EXERCISES

Tuesday

1. Given $i \in[n]$ we define $\phi_{i}: \mathcal{B}_{n, k} \rightarrow\{0,1\}$ by

$$
\phi_{i}\left(b_{1} b_{2} \ldots b_{n}\right)=b_{i} .
$$

(a) Show that, for all $i \in[n]$, the following diagram commutes

where $i+1$ is taken modulo n.
(b) Use part (a) and the fact that ϕ_{1} is k / n-mesic to prove that ϕ_{i} is k / n-mesic for all $i \in[n]$.
2. Consider the multiset

$$
M=\left\{\left\{1^{n_{1}}, 2^{n_{2}}, \ldots, m^{n_{m}}\right\}\right\}
$$

where $i^{n_{i}}$ means that the element i is repeated n_{i} times, that is, with multiplicity n_{i}. Define $n=n_{1}+n_{2}+\cdots+n_{m}$. Let

$$
\mathcal{P}_{M}=\left\{\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \mid \pi \text { a permutation of } M\right\} .
$$

Then Rot acts on \mathcal{P}_{M} by rotation just as it does on $\mathcal{B}_{n, k}$. Define a statsistic $\psi: \mathcal{P}_{M} \rightarrow\{0,1\}$ by

$$
\psi\left(\pi_{1} \pi_{2} \ldots \pi_{n}\right)= \begin{cases}1 & \text { if } \pi_{1}=1 \\ 0 & \text { else }\end{cases}
$$

Show that ψ is n_{1} / n-mesic in two ways.
(a) By using a super orbit argument.
(b) By using the fact that ϕ_{1} from Exercise 1 is homomesic on $\mathcal{B}_{n, k}$.
3. As a special case of the action in Exercise 2 when all the multiplicities are 1, we have that Rot acts on the symmetric group \mathfrak{S}_{n}. Is the inv statistic homomesic under this action?
4. Suppose that G acts on X and so on $\binom{X}{k}$. Show that is $S \in\binom{K}{k}$ is a union of cycles of $g \in G$ then $g S=S$.
5. Prove that

$$
\sum_{b \in \mathcal{B}_{n, k}} q^{\operatorname{inv} b}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

in two ways.
(a) By induction. See Theorem 3.2.3 in The Art of Counting for recurrences satisfied by the q-binomial coefficients.
(b) By using the fact that $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the generating function for integer partitions inside a $k \times(n-k)$ rectangle. See Theorem 3.2.5 in The Art of Counting for details.

Wednesday

1. Suppose that $o(\omega)=d$. Prove that when $0<r<d$ we have

$$
[r]_{\omega} \neq 0 .
$$

2. (a) Prove that the down map $d: \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ is well defined, that is, if $A \in \mathcal{A}(P)$ then $d(A) \in \mathcal{I}(P)$.
(b) Prove that the down map d is a bijection.
(c) Repeat the first two parts for the up map u and the complement map c.
3. Prove that Row acting on C_{n} has a single orbit and its length is $n+1$.
4. Let \mathcal{O} be an antichain orbit of Row on a fence F, and let T be the corresponding tiling. Suppose that there is a red tile covering rows i and $i+1$ in a column of T.
(a) Show that if i is odd then rows i and $i+1$ of the next column contain yellow tiles.
(b) Show that if i is even then rows i and $i+1$ of the previous column contain yellow tiles.
5. Consider Row acting on a fence $F=\breve{F}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$.
(a) Consider an orbit \mathcal{O} and corresponding tiling T. Show that for any $i \in[t]$ we have

$$
\# \mathcal{O}=b_{i} \alpha_{i}+r_{i}+r_{i-1} .
$$

(b) Use part (a) to show that if $\alpha_{i}=2$ for all i then χ is $t / 2$-mesic.
6. Consider Row acting on a fence $F=\breve{F}(a, a)$.
(a) Describe the orbits \mathcal{O} of length a and show that the total number of orbits (including \mathcal{O}^{\prime} which has length $a+1$) is a.
(b) Show that we have the homometry

$$
\chi(\mathcal{O})= \begin{cases}2 a-2 & \text { if } \mathcal{O} \neq \mathcal{O}^{\prime} \\ 2 a-1 & \text { if } \mathcal{O}=\mathcal{O}^{\prime}\end{cases}
$$

(c) Show that we have the homometry

$$
\hat{\chi}(\mathcal{O})= \begin{cases}a^{2}-a & \text { if } \mathcal{O} \neq \mathcal{O}^{\prime} \\ a^{2}+a-1 & \text { if } \mathcal{O}=\mathcal{O}^{\prime}\end{cases}
$$

Thursday

1. For all sets X, Y and elements y prove the following properties of the symmetric difference.
(a) $(X \triangle Y) \triangle Y=X$
(b) $X \triangle\{y\}= \begin{cases}X \cup\{y\} & \text { if } y \notin X, \\ X-\{y\} & \text { if } y \in X .\end{cases}$
2. For all posets P and $x, y \in P$ prove the following properties of toggles.
(a) $t_{x}^{2}=\mathrm{id}$, the identity map.
(b) If we have neither x covers y, nor y covers x, then $t_{x} t_{y}=t_{y} t_{x}$.
(c) Give an example where $t_{x} t_{y} \neq t_{y} t_{x}$.
3. Complete the proof of the theorem that if $x_{1}, x_{2}, \ldots, x_{n}$ is a reverse linear extension of P and $I \in \mathcal{I}(P)$ then

$$
\text { Row } I=t_{x_{n}} \cdots t_{x_{2}} t_{x_{1}}(I)
$$

Letting $T_{i}=t_{x_{i}} \cdots t_{x_{2}} t_{x_{1}}(I)$, the remaining cases are:
(a) x_{i} in both T_{i-1} and T_{i},
(b) x_{i} in neither T_{i-1} nor T_{i},
(c) x_{i} in T_{i-1} but not T_{i}.
4. Let P be a poset with $\# P=n$ and let $L: P \rightarrow[n]$ be a bijection. Show that L is a linear extension of P if and only if for every cover $x \triangleleft y$ we have $L(x)<L(y)$.
5. Let P be a poset consider the Bender-Knuth toggles $s_{i}: \mathcal{L}(P) \rightarrow \mathcal{L}(P)$.
(a) Show that $s_{i}^{2}=1$ (the identity element) for all i.
(b) Show that if $|i-j|>1$ then $s_{i} s_{j}=s_{j} s_{i}$.
(c) Use (a) and (b) to show that if $|i-j|>1$ then $s_{i} s_{j} s_{i}^{-1}=s_{j}$.
6. Show that equivariance is an equivalence relation.
7. Suppose that $(g, X) \equiv(h, Y)$ via a bijection $f: X \rightarrow Y$. Complete the proof that f induces a size-preserving bijection between the orbits of (g, X) and those of (h, Y).

1. Let ϕ^{-1} be the map defined in the proof that $(\operatorname{Pro}, \mathcal{L}([m] \uplus[n])) \equiv\left(\operatorname{Rot}, \mathcal{B}_{m+n, n}\right)$.
(a) Show that ϕ^{-1} is well defined.
(b) Show that $\phi^{-1} \circ \phi$ and $\phi \circ \phi^{-1}$ are identity maps.
2. In the proof that $(\operatorname{Pro}, \mathcal{L}([m] \times[n])) \equiv\left(\right.$ Rot, $\left.\mathcal{B}_{m+n, n}\right)$, provide the details of the last two cases in proving that ϕ is equivariant.
3. Show that the equivariance $(\operatorname{Pro}, \mathcal{L}([m] \uplus[n])) \equiv($ Row, $\mathcal{I}([m] \times[n]))$ can be derived as a corollary to the fact that $(\operatorname{Pro}, \mathcal{I}(P)) \equiv(\operatorname{Row}, \mathcal{I}(P))$ for any rc-poset P.
4. Suppose we have partitions $\mu \subseteq \lambda$. Show that the map $\mathcal{L}(\lambda / \mu) \rightarrow \mathcal{C}(\mu, \lambda)$ defined in class is a bijection.
5. Suppse that P is an rc-poset. Show that there is a drawing of P in the plane \mathbb{R}^{2} such that the following hold.
(a) $(i, j) \in \mathbb{Z}^{2}$ for all $(i, j) \in P$.
(b) $i \equiv j(\bmod 2)$ for all $(i, j) \in P$.
(c) The rows and columns of P are $R_{1}, R_{2}, \ldots, R_{s}$ and $C_{1}, C_{2}, \ldots, C_{t}$ for some s, t, where we allow empty rows and columns.
6. Show how in the proof of Lemma 15 (Hoffman-Humphries) one can move g_{n-1} in g^{\prime} so that, possibly by using conjugation, the product is of the form $g^{\prime \prime}=\cdots g_{n-1} g_{n}$.
7. Prove that $(\operatorname{Pro}, \mathcal{I}([m] \times[n])) \equiv(\operatorname{Pro}, \mathcal{L}([m] \uplus[n]))$.
