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Abstrat

Charateristi lasses for ags of vetor bundles and Yang-Baxter

oeÆients are related to the ag variety for the linear group, and,

ultimately, to the Ehresmann-Bruhat order on the symmetri group.

This order an be interpreted in terms of an embedding of the sym-

metri group into the lattie of alternating-sign matries (in bijetion

with square ie on�gurations). By deomposing the set of ie on-

�gurations into ells indexed by permutations, we are able to expliit

harateristi lasses, Grothendiek polynomials and Yang-Baxter o-

eÆients from a simple weight on ie on�gurations.

Square-ie on�gurations are paved with 6 types of frozen water moleules,

plaed on a planar grid, shown on the following �gure.
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Here is an example of suh a on�guration :

H { O H { O { H O { H O { H O { H

H H H H H

H { O { H O H { O H { O { H O { H

H H H H H

H { O H { O { H O { H O H { O { H

H H H H H

H { O H { O H { O H { O { H O { H

H H H H H

H { O H { O H { O { H O { H O { H

Ie on�gurations are in bijetion with alternating-sign matries (ASM in

short), replaing horizontal moleules by 1, vertial moleules by -1, and

the others by 0. Suh matries of 0; 1;�1 are haraterized by the property

that non zero entries alternate in eah row and olumn, always starting and

�nishing with a 1.

Continuing with the same example, we get the following ASM :
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:

One reovers an ie on�guration from an ASM by adapting a two hun-

dred year-old planar display, due to Rothe(1800), for permutations. His on-

strution involves hoosing a quadrant of the plane, and taking all quadrants,

one gets four \Rothe diagrams" for a permutation [25℄. Properly de�ning in-

versions, one gets more generally four diagrams (NW, SW, NE, SE diagrams)

assoiated to a given ASM, as follows. Given a 0-entry in an ASM, ignore all

the other zeroes. Then the urrent 0 is next to a 1 in its olumn and its row.

Replae now this 0 by a box that will be attributed to one of the diagrams,

depending on the orientation :

0 ! 1 NW ! 1

# gives #

1 1

;

1 1

" gives "

0 ! 1 SW ! 1

;

1 0 1 NE

# gives #

1 1

;

1 1

" gives "

1 0 1 SE

:
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The preeding ASM gives the four diagrams :

"

� 1 � � �

1

�

1 � 1 �

� 1 �

�

1 1

� � � 1 �

� � 1 � �

#

;

"

� 1 � � �

1

�

1 � 1 �

� 1 �

�

1 1

� � � 1 �

� � 1 � �

#

;

"

� 1 � � �

1

�

1 � 1 �

� 1 �

�

1 1

� � � 1 �

� � 1 � �

#

;

"

� 1 � � �

1

�

1 � 1 �

� 1 � �1 1

� � � 1 �

� � 1 � �

#

:

Of ourse, the four types of boxes exatly orrespond to the four types of

hook frozen water moleules, but we shall only need the SE-type.

ASM are in turn in bijetion with triangles, that is, stairase Young

tableaux with weakly dereasing diagonals. One just has to read the su-

essive rows of the matrix, from right to left, a 1 in olumn i meaning that

the letter i appears in the tableau, a

�

1 meaning that it disappears, building

in this way the suessive olumns of a tableau (from right to left), or a

sequene of sets of order 1; 2; 3; : : :.

For the urrent ie-on�guration, writing the letters diretly in the ASM,

a disappearane being designated with a `hat', we read

2

4

: 4 : : :

5

b

4 : 2 :

: 4 :

b

2 1

: : : 2 :

: : 3 : :

3

5

 ! f4g; f2; 5g; f1; 4; 5g; f1; 2; 4; 5g; f1; 2; 3; 4; 5g

whih are the olumns of the following triangle (writing on its right the objet

that we shall really use, an ASM with SE-type zeroes indiated by a symbol

o , the other zeroes being replaed by a dot) :

5

4 5

3 4 5

2 2 4 5

1 1 1 2 4

 !
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6

6
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6

4

� 1 � � �

1

�

1 � 1 �

� 1 � �1 1

� � � 1 o

� � 1 o o

3

7

7

7

7

5

:

Usual Young tableaux have weakly inreasing rows, stritly dereasing

olumns, but the Young tableaux in bijetion with ASM are haraterized

by the fat that they also have weakly dereasing diagonals.

Though it is straightforward to pass from one of these three types of

ombinatorial objets to the other two, nevertheless they show seemingly

di�erent properties. For example, one an de�ne the supremum (resp. in�-

mum) of a family of triangles of the same order, by just onsidering eah of

the boxes omposing them, and taking the supremum (resp in�mum) of the

numbers ontained in them.

Thus one has a lattie struture (in the sense of an ordered struture

with sup and inf) on the set of triangles of a given order, but this lattie

3



struture looks somehow mysterious on the set of ASM, or on the set of

ie-on�gurations.

In partiular, one an de�ne the supremum of two permutation matries,

and this onstrution reveals some new properties of the Bruhat order on the

symmetri group [23℄ (or more generally, on a Coxeter group, [13℄).

Among triangles, there are speial ones, alled keys : they are those suh

that eah of their olumns is a subset of the preeding one. In other words

keys are assoiated with a ag of subsets of f1; 2; : : : ; ng. Reading the

sequene of numbers in the order they appear, one gets a permutation.

Given a triangle t (or more generally, a Young tableau), one an assoiate

to it a key K(t), whih is minima among the keys bigger than it, and alled

its key. With M.P. Sh�utzenberger, I used this notion to give ombinatorial

desriptions of Shubert polynomials and Demazure haraters. I shall here

use the orresponding onstrution for an ASM, i.e. anonially attah to

eah ASM a permutation matrix, still using the terminology key (in fat,

the orrespondene between ASM and triangles exhanges the two notions,

but we shall not use it). At the level of ie-on�gurations, keys have not

yet been used. It onsists in getting rid, in a anonial way that we shall

explain later, of all vertial moleules. Here, we need ie on�gurations or

ASM rather than triangles, beause we use the symmetry between rows and

olumns of an ASM, whih is lost in the orresponding triangle.

Our main result (Theorem 8) shows that a simple statisti on ASM or

ie on�gurations (easy to read also on triangles) gives the Chern lasses

assoiated to a pair of ags of vetor bundles, as well as the oeÆients in

the expansion of Yang-Baxter elements in some deformations of the group

algebra of the symmetri group. For eah ASM, we shall need only its SE-

diagram together with its

�

1 entries.

Chern lasses

Chern lasses are ohomology lasses assoiated to a vetor bundle V .

Their �rst ourene (in the algebrai geometry of the end of the 19

th

entury,

in speial ases) an be formulated as lasses representing the obstrution to

extending setions of V . It is easy to see that one should in fat use two

vetor bundles V

1

; V

2

. Given a morphism between them

V

1

'

���! V

2

one uses the degenerai loi of ' to de�ne the Chern lasses of the formal

di�erene V

2

� V

1

(the usual ase being when V

1

is a trivial bundle). The

generi situation is attained when V

2

is the universal quotient bundle on a

Grassmannian and when V

1

is a trivial bundle. In that ase, one has expliit
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varieties, the speial Shubert varieties, whih represent the Chern lasses [6℄.

But as soon as one wants to desribe produts of Chern lasses, one needs

all the Shubert varieties, not only the speial ones. Chern gave in [7℄ a

desription of the multipliation in the ohomology ring of a Grassmannian.

The lasses now orrespond to a pair onsisting of a (trivial) ag of vetor

bundles, together with the universal vetor bundle on the Grassmannian.

More generally, one an take two ags of vetor bundles

0 ,! V

1

1

,! � � � ,! V

n

1

'

���! V

n

2

! � � � ! V

1

2

! 0 ;

the universal situation being now realized on a ag manifold, the ohomology

lasses assoiated to the two ags still being represented by Shubert varieties

in the generi ase.

One an formulate this onstrution di�erently, having a variety X , and a

matrix '(x), x 2 X , the Shubert varieties being now de�ned by a matrix of

ranks (the ranks r[i; j℄ of the submatries plaed in the NW-orner; in fat,

one should onsider simultaneously, for any point [i; j℄, the four quadrants,

and four rank-matries).

It is easy to see that the rank-matrix of an invertible matrix is the ma-

trix of ranks of a permutation matrix, and therefore the possible lasses of

matries are in bijetion with permutations, and with Shubert yles in a

ag manifold F lag(C

n

).

For example, the permutation � = [2; 5; 1; 4; 3℄ (taking the onvention

that olumns are numbered from right to left) gives rise to the following

rank-matrix :

2

6

6

4

: : : 1 :

1 : : : :

: : : : 1

: 1 : : :

: : 1 : :

3

7

7

5

!

2

6

6

4

0 0 0 1 1

1 1 1 2 2

1 1 1 2 3

1 2 2 3 4

1 2 3 4 5

3

7

7

5

:

The rank matrix, or the ranks of the di�erent indued morphisms V

i

1

! V

j

2

are overdetermined, a minimal subset of rank onditions has been given by

Fulton [12℄.

There is a simpler way to introdue the symmetri group in the theory

of Chern lasses. It is alled the splitting priniple [14℄, whih states that

given a vetor bundle V on a manifoldM, then on the relative ag manifold

F(V )!M, the pullbak of V gives a sequene of line bundles L

1

; : : : ; L

n

,

suh that the total Chern lass (V ) is equal to (1 + 

1

(L

1

)) � � � (1 + 

1

(L

n

)).

Chern lasses now beome elementary symmetri funtions in the variables

x

1

= 

1

(L

1

); : : : ; x

n

= 

1

(L

n

).

To handle eÆiently Chern lasses through this method, one �rst has to

desribe the ohomology ring of the ag manifold. This has been done by
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Bernstein-Gelfand-Gelfand [1℄ and Demazure [8℄. With Marel-Paul Sh�utzen-

berger, I gave in [20℄ polynomial representatives of the basis of Shubert

yles in the ohomology of the ag manifold F lag(C

n

), the Shubert poly-

nomials. They an be de�ned by just taking all possible images under divided

di�erenes (ating on the x

i

's) of the extension of the Vandermonde :

Y

i+j�n

(x

i

� y

j

) :

Shubert polynomials an also be de�ned by simple vanishing onditions,

and our as universal oeÆients in the extension of the Newton interpola-

tion formula to several variables [18℄.

Notie that, for the usual Chern lasses, one speializes the y

j

's to 0, and

thus one loses the vanishing properties whih haraterize the polynomials

in two sets of variables.

Instead of a ohomology ring, one an use the Grothendiek ring of lasses

of vetor bundles and de�ne in it Chern lasses orresponding to a pair of

ags of vetor bundles. The universal situation is still enountered with a

ag manifold.

The variables are now the lasses x

1

= [L

1

℄; : : : ; x

n

= [L

n

℄ of the tau-

tologial line bundles on F lag(C

n

). The geometrial basis is onstituted of

the lasses of the struture sheaves of Shubert varieties, the Grothendiek

polynomials being their distinguished representatives.

For eah permutation � 2 S

n

, there is a Grothendiek polynomial G

�

whih an be obtained from

Y

i+j�n

(1� y

i

=x

j

)

by a produt of isobari divided di�erenes ating on the x

i

's [16℄.

The ase of only one ag or of one vetor bundle is obtained by speializing

all the y

j

's to 1, but, one more, one loses then vanishing properties. One

reovers ohomology lasses, and Shubert polynomials, by taking leading

terms of Grothendiek polynomials.

Grothendiek polynomials an also be obtained through a generating

funtion in the 0-Heke algebra [11℄, or through a nonommutative Shu-

bert alulus [24℄.

We shall use a third method to obtain Grothendiek polynomials, whih

deomposes them, without anellations, into smaller polynomials.

Given a permutation � 2 S

n

, whih is not the identity, let r = max(i :

�

i

> �

i+1

). Let now k = max(�

j

; j > r; �

j

< �

r

), and � = (k; �

r

) �, where

(k; �

r

) is the transposition of the two values k; �

r

.
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Let �

(1)

; : : : ; �

(p)

be the all the permutations � suh that `(�)) = `(�)+1,

� �

�1

is equal to transposition (j; k), j < k (these are the permutations

ouring in the transition for Shubert polynomial, [20, 25℄).

Reformulating Proposition 3 of [17℄ (it adapts instantly to the ase of two

sets of variables that we need here), one has :

Proposition 1 Given a permutation � 2 S

n

, let B(�) be the (boolean) sub-

lattie of S

n

(onsidered as embedded into the lattie of ASM of order n,

[23℄), with generators the permutations �

(1)

; : : : ; �

(p)

, and minimum element

�. Then

�

G

�

�G

�

�

y

k

x

j

=

X

�2B(�)

(�1)

`(�)�`(�)

G

�

:

For example, for � = [6; 4; 8; 3; 1; 7; 2; 5℄, one has r = 6, k = 5, and the

boolean lattie B(�) is

[65843127℄

[65841327℄ [65834127℄ [64853127℄

[65831427℄ [64851327℄ [64835127℄

[64831527℄

�

�

�

�

�

�

X

X

X

X

X

X

�

�

�

�

�

�

X

X

X

X

X

X

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

�

�

�

�

�

�

furnishing the following reursion between Grothendiek polynomials :

�

G

64831527

�G

64831725

�

y

5

x

6

= G

64831527

�G

65831427

�G

64851327

�G

64835127

+G

65841327

+G

65834127

+G

64853127

�G

65843127

:

Yang-Baxter oeÆients

The Bruhat order on the symmetri group is usually de�ned by taking

subwords of redued deompositions. This amounts developing, in the group

algebra of the symmetri group, expressions of the type (1+s

1

)(1+s

2

)(1+s

1

),

with s

i

= simple transposition (transposition of i; i

+

1). However, sine

(1 + s

1

)(1 + s

2

)(1 + s

1

) 6= (1 + s

2

)(1 + s

1

)(1 + s

2

), this de�nition is not

satisfatory, and one must put weights to make it anonial, e.g.

(1 + s

1

)(1 + 2s

2

)(1 + s

1

) = (1 + s

2

)(1 + 2s

1

)(1 + s

2

) :
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The general rule to write weights is due to Yang. Yang's original motiva-

tion for introduing the Yang-Baxter equation [28℄ was the n-body problem

on a irle with Hamiltonian

H(y) = �

n

X

i=1

�

2

�y

2

i

+ 2

X

i<j

Æ(y

i

� y

j

) ;

where Æ is the Dira distribution. The problem was to solve the Shr�odinger

equation

H(y) (y) = E (y)

with periodi boundary onditions.

Yang looked for solutions of the form

 (y) =

X

�2S

n

�(y

�

)

X

�2S

n

A

�

(�)e

ix

�

�y

�

where S

n

is the symmetri group, x = (x

1

; : : : ; x

n

) 2 C

n

is the vetor of

spetral parameters, x

�

:= (x

�

1

; : : : ; x

�

n

), and � is the harateristi funtion

of the domain y

1

< y

2

< : : : < y

n

. The unknown oeÆients A

�

(�) form an

n! � n! matrix, and it is onvenient to regard eah A

�

as a funtion on the

symmetri group, or equivalently as an element of its group algebra.

Yang's onstrution an be interpreted as follows. Given any sequene

of spetral parameters x

1

; : : : ; x

n

, there exists a linear basis fY

�

; � 2 S

n

g,

the Yang-Baxter basis, of C [x

1

; : : : ; x

n

℄[S

n

℄, whih is de�ned through the

following reursions :

Y

�s

i

= Y

�

�

1 + (x

�

i+1

� x

�

i

) s

i

�

; `(�s

i

) > `(�): (1)

The validity of suh a de�nition is insured by the Yang-Baxter relations :

(1 + �s

i

) (1 + (� + �)s

i+1

) (1 + �s

i

) =

(1 + �s

i+1

) (1 + (� + �)s

i

) (1 + �s

i+1

) : (2)

Now, Yang's oeÆients are the oeÆients of the expansion of Yang-

Baxter elements in the basis of permutations.

It is interesting to note that Young's onstrution of irreduible repre-

sentations of the symmetri group an be interpreted as giving a solution

to the Yang-Baxter equation, the spetral parameters being the distane of

entries, in a Young tableau, to the main diagonal (these distanes are alled

ontents). Juys [15℄, then Cherednik [5℄, have shown moreover that Young's

natural idempotents are limits of some Yang-Baxter elements when spetral

parameters are speialized to the ontents of a Young tableau.
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The same onstrution is valid for the di�erent deformations of C [S

n

℄,

that is, for the algebras generated by T

1

; : : : ; T

n�1

satisfying the braid rela-

tions, together with a Heke relation (with �xed q

1

; q

2

) :

(T

i

� q

1

) (T

i

� q

2

) = 0 : (3)

The two ases relevant to geometry (for the ohomology ring, and the

Grothendiek ring respetively) are

�

T

N il

i

�

2

= 0 Nil-Heke algebra

�

T

0H

i

�

2

= �T

0H

i

0-Heke algebra

Expanding the orresponding Yang-Baxter elements Y

N il

�

and Y

0H

�

one

gets oeÆients :

Y

N il

�

=

X

�2S

n



�

�

T

N il

�

(4)

Y

0H

�

=

X

�2S

n

g

�

�

T

0H

�

(5)

The link with the preeding setion is provided by the following property

[19℄ :

Proposition 2 The Yang-Baxter oeÆients 

�

�

and g

�

�

are speializations

of Shubert and Grothendiek polynomials :



�

�

= X(x

�

; x) & g

�

�

= G (x

�

; x) ; (6)

denoting by x

�

the reordering x

�

1

; : : : ;

;

x

�

n

of the spetral parameters.

Notie that reursions by divided di�erenes, for Shubert and Grothendiek

polynomials, are hidden when one speializes one set of parameters to a per-

mutation of the other; Shubert and Grothendiek polynomials are easier to

ompute than expansions of Yang-Baxter elements.

Keys and weights of ASM

Ehresmann [10℄ gave a ellular deomposition of the ag manifoldF lag(C

n

),

from whih he dedued the homology ring of it. His onstrution amounts to

say that the set of omplete ags of a vetor spae with a basis fe

1

; : : : ; e

n

g

an be partitionned into ells, eah of whih ontains a oordinate ag, that

is a omplete ag of subsets of fe

1

; : : : ; e

n

g (Ehresmann was not using per-

mutations to index ells, but ags of sets, and gave in this set-up the �rst

de�nition of the Bruhat order on the symmetri group).
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We hose matries as basi objets, having already indiated that eah

ASM an be onsidered as a sequene of sets of respetive orders 1; 2; 3; : : :.

The ase of a permutation � is when one takes as a sequene the omplete

ag of sets

fe

�

1

g � fe

�

1

; e

�

2

g � � � � � fe

�

1

; : : : ; e

�

n

g :

For the order 3, there is only one ASM whih is not a permutation matrix :

h

0 1 0

1 �1 1

0 1 0

i

$ sequene of sets fe

2

g; fe

1

; e

3

g; fe

1

; e

2

; e

3

g :

Given a point � in Z � Z, it determines a SE-quadrant (all the points

South and East of it, inluding horizontal and vertial, minus � itself). Let

us all neighbours of � in an ASM the entries 1 in its SE-quadrant suh that

the submatrix (on onseutive rows and olumns)

� ��� �

� ��� 1

has only 0 entries,

outside the two pointed verties.

The domain overed by all the submatries assoiated to the neighbours

of � is a Ferrers' diagram [26℄, with 1's at its orners, 0's elsewhere (apart

from �).

Inating a Ferrers' diagram onsists in replaing it by a bigger diagram,

with inner orners where the original orners were :

� ~ ~ ~ ~ ~ � �

~ ~ ~ � � � � �

~ ~ ~ � � � � �

~ � � � � � � �

~ � � � � � � �

inflation

�����!

� ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ ~ � �

~ ~ ~ � � � � �

~ ~ ~ � � � � �

:

The original Ferrers' diagram, as well as its image under ination, overs the

plaes where ~ is written (apart from �).

An entry

�

1 in an ASM is removable if its SE-quadrant ontains no other

�

1 entry. Removing this

�

1 onsists in inating the Ferrers'diagram it deter-

mines, �lling it with 0's, exept at its orners when one puts 1's.

�

1 ~ ~ ~ ~ 1 � �

~ ~ ~ 0 0 0 � �

~ ~ 1 0 0 0 � �

~ 0 0 � � � � �

1 0 0 � � � � �

Removing�1

�������!

~ ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ ~ � �

~ ~ ~ ~ ~ 1 � �

~ ~ ~ � � � � �

~ ~ 1 � � � � �

:
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The original Ferrers' diagram, as well as its image under ination, overs the

plaes where �1 or ~ (whih is a zero entry) are written. It is lear that this

operation gives a new ASM.

One heks :

Lemma 3 Given an ASM, and two removable

�

1, then the ASM obtained

by removing the two

�

1 is independent of the order in whih one removes

them.

Corollary 4 Removing suessively all

�

1's in an ASM asm produes a

unique permutation matrix Key(asm) alled its key.

Here is an example of a sequene produing a key (0 entries are written with

a dot).

2

6

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � �1 � 1

1 �1 � � 1 � � �

� � 1 �1 � � 1 �

� 1 � � � � � �

� � � � � 1 � �

� � � 1 � � � �

3

7

7

5

;

2

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � � � �

1 �1 � � 1 � � �

� � 1 �1 � � � 1

� 1 � � � � � �

� � � � � � 1 �

� � � 1 � � � �

3

7

5

;

2

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � � � �

1 �1 � � 1 � � �

� � 1 � � � � �

� 1 � � � � � �

� � � � � � � 1

� � � � � � 1 �

3

7

5

;

2

6

4

� � � � � 1 � �

� 1 � � � � � �

� � � 1 � � � �

1 � � � � � � �

� � 1 � � � � �

� � � � 1 � � �

� � � � � � � 1

� � � � � � 1 �

3

7

5

:

Given a permutation matrix, let us all pivot the position oupied by the

top box of the leftmost olumn of its SE-diagram. The pivot of an ASM is

the pivot of its key. Let us all top of an ASM the 2�2 submatrix ontaining

the pivot, and the two entries 1 in the same olumn, above, and in the same

row, on the left.

Lemma 5 In an ASM there is no

�

1 entry in a olumn left of the pivot, nor

in the same olumn above it.

Proof. If asm is not a permutation matrix, remove all

�

1 from right to left,

from bottom to top, exept the last one. The two entries 1 in the top of

�

1 :

0 1

1 �1

will remain 1's in Key(asm). Therefore, the plae oupied by this

�

1 is a box of the SE-diagram of Key(asm), and satis�es the geographial

onstraints �xed by the lemma with respet to the pivot. QED

This remark allows us to de�ne transition on ASM.

De�nition 6 For eah ASM asm, let � be its pivot. Let Trans(asm) be the

matrix obtained from asm by transforming its top as follows. If the pivot

ontains a 0, hange its top

�

0 ��� 1

.

.

.

.

.

.

1 ��� �

�

into

�

1 ��� 0

.

.

.

.

.

.

0 ��� 1

�

:
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If it ontains a

�

1, then hange

�

0 ��� 1

.

.

.

.

.

.

1 ��� �

�

into

�

1 ��� 0

.

.

.

.

.

.

0 ��� 0

�

(the pivot annot ontain a 1).

Proposition 7 Given a permutation �, the image under Trans of ASM(�)

is the union of all ASM(�) : � 2 B(�).

Proof. Let asm 2 ASM(�). The neighbours of its pivot are not neighbours

of any

�

1 not loated in the pivot. Therefore, one an remove all

�

1 loated

outside the pivot and restrit to ASM having at most one

�

1, loated in the

pivot.

If there is a 0 in the pivot, then asm is a permutation matrix (= �), and

its image under a transition is K(�), where � is the minimum element of

B(�). If there is a

�

1, removing it gives K(�), and this means that inating

the Ferrrers'diagram of � in asm gives the Ferrrers' diagram of � in K(�).

Eah pair of onseutive neighbours of � in asm gives a neighbour of � in

K(�), and onversely, the neighbours of � in asm are in bijetion with a

subset of neighbours of � in K(�), and the inated Ferrers' diagram is a

subset of the Ferrers' diagram of � in K(�) (we have framed the 1's giving

bak asm from K(�), and restrited matries to their relevant part) :

asm =

� ~ ~ ~ ~ ~ ~ ~ ~ 1

~ ~ ~ ~ ~ ~ ~ 0 0 0

~ ~ ~ ~ ~ ~ 1 0 0 0

~ ~ 0 0 0 0 0

~ 1 0 0 0 0 0

0 0 � �

0 0 � �

0 0 � 1

0 0

1 0

; K(�) =

� ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ 1

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ 1

~ ~ � �

~ ~ � �

~ ~ � 1

~ ~

~ 1

On the other hand, the generators of the boolean lattie B(�) an be de-

sribed on K(�), rather than using the formulation of Proposition 1. Read-

ing from left to right the position of the 1's, one has to �nd the �rst olumn

where there is an inrease (noting  the entry 1 of this olumn), take in its

SW-quadrant the upper 1 (noted b), and look at all 1's in the SE-quadrant

of  suh that the retangle with orner a, and edges on the vertial of 

and the horizontal of b only ontains 0's, apart from a. In other words, the

NW orner of the retangle is the pivot, and a is a neighbour of it. Then

exhanging b; ; a into ; a; b produes a new permutation whih is a generator

12



of B(�), and onversely every generator is obtained in this manner [22℄.

0 � � 

� �

� �

b � � � 0 0 0 0

0 0 0 0 0

0 0 0 0 a

�!

 � � 0

� �

� �

0 � � � 0 0 0 b

0 0 0 0 0

a 0 0 0 0

:

The minimum element of B(�) is obtained by passing from ; b to b;  :

0 ��� 

.

.

.

.

.

.

b ��� �

7!

 ��� 0

.

.

.

.

.

.

0 ��� b

. QED

Main property

Let us now introdue parameters x

1

; : : : ; x

n

, y

1

; : : : ; y

n

. Given an ASM,

attribute to eah entry 0 belonging to the SE-diagram the weight

y

i

x

j

� 1, to

eah entry

�

1 the weight

y

i

x

j

, where i; j are the oordinates (and the weight 1

to all other entries). The weight �(asm) of an ASM is the produt of all the

weights of its entries.

I an now explain how to obtain Yang-Baxter oeÆients, Grothendiek

and Shubert polynomials from enumeration of square ie-on�gurations.

Sine Shubert polynomials and Yang-Baxter oeÆients are instantly de-

dued from Grothendiek polynomials, it is suÆient to state the property

in terms of Grothendiek polynomials only.

Theorem 8 Given an integer n, and a permutation � 2 S

n

, let

! = [n; : : : ; 1℄ 2 S

n

. Then the Grothendiek polynomial G

�

satis�es

(�1)

`(!�)

G

�

=

X

�(asm)

with the sum over all ASM with key equal to �

�1

!.

Proof. The generators of the lattie B(�) are obtained by taking the pivot,

one of its neighbour, and transforming the submatrix of order 3 of the key

2

6

4

0 ��� 1 ��� 0

.

.

.

.

.

.

.

.

.

1 ��� � ��� 0

.

.

.

.

.

.

.

.

.

0 ��� 0 ��� 1

3

7

5

into

2

6

4

1 ��� 0 ��� 0

.

.

.

.

.

.

.

.

.

0 ��� � ��� 1

.

.

.

.

.

.

.

.

.

0 ��� 1 ��� 0

3

7

5

:

Let the pivot of � have oordinates r; k.
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The e�et of a transition on the weight of an asm with key �, is just to

suppress the fator y

k

=x

r

, if there is a

�

1 at the pivot, or to suppress the fator

y

k

=x

r

�1, if there is a 0 at the pivot. Therefore, thanks to Proposition 7, the

sum

P

asm:Key(asm)=�

�(asm) satis�es the same reursion, under transition, as

(�1)

`(!�)

G

�

. QED

For example, the Grothendiek polynomial of index [4; 2; 1; 5; 3℄ is given

by the four ASM, with key equal to [4; 1; 5; 2; 3℄, having the following weights

(remember that olumns are numbered from right to left; only SE-type 0's

are indiated):

5

4 5

3 4 5

2 2 2 4

1 1 1 1 4

2

6

6

6

6

4

: 1 : : :

: : : : 1

1

�

1 : 1 o

: 1 : o o

: : 1 o o

3

7

7

7

7

5

y

3

x

4

(

y

1

x

2

�

1)(

y

2

x

2

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

5

4 5

3 3 5

2 2 2 4

1 1 1 1 4

2

6

6

6

6

4

: 1 : : :

: : : : 1

1

�

1 : 1 o

: : 1 o o

: 1 o o o

3

7

7

7

7

5

y

3

x

4

(

y

1

x

3

�

1)(

y

1

x

2

�

1)(

y

2

x

2

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

5

4 5

3 4 5

2 2 4 4

1 1 1 1 4

(Key)

2

6

6

6

6

4

: 1 : : :

: : : : 1

1 o : : o

: : : 1 o

: : 1 o o

3

7

7

7

7

5

(

y

1

x

2

�

1)(

y

3

x

4

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

5

4 5

3 3 5

2 2 3 4

1 1 1 1 4

2

6

6

6

6

4

: 1 : : :

: : : : 1

1

�

1 1 : o

: : : 1 o

: 1 o o o

3

7

7

7

7

5

y

3

x

4

(

y

1

x

3

�

1)(

y

1

x

2

�

1)(

y

1

x

1

�

1)(

y

2

x

1

�

1)(

y

3

x

1

�

1)

Therefore, the Grothendiek polynomial G

42153

is equal to

G

42153

= (1

�

y

1

x

2

)(1

�

y

1

x

1

)(1

�

y

2

x

1

)(1

�

y

3

x

1

)(1

�

y

1

y

2

y

3

x

2

x

3

x

4

) :

Sine the

�

1's are loated at the pivot, the image under transition of the

four matries are permutation matries, and one has

�

G

42135

�G

42153

�

y

3

x

4

= G

42135

�G

43125

�G

42315

+G

43215

:

There exists a Cauhy kernel for Grothendiek polynomials, whih gen-

eralizes the Cauhy kernel for Shur funtions. Rewriting Theorem 2.8 and

14



Lemma 2.9 of [16℄, the existene of suh kernel amounts to the following iden-

tity involving three sets of variables fx

1

; : : : ; x

n

g, fy

1

; : : : ; y

n

g, fz

1

; : : : ; z

n

g

(writing �! for [�

n

; : : : ; �

1

℄, � 2 S

n

) :

y

n�1

1

� � �y

0

n

Y

i+j�n

�

1

z

i

�

1

x

j

�

=

X

�2S

n

(�1)

`(�)

G

�

(x;y)G

�!

(z;y) : (7)

The same kernel also expands in terms of Shubert polynomials. Using The-

orem 8, one an write the kernel as a statistis on pairs of ASM.

Bousquet-M�elou and Habsieger [2℄ give a sum over ASM, whih in our

terms, states that

X

�2S

n

(�1)

`(�)

G

�

(x; 1) = x

n�1

1

x

n�2

2

� � �x

0

n

;

and is obtained by speializing Eq.7.

Their summation involves ounting the number of SE-zeroes in eah ol-

umn of an ASM, as well as the

�

1. Robbins and Rumsey [27℄ express the

q-Vandermonde

Q

1�i<j�n

(x

i

+ qx

j

) through a summation on the ASM of or-

der n, this time reording the SW-zeroes as well. Chapman [4℄, re�nes their

onstrution and gives a ombinatorial desription of

Q

1�i<j�n

(x

i

+ y

j

).
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