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Abstra
t

Chara
teristi
 
lasses for 
ags of ve
tor bundles and Yang-Baxter


oeÆ
ients are related to the 
ag variety for the linear group, and,

ultimately, to the Ehresmann-Bruhat order on the symmetri
 group.

This order 
an be interpreted in terms of an embedding of the sym-

metri
 group into the latti
e of alternating-sign matri
es (in bije
tion

with square i
e 
on�gurations). By de
omposing the set of i
e 
on-

�gurations into 
ells indexed by permutations, we are able to expli
it


hara
teristi
 
lasses, Grothendie
k polynomials and Yang-Baxter 
o-

eÆ
ients from a simple weight on i
e 
on�gurations.

Square-i
e 
on�gurations are paved with 6 types of frozen water mole
ules,

pla
ed on a planar grid, shown on the following �gure.
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Here is an example of su
h a 
on�guration :

H { O H { O { H O { H O { H O { H

H H H H H

H { O { H O H { O H { O { H O { H

H H H H H

H { O H { O { H O { H O H { O { H

H H H H H

H { O H { O H { O H { O { H O { H

H H H H H

H { O H { O H { O { H O { H O { H

I
e 
on�gurations are in bije
tion with alternating-sign matri
es (ASM in

short), repla
ing horizontal mole
ules by 1, verti
al mole
ules by -1, and

the others by 0. Su
h matri
es of 0; 1;�1 are 
hara
terized by the property

that non zero entries alternate in ea
h row and 
olumn, always starting and

�nishing with a 1.

Continuing with the same example, we get the following ASM :

2

6

6

6

6

4

0 1 0 0 0

1 �1 0 1 0

0 1 0 �1 1

0 0 0 1 0

0 0 1 0 0

3

7

7

7

7

5

:

One re
overs an i
e 
on�guration from an ASM by adapting a two hun-

dred year-old planar display, due to Rothe(1800), for permutations. His 
on-

stru
tion involves 
hoosing a quadrant of the plane, and taking all quadrants,

one gets four \Rothe diagrams" for a permutation [25℄. Properly de�ning in-

versions, one gets more generally four diagrams (NW, SW, NE, SE diagrams)

asso
iated to a given ASM, as follows. Given a 0-entry in an ASM, ignore all

the other zeroes. Then the 
urrent 0 is next to a 1 in its 
olumn and its row.

Repla
e now this 0 by a box that will be attributed to one of the diagrams,

depending on the orientation :

0 ! 1 NW ! 1

# gives #

1 1

;

1 1

" gives "

0 ! 1 SW ! 1

;

1 0 1 NE

# gives #

1 1

;

1 1

" gives "

1 0 1 SE

:
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The pre
eding ASM gives the four diagrams :

"

� 1 � � �

1

�

1 � 1 �

� 1 �

�

1 1

� � � 1 �

� � 1 � �

#

;

"

� 1 � � �

1

�

1 � 1 �

� 1 �

�

1 1

� � � 1 �

� � 1 � �

#

;

"

� 1 � � �

1

�

1 � 1 �

� 1 �

�

1 1

� � � 1 �

� � 1 � �

#

;

"

� 1 � � �

1

�

1 � 1 �

� 1 � �1 1

� � � 1 �

� � 1 � �

#

:

Of 
ourse, the four types of boxes exa
tly 
orrespond to the four types of

hook frozen water mole
ules, but we shall only need the SE-type.

ASM are in turn in bije
tion with triangles, that is, stair
ase Young

tableaux with weakly de
reasing diagonals. One just has to read the su
-


essive rows of the matrix, from right to left, a 1 in 
olumn i meaning that

the letter i appears in the tableau, a

�

1 meaning that it disappears, building

in this way the su

essive 
olumns of a tableau (from right to left), or a

sequen
e of sets of order 1; 2; 3; : : :.

For the 
urrent i
e-
on�guration, writing the letters dire
tly in the ASM,

a disappearan
e being designated with a `hat', we read

2

4

: 4 : : :

5

b

4 : 2 :

: 4 :

b

2 1

: : : 2 :

: : 3 : :

3

5

 ! f4g; f2; 5g; f1; 4; 5g; f1; 2; 4; 5g; f1; 2; 3; 4; 5g

whi
h are the 
olumns of the following triangle (writing on its right the obje
t

that we shall really use, an ASM with SE-type zeroes indi
ated by a symbol

o , the other zeroes being repla
ed by a dot) :

5

4 5

3 4 5

2 2 4 5

1 1 1 2 4

 !

2

6

6

6

6

4

� 1 � � �

1

�

1 � 1 �

� 1 � �1 1

� � � 1 o

� � 1 o o

3

7

7

7

7

5

:

Usual Young tableaux have weakly in
reasing rows, stri
tly de
reasing


olumns, but the Young tableaux in bije
tion with ASM are 
hara
terized

by the fa
t that they also have weakly de
reasing diagonals.

Though it is straightforward to pass from one of these three types of


ombinatorial obje
ts to the other two, nevertheless they show seemingly

di�erent properties. For example, one 
an de�ne the supremum (resp. in�-

mum) of a family of triangles of the same order, by just 
onsidering ea
h of

the boxes 
omposing them, and taking the supremum (resp in�mum) of the

numbers 
ontained in them.

Thus one has a latti
e stru
ture (in the sense of an ordered stru
ture

with sup and inf) on the set of triangles of a given order, but this latti
e
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stru
ture looks somehow mysterious on the set of ASM, or on the set of

i
e-
on�gurations.

In parti
ular, one 
an de�ne the supremum of two permutation matri
es,

and this 
onstru
tion reveals some new properties of the Bruhat order on the

symmetri
 group [23℄ (or more generally, on a Coxeter group, [13℄).

Among triangles, there are spe
ial ones, 
alled keys : they are those su
h

that ea
h of their 
olumns is a subset of the pre
eding one. In other words

keys are asso
iated with a 
ag of subsets of f1; 2; : : : ; ng. Reading the

sequen
e of numbers in the order they appear, one gets a permutation.

Given a triangle t (or more generally, a Young tableau), one 
an asso
iate

to it a key K(t), whi
h is minima among the keys bigger than it, and 
alled

its key. With M.P. S
h�utzenberger, I used this notion to give 
ombinatorial

des
riptions of S
hubert polynomials and Demazure 
hara
ters. I shall here

use the 
orresponding 
onstru
tion for an ASM, i.e. 
anoni
ally atta
h to

ea
h ASM a permutation matrix, still using the terminology key (in fa
t,

the 
orresponden
e between ASM and triangles ex
hanges the two notions,

but we shall not use it). At the level of i
e-
on�gurations, keys have not

yet been used. It 
onsists in getting rid, in a 
anoni
al way that we shall

explain later, of all verti
al mole
ules. Here, we need i
e 
on�gurations or

ASM rather than triangles, be
ause we use the symmetry between rows and


olumns of an ASM, whi
h is lost in the 
orresponding triangle.

Our main result (Theorem 8) shows that a simple statisti
 on ASM or

i
e 
on�gurations (easy to read also on triangles) gives the Chern 
lasses

asso
iated to a pair of 
ags of ve
tor bundles, as well as the 
oeÆ
ients in

the expansion of Yang-Baxter elements in some deformations of the group

algebra of the symmetri
 group. For ea
h ASM, we shall need only its SE-

diagram together with its

�

1 entries.

Chern 
lasses

Chern 
lasses are 
ohomology 
lasses asso
iated to a ve
tor bundle V .

Their �rst o

uren
e (in the algebrai
 geometry of the end of the 19

th


entury,

in spe
ial 
ases) 
an be formulated as 
lasses representing the obstru
tion to

extending se
tions of V . It is easy to see that one should in fa
t use two

ve
tor bundles V

1

; V

2

. Given a morphism between them

V

1

'

���! V

2

one uses the degenera
i lo
i of ' to de�ne the Chern 
lasses of the formal

di�eren
e V

2

� V

1

(the usual 
ase being when V

1

is a trivial bundle). The

generi
 situation is attained when V

2

is the universal quotient bundle on a

Grassmannian and when V

1

is a trivial bundle. In that 
ase, one has expli
it
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varieties, the spe
ial S
hubert varieties, whi
h represent the Chern 
lasses [6℄.

But as soon as one wants to des
ribe produ
ts of Chern 
lasses, one needs

all the S
hubert varieties, not only the spe
ial ones. Chern gave in [7℄ a

des
ription of the multipli
ation in the 
ohomology ring of a Grassmannian.

The 
lasses now 
orrespond to a pair 
onsisting of a (trivial) 
ag of ve
tor

bundles, together with the universal ve
tor bundle on the Grassmannian.

More generally, one 
an take two 
ags of ve
tor bundles

0 ,! V

1

1

,! � � � ,! V

n

1

'

���! V

n

2

! � � � ! V

1

2

! 0 ;

the universal situation being now realized on a 
ag manifold, the 
ohomology


lasses asso
iated to the two 
ags still being represented by S
hubert varieties

in the generi
 
ase.

One 
an formulate this 
onstru
tion di�erently, having a variety X , and a

matrix '(x), x 2 X , the S
hubert varieties being now de�ned by a matrix of

ranks (the ranks r[i; j℄ of the submatri
es pla
ed in the NW-
orner; in fa
t,

one should 
onsider simultaneously, for any point [i; j℄, the four quadrants,

and four rank-matri
es).

It is easy to see that the rank-matrix of an invertible matrix is the ma-

trix of ranks of a permutation matrix, and therefore the possible 
lasses of

matri
es are in bije
tion with permutations, and with S
hubert 
y
les in a


ag manifold F lag(C

n

).

For example, the permutation � = [2; 5; 1; 4; 3℄ (taking the 
onvention

that 
olumns are numbered from right to left) gives rise to the following

rank-matrix :

2

6

6

4

: : : 1 :

1 : : : :

: : : : 1

: 1 : : :

: : 1 : :

3

7

7

5

!

2

6

6

4

0 0 0 1 1

1 1 1 2 2

1 1 1 2 3

1 2 2 3 4

1 2 3 4 5

3

7

7

5

:

The rank matrix, or the ranks of the di�erent indu
ed morphisms V

i

1

! V

j

2

are overdetermined, a minimal subset of rank 
onditions has been given by

Fulton [12℄.

There is a simpler way to introdu
e the symmetri
 group in the theory

of Chern 
lasses. It is 
alled the splitting prin
iple [14℄, whi
h states that

given a ve
tor bundle V on a manifoldM, then on the relative 
ag manifold

F(V )!M, the pullba
k of V gives a sequen
e of line bundles L

1

; : : : ; L

n

,

su
h that the total Chern 
lass 
(V ) is equal to (1 + 


1

(L

1

)) � � � (1 + 


1

(L

n

)).

Chern 
lasses now be
ome elementary symmetri
 fun
tions in the variables

x

1

= 


1

(L

1

); : : : ; x

n

= 


1

(L

n

).

To handle eÆ
iently Chern 
lasses through this method, one �rst has to

des
ribe the 
ohomology ring of the 
ag manifold. This has been done by
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Bernstein-Gelfand-Gelfand [1℄ and Demazure [8℄. With Mar
el-Paul S
h�utzen-

berger, I gave in [20℄ polynomial representatives of the basis of S
hubert


y
les in the 
ohomology of the 
ag manifold F lag(C

n

), the S
hubert poly-

nomials. They 
an be de�ned by just taking all possible images under divided

di�eren
es (a
ting on the x

i

's) of the extension of the Vandermonde :

Y

i+j�n

(x

i

� y

j

) :

S
hubert polynomials 
an also be de�ned by simple vanishing 
onditions,

and o

ur as universal 
oeÆ
ients in the extension of the Newton interpola-

tion formula to several variables [18℄.

Noti
e that, for the usual Chern 
lasses, one spe
ializes the y

j

's to 0, and

thus one loses the vanishing properties whi
h 
hara
terize the polynomials

in two sets of variables.

Instead of a 
ohomology ring, one 
an use the Grothendie
k ring of 
lasses

of ve
tor bundles and de�ne in it Chern 
lasses 
orresponding to a pair of


ags of ve
tor bundles. The universal situation is still en
ountered with a


ag manifold.

The variables are now the 
lasses x

1

= [L

1

℄; : : : ; x

n

= [L

n

℄ of the tau-

tologi
al line bundles on F lag(C

n

). The geometri
al basis is 
onstituted of

the 
lasses of the stru
ture sheaves of S
hubert varieties, the Grothendie
k

polynomials being their distinguished representatives.

For ea
h permutation � 2 S

n

, there is a Grothendie
k polynomial G

�

whi
h 
an be obtained from

Y

i+j�n

(1� y

i

=x

j

)

by a produ
t of isobari
 divided di�eren
es a
ting on the x

i

's [16℄.

The 
ase of only one 
ag or of one ve
tor bundle is obtained by spe
ializing

all the y

j

's to 1, but, on
e more, one loses then vanishing properties. One

re
overs 
ohomology 
lasses, and S
hubert polynomials, by taking leading

terms of Grothendie
k polynomials.

Grothendie
k polynomials 
an also be obtained through a generating

fun
tion in the 0-He
ke algebra [11℄, or through a non
ommutative S
hu-

bert 
al
ulus [24℄.

We shall use a third method to obtain Grothendie
k polynomials, whi
h

de
omposes them, without 
an
ellations, into smaller polynomials.

Given a permutation � 2 S

n

, whi
h is not the identity, let r = max(i :

�

i

> �

i+1

). Let now k = max(�

j

; j > r; �

j

< �

r

), and � = (k; �

r

) �, where

(k; �

r

) is the transposition of the two values k; �

r

.
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Let �

(1)

; : : : ; �

(p)

be the all the permutations � su
h that `(�)) = `(�)+1,

� �

�1

is equal to transposition (j; k), j < k (these are the permutations

o

uring in the transition for S
hubert polynomial, [20, 25℄).

Reformulating Proposition 3 of [17℄ (it adapts instantly to the 
ase of two

sets of variables that we need here), one has :

Proposition 1 Given a permutation � 2 S

n

, let B(�) be the (boolean) sub-

latti
e of S

n

(
onsidered as embedded into the latti
e of ASM of order n,

[23℄), with generators the permutations �

(1)

; : : : ; �

(p)

, and minimum element

�. Then

�

G

�

�G

�

�

y

k

x

j

=

X

�2B(�)

(�1)

`(�)�`(�)

G

�

:

For example, for � = [6; 4; 8; 3; 1; 7; 2; 5℄, one has r = 6, k = 5, and the

boolean latti
e B(�) is

[65843127℄

[65841327℄ [65834127℄ [64853127℄

[65831427℄ [64851327℄ [64835127℄

[64831527℄

�

�

�

�

�

�

X

X

X

X

X

X

�

�

�

�

�

�

X

X

X

X

X

X

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

�

�

�

�

�

�

furnishing the following re
ursion between Grothendie
k polynomials :

�

G

64831527

�G

64831725

�

y

5

x

6

= G

64831527

�G

65831427

�G

64851327

�G

64835127

+G

65841327

+G

65834127

+G

64853127

�G

65843127

:

Yang-Baxter 
oeÆ
ients

The Bruhat order on the symmetri
 group is usually de�ned by taking

subwords of redu
ed de
ompositions. This amounts developing, in the group

algebra of the symmetri
 group, expressions of the type (1+s

1

)(1+s

2

)(1+s

1

),

with s

i

= simple transposition (transposition of i; i

+

1). However, sin
e

(1 + s

1

)(1 + s

2

)(1 + s

1

) 6= (1 + s

2

)(1 + s

1

)(1 + s

2

), this de�nition is not

satisfa
tory, and one must put weights to make it 
anoni
al, e.g.

(1 + s

1

)(1 + 2s

2

)(1 + s

1

) = (1 + s

2

)(1 + 2s

1

)(1 + s

2

) :
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The general rule to write weights is due to Yang. Yang's original motiva-

tion for introdu
ing the Yang-Baxter equation [28℄ was the n-body problem

on a 
ir
le with Hamiltonian

H(y) = �

n

X

i=1

�

2

�y

2

i

+ 2


X

i<j

Æ(y

i

� y

j

) ;

where Æ is the Dira
 distribution. The problem was to solve the S
hr�odinger

equation

H(y) (y) = E (y)

with periodi
 boundary 
onditions.

Yang looked for solutions of the form

 (y) =

X

�2S

n

�(y

�

)

X

�2S

n

A

�

(�)e

ix

�

�y

�

where S

n

is the symmetri
 group, x = (x

1

; : : : ; x

n

) 2 C

n

is the ve
tor of

spe
tral parameters, x

�

:= (x

�

1

; : : : ; x

�

n

), and � is the 
hara
teristi
 fun
tion

of the domain y

1

< y

2

< : : : < y

n

. The unknown 
oeÆ
ients A

�

(�) form an

n! � n! matrix, and it is 
onvenient to regard ea
h A

�

as a fun
tion on the

symmetri
 group, or equivalently as an element of its group algebra.

Yang's 
onstru
tion 
an be interpreted as follows. Given any sequen
e

of spe
tral parameters x

1

; : : : ; x

n

, there exists a linear basis fY

�

; � 2 S

n

g,

the Yang-Baxter basis, of C [x

1

; : : : ; x

n

℄[S

n

℄, whi
h is de�ned through the

following re
ursions :

Y

�s

i

= Y

�

�

1 + (x

�

i+1

� x

�

i

) s

i

�

; `(�s

i

) > `(�): (1)

The validity of su
h a de�nition is insured by the Yang-Baxter relations :

(1 + �s

i

) (1 + (� + �)s

i+1

) (1 + �s

i

) =

(1 + �s

i+1

) (1 + (� + �)s

i

) (1 + �s

i+1

) : (2)

Now, Yang's 
oeÆ
ients are the 
oeÆ
ients of the expansion of Yang-

Baxter elements in the basis of permutations.

It is interesting to note that Young's 
onstru
tion of irredu
ible repre-

sentations of the symmetri
 group 
an be interpreted as giving a solution

to the Yang-Baxter equation, the spe
tral parameters being the distan
e of

entries, in a Young tableau, to the main diagonal (these distan
es are 
alled


ontents). Ju
ys [15℄, then Cherednik [5℄, have shown moreover that Young's

natural idempotents are limits of some Yang-Baxter elements when spe
tral

parameters are spe
ialized to the 
ontents of a Young tableau.
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The same 
onstru
tion is valid for the di�erent deformations of C [S

n

℄,

that is, for the algebras generated by T

1

; : : : ; T

n�1

satisfying the braid rela-

tions, together with a He
ke relation (with �xed q

1

; q

2

) :

(T

i

� q

1

) (T

i

� q

2

) = 0 : (3)

The two 
ases relevant to geometry (for the 
ohomology ring, and the

Grothendie
k ring respe
tively) are

�

T

N il

i

�

2

= 0 Nil-He
ke algebra

�

T

0H

i

�

2

= �T

0H

i

0-He
ke algebra

Expanding the 
orresponding Yang-Baxter elements Y

N il

�

and Y

0H

�

one

gets 
oeÆ
ients :

Y

N il

�

=

X

�2S

n




�

�

T

N il

�

(4)

Y

0H

�

=

X

�2S

n

g

�

�

T

0H

�

(5)

The link with the pre
eding se
tion is provided by the following property

[19℄ :

Proposition 2 The Yang-Baxter 
oeÆ
ients 


�

�

and g

�

�

are spe
ializations

of S
hubert and Grothendie
k polynomials :




�

�

= X(x

�

; x) & g

�

�

= G (x

�

; x) ; (6)

denoting by x

�

the reordering x

�

1

; : : : ;

;

x

�

n

of the spe
tral parameters.

Noti
e that re
ursions by divided di�eren
es, for S
hubert and Grothendie
k

polynomials, are hidden when one spe
ializes one set of parameters to a per-

mutation of the other; S
hubert and Grothendie
k polynomials are easier to


ompute than expansions of Yang-Baxter elements.

Keys and weights of ASM

Ehresmann [10℄ gave a 
ellular de
omposition of the 
ag manifoldF lag(C

n

),

from whi
h he dedu
ed the homology ring of it. His 
onstru
tion amounts to

say that the set of 
omplete 
ags of a ve
tor spa
e with a basis fe

1

; : : : ; e

n

g


an be partitionned into 
ells, ea
h of whi
h 
ontains a 
oordinate 
ag, that

is a 
omplete 
ag of subsets of fe

1

; : : : ; e

n

g (Ehresmann was not using per-

mutations to index 
ells, but 
ags of sets, and gave in this set-up the �rst

de�nition of the Bruhat order on the symmetri
 group).
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We 
hose matri
es as basi
 obje
ts, having already indi
ated that ea
h

ASM 
an be 
onsidered as a sequen
e of sets of respe
tive orders 1; 2; 3; : : :.

The 
ase of a permutation � is when one takes as a sequen
e the 
omplete


ag of sets

fe

�

1

g � fe

�

1

; e

�

2

g � � � � � fe

�

1

; : : : ; e

�

n

g :

For the order 3, there is only one ASM whi
h is not a permutation matrix :

h

0 1 0

1 �1 1

0 1 0

i

$ sequen
e of sets fe

2

g; fe

1

; e

3

g; fe

1

; e

2

; e

3

g :

Given a point � in Z � Z, it determines a SE-quadrant (all the points

South and East of it, in
luding horizontal and verti
al, minus � itself). Let

us 
all neighbours of � in an ASM the entries 1 in its SE-quadrant su
h that

the submatrix (on 
onse
utive rows and 
olumns)

� ��� �

� ��� 1

has only 0 entries,

outside the two pointed verti
es.

The domain 
overed by all the submatri
es asso
iated to the neighbours

of � is a Ferrers' diagram [26℄, with 1's at its 
orners, 0's elsewhere (apart

from �).

In
ating a Ferrers' diagram 
onsists in repla
ing it by a bigger diagram,

with inner 
orners where the original 
orners were :

� ~ ~ ~ ~ ~ � �

~ ~ ~ � � � � �

~ ~ ~ � � � � �

~ � � � � � � �

~ � � � � � � �

inflation

�����!

� ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ ~ � �

~ ~ ~ � � � � �

~ ~ ~ � � � � �

:

The original Ferrers' diagram, as well as its image under in
ation, 
overs the

pla
es where ~ is written (apart from �).

An entry

�

1 in an ASM is removable if its SE-quadrant 
ontains no other

�

1 entry. Removing this

�

1 
onsists in in
ating the Ferrers'diagram it deter-

mines, �lling it with 0's, ex
ept at its 
orners when one puts 1's.

�

1 ~ ~ ~ ~ 1 � �

~ ~ ~ 0 0 0 � �

~ ~ 1 0 0 0 � �

~ 0 0 � � � � �

1 0 0 � � � � �

Removing�1

�������!

~ ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ 1 � �

~ ~ ~ � � � � �

~ ~ 1 � � � � �

:
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The original Ferrers' diagram, as well as its image under in
ation, 
overs the

pla
es where �1 or ~ (whi
h is a zero entry) are written. It is 
lear that this

operation gives a new ASM.

One 
he
ks :

Lemma 3 Given an ASM, and two removable

�

1, then the ASM obtained

by removing the two

�

1 is independent of the order in whi
h one removes

them.

Corollary 4 Removing su

essively all

�

1's in an ASM asm produ
es a

unique permutation matrix Key(asm) 
alled its key.

Here is an example of a sequen
e produ
ing a key (0 entries are written with

a dot).

2

6

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � �1 � 1

1 �1 � � 1 � � �

� � 1 �1 � � 1 �

� 1 � � � � � �

� � � � � 1 � �

� � � 1 � � � �

3

7

7

5

;

2

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � � � �

1 �1 � � 1 � � �

� � 1 �1 � � � 1

� 1 � � � � � �

� � � � � � 1 �

� � � 1 � � � �

3

7

5

;

2

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � � � �

1 �1 � � 1 � � �

� � 1 � � � � �

� 1 � � � � � �

� � � � � � � 1

� � � � � � 1 �

3

7

5

;

2

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � � � �

1 � � � � � � �

� � 1 � � � � �

� � � � 1 � � �

� � � � � � � 1

� � � � � � 1 �

3

7

5

:

Given a permutation matrix, let us 
all pivot the position o

upied by the

top box of the leftmost 
olumn of its SE-diagram. The pivot of an ASM is

the pivot of its key. Let us 
all top of an ASM the 2�2 submatrix 
ontaining

the pivot, and the two entries 1 in the same 
olumn, above, and in the same

row, on the left.

Lemma 5 In an ASM there is no

�

1 entry in a 
olumn left of the pivot, nor

in the same 
olumn above it.

Proof. If asm is not a permutation matrix, remove all

�

1 from right to left,

from bottom to top, ex
ept the last one. The two entries 1 in the top of

�

1 :

0 1

1 �1

will remain 1's in Key(asm). Therefore, the pla
e o

upied by this

�

1 is a box of the SE-diagram of Key(asm), and satis�es the geographi
al


onstraints �xed by the lemma with respe
t to the pivot. QED

This remark allows us to de�ne transition on ASM.

De�nition 6 For ea
h ASM asm, let � be its pivot. Let Trans(asm) be the

matrix obtained from asm by transforming its top as follows. If the pivot


ontains a 0, 
hange its top

�

0 ��� 1

.

.

.

.

.

.

1 ��� �

�

into

�

1 ��� 0

.

.

.

.

.

.

0 ��� 1

�

:
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If it 
ontains a

�

1, then 
hange

�

0 ��� 1

.

.

.

.

.

.

1 ��� �

�

into

�

1 ��� 0

.

.

.

.

.

.

0 ��� 0

�

(the pivot 
annot 
ontain a 1).

Proposition 7 Given a permutation �, the image under Trans of ASM(�)

is the union of all ASM(�) : � 2 B(�).

Proof. Let asm 2 ASM(�). The neighbours of its pivot are not neighbours

of any

�

1 not lo
ated in the pivot. Therefore, one 
an remove all

�

1 lo
ated

outside the pivot and restri
t to ASM having at most one

�

1, lo
ated in the

pivot.

If there is a 0 in the pivot, then asm is a permutation matrix (= �), and

its image under a transition is K(�), where � is the minimum element of

B(�). If there is a

�

1, removing it gives K(�), and this means that in
ating

the Ferrrers'diagram of � in asm gives the Ferrrers' diagram of � in K(�).

Ea
h pair of 
onse
utive neighbours of � in asm gives a neighbour of � in

K(�), and 
onversely, the neighbours of � in asm are in bije
tion with a

subset of neighbours of � in K(�), and the in
ated Ferrers' diagram is a

subset of the Ferrers' diagram of � in K(�) (we have framed the 1's giving

ba
k asm from K(�), and restri
ted matri
es to their relevant part) :

asm =

� ~ ~ ~ ~ ~ ~ ~ ~ 1

~ ~ ~ ~ ~ ~ ~ 0 0 0

~ ~ ~ ~ ~ ~ 1 0 0 0

~ ~ 0 0 0 0 0

~ 1 0 0 0 0 0

0 0 � �

0 0 � �

0 0 � 1

0 0

1 0

; K(�) =

� ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ 1

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ 1

~ ~ � �

~ ~ � �

~ ~ � 1

~ ~

~ 1

On the other hand, the generators of the boolean latti
e B(�) 
an be de-

s
ribed on K(�), rather than using the formulation of Proposition 1. Read-

ing from left to right the position of the 1's, one has to �nd the �rst 
olumn

where there is an in
rease (noting 
 the entry 1 of this 
olumn), take in its

SW-quadrant the upper 1 (noted b), and look at all 1's in the SE-quadrant

of 
 su
h that the re
tangle with 
orner a, and edges on the verti
al of 


and the horizontal of b only 
ontains 0's, apart from a. In other words, the

NW 
orner of the re
tangle is the pivot, and a is a neighbour of it. Then

ex
hanging b; 
; a into 
; a; b produ
es a new permutation whi
h is a generator

12



of B(�), and 
onversely every generator is obtained in this manner [22℄.

0 � � 


� �

� �

b � � � 0 0 0 0

0 0 0 0 0

0 0 0 0 a

�!


 � � 0

� �

� �

0 � � � 0 0 0 b

0 0 0 0 0

a 0 0 0 0

:

The minimum element of B(�) is obtained by passing from 
; b to b; 
 :

0 ��� 


.

.

.

.

.

.

b ��� �

7!


 ��� 0

.

.

.

.

.

.

0 ��� b

. QED

Main property

Let us now introdu
e parameters x

1

; : : : ; x

n

, y

1

; : : : ; y

n

. Given an ASM,

attribute to ea
h entry 0 belonging to the SE-diagram the weight

y

i

x

j

� 1, to

ea
h entry

�

1 the weight

y

i

x

j

, where i; j are the 
oordinates (and the weight 1

to all other entries). The weight �(asm) of an ASM is the produ
t of all the

weights of its entries.

I 
an now explain how to obtain Yang-Baxter 
oeÆ
ients, Grothendie
k

and S
hubert polynomials from enumeration of square i
e-
on�gurations.

Sin
e S
hubert polynomials and Yang-Baxter 
oeÆ
ients are instantly de-

du
ed from Grothendie
k polynomials, it is suÆ
ient to state the property

in terms of Grothendie
k polynomials only.

Theorem 8 Given an integer n, and a permutation � 2 S

n

, let

! = [n; : : : ; 1℄ 2 S

n

. Then the Grothendie
k polynomial G

�

satis�es

(�1)

`(!�)

G

�

=

X

�(asm)

with the sum over all ASM with key equal to �

�1

!.

Proof. The generators of the latti
e B(�) are obtained by taking the pivot,

one of its neighbour, and transforming the submatrix of order 3 of the key

2

6

4

0 ��� 1 ��� 0

.

.

.

.

.

.

.

.

.

1 ��� � ��� 0

.

.

.

.

.

.

.

.

.

0 ��� 0 ��� 1

3

7

5

into

2

6

4

1 ��� 0 ��� 0

.

.

.

.

.

.

.

.

.

0 ��� � ��� 1

.

.

.

.

.

.

.

.

.

0 ��� 1 ��� 0

3

7

5

:

Let the pivot of � have 
oordinates r; k.
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The e�e
t of a transition on the weight of an asm with key �, is just to

suppress the fa
tor y

k

=x

r

, if there is a

�

1 at the pivot, or to suppress the fa
tor

y

k

=x

r

�1, if there is a 0 at the pivot. Therefore, thanks to Proposition 7, the

sum

P

asm:Key(asm)=�

�(asm) satis�es the same re
ursion, under transition, as

(�1)

`(!�)

G

�

. QED

For example, the Grothendie
k polynomial of index [4; 2; 1; 5; 3℄ is given

by the four ASM, with key equal to [4; 1; 5; 2; 3℄, having the following weights

(remember that 
olumns are numbered from right to left; only SE-type 0's

are indi
ated):

5

4 5

3 4 5

2 2 2 4

1 1 1 1 4

2

6

6

6

6

4

: 1 : : :

: : : : 1

1

�

1 : 1 o

: 1 : o o

: : 1 o o

3

7

7

7

7

5

y

3

x

4

(

y

1

x

2

�

1)(

y

2

x

2

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

5

4 5

3 3 5

2 2 2 4

1 1 1 1 4

2

6

6

6

6

4

: 1 : : :

: : : : 1

1

�

1 : 1 o

: : 1 o o

: 1 o o o

3

7

7

7

7

5

y

3

x

4

(

y

1

x

3

�

1)(

y

1

x

2

�

1)(

y

2

x

2

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

5

4 5

3 4 5

2 2 4 4

1 1 1 1 4

(Key)

2

6

6

6

6

4

: 1 : : :

: : : : 1

1 o : : o

: : : 1 o

: : 1 o o

3

7

7

7

7

5

(

y

1

x

2

�

1)(

y

3

x

4

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

5

4 5

3 3 5

2 2 3 4

1 1 1 1 4

2

6

6

6

6

4

: 1 : : :

: : : : 1

1

�

1 1 : o

: : : 1 o

: 1 o o o

3

7

7

7

7

5

y

3

x

4

(

y

1

x

3

�

1)(

y

1

x

2

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

Therefore, the Grothendie
k polynomial G

42153

is equal to

G

42153

= (1

�

y

1

x

2

)(1

�

y

1

x

1

)(1

�

y

2

x

1

)(1

�

y

3

x

1

)(1

�

y

1

y

2

y

3

x

2

x

3

x

4

) :

Sin
e the

�

1's are lo
ated at the pivot, the image under transition of the

four matri
es are permutation matri
es, and one has

�

G

42135

�G

42153

�

y

3

x

4

= G

42135

�G

43125

�G

42315

+G

43215

:

There exists a Cau
hy kernel for Grothendie
k polynomials, whi
h gen-

eralizes the Cau
hy kernel for S
hur fun
tions. Rewriting Theorem 2.8 and

14



Lemma 2.9 of [16℄, the existen
e of su
h kernel amounts to the following iden-

tity involving three sets of variables fx

1

; : : : ; x

n

g, fy

1

; : : : ; y

n

g, fz

1

; : : : ; z

n

g

(writing �! for [�

n

; : : : ; �

1

℄, � 2 S

n

) :

y

n�1

1

� � �y

0

n

Y

i+j�n

�

1

z

i

�

1

x

j

�

=

X

�2S

n

(�1)

`(�)

G

�

(x;y)G

�!

(z;y) : (7)

The same kernel also expands in terms of S
hubert polynomials. Using The-

orem 8, one 
an write the kernel as a statisti
s on pairs of ASM.

Bousquet-M�elou and Habsieger [2℄ give a sum over ASM, whi
h in our

terms, states that

X

�2S

n

(�1)

`(�)

G

�

(x; 1) = x

n�1

1

x

n�2

2

� � �x

0

n

;

and is obtained by spe
ializing Eq.7.

Their summation involves 
ounting the number of SE-zeroes in ea
h 
ol-

umn of an ASM, as well as the

�

1. Robbins and Rumsey [27℄ express the

q-Vandermonde

Q

1�i<j�n

(x

i

+ qx

j

) through a summation on the ASM of or-

der n, this time re
ording the SW-zeroes as well. Chapman [4℄, re�nes their


onstru
tion and gives a 
ombinatorial des
ription of

Q

1�i<j�n

(x

i

+ y

j

).
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