
〈q2〉eq γ0

γ2
0 + ω2

. (11)

In the case of an electric circuit, like in Fig. 1, one
is more interested in the fluctuation spectrum for the

1Note that we write the spectrum in terms of the circular
frequency ω; expressed in the conventional frequency scale it is
Sq(f) = 2πSq(ω).

current q̇, which differs from Sq(ω) only by a factor
ω2,

Sq̇(ω) =
2
π

kTCγ0
(ω/γ0)2

1 + (ω/γ0)2
. (12)

In the limit of high frequencies

Sq̇(ω) = ω2Sq(ω) → (2/π)(kT/R),
(ω � 1/RC). (13)

It will be shown in Section 3.2 that this high-frequency
limit remains valid in the nonlinear case, provided one
takes for R the resistance at V = 0.

An alternative approach in linear noise theory con-
sists in describing the stochastic properties of q(t) by
means of the probability distribution P (q, t) rather
than by the moments. It is then asserted that P (q, t)
obeys the “linear Fokker-Planck equation” (Fokker,
1913, 1914; Planck, 1917)

∂P

∂t
= γ0

∂

∂q
qP +

Γ
2

∂2P

∂q2
. (14)

It is readily verified that this leads to the same equa-
tions for 〈q(t)〉 and 〈q2(t)〉 as the Langevin equa-
tion.2 In addition the F-P equation (14) has one
time-independent solution, which is a Gaussian and
may therefore be identified with the equilibrium dis-
tribution of q. Yet we shall see that in the nonlinear
case the F-P equation is only a first approximation.

1.3 Early History

In this section a number of earlier papers are reviewed,
which serves the purpose of pointing out the difficul-
ties and formulating the problems that are summa-
rized in Section 1.4. The reader who is only inter-
ested in the present state of the theory may skip this
section.

After a casual remark by Kramers (Kramers, 1940),
MacDonald (MacDonald, 1954) was the first to clearly
state the problem of fluctuations produced by a dis-
sipative element with nonlinear response. He studied
as a special example the electric circuit of Fig. 1, R
being an element obeying the phenomenological law
(2). He then introduced as a “general hypothesis”:
the average of the microscopic variable q obeys the
phenomenological law,

d

dt
〈q〉 = −〈q〉

C
G

(
〈q〉
C

)
. (15)

2See also the discussion in Section 3.6, particularly footnote
13.
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In particluar he took as a simple example of a nonlin-
ear (but symmetrical) conductance function3 G

(1/C) G(Q/C) = γ0 + γ2Q
2. (16)

Then, by applying Eq. 15 to an ensemble with speci-
fied q(0), one obtains 〈q(t)〉q(0); this leads to the au-
tocorrelation function and thence to the fluctuation
spectrum for the current. The result is, to first order
in γ2, putting γ′′ = kTCγ2/γ0,

Sq̇ (ω) =
2
π

kTCγ0× (17)[(
1− 3

2
γ′′

)
(ω/γ0)

2

1 + (ω/γ0)
2 +

1
2

γ′′
(ω/γ0)

2

1 + (ω/3γ0)
2

]
.

For γ2 = 0 this reduces of course to Eq. 12. The
nonlinearity in the phenomenological law gives rise
to an extra term in the spectrum corresponding to a
relaxation time 1/3γ0. Note that the high frequency
limit differs from the linear one, Eq. 13.

In addition to the case (16), MacDonald studied, as
an example of an asymmetrical phenomenological law,
the idealized rectifier:

G (Q/C) =
{

Cβ1, Q > 0
Cβ2, Q < 0 . (18)

This yields the fluctuation spectrum

Sq̇ (ω) =
2
π

kTC

[
β1

2
(ω/β1)

2

1 + (ω/β1)
2 +

β2

2
(ω/β2)

2

1 + (ω/β2)
2

]
.

Polder (Polder, 1954) criticized MacDonald’s “general
hypothesis” (15). Consider an ensemble of N idealized
rectifiers obeying Eq. 18, all having the same charge
q(0) at t = 0. Let q(0) be positive; then by Eq. 15 for
all t > 0

〈q(t)〉 = q(0)e−β1t. (19)

On the other hand, select an arbitrary t1 > 0. The
individual values of q(t1) are spread around 〈q(t1)〉,
and some of them will be negative. Decompose the
ensemble into subensemble I, consisting of all NI rec-
tifiers with q(t1) > 0; and subensemble II consisting
of all NII rectifiers with q(t1) < 0. One then finds for
t > t1,

〈q(t)〉 = (NI/N)〈q(t1)〉Ie−β1(t−t1)+

(NII/N)〈q(t1)〉IIe
−β2(t−t1),

3MacDonald writes α/C, γ/C, where we have set γ0, γ2.
For consistency we shall sometimes alter the notation of the
original authors, without explicitly mentioning it.

which is incompatible with Eq. 19. Thus Polder
showed that Eq. 15 is inconsistent with the concept
of q(t) as a random function.

As an alternative, Polder suggested an equation for
the probability distribution P (q, t), viz.

∂P

∂t
=

∂

∂q

[
G

( q

C

) {
q

C
P + kT

∂P

∂q

}]
. (20)

This is a nonlinear generalization of the linear Fokker-
Planck equation (14). Moreover Eq. 20 yields the cor-
rect Gaussian equilibrium distribution, but it gives
instead of Eq. 15,

d

dt
= −

〈 q

C
G (q)

〉
+ kT

〈
d

dq
G (q)

〉
. (21)

Only for the linear case, G = constant, does this co-
incide with (15). We shall presently develop the con-
sequences of Eq. 20.

In a second paper, MacDonald (1957) defines a func-
tion G̃(q) by taking a subensemble with specified value
q = q0 and setting

〈q̇〉q0 = −q0G̃(q0)/C. (22)

There is of course no inconsistency in this, and G̃(q0)
coincides with the phenomenological G(q0/C) when
fluctuations are neglected. On the other hand, Eq. 22
does not provide a means for finding 〈q〉 as a function
of t. It is then argued that the probability distribution
P (q, t) must obey

∂P

∂t
=

∂

∂q

[
q

C
G̃ (q) P + kT

∂

∂q
F̃ (q) P

]
. (23)

This is again a nonlinear generalization of the F-P
equation (14), more general than Polder’s generaliza-
tion (20) because of the as yet unknown function F̃ (q).
F̃ (q) could be determined if P eq(q) were known, but
MacDonald questions the validity of the Gaussian dis-
tribution

P eq(q) = (2πkTC)−
1
2 exp

[
− q2

kTC

]
(24)

in the presence of nonlinearity. He does not doubt the
validity of 〈q2〉eq = kTC, since this can be derived
from the second law of thermodynamics by the same
argument that Nyquist (1928) used. This leads to a
condition on F̃ ,

〈F̃ (q)〉eq = 〈q2G̃(q)〉eq/〈q2〉eq. (25)
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This relation is sufficient information about F̃ to ob-
tain the fluctuation spectrum in the particular case

(1/C)G̃(q) = γ̃0 + γ̃2 q2. (26)

One finds to first order in γ̃2, putting γ̃′′ = kTCγ̃2/γ̃0,

Sq̇ (ω) =
2
π

kTCγ̃0 (1 + 3γ̃′′)
(ω/γ̃0)

2

(1 + 3γ̃′′) + (ω/γ̃0)
2 .

(27)

In contrast to Eq. 17, one does not now find an extra
term with one-third of the relaxation time, but instead
the original relaxation is slightly shifted. We shall
show in Section 2.2 that in the correct formula both
effects are present. The high-frequency limit is again
different from Eq. 13.

It should be remarked, however, that one cannot iden-
tify γ̃0, γ̃2 with the coefficients γ0, γ2 of the phenom-
enological response. This is demonstrated by noting
that Eq. 22 yields for an arbitrary ensemble

〈q̇〉 = −〈qG̃(q)〉/C (28)

= −〈q〉
C

G̃(〈q〉)− 〈(q − 〈q〉)2〉
2C

d2

d〈q〉2
〈q〉G̃(〈q〉)− . . .

Obviously this cannot be identified with the phenom-
enological equation (2), because there are additional
terms depending on the fluctuations.

As a second example, MacDonald studies a model for
the metal-oxide rectifying contact discussed by Mott
and Gurney (1940). The phenomenological law is

dQ

dt
= −Q

C
G

(
Q

C

)
= I0(1− eeQ/kTC), (29)

where I0 is a constant and −e the electron charge.
Identifying G̃ with G he writes

1
C

G̃(q) =
I0e

kTC
+

I0

2

( e

kTC

)2

q +
I0

6

( e

kTC

)3

q2

= γ̃0 + γ̃1q + γ̃2q
2. (30)

A consequence from this is that, since 〈q̇〉eq must van-
ish,

〈q〉eq = −(γ̃1/γ̃0)〈q2〉eq = −1
2

e. (31)

This anomalous result was also obtained by Alkemade
(1958) and Lax (1960). Marek (1959) showed that it is
incompatible with the second law of thermodynamics
(see, however, Section 2.2). The same problem had
been studied by Brillouin (1950); he added a small

constant emf to the right-hand side of Eq. 29 such as
to cancel the − 1

2 e in Eq. 31. It is shown in Section 2.2
that such a constant emf does indeed exist, but only
in the microscopic equation (22); it does not show up
in the phenomenological law (29).

No further results can be obtained unless more is
known about F̃ (q). MacDonald makes the “plausible
assumption” F̃ (q) = constant = F̄ , where F̄ is deter-
mined by Eq. 25. It is then possible to find the fluc-
tuation spectrum from Eq. 23. Putting ε = e2/kTC
one finds

Sq̇ (ω) =
2
π

kTCγ̃0× (32)[(
1− 7

4
ε

)
(ω/γ̃0)

2

(1 + ε)2 + (ω/γ̃0)
2 +

ε

4
(ω/γ̃0)

2

1 + (ω/2γ̃0)
2

]
.

Van Kampen (1958) developed the consequences of
the nonlinear F-P equation

∂P (q, t)
∂t

= kT
∂

∂q

{
G

( q

C

)
P eq (q)

∂

∂q

P (q, t)
P eq (q)

}
,

(33)

in which P eq was supposed to be Gaussian, Eq. 24, so
that Eq. 33 is identical with Polder’s equation (20). A
systematic perturbation expansion yields, in the case
defined by Eq. 16, for the fluctuation spectrum to sec-
ond order in γ′′ ≡ kTCγ2/γ0

Sq̇ (ω) =
2
π

kTCγ̃0× (34)[{
1 + γ′′ − 9

2
γ′′2

}
(ω/γ̃0)

2

(1 + γ′′ − 3γ′′2)2 + (ω/γ̃0)
2 +

+
γ′′2

2
(ω/γ̃0)

2

1 + (ω/3γ̃0)
2

]
;

and for the case (1/C)G(Q/C) = γ0 + γ1Q, to second
order in γ′ ≡

√
kTCγ1/γ0,

Sq̇ (ω) =
2
π

kTCγ̃0×[ (
1− 2γ′2

)2 (ω/γ̃0)
2

(1− 2γ′2)2 + (ω/γ̃0)
2 + γ′2

(ω/γ̃0)
2

1 + (ω/2γ̃0)
2

]
.

Davies (1958), using the same expansion method, de-
veloped the consequences of Eq. 23 of MacDonald, but
he also assumed P eq to be Gaussian, Eq. 24, so that
F̃ and G̃ are connected by

G̃(q) = F̃ (q)− kTC

q

dF̃ (q)
dq

.
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He then found for the fluctuation spectrum in the case
defined by Eq. 26 the same result (27) that MacDon-
ald found.

The fact that this calculation, although practically
identical with that of van Kampen, yields a different
result pinpoints the reason for the discrepancy be-
tween Eqs. 27 and 34: the two nonlinear F-P equtions
(23) and (33) do not become identical on identifying
G̃(q) with G(q). This is exhibited by the difference
between Eqs. 28 and 21.4 As both treatments are
equally legal and plausible generalizations of the lin-
ear case, it cannot be decided at this point whether
G̃ or G is to be identified with the nonlinear phe-
nomenological damping law. In fact, it will be shown
that neither is correct, because one cannot describe
the nonlinear case by a F-P equation or any other
second order differential equation for P (q, t).

Lax (1960) noticed the difference of MacDonald-
Davies v. Polder-van Kampen, but regarded the for-
mer standpoint as self-evident. However, he went be-
yond the F-P approximation, using the full expansion

∂P

∂t
=

∞∑
n=1

(
− ∂

∂q

)n

Dn(q)P (35)

(“Kramers-Moyal expansion”; Kramers, 1940; Moyal,
1949). The functions Dn(q) are unknown, except
D1(q) which is identified with the phenomenological
function −(Q/C)G(Q/C). These functions are ex-
panded

D1(q) = −Λq −Bq2 − Γq3

Dn(q) = Dn + Enq + Fnq2 (n = 2, 3, . . .), (36)

and it is assumed that Λ and Dn are of zeroth order,
B and En are of first order, Γ and Fn of second or-
der, higher orders being neglected.5 In principle, of
course, Eq. 35 together with Eq. 36 determines both
the equilibrium distributions and the fluctuation spec-
trum in terms of all the coefficients. Rather than solv-
ing Eq. 35 directly, Lax uses the set of equations for

4In fact, one finds by substituting P (q) = δ(q−q0) in Eq. 33
and computing (d/dt)〈q〉 from it, that G(q/C) is identical with
F̃ (q).

5Apparently this refers to some “order of nonlinearity,” since
it is not an expansion in a parameter. We shall show in Sec-
tion 3.4 that a systematic expansion in a suitable parameter
leads to the result that actually Λ and D2 are of zeroth or-
der, B, E2, D3 of first order, Γ, F2, E3, D4 of second order, etc.
Moreover, a constant term should be included in D1(q), which
is of second order and ensures that 〈q〉eq = 0.

the sucessive moments of q,

(d/dt)〈qk〉 = −k
(
Λ〈qk〉+ B〈qk+1〉+ Γ〈qk+2〉

)
+

k∑
n=2

k!
(k − n)!

(
Dn〈qk−n〉+ En〈qk−n+1〉+ Fn〈qk−n+2〉

)
,

which follow immediately from Eq. 35. In order to
find the fluctuation spectrum to second order one may
omit all moments with k > 3. The resulting expres-
sion is too long to be reproduced here [Eqs. (14.48)
with (14.49), (14.50), (14.59), (14.60) in Lax’s paper].
An essential remark is that the fluctuations spectrum
is not uniquely determined by the phenomenological
coefficients Λ, B,Γ alone, because it also involves the
higher coefficients D2, E2, F2, D3, D4.

Additional relations between these coefficients may be
obtained, if one stipulates that P eq must be Gaussian.
However, to show that P eq cannot be Gaussian, Lax
mentions the following counterexample based on the
work of J. Hopfield (unpublished). Consider an ideal
rectifier [even more ideal than the one defined by
Eq. 18!], with infinite impedance for V > 0, and
zero impedance for V < 0. It is then argued that
“the voltage fluctuations (and hence the charge fluc-
tuations) on the condenser cannot be a Gaussian be-
cause voltage fluctuations above the threshold in the
“easy” direction cannot occur.” This argument, how-
ever, is incorrect, because, although it may be pos-
sible to construct a rectifier whose phenomenological
law approaches this ideal case, this phenomenologi-
cal law cannot be valid in the realm of fluctuations.
For such a device would be a Maxwell demon; if it
is combined with an ordinary ohmic resistor to form
a circuit, the voltage fluctuations produced in the re-
sistor give rise to a nonzero average current. It will
be shown in Section 3.3 that actually the Gaussian
equilibrium distribution is valid under very general
conditions.

1.4 Formulation of the Problem

The work reported in the previous section led to the
formulation of the following questions.

i. Is it possible to describe the nonlinear case by
means of a nonlinear F-P equation for P (q, t), or
does one have to add higher derivatives?

ii. In the latter case, how does one measure the mag-
nitude of the several terms?

iii. Is the equilibrium distribution Gaussian, and is it
true that the equilibrium average is shifted when
the response is not symmetrical?

6
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Figure 3: Alkemade’s diode circuit.

1

2

CV

2W
1W

Figure 4: Graph of the potential in Alkemade’s
diode.

iv. Is it possible to use P eq(q) for obtaining rela-
tions between the coefficients of the equation for
P (q, t)?

v. How is the phenomenological law related to the
quantities occurring in the equation for P (q, t)?

vi. What is the fluctuation spectrum?

As the theory in Section 1.3 was unable to answer
these questions, it is natural to turn to a model on
which these questions can be investigated.

2 Diode Model

This section deals with a model that has led to the
development of the theory in Section 3 and in fact
contains all the essential features. Yet it is not indis-
pensable for the understanding of the general theory
in Section 3.

2.1 The Model

Alkemade (1958) introduced the model of a circuit
and a vacuum diode valve consisting of two plane
parallel electrodes of different metals (Fig. 3). The
diode is idealized by assuming that the electrons in
the diode vacuum space do not interfere with each
other (no space charge) and that the transit time of
the electrons is zero. The whole system is in equilib-
rium with a temperature bath. The work functions
of both electrodes are supposed to be different, such
that electrode 1 operates under saturation conditions,
i.e., it emits electrons at a constant rate independent
of the potential difference (Fig. 4). Then the charge
Q on the condenser obeys the same phenomenological
law as the metal-oxide rectifier, Eq. 29.

The two terms in Eq. 29 are interpreted respectively
as the probabilities per unit time for an electron to
jump from electrode 1 to 2, and for a jump from 2
to 1. (This interpretation of the phenomenological
law as determining directly the microscopic transition
probabilities again amounts to identifying G with G̃.)
By a kinetic calculation Alkemade then determines
the high frequency limit

Sq̇(ω) ' 2
π

kTCγ0 =
2
π

I0e. (37)

[The value γ0 is taken from Eq. 30.] The same result
was found by Lax (1960). It disagrees with the for-
mula obtained by using the approach of MacDonald
(1957), see Eq. 32,

Sq̇(ω) ' 2
π

kTCγ0

(
1− 3

4
e2

kTC

)
,

and with the result that is obtained with van Kam-
pen’s method,

Sq̇(ω) ' 2
π

kTCγ0

(
1 +

1
6

e2

kTC

)
.

It will be shown in Section 3.2 that Eq. 37 is rigorously
correct.

The theory of Alkemade’s diode has been further de-
veloped by van Kampen (1960). Let N be the num-
ber of excess electrons on the condenser plate con-
nected with electrode 1, so that the voltage difference
is −eN/C. The probability per unit time for each of
these electrons to jump to electrode 2 is some constant
A. The probability for an electron on electrode 2 to
leave it is A exp[(W1 −W2)/kT ], but the probability
that it leaves with sufficient kinetic energy to reach

7



electrode 1 is6

A exp
[{(

W1 −
e2

2C
(N + 1)2

)
−

(
W2 −

e2

2C
N2

)}
1

kT

]
= Aeξ−εN ,

where

ξ =
W1 −W2

kT
− e2

2kTC
, ε =

e2

kTC
. (38)

Consequently the probability distribution PN (t)
obeys the equation

1
A

dPN

dt
= PN+1 − PN + eξ{e−ε(N−1)PN−1 − e−εNPN}.

(39)

This equation completely governs the behavior of the
system under consideration and it is called the master
equation (ME).

2.2 Conclusions from the model

First the equilibrium distribution can be found by
solving Eq. 39 with dPN/dt = 0. It is easily seen
that the following solution holds:

P eq
N = const. exp

[
−1

2
εN2 +

W1 −W2

kT
N

]
.

This is indeed Gaussian. The center is neither at
〈N〉eq = 0, nor at 〈N〉eq = − 1

2 , but at 〈N〉 = NC ,
where NC corresponds to the contact potential:

eNC/C = (W1 −W2)/e.

This answers question (iii). Marek (1959) has argued
that the average voltage in equilibrium must vanish,
because of the second law of thermodynamics. For
his argument it is essential, however, that the two
electrodes of the rectifier are made of the same metal,
with another material in between, so that there are
no contact potentials in the remaining circuit. Such a
device is not described by our master equation (39).

Next we shall find the relation between the phenom-
enological law and the ME. One derives directly from
39, putting q = e(N −NC),

d

dt
〈q〉 = eA

[
1−

〈
eeq/kTC

〉
eε/2

]
. (40)

This differs from the phenomenological law (29) in two
respects. First there is the factor eε/2. This factor is
very near to 1 and unobservable in any actual exper-
iment. Yet it is essential in a microscopic treatment

6This argument is due to Alkemade.

because it cancels the − 1
2 e in 〈q〉eq [Eq. 31]. Note

that the function G̃, defined in Eq. 22, is, according
to Eq. 40, given by

(q/C)G̃(q) = eA
[
1− eeq/kTCeε/2

]
, (41)

so that it is incorrect to identify it with the phenom-
enological G. In fact, Eq. 41 could not serve as a
response function for the diode, as it is not a function
of V alone, but depends on C as well (through ε).

The second difference is that the right-hand
side of Eq. 40 contains 〈exp[eq/kTC]〉 instead of
exp[e 〈q〉 /kTC]. The latter would be in accordance
with MacDonald’s general hypothesis, Eq. 15. The
fact that the former appears has profound conse-
quences. It is easily seen, on expanding in the same
way as in Eq. 28, that the right-hand side does not
depend on 〈q〉 alone, but also on the higher moments
〈(q − 〈q〉)2〉, etc. Hence, Eq. 40 is not at all a dif-
ferential equation from which 〈q〉 can be solved as a
function of time. In fact, one should not expect that
the infinite set of differential equations (39) reduces
to just a single equation for the average.

Nevertheless, it is possible to extract an equation for
〈q〉 by a suitable limiting process. Indeed, let C →∞,
keeping the voltage V = q/C fixed. Then eε/2 → 1
and moreover, since the fluctuations in V are of order
C− 1

2 and hence tend to zero〈
eeq/kTC

〉
=

〈
eeV/kT

〉
→ ee〈V 〉/kT .

Thus one obtains the phenomenological law from the
equation for 〈q〉 by going to the limit of infinite con-
denser, keeping the voltage fixed.

In order to compute the fluctuation spectrum from
Eq. 39 it is necessary to expand.7 The only available
parameter is again ε, that is, 1/C. However, as we are
now dealing with the equilibrium state, the voltage V
will now be itself of order C− 1

2 , and q = −e(N −NC)
of order C

1
2 . It is therefore convenient to introduce

the normalized variable x,

x = ε1/2(N −NC), PN (t) + ε1/2P (x, t).

Then the Kramers-Moyal expansion of the ME (39)
reads

1
A

∂P

∂t
= ε1/2 ∂P

∂x
+

ε

2
∂2P

∂x2
+

ε3/2

3!
∂3P

∂x3
+ . . . (42)

+e−ε/2

{
−ε1/2 ∂

∂x
+

ε

2
∂2

∂x2

}
e−ε1/2xP.

7It happens that for the diode the fluctuation spectrum can
be found exactly without expanding (van Kampen, 1961b), but
that will not be true for most other cases.
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The terms of order ε1/2 cancel, so ∂P/∂t is of order
ε, in agreement with the increase of relaxation time
as C increases. It is therefore convenient to introduce
the normalized time variable τ = εAt. The equations
for the moments are then found to be

(d/dτ) 〈x〉 = −〈x〉+
ε1/2

2
(〈

x2
〉
− 1

)
+

ε

2

(
〈x〉 − 1

3
〈
x3

〉)
+ O

(
ε3/2

)
(d/dτ)

〈
x2

〉
= 2− 2

〈
x2

〉
+ ε1/2

(〈
x3

〉
− 2 〈x〉

)
+ O (ε)

(d/dτ)
〈
x3

〉
= −3

〈
x3

〉
+ 6 〈x〉+ O

(
ε1/2

)
. (43)

It is again true that the equation for 〈x〉 involves
all higher moments, but they occur with successively
higher powers of ε. Consequently, it is possible to
obtain a closed set of equations if one only wants to
know 〈x〉 to a certain order. Thus Eqs. 43 permit one
to compute the conditional average 〈x〉x0 to first or-
der in ε. This leads to the autocorrelation function
and hence to the fluctuation spectrum

Sẋ(ω) = (44)

2
π

[
(1− ε)

ω2

(1− 1
2ε)2 + ω2

+
ε

4
ω2

1 + (ω/2)2

]
+ O(ε2).

This answers question (vi). Compare the result with
Eq. 32, noting that in the present units kTC = γ̃0 = 1.
The high-frequency limit agrees with Eq. 37, as it
should.

Clearly, question(iv) cannot be settled by studying a
special model for which all coefficients in the equa-
tion for P are known; it will be further discussed in
Section 3.6.

2.3 Validity of the Fokker-Planck Equation

In order to assess the validity of the F-P equation, we
write the expansion of Eq. 42 explicitly

∂P

∂τ
=

∂

∂x

{
x− ε1/2

2
(
x2 − 1

)
+

ε

6
(
x3 − 3x

)}
P

+
∂2

∂x2

{
1− ε1/2

2
x +

ε

4
(
x2 − 1

)}
P

+
∂3

∂x3

{ε

6
x
}

P +
ε

12
∂4P

∂x4
. (45)

The zero-order term constitutes the linear F-P equa-
tion (14). To order ε1/2 the equation is a nonlinear
F-P equation: the linear coefficient has been supple-
mented with a quadratic term, and the constant co-
efficient of the second derivative has become a lin-
ear function. Note that in the former also a constant

M

V

m v

Figure 5: The Rayleigh particle.

term 1
2 ε1/2 has appeared, which was not present in

the phenomenological law (29) and which cancels the
anomalous result of Eq. 31. To this order ε1/2, how-
ever, there are no corrections yet to the fluctuation
spectrum.

The first order in ε adds higher corrections to the
same coefficients, but at the same time it brings in
higher derivatives. This shows that it is inconsistent
to use the F-P equation for the nonlinear case, as was
done by MacDonald, van Kampen and Davies. It is
also inconsistent to write all higher derivatives, while
including the nonlinearity only to a certain order, as
was done by Lax. There is just one single parameter
ε, which determines both the amount of nonlinearity
and the validity of the Fokker-Planck equation. This
answers questions (i) and (ii).

The mathematical proof of the Fokker-Planck equa-
tion (Khintchine, 1933; Middleton, 1960) suggests its
validity for practically all Markov processes, apart
from some rather unrestrictive additional assump-
tions. Actually these assumptions are crucial: they
amount to postulating that the individual transitions
are infinitely small. In the case of the diode this can
only be achieved by taking C large, which at the same
time has the effect of destroying the influence of the
nonlinearity on the fluctuations.

A similar situation prevails in the case of a Rayleigh
particle. Rayleigh (1891; Zernike, 1929) studied the
probability distribution P (V, t) of one velocity com-
ponent V of a heavy particle, mass M , immersed in a
gas of molecules of mass m (Fig. 5). It is convenient
to picture the particle as a flat disc or piston. The
individual transitions are due to collisions of the gas
molecules and are of order

∆V ∼ mv̄/M ∼ (m/M)(kT/m)1/2.

In equilibrium, V is of order V̄ ∼ (kT/M)1/2, so that
the F-P equation is a valid approximation if

1 � ∆V/V ∼ (m/M)1/2. (46)
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On the other hand, the damping law will be linear
as long as V � v̄; hence the equilibrium fluctuations
are not influenced b y the nonlinearity if V̄ � v̄, or
M−1/2 � m−1/2. Again this is the same condition as
Eq. 46. The purpose of the next chapter is to show
that this state of affairs is general, but two qualifying
remarks must be made.

First, for the purpose of finding the phenomenolog-
ical law, the nonlinear F-P equation may be used,
provided that the fluctuations are neglected. Indeed,
the nonlinear F-P equation is obtained by erasing the
third and higher derivatives in the Kramers-Moyal ex-
pansion (42). Obviously these terms do not contribute
to (d/dt)〈x〉. Hence the nonlinear F-P equation leads
to the exact result (40), which reduces to the phenom-
enological law in the limit in which the fluctuations
are neglected. This remark justifies the use of the non-
linear F-P equation for deriving nonlinear generaliza-
tions of Onsager’s reciprocal relations (van Kampen,
1957; Uhlhorn, 1960).

Secondly, for the purpose of computing the fluctua-
tion spectrum the nonlinear F-P equation is slightly
better than would appear from the above criticism.
The spectrum to order ε only requires 〈x〉 to order
ε, and therefore 〈x2〉 to order ε1/2 and 〈x3〉 to order
ε0. The third and higher derivatives in Eq. 42 do not
affect the first two moments, and contribute to 〈x3〉
only in order ε1/2. Thus the nonlinear F-P equation
still gives the correct fluctuation spectrum to order ε;
but for the terms of order ε2, the higher derivatives
are indispensable.

3 General Theory

3.1 Statistical Foundations

We are concerned with systems that consist of a very
large number N of particles. In classical theory, the
precise microscopic state of the system is described
by 6N variables x1, . . . , x3N , p1, . . . , p 3N . They obey
the 6N microscopic equations of motion. The gross,
macroscopic aspect of the state is described by a much
smaller number of variables Q1, . . . , Qn, which are
functions of x1, . . . , p 3N . For convenience we suppose
that apart from the energy there is just one other Q,
and drop the label. Experience tells us the remarkable
fact that this macroscopic variable Q (x1, . . . , p 3N )
obeys again a differential equation

Q̇ = F (Q), (47)

which permits to uniquely determine its future val-
ues from its value at some initial instant. The phe-
nomenological law (47) is not a purely mathematical

consequence of the microscopic equations of motion.
The reason why it exists can be roughly understood
as follows. Using the equations of motion one has

Q̇ =
3N∑
k=1

(
∂Q

∂xk
ẋk +

∂Q

∂pk
ṗk

)
≡ g (x1, . . . , p 3N ) .

The variables in g may be expressed in Q and the
energy (which we do not write explicitly), and 6N −2
remaining variables, ϑλ (x1, . . . , p 3N ) say. Hence

Q̇ = f (Q;ϑ1, . . . , ϑ 6N−2) .

This may also be written

Q(t + ∆t)−Q(t) =
∫ t+∆t

t

f [Q(t′);ϑ(t′)] dt′.

Now suppose that Q(t) varies much more slowly than
the ϑλ (which is the reason it is microscopic). It is
then possible to pick ∆t such that Q(t) does not vary
much during ∆t, while the ϑλ practically run through
all their possible values (ergodic theorem with fixed
value for Q). Hence one may substitute in the inte-
gral Q(t) for Q(t′) and replace the time integration
by an average over that part of the phase space that
corresponds to given values of the energy and Q:

Q(t + ∆t)−Q(t) = ∆t · 〈f [Q(t);ϑ]〉Q(t) = ∆t · F [Q(t)].

It should be emphasized that this implies that at each
time t the ϑλ vary in a sufficiently random way to
justify the use of a phase space average (“repeated
randomness assumption”).

Fluctuations arise form the fact that, in the relevant
part of phase space, f is not exactly equal to its av-
erage F , but has a probability distribution around it.
Hence Q(t + ∆t) is no longer uniquely determined by
Q(t), but instead there exists a transition probability
W (q′|q). More precisely, ∆t W (q′|q) dq′ is the proba-
bility that, if Q has the value q at time t, the value of
Q(t + ∆t) will lie between q′ and q′ + dq′. The prob-
ability distribution P (q, t) of Q at any time t then
obeys the rate equation

∂P (q, t)
∂t

=
∫
{W (q|q′)P (q′, t)−W (q′|q)P (q, t)}dq′.

(48)

This is the general form of the master equation, of
which Eq. 39 is a special case. It can also be derived
in quantum mechanics by an essentially similar argu-
ment (van Kampen, 1954, 1956, 1962; van Hove, 1955,
1962; Prigogine, 1962). Again a repeated randomness
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ρ
, NΩ

Figure 6: Density fluctuations in the volume Ω.

assumption is involved, namely that at each time the
ϑλ are sufficiently random to justify the identification
of probability with measure in phase space.

A formally equivalent way of writing the ME is ob-
tained by expanding in powers of q′ − q,

∂P (q, t)
∂t

=
∞∑

n=1

1
n!

(
− ∂

∂q

)n

αn(q)P (q, t), (49)

where αn(q) are the successive moments of the tran-
sition probability, or “derivate moments,”

αn(q) =
∫

(q′ − q)nW (q′|q)dq′.

They are identical with the Dn(q) in Eq. 35 apart
from a factor n!.

EXAMPLE 1. Alkemade’s diode (cf. Section 2.1 and
Figs. 3 and 4). The macroscopic variable Q is the
charge on the condenser, or the number N of excess
electrons on one condenser plate. The remaining vari-
ables ϑλ are all other quantities needed to specify the
microscopic state of the electrons and the heat bath.
The transition probability is, according to Eq. 39,

W (N ′|N) = AδN ′,N−1 + Aeξ−εNδN ′,N+1. (50)

EXAMPLE 2. Density fluctuations. A box of vol-
ume Ω communicates through a small hole with a very
large volume, filled with a dilute gas with density ρ
(Fig 6). For Q we take the number N of molecules
in Ω, while the remaining set of variables ϑ consists
of all momenta of the molecules and practically all
of their coordinates, restricted only by the condition
that exactly N of them must be in Ω. It is easily seen
that the procedure described above leads to the ME
(with suitably chosen time unit)

∂P (N)
∂t

=
N + 1

Ω
P (N + 1)− N

Ω
P (N)

+ρ{P (N − 1)− P (N)}. (51)

EXAMPLE 3. Rayleigh’s piston (cf. Section 2.3 and
Fig. 5). There are two macroscopic variables, namely
the coordinate and the velocity of the heavy parti-
cle; the coordinates and momenta of the gas particles
are the variables ϑλ. Of the two phenomenological
equations, the one connecting the coordinate with the
velocity is trivial. The other one is the phenomenolog-
ical damping law for the velocity and does not involve
the coordinates. In order to describe the fluctuations
it is replaced by a ME, the transition probability be-
ing

W (V ′|V ) = nA

(
M + m

2m

)2

|V ′ − V |×

f

(
M + m

2m
V ′ − M −m

2m
V

)
. (52)

Here n is the number of molecules per cm3, f is their
velocity distribution, A the surface area of the piston.

EXAMPLE 4. Brownian particle. The same particle
studied on a longer time scale, so that the instanta-
neous velocity is not observed. The macroscopic vari-
able is the coordinate, while the ϑλ now also include
the velocity of the heavy particle. The right-hand side
of Eq. 47 is now zero, the displacement of the parti-
cle is wholly due to fluctuations. Kramers (1940) has
given a general treatment, which comprises both the
Rayleigh and Brownian aspect.

EXAMPLE 5. n-type semiconductor. The macro-
scopic variable is the number N of electrons in the
conduction band, the ϑλ are all other variables. The
transition probability has the form (Burgess, 1955a,b,
1956; van der Ziel, 1959)

W (N ′|N) = r(N)δN ′,N−1 + g(N)δN ′,N+1, (53)

where r(N) and g(N) are linear or quadratic func-
tions of N , depending on the kind of semiconductor
considered. In particular, for the strongly extrinsic
semiconductor

r(N) = r0ω

(
N

Ω

)2

, g(N) = g0ω

(
nd −

N

Ω

)
(54)

where r0 and g0 are constants, Ω the volume, nd the
number of donors per unit volume.

3.2 General Properties of the Master Equa-
tion

The master equation (48) is of the form

Ṗ = WP, (55)
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where W is a linear operator acting on functions of q.
Equations of this form occur in many parts of physics:
diffusion, heat conduction, Schrödinger equation, Li-
ouville equation, etc. For the familiar mathematical
techniques of eigenvalues and eigenfunctions, however,
it is essential that W be a symmetrical or self-adjoint
operator.Fortunately, the transition probabilities have
the property of reciprocity, which is almost as good.

To formulate reciprocity, one must distinguish be-
tween even and odd macroscopic variables. Q is aid
to be even when it is an even function of all velocities,
so that its value remains the same if the microscopic
motion of all particles is reversed. It is an odd vari-
able when it changes sign on reversing motion. In
the third example above, V is an odd variable, in the
other examples the macroscopic variables are even.

Both when Q is even and when Q is odd on has
P eq(q) = P eq(−q). When Q is even, reciprocity states

W (q′|q)P eq(q) = W (q|q′)P eq(q′), (56)

which is also called “microscopic reversibility” or “de-
tailed balance,” and can be proved generally (Wigner,
1954; van Kampen, 1954). It is convenient to define a
“scalar product” of any two functions P1(q) and P2(q)
by

(P1, P2) =
∫

P1(q)P2(q)
dq

P eq(q)
, (57)

so that Eq. 56 can be expressed by

(P1,WP2) = (P2,WP1) = (WP1, P2), (58)

which states that W is self-adjoint. In addition,
one may deduce from Eq. 56 and the fact that
W (q|q′) ≥ 0,

(P,WP ) ≤ 0. (59)

More generally, let f(x) be an concave function [i.e.,
f ′′(x) ≥ 0]; then it can be shown in the same way that

H =
∫

P eqf(P/P eq)dq

never increases. Particular choices are

H =
∫

P log(P/P eq)dq and

H =
∫

(P 2/P eq)dq; (60)

the former is minus the Gibbs entropy and the latter
will used in Section 3.5.

By setting P (q, t) = eλtPλ(q), Eq. 55 is reduced to
the eigenvalue problem

WPλ = −λPλ. (61)

The eigenfunctions Pλ are mutually orthogonal in
terms of the scalar product (57). Because of Eq. 59
one has λ ≥ 0. There is an eigenvalue λ = 0
with eigenfunction P0(q) ≡ P eq(q). It may be as-
sumed that this eigenvalue is not degenerate because
it can be shown that otherwise W is reducible, so
that the ME decomposes into a number of separate
master equations. For convenience, we also assume
that the eigenvalues are discrete; in some cases (dif-
fusion, Brownian movement), the spectrum is contin-
uous, which requires only minor modifications.

If one has a complete set of eigenfunctions Pλ, nor-
malized to (Pλ, Pλ) = 1, the completeness relation∑

λ

Pλ(q)Pλ(q′) = P eq(q) · δ(q − q′)

holds. Consequently, the solution of the ME that re-
duces to δ(q − q0) for t = 0 is

Pt(q|q0) =
∑

λ

e−λtPλ(q)Pλ(q0)/P eq(q0). (62)

This is the transition probability from q0 to q in time
t. Hence the autocorrelation function is

〈q0〈q(t)〉q0〉eq =
∫

P eq(q0)q0 dq0

∫
Pt(q0|q)q dq

=
∑

λ

e−λt

[∫
Pλ(q)q dq

]2

. (63)

The fluctuation spectrum of q is therefore

Sq(ω) =
2
π

∑
λ

λ

λ2 + ω2

[∫
Pλ(q)q dq

]2

. (64)

An asymptotic expression for high frequencies is ob-
tained by expanding each term in 1/ω2:

Sq(ω) ' 2
π

∞∑
n=0

(
− 1

ω2

)n+1

〈qW̃2n+1q〉eq,

where W̃ is the transposed operator of W, defined by∫
f(q)Wg(q)dq =

∫
g(q)W̃f(q)dq,

for any f and g. In particular, one has

lim
ω→∞

Sq̇(ω) = − 2
π
〈qW̃q〉eq.
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Inserting W from Eq. 50, one obtains Alkemade’s re-
sult (37).

When Q is an odd variable, reciprocity consists of two
equations

W (q′|q)P eq(q) = W (−q| − q′)P eq(q′),∫
W (q′|q) dq′ =

∫
W (−q′| − q) dq′.

Whether the previous work can be extended to this
case has not been fully investigated. However, in some
simple cases, like the Rayleigh particle, W also obeys
Eqs. 58 and 59, even though the variable is odd, so
that the previous work applies.

3.3 The Equilibrium Distribution

When derivingEq. 56, the function P eq(q) enters as a
volume of phase space; it is then found a posteriori
from Eq. 56 that P eq(q) is indeed a time-independent
solution of the ME (48). The explicit form of P eq(q) is
a matter of equilibrium statistical mechanics. In the
linear theory, P eq(q) is always taken to be a Gaussian.
As mentioned in Section 1.3, MacDonald (1957) raised
the question whether this is still correct in the pres-
ence of nonlinearity. Indeed, that this cannot always
be correct is obvious from the example of the density
fluctuations, for the equilibrium distribution must be
a Poisson function, as is easily verified from Eq. 51.
On the other hand, the examples of the diode and
the Rayleigh particle demonstrate that a nonlinear
phenomenological law is not necessarily incompatible
with a Gaussian equilibrium distribution. The follow-
ing theorem seems to cover most cases.

The equilibrium distribution is a Gaussian function of
the microscopic variable q if

i. the energy of the total system is quadratic in q;
and

ii. the interaction (i.e., that part of the total Hamil-
tonian of the system that is responsible for transi-
tions between different values of q) has a strength
parameter which enters W (q|q′) as a factor that
permits one to scale down the magnitude of
W (q|q′) without affecting its functional depen-
dence on q and q′.

Condition (i) ensures that, according to equilibrium
statistical mechanics

P eq(q) ∝ exp(−cq2). (65)

This condition rules out the case of the density fluc-
tuations. The second condition is necessary as Eq. 65

is only exact for infinitely small interaction. The
strength parameter permits one to go to this limit,
without altering the form of P eq. Hence, Eq. 65 must
be exact for all values of the strength parameter be-
cause P eq(q) does not depend on the magnitude of
W (q|q′), but only on its functional dependence on q
and q′.

Both conditions are fulfilled for the diode model, the
strength parameter being the surface area of the elec-
trodes; and for the Rayleigh piston, the strength pa-
rameter being the area A of the piston.

3.4 Power Series Expansion of the Master
Equation

The ME can be solved exactly for the example of den-
sity fluctuations, Eq. 51, and for the example of the
diode, Eq. 39 (van Kampen, 1961b). In most other
cases an approximation method has to be used.In or-
der to avoid the ambiguities reported in Section 1.3,
it is essential to use a systematic expansion, like in
Section 2.2. To find a suitable expansion parameter,
analogous to ε = e2/kTC in Section 2.2, we note: (i)
the magnitude of the fluctuations is usually given in
terms of an extensive quantity, like charge or num-
ber of particles; (ii) the dependence of the transition
probability is properly expressed through an intensive
quantity, like voltage or particle density. Supposing
q to denote an extensive quantity, we introduce the
corresponding intensive quantity X = q/Ω, where Ω
is some measure for the size of the system. It is then
natural to write for the transition probability

W (q′|q) = Φ
( q

Ω
; q′ − q

)
= Φ(X; q′ − q). (66)

We expect that Φ, in contrast to W , no longer de-
pends implicitly on Ω. This is indeed for density fluc-
tuations, Eq. 51; and for the Rayleigh particle, Eq. 52,
on putting

X = V, q =
M + m

m
V, Ω =

M + m

m
. (67)

It is also true for the strongly extrinsic semiconductor
described by Eqs. 53 and 54, except for a factor Ω in Φ,
which can easily be removed by a change in time scale.
It is clear from Eq. 66 that Ω measures the relative
magnitude of the fluctuations: as Ω →∞, the fluctu-
ations in X tend to zero, so that they can be made
small compared to the range over which the phenom-
enological function G(X) varies materially. Therefore,
we shall expand in reciprocal powers of Ω.

For this purpose we make all powers of Ω explicit by
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the following transformation of variables,

t = Ωτ (68)

q = Ωϕ(τ) + Ω1/2x, q′ = q + ∆q, (69)

P (q, t) = P (Ωϕ(τ) + Ω1/2x,Ωτ) ≡ Π(x, τ). (70)

Equation (68) takes account of the increasing relax-
ation time.8 Equation (69) expresses that q consists
of two parts: the macroscopic part Ωϕ(τ), whose de-
pendence on time is described by ϕ(τ) and will be
determined presently; and a fluctuating part, which
will be of order Ω1/2. When this is substituted in
Eq. 49, the expansion in Ω is straightforward. We
write α

(p)
n (X) for the pth derivative with respect to

X of the derivate moment αn. One finds after some
manipulations (van Kampen, 1961a)

∂Π
∂τ

− Ω1/2ϕ′(τ)
∂Π
∂x

= −Ω1/2α1{ϕ(τ)}∂Π
∂x

(71)

+
∞∑

m=2

Ω−
1
2 (m−2)

m!

m∑
n=1

(
m

n

)
α(m−n)

n {ϕ(τ)}
(
−∂

∂x

)n

xm−nΠ.

First, equating the terms of order Ω1/2, one finds the
phenomenological law

dϕ

dτ
= α1(ϕ), or

dq

dt
= α1(X). (72)

This determines ϕ(τ) for any given initial value ϕ(0).
Inserting this result in (71), one obtains an equation
for the probability distribution Π(x, τ) of the fluctu-
ations around the macroscopic value. The two lowest
orders are

∂Π
∂τ

= − ∂

∂x

[
α

(1)
1 x +

1
2
Ω−1/2α

(2)
1 x2 + . . .

]
Π

+
1
2

∂2

∂x2

[
α

(0)
2 + Ω−1/2α

(1)
2 x + . . .

]
Π

− 1
3!

∂3

∂x3

[
Ω−1/2α

(0)
3 + . . .

]
Π. (73)

All α
(p)
n are to be taken at ϕ(τ), or, if one is inter-

ested in equilibrium fluctuations, at ϕ(∞). The two
zero order terms constitute the linear Fokker-Planck
equation (14). The next order corrects the coefficients
of both terms, and adds a third derivative. Similarly,
each higher order of Ω−1/2 adds one higher derivative.
Hence the result found in Section 2.2 for the diode is
general: It is inconsistent to use the F-P equation

8This transformation is not required when the fluctuations
are a bulk property, as for chemical reactions or for carrier
fluctuations in semiconductors [cf. Eq. 54]

for the nonlinear case, but it is equally inconsistent
to add higher derivatives without at the same time
correcting the coefficients of the lower derivatives.

Additional remark. In the case of the Rayleigh par-
ticle it is customary to expand in m/M rather than
in m/(M + m). This amounts to putting, instead of
Eq. 67,

X = V, q = MV/m, Ω = M/m.

In that case, Φ is not independent of Ω, see Eqs. 52
and 66. In more elaborate examples, this is even
unavoidable, for instance if the Rayleigh particle is
imersed in a mixture of gases (Alkemade et al., 1963).
However, that does not invalidate the above expan-
sion method because it is still true that Φ is a power
series in 1/Ω. The only consequence is that the αn

are also power series in 1/Ω,

αn(X) = αn,0(X) + Ω−1αn,1(X) + . . . . (74)

It is then consistent to identify the phenomenological
law not with Eq. 72, but with its lowest order,

dq/dt = α1,0(X).

The terms with α1,1(X), etc., are to be included in
the equation (73) for Π.9 Moreover, the α

(p)
n in (73)

involve higher powers of 1/Ω, which should only be
included as far as necessary.

3.5 Siegel’s Expansion

The ME (55) has the essential property that W is
“negative semi-definite” in the sense that it has one
eigenvalue λ = 0 with eigenfunction P eq, all other
eigenvalues being negative. This property guarantees
that every solution tends to P eq for t → ∞. The
successive approximations in the expansion of Sec-
tion 3.4, however, do not all have this property. Siegel
(1960) has shown that this can be remedied by the fol-
lowing procedure.

As −W is positive semidefinite, it has a square root
U, in the sense that

−W = UU = U2,

where U is another self-adjoint operator.10 In fact
one readily verifies

U(q|q′) =
∑

q

√
λPλ(q)Pλ(q′)/P eq(q′). (75)

9This also occurs in the diode; for instance the terms 1
2
ε1/2

and − 1
2
εx on the first line of Eq. 45 are of this nature.

10Actually Siegel writes W = −UU†, so that U need not be
self-adjoint.
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Now suppose W has been expanded in Ω−1/2, to sec-
ond order, say. One may then also write for U a
quadratic expression in Ω−1/2 and determine the co-
efficients U0,U1,U2, successively, from the require-
ment

−(U0 + Ω−1/2U1 + Ω−1U2)2 = W + O(Ω−3/2).

the left-hand side is then a correct approximation to
second order, and self-adjoint and negative semidefi-
nite by construction, thanks to the addition of some
terms of higher order.

In the second part of his paper, Siegel gives the fol-
lowing expansion for the operator W.11 It is assumed
that P eq(q) is Gaussian and is given by Eq. 65 with
c = 1

2 . We start from the ME in the form (49) and
expand the αn(q) in Hermite polynomials

αn(q) =
∞∑

k=0

αnkHk(q), Hk(q) = e
1
2 q2

(
− d

dq

)n

e−
1
2 q2

.

One then has

∂P

∂t
= e−

1
2 q2 ∑

n,k

αnk

n!

(
q

2
− ∂

∂q

)n

Hk(q)e
1
2 q2

P.

We substitute the mathematical identity

Hk(q) =
k∑

l=0

(
k

l

) (
q

2
− d

dq

)k−l (
q

2
+

d

dq

)l

,

and obtain after some rearrangements Siegel’s expan-
sion

∂P

∂t
= (76)

e−
1
2 q2

∞∑
m=0

m∑
l=0

Alm

(
q

2
− ∂

∂q

)k−l (
q

2
+

∂

∂q

)l

e
1
2 q2

P,

where

Alm =
1√
2π

1
l!

m∑
k=l

∫∞
−∞ αm−k+1(q)Hk(q)e−

1
2 q2

dq

(k − l)!(m− k + 1)!
.

From the fact that e−q2/2 must obey Eq. 76, it follows
that all A0m must vanish. The first non-vanishing
term, with m = 1, l = 1, is just the linear F-P equa-
tion. For self-adjointness, one must have Al,m =
Am−l+1,m, which implies a property of the αn,k, but
this has not been investigated.

11The present derivation is somewhat different from the orig-
inal one.

Equation (76) is not a power series expansion in a pa-
rameter. Siegel suggests that the magnitude of the
successive terms with m = 1, 2, . . . should be esti-
mated from their contributions to dH/dt, where H
is taken from the second expression in Eq. 60. In
the spirit of Section 3.4, however, it can also be veri-
fied that Alm is of order Ω−m/2, although it includes
higher orders, too. In addition, when breaking off at
a certain m, the operator must still be made negative
semidefinite by applying the above-mentioned proce-
dure.

After constructing in this way an approximate W,
which is self-adjoint, negative semidefinite, and cor-
rect to some order Ω−m/2, one may compute from
it the fluctuation spectrum to that same order, for
instance, by means of Eq. 64. The result is identi-
cal with the one obtained in a less laborious way by
mean of the expansion (73). However, in the latter
case Eq. 64 is unsuitable because some of the eigenval-
ues λ may turn out positive or complex, since Eq. 73
is not self-adjoint and negative definite in each or-
der. Instead, one must treat the higher order terms in
Eq. 73 as perturbations of the linear F-P equation.12

3.6 The Connection between Fluctuations
and Dissipation

In the linear theory of Section 1.2, the fluctuation
spectrum of q was calculated from Eqs. 4 and 5, with-
out using Eq. 6. The fluctuation spectrum of κ is then
also known:

Sκ(ω) = (γ2
0 + ω2)Sq(ω)

= (2/π)γ0〈q2〉eq = (2/π)kTCγ0.

This agrees with the autocorrelation function (6), pro-
vided that

Γ = 2kTCγ0 = 2kT/R. (77)

This is called the Nyquist relation (Nyquist, 1928),
and is closely related to Einstein’s relation for Brown-
ian movement (Einstein, 1905, 1906). It connects
a stochastic property of the electromotive force pro-
duced in the resistor with its dissipative property. The
same relation is found in the Fokker-Planck approach
by adjusting Γ in Eq. 14, so as to obtain the correct
equilibrium distribution.

12An analogous situation prevails in the quantum mechani-
cal calculation of the Stark effect. The exact Hamiltonian of an
atom in an electric field has no discrete eigenvalues. Yet pertur-
bation theory gives the correct shifts of the discrete eigenvalues
of the unperturbed Hamiltonian.
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One has to know Γ for calculating 〈q2(t)〉 from a given
initial 〈q(0)〉. In fact, Eq. 77 is usually derived by do-
ing just this and then using the fact that q2(t) should
tend to 〈q2〉eq = kTC as t →∞ (Uhlenbeck and Orn-
stein, 1930). Thus the Nyquist theorem implies that,
for linear systems, the mean square of the fluctuations
can be found as a function of time from the macro-
scopic damping constant alone, without knowing any-
thing about the detailed mechanism that causes the
fluctuations. The higher moments, like 〈q4(t)〉, how-
ever, involve higher moments of κ(t), like

〈κ(t)κ(t′)κ(t′′)κ(t′′′)〉,

and cannot therefore be found without knowing more
about this fluctuating force.13

The question of how to extend the Nyquist relation
to nonlinear systems may be formulated as follows.
The equilibrium fluctuations are described by Eq. 73,
the coefficients α

(p)
n all being taken at the equilibrium

value ϕ(∞), so that they are constant. The macro-
scopic dissipation is, according to Eq. 72, described
by the phenomenological law α1(X), which involves
the constants α

(p)
1 . Which relations, independent of

the detailed mechanism, exist that relate the α
(p)
n for

n > 1 to α
(p)
1 ? [This formulation only applies if the

αn(X) are independent of Ω. If they contain also
higher powers of Ω−1 (see Eq. 74), the question is:
Which relations exist relating the α

(p)
n,ν for n > 1 and

the α
(p)
1,ν for ν > 0 to the phenomenological coefficients

α
(p)
1,0?]

Since this question has not been fully solved we shall
only make some remarks. First, one knows that
Πeq(x) = const. exp

(
− 1

2x2
)

must be a solution to
each order of Ω. By substituting this solution in
Eq. 73, one obtains a relation between the coefficients
of each separate order of Ω. In particular, the order
Ω0 yields α

(0)
2 = −2α

(1)
1 , which is the familiar Nyquist

relation (77). Secondly, it is possible to obtain addi-
tional relations by using the reciprocity relation (56).
It has been shown for a generalized Rayleigh model
(a piston between two different arbitrary mixtures of

13It may seem that the F-P equation (14) is superior in this
respect to the Langevin equation, because it does not permit
one to compute higher moments. The fact is, however, that
some specific assumptions have been incorporated in Eq. 14 by
omitting the higher derivatives. These assumptions correspond
to a set of specific assumptions concerning the stochastic behav-
ior of κ(t); they may be written in condensed form as follows:

�
exp

�Z t

0
κ(t′)dt′

��
= exp

�
1

2
Γt

�
.

gases) that in this way all coefficients up to order
Ω−1/2 are uniquely determined in terms of the co-
efficients α′1,0 and α′′1,0 of the phenomenological law
(Alkemade et al., 1963). This is no longer true for the
coefficients of the terms of order Ω−1.

4 Microscopic Theories

Section 3 was based on the master equation (48),
which can be derived from the microscopic equations
of motion (either classical or quantum-mechanical) at
the expense of a repeated randomness assumption (cf.
Section 3.1). In the present Section 4 we discuss the
attempts that have been made to derive the properties
of nonlinear fluctuations directly from the microscopic
equations. The author believes that this easily leads
to an erroneous identification of microscopic expres-
sions with phenomenologically observed quantities, as
will be pointed out in connection with the Nyquist re-
lation for nonlinear systems.

4.1 Classical Theory

Let X denote a point in 6N -dimensional phase space,
H(X) the Hamiltonian function of the isolated sys-
tem, and ρ(X) a probability density describing the
state of an ensemble at t = 0. The probability for
some physical quantity Q(X) to lie between q and
q + dq is

P (q, 0)dq = dq

∫
δ{Q(X)− q}ρ(X)dX.

After a time t, the motion in phase space has carried
X to a new point Xt, so that

P (q, t) =
∫

δ{Q(Xt)− q}ρ(X)dX.

Equilibrium is described by

ρeq(X) = Z−1e−βH(X), Z =
∫

e−βH(X)dX.

The autocorrelation function of equilibrium fluctua-
tions is∫

Q(X)Q(Xt)ρeq(X)dX − {
∫

Q(X)ρeq(X)dX}2.

(78)

A state in which the quantity Q is known to have the
value q0 is described by

ρq0(X) = Z−1
q0

e−βH(X)δ{Q(X)− q0}, (79)
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where the normalizing factor is easily seen to be Zq0 =
ZP eq(q0). The transition probability in time t is

Pt(q|q0) =
∫

δ{Q(Xt)− q}ρq0(X)dX. (80)

In a series of papaers, Magalinskii and Terletskii
(1958, 1959, 1960; Terletskii, 1958; Magalinskii, 1959)
have developed this formalism. On substituting
Eq. 79 in Eq. 80 and replacing the δ-functions with
their Fourier integrals, they obtain

Pt(q|q0)P eq(q0) =

(2π)−2Z−1

∫ ∫
exp[iξq + iξ0q0]Mt(ξ|ξ0)dξdξ0,

Mt(ξ|xi0) =
∫

exp[−iξQ(Xt)− iξ0Q(X)]e−βH(X)dX.

This function Mt(ξ|ξ0) contains all information con-
cerning the quantity Q; e.g., the autocorrelation func-
tion (78) is

〈QQ(t)〉eq − 〈Q〉eq = −
[
∂2 log Mt(ξ|ξ0)

∂ξ∂ξ0

]
ξ=ξ0=0

.

(81)

One may also verify

〈Q(t)〉q0 =
∫

Q(Xt)ρq0(X)dX (82)

=
[
i

∂

∂ξ
log

∫
exp[iξ0q0]Mt(ξ|ξ0)dξ0

]
ξ0=0

.

Equation (80) describes an ensemble for which Q has
the precise value q0 with no fluctuations around it. If
it is only known that the average value 〈Q〉 equals q0,
other choices are possible. In the spirit of Gibbs, it is
natural to choose

ρα0(X) = Z(α0)−1 exp[−βH(X)− α0Q(X)],

Z(α0) =
∫

exp[−βH(X)− α0Q(X)]dX, (83)

where α0 is an auxiliary parameter, to be determined
from

q0 =
∫

Q(X)ρα0(X)dX = −∂ log Z(α0)
∂α0

.

Alternatively, one may regard ρα0(X) as the
equilibrium distribution for a new Hamiltonian
H ′ = H + (α0/β)Q. This amy be interpreted as the
addition of an external force F = α/β acting on the

coordinate Q. Hence, if the system has reached equi-
librium under the influence of this constant force, and
if this force is suddenly switched off at t = 0,

〈Q(t > 0)〉α0 =
∫

Q(Xt)ρα0(X)dX

=
[
i
∂ log Mt(ξ| − iα0)

∂ξ

]
ξ=0

. (84)

The fact that this differs from Eq. 4.1 clearly shows
that the value of 〈Q〉t not only depends on the initial
average 〈Q〉0, but is also influenced by the fluctuations
in the initial state.

If one disregards this influence, and (arbitrarily) iden-
tifies Eq. 84 with the phenomenological behavior, one
arrives at an expression for ∂ log Mt/∂ξ as a function
of α0 and hence of ξ0, but only at ξ = 0. In order
to extend this to other values of ξ, Magalinskii and
Terletskii introduce

Mt(ξ − iα|ξ0 − iα0) =
∫

exp[−iξQ(Xt)− iξ0Q(X)]×

× exp[−βH(X)− α0Q(X)− α0Q(Xt)]dX,

and assert that this describes the behavior of a system
that at t = 0 has reached equilibrium under the influ-
ence of the external force (α0+α)/β, which at t = 0 is
suddenly reduced to α/β. This is incorrect, however,
because the external force α/β should also affect the
connection between Xt and X. Indeed, the knowledge
of Mt(ξ|ξ0) is equivalent to a complete solution of the
microscopic equations of motion; one cannot hope to
find it from phenomenological data alone.

A correct relation has been obtained by Vladimirskii
(1942). By differentiating Eq. 84, and comparing the
result with Eq. 81, one has

−
[

∂

∂α0
〈Q(t)〉α0

]
α0=0

= −
[
∂2 log Mt(ξ|ξ0)

∂ξ∂ξ0

]
ξ=ξ0=0

〈QQ(t)〉eq − (〈Q〉eq)2. (85)

This constitutes an exact relationship between dissi-
pation and equilibrium fluctuations. The dissipative
term on the left, however, should be carefully inter-
preted. It is the difference between 〈Q(t)〉 measured
for two differently prepared systems: one being in
equilibrium at all times, the other having been up
till t = 0 in equilibrium subject to an infinitesimal
external force F = α0/β, which is then switched off.

4.2 The Quantum Mechanical Theory of
Bernard and Callen

Let H be the Hamiltonian of a closed, isolated
system, Z = Tre−βH its partition function, and
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ρeq = Z−1e−βH the density matrix describing equi-
librium. If Q is the operator associated with a certain
physical quantity in the Schrödinger representation,
then variation of this quantity in time is described by
the Heisenberg operator

Q(t) = eitHQe−itH (~ = 1). (86)

It is natural to take as a quantum mechanical version
of the autocorrelation function (7)

1
2
〈QQ(t) + Q(t)Q〉eq =

1
2
Trρeq{QQ(t) + Q(t)Q}.

(87)

If the subscripts k, l, . . . denote the various eigenstates
of the exact Hamiltonian H, and Ek its eigenvalues,
the expression (87) may be written

1
2
Z−1

∑
k,l

e−βEkQklQlk{eit(El−Ek) + e−it(El−Ek)}.

The spectral density of the fluctuations is, according
to the Wiener-Khintchine theorem (10),

SQ(ω) = Z−1
∑
k,l

e−βEk |Qkl|2×

×{δ(Ek − El + ω) + δ(Ek − El − ω)}.

By interchanging the subscripts k and l in the second
term, one obtains

SQ(ω) = Z−1(1 + e−βω)
∑
k,l

e−βEk |Qkl|2{δ(Ek − El + ω)}.

(88)

It is less clear how the phenomenological law is con-
nected with the microscopic quantum mechanical for-
malism. We shall here describe the method of Bernard
and Callen (1959). Let F be an external force acting
on Q, such that the Hamiltonian is H + FQ. It is
argued that F may be regarded as a known complex
number depending on time. The density matrix ρ(t)
obeys the equation

iρ̇ = [H, ρ] + F (t)[Q, ρ]. (89)

One splits off the unperturbed part of ρ, putting

ρ = ρeq + e−itHσeitH ,

so that

iσ̇ = F (t)[Q(t), ρeq] + O(F 2).

Supposing that at t = −∞ the system is in the un-
perturbed equilibrium state described by ρeq, one has
to first order in F ,

σ(t) = −i

t∫
−∞

F (t′)[Q(t′), ρeq]dt′. (90)

Hence, the expectation value of Q at time t is

〈Q〉t = 〈Q〉eq + i

t∫
−∞

F (t′)dt′Trρeq[Q(t′), Q(t)]. (91)

Let the “aftereffect function” Φ(t2− t1) be defined for
t2 ≥ t1 as the response 〈Q〉 at t2, provoked by a pulse
F (t) = δ(t− t1). According to Eq. 91

Φ(t2 − t1) = iTrρeq[Q(t1)Q(t2)] = i〈[Q, Q(t2 − t1)]〉eq.

The response to the periodic force F (t) = eiωt is
〈Q〉t − 〈Q〉eq = L(ω)e−ωt, where the “response func-
tion” is

L(ω) =

∞∫
0

Φ(t)eiωtdt. (92)

A similar calculation as used above yields

ImL(ω) = −πZ−1(1 + e−βω)×

×
∑
k,l

e−βEk |Qkl|2{δ(Ek − El + ω)}.

Comparison with Eq. 88 leads to a relation between
this response function and the fluctuation spectrum:

SQ(ω) = − 1
π

1 + e−βω

1− e−βω
ImL(ω). (93)

This is the “fluctuation-dissipation theorem” (Callen
and Welton, 1951). As an example: when this rela-
tion is applied to the electric circuit of Fig. 1 (with
constant resistance R), one has F = V/R, L(ω) =
−R−1(−iω +1/RC)−1 so that one finds Eq. 11 as the
classical limit (βω � 1).

Subsequently, Bernard and Callen proceed to the next
order, which involves three effects.

i. The response (90) is supplemented by a term of
order F 2:

−
t∫

−∞

F (t′)dt′
t′∫

−∞

F (t′′)dt′′Trρeq{Q(t′′), [Q(t′), Q(t)]}.

(94)
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ii. In a stationary state with constant driving force
F , the fluctuation spectrum is no longer equal to
Eq. 88. The correction is now taken into account
to first order in F . It clearly involves products
of three factors Q and is therefore related to the
double commutator in Eq. 94.

iii. Even in equilibrium, the autocorrelation function
(88) is not an exhaustive description of the sto-
chastic properties of the fluctuations; more infor-
mation is contained in the higher moments. The
third moment 〈{QQ(t)Q(t′)}symmetrized〉

eq be-
longs to the same approximation as the above
effects (i) and (ii).

We shall not discuss these higher order terms, how-
ever, because a serious difficulty appears already in
Eq. 93. This equation asserts that the fluctuation
spectrum in equilibrium is completely determined by
the linear response alone, regardless of the existence
of nonlinear terms in the phenomenological response.
This contradicts our previous results, in particular
Eq. 44, for the diode model. The point will be dis-
cussed presently.

We stress the fundamental difference between the ap-
proaches in this section and in the previous one. The
previous section is based on the master equation (48),
which describes the stochastic behavior of a macro-
scopic variable. The stochastic character, together
with irreversibility, is due to the repeated averaging
over all other microscopic variables, see Section 3.1.
The present section is directly based on the micro-
scopic equation of motion, without averaging over mi-
croscopic variables.14 As a consequence, Eq. 91 ex-
presses 〈Q〉t as an integral over the entire past of F (t).
The system never forgets, because no irreversibility
has entered the picture. This is clearly exhibited by
the fact that , in addition to Eq. 91, one has the an-
ticausal equation

〈Q〉t = 〈Q〉eq − i

∞∫
t

F (t′)dt′Trρeq[Q(t′), Q(t)],

if it supposed that the system is in equilibrium at
t = +∞. Accordingly Eq. 91 is of entirely different
nature than Eqs. 1 and 2, which express the rate of
change of Q in terms of the instantaneous value of the
force.

14The density matrix implies an averaging over initial states,
but that is a more elementary process, which does not suffice
to derive the ME.

In a second paper, Bernard and Callen (1960) sup-
port their conclusion that the fluctuation spectrum is
not affected by nonlinear terms, without invoking the
microscopic equations. However, they here start from
Eq. 15, which was shown by Polder to be untenable.
This is related to the fact that the expression they
use for the autocorrelation function is incorrect (van
Kampen, 1960).

4.3 An Alternative Quantum Mechanical
Treatment; Discussion

Stratonovich (1960) has quantized the theory of Ma-
galinskii and Terletskii (Section 4.1); we merely re-
produce the main results. A state given by 〈Q〉 is
described by the density matrix

ρα0Z(α0)−1 exp(−βH − α0Q),
Z(α0) = Tr exp(−βH − α0Q), (95)

which is the quantum analog of Eq. 83. Let us intro-
duce again the auxiliary function

Mt(ξ|ξ0) = Tr exp(−βH − iξ0Q)e−iξQ(t),

where Q(t) is the same as in Eq. 86. Then one has

〈Q(t)〉α0 = Trρα0Q(t) =
[
i
∂ log Mt(ξ| − iα0)

∂ξ

]
ξ=0

,

in complete analogy with Eq. 84.

In order to find the analog of Eq. 81, one needs the
identity

∂

∂ξ0
exp(−βH − iξ0Q) =

−i

β
e−βH

β∫
0

eβ′HQe−β′Hdβ′ + O(ξ0).

It is then easy to compute

[
∂2Mt(ξ|ξ0)

∂ξ∂ξ0

]
ξ=ξ0=0

= − 1
β

β∫
0

dβ′Tr{e−βHQQ(t + iβ′)}.

Hence one finds, instead of the classical Eq. 81,

−
[
∂2 log Mt(ξ|ξ0)

∂ξ∂ξ0

]
ξ=ξ0=0

=

=
1
β

β∫
0

dβ′{〈QQ(t + iβ′)〉eq − (〈Q〉eq)2}

=
(

iβ
d

dt

)−1 {
exp

[
iβ

d

dt

]
− 1

}
{〈QQ(t)〉eq − (〈Q〉eq)2}.
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Figure 7: The equilibrium distribution P eq, the
shifted distribution Pα0 , and a distribution that
appears to a macroscopic observer as a non-
equilibrium state.

Thus, the second derivative of Mt is no longer identi-
cal with the autocorrelation function, but an operator
intervenes acting on the time dependency. Accord-
ingly, one now obtains instead of Eq. 85

〈QQ(t)〉eq − (〈Q〉eq)2 =

=
(

iβ
d

dt

) {
exp

[
iβ

d

dt

]
− 1

}−1 [
∂

∂α0
〈Q(t)〉α0

]
.

The real part of this equation is (take 〈Q〉eq = 0 for
brevity)

1
2
〈QQ(t) + Q(t)Q〉eq = (96)

= −
(

β

2
d

dt

)
cot

(
β

2
d

dt

) [
∂〈Q(t)〉α0

∂α0

]
α0=0

.

To show that this result is identical with Eq. 93, we
first note that 〈Q(t)〉α0 is the afetreffect of a constant
force F = α0/β, acting from t = −∞ till t = 0,

〈Q(t)〉α0 =

0∫
−∞

Φ(t− t′)
α0

β
dt′ + O(α2

0).

Hence, [
∂

∂α0
〈Q(t)〉α0

]
α0=0

=
1
β

∞∫
t

Φ(t′)dt′.

Substitute this in Eq. 96, multiply with (2/π) cos ωt,
integrate from −∞ to 0: the result is Eq. 93.

Equation (85), its quantum mechanical version (96),
and the Fourier transform thereof, Eq. 93, are equiv-
alent expressions of the relation between equilibrium
fluctuations and the relaxation of 〈Q〉 after a weak
force has been applied. We shall argue that this re-
laxation is not identical with macroscopic dissipation,
except perhaps in the linear case. The quantities

Φ(t), L(ω), and [(∂/∂α0)〈Q(t)〉α0 ]α0=0 all refer to the
range in which the microscopic motion depends lin-
early on F . A rough estimate shows that this re-
quires F to be incredibly weak, in particular when it
acts during a long time period. It is not true that
the first-order solution of the microscopic equations,
such as Eq. 90, is a valid approximation in the same
range in which the phenomenological law is linear,
as is often taken for granted (Weber, 1956). Hence
the nonequilibrium distribution ρα0 [Eqs. 83 or 95]
must be a probability distribution that is only very
slightly shifted away from equilibrium (Fig 7). The
quantities calculated in the present chapter refer to
the relaxation of such a slightly shifted distribution,
to first order in the shift α0. The phenomenological
law, however, refers to relaxation of a quite different
distribution which is much further removed from equi-
librium, so far that it does not overlap at all and that
the first order in α0 is meaningless.

In order to exhibit more explicitly the difference be-
tween these two aspects, we derive the equivalent of
Eq. 85 using the approach of Section 3. On the one
hand, the autocorrelation function is given by Eq. 7,
and we suppose again 〈q〉eq = 0. On the other hand,
take an ensemble whose initial state is the shifted dis-
tribution

P (q, 0) = Pα0(q) = (2π)−1/2 exp(−1
2

α2
0) exp(−1

2
q2 − α0q).

If this is expanded in α0

Pα0(q) = P eq(q)[1− α0q + . . .] (97)

one has

〈q(t)〉 =
∫ ∫

qdqPt(q|q0)P (q0, 0)dq0

= −α0〈q(0)q(t)〉eq + O(α2
0), (98)

which is identical with Vladimirskii’s equation (85).

This derivation shows clearly that the result does ap-
ply to nonlinear systems, since no specific form for
Pt(q|q0) has been used. It also shows that the linear-
ity in α0 is obtained through Eq. 97, which implies
that the external force must be so weak that the shift
in q is much smaller than the fluctuations. This con-
dition is certainly not fulfilled by a state that differs
macroscopically from the equilibrium state. One is
not justified, therefore, in identifying the coefficient
of α0 in Eq. 98 with the first coefficient of the non-
linear phenomenological law. A further investigation
of this point seems to me essential for the correct un-
derstanding of nonlinear systems.
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