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Abstract

Characteristic classes for flags of vector bundles and Yang-Baxter
coefficients are related to the flag variety for the linear group, and,
ultimately, to the Ehresmann-Bruhat order on the symmetric group.
This order can be interpreted in terms of an embedding of the sym-
metric group into the lattice of alternating-sign matrices (in bijection
with square ice configurations). By decomposing the set of ice con-
figurations into cells indexed by permutations, we are able to explicit
characteristic classes, Grothendieck polynomials and Yang-Baxter co-
efficients from a simple weight on ice configurations.

Square-ice configurations are paved with 6 types of frozen water molecules,
placed on a planar grid, shown on the following figure.



Here is an example of such a configuration :

H—0 H—-—O—H O—H O—H O—H
T A
H—0—H 5 H—-—0O H—-—O—H O—H
P
H*é H—0O—H O—H é H—0—H
H*é H*é H—0O0 H—-—0—H 5*H
H H Fll H H
H*é H*é H—0—H 5*H 5*H

Ice configurations are in bijection with alternating-sign matrices (ASM in
short), replacing horizontal molecules by 1, vertical molecules by -1, and
the others by 0. Such matrices of 0,1, —1 are characterized by the property
that non zero entries alternate in each row and column, always starting and
finishing with a 1.

Continuing with the same example, we get the following ASM :

0o 1 0 0 O
1 -1 0 1 O
0 1 0 -1 1
0 0 0 1 O
0o 0 1 0 O

One recovers an ice configuration from an ASM by adapting a two hun-
dred year-old planar display, due to Rothe(1800), for permutations. His con-
struction involves choosing a quadrant of the plane, and taking all quadrants,
one gets four “Rothe diagrams” for a permutation [25]. Properly defining in-
versions, one gets more generally four diagrams (NW, SW, NE, SE diagrams)
associated to a given ASM, as follows. Given a 0-entry in an ASM, ignore all
the other zeroes. Then the current 0 is next to a 1 in its column and its row.
Replace now this 0 by a box that will be attributed to one of the diagrams,
depending on the orientation :

0 —1 —1 1 1
\J gives | , T gives 1 ;
1 1 0 —1 — 1
1+ 0 1« 1 1
I gives 1 , T gives T
1 1 1< 0 1«



The preceding ASM gives the four diagrams :

| I . .1 O 4go S N
1-10 1 - 1 -1 1-1- 10 1-1-1
-1 --11| , | 0O =11 , -1 3d-11|, |1 -1
.. g1 - O L1 - R P |
R O 1 - - S . .10

Of course, the four types of boxes exactly correspond to the four types of
hook frozen water molecules, but we shall only need the SE-type.

ASM are in turn in bijection with triangles, that is, staircase Young
tableaux with weakly decreasing diagonals. One just has to read the suc-
cessive rows of the matrix, from right to left, a 1 in column ¢ meaning that
the letter ¢+ appears in the tableau, a -1 meaning that it disappears, building
in this way the successive columns of a tableau (from right to left), or a
sequence of sets of order 1,2,3,....

For the current ice-configuration, writing the letters directly in the ASM,
a disappearance being designated with a ‘hat’, we read

DD'—"_lJ—‘
—
O -

4L

| = {4 (25), {1,4,5), {1,2,4,5), {1,2,3,4,5)

4
L3

NN N

which are the columns of the following triangle (writing on its right the object
that we shall really use, an ASM with SE-type zeroes indicated by a symbol
-5, the other zeroes being replaced by a dot) :

5] 1

415 1 -1 1
31415 PRI 1 -1 1
2[2[4][5 R R A
1[1]1]2]4] T S |

Usual Young tableaux have weakly increasing rows, strictly decreasing
columns, but the Young tableaux in bijection with ASM are characterized
by the fact that they also have weakly decreasing diagonals.

Though it is straightforward to pass from one of these three types of
combinatorial objects to the other two, nevertheless they show seemingly
different properties. For example, one can define the supremum (resp. infi-
mum) of a family of triangles of the same order, by just considering each of
the boxes composing them, and taking the supremum (resp infimum) of the
numbers contained in them.

Thus one has a lattice structure (in the sense of an ordered structure
with sup and inf) on the set of triangles of a given order, but this lattice



structure looks somehow mysterious on the set of ASM, or on the set of
ice-configurations.

In particular, one can define the supremum of two permutation matrices,
and this construction reveals some new properties of the Bruhat order on the
symmetric group [23] (or more generally, on a Coxeter group, [13]).

Among triangles, there are special ones, called keys : they are those such
that each of their columns is a subset of the preceding one. In other words
keys are associated with a flag of subsets of {1, 2, ..., n}. Reading the
sequence of numbers in the order they appear, one gets a permutation.

Given a triangle ¢ (or more generally, a Young tableau), one can associate
to it a key K (t), which is minima among the keys bigger than it, and called
its key. With M.P. Schiitzenberger, I used this notion to give combinatorial
descriptions of Schubert polynomials and Demazure characters. I shall here
use the corresponding construction for an ASM, i.e. canonically attach to
each ASM a permutation matrix, still using the terminology key (in fact,
the correspondence between ASM and triangles exchanges the two notions,
but we shall not use it). At the level of ice-configurations, keys have not
yet been used. It consists in getting rid, in a canonical way that we shall
explain later, of all vertical molecules. Here, we need ice configurations or
ASM rather than triangles, because we use the symmetry between rows and
columns of an ASM, which is lost in the corresponding triangle.

Our main result (Theorem 8) shows that a simple statistic on ASM or
ice configurations (easy to read also on triangles) gives the Chern classes
associated to a pair of flags of vector bundles, as well as the coefficients in
the expansion of Yang-Baxter elements in some deformations of the group
algebra of the symmetric group. For each ASM, we shall need only its SE-
diagram together with its —1 entries.

Chern classes

Chern classes are cohomology classes associated to a vector bundle V.
Their first occurence (in the algebraic geometry of the end of the 19" century,
in special cases) can be formulated as classes representing the obstruction to
extending sections of V. It is easy to see that one should in fact use two
vector bundles Vi, V5. Given a morphism between them

Vi —— W,

one uses the degeneraci loci of ¢ to define the Chern classes of the formal
difference Vo — V4 (the usual case being when V; is a trivial bundle). The
generic situation is attained when V5 is the universal quotient bundle on a
Grassmannian and when V is a trivial bundle. In that case, one has explicit



varieties, the special Schubert varieties, which represent the Chern classes [6].

But as soon as one wants to describe products of Chern classes, one needs

all the Schubert varieties, not only the special ones. Chern gave in [7] a

description of the multiplication in the cohomology ring of a Grassmannian.

The classes now correspond to a pair consisting of a (trivial) flag of vector

bundles, together with the universal vector bundle on the Grassmannian.
More generally, one can take two flags of vector bundles

0= Vi o Vr 2 Vs sV =0,

the universal situation being now realized on a flag manifold, the cohomology
classes associated to the two flags still being represented by Schubert varieties
in the generic case.

One can formulate this construction differently, having a variety X', and a
matrix ¢(x), z € X, the Schubert varieties being now defined by a matrix of
ranks (the ranks r[i, j] of the submatrices placed in the NW-corner; in fact,
one should consider simultaneously, for any point [i, j], the four quadrants,
and four rank-matrices).

It is easy to see that the rank-matrix of an invertible matrix is the ma-
trix of ranks of a permutation matrix, and therefore the possible classes of
matrices are in bijection with permutations, and with Schubert cycles in a
flag manifold Flag(C").

For example, the permutation o = [2,5,1,4,3] (taking the convention
that columns are numbered from right to left) gives rise to the following

rank-matrix :
1. 00011

.. .. 11122

.1 — 11123
1L 12234
R R 12345

The rank matrix, or the ranks of the different induced morphisms V; — VQj
are overdetermined, a minimal subset of rank conditions has been given by
Fulton [12].

There is a simpler way to introduce the symmetric group in the theory
of Chern classes. It is called the splitting principle [14], which states that
given a vector bundle V' on a manifold M, then on the relative flag manifold
F(V) — M, the pullback of V' gives a sequence of line bundles Ly, ..., L,,
such that the total Chern class ¢(V) is equal to (1 +¢1(L1)) -+ (14 ¢1(Ly)).
Chern classes now become elementary symmetric functions in the variables
T = Cl(Ll), ey, Iy = Cl(Ln)~

To handle efficiently Chern classes through this method, one first has to
describe the cohomology ring of the flag manifold. This has been done by



Bernstein-Gelfand-Gelfand [1] and Demazure [8]. With Marcel-Paul Schiitzen-
berger, I gave in [20] polynomial representatives of the basis of Schubert
cycles in the cohomology of the flag manifold Flag(C"), the Schubert poly-
nomials. They can be defined by just taking all possible images under divided
differences (acting on the z;’s) of the extension of the Vandermonde :

HiJrjgn(xi ~ i) -

Schubert polynomials can also be defined by simple vanishing conditions,
and occur as universal coefficients in the extension of the Newton interpola-
tion formula to several variables [18].

Notice that, for the usual Chern classes, one specializes the y;’s to 0, and
thus one loses the vanishing properties which characterize the polynomials
in two sets of variables.

Instead of a cohomology ring, one can use the Grothendieck ring of classes
of vector bundles and define in it Chern classes corresponding to a pair of
flags of vector bundles. The universal situation is still encountered with a
flag manifold.

The variables are now the classes xy = [Lq],..., x, = [Ly] of the tau-
tological line bundles on Flag(C"). The geometrical basis is constituted of
the classes of the structure sheaves of Schubert varieties, the Grothendieck
polynomials being their distinguished representatives.

For each permutation o € &,,, there is a Grothendieck polynomial G,
which can be obtained from

IL.,..0—u/e)

by a product of isobaric divided differences acting on the z;’s [16].

The case of only one flag or of one vector bundle is obtained by specializing
all the y;’s to 1, but, once more, one loses then vanishing properties. One
recovers cohomology classes, and Schubert polynomials, by taking leading
terms of Grothendieck polynomials.

Grothendieck polynomials can also be obtained through a generating
function in the 0-Hecke algebra [11], or through a noncommutative Schu-
bert calculus [24].

We shall use a third method to obtain Grothendieck polynomials, which
decomposes them, without cancellations, into smaller polynomials.

Given a permutation o € &, which is not the identity, let r = max(i :
0; > 0i41). Let now k = max(o;, j > r, 0; < 0,), and v = (k,0,) o, where
(k,o,) is the transposition of the two values k, o,.



Let vV ... v® be the all the permutations 1 such that £(n)) = £(v) +1,
nv~!is equal to transposition (j, k), ;7 < k (these are the permutations
occuring in the transition for Schubert polynomial, [20, 25]).

Reformulating Proposition 3 of [17] (it adapts instantly to the case of two
sets of variables that we need here), one has :

Proposition 1 Given a permutation o € &, let B(o) be the (boolean) sub-
lattice of &,, (considered as embedded into the lattice of ASM of order n,

[23]), with generators the permutations vV, ... VP and minimum element
v. Then y
G, — GU> Ik _ -t g
( D ILC) .
neB(o)

For example, for o = [6,4,8,3,1,7,2,5], one has r = 6, k = 5, and the
boolean lattice B(o) is

65843127]
(65841327  [65834127]  [64853127
(65831427  [64851327]  [64835127

(64831527]

furnishing the following recursion between Grothendieck polynomials :

Ys
(G64831527 — G64831725> = = Geassisar — Gesssiazr — Geassizer — Geasssior
6

+ Gesgaizar + Gesssaror + Geasssior — Gessazior -

Yang-Baxter coefficients

The Bruhat order on the symmetric group is usually defined by taking
subwords of reduced decompositions. This amounts developing, in the group
algebra of the symmetric group, expressions of the type (14s1)(1+s2)(1+s;),
with s; = simple transposition (transposition of 7,7 +1). However, since
(14 s1)(L+ s2)(1 + s1) # (1 + s2)(1 + s1)(1 + s2), this definition is not
satisfactory, and one must put weights to make it canonical, e.g.

(14 s1)(1+282) (14 s1) = (14 s9)(1+251)(1 + s2) .

N |



The general rule to write weights is due to Yang. Yang’s original motiva-
tion for introducing the Yang-Baxter equation [28] was the n-body problem
on a circle with Hamiltonian

n

H(y) = Z +2(:Z(5 Yi — Y;)

=1 1<j

where ¢ is the Dirac distribution. The problem was to solve the Schrodinger
equation

H(y)y(y) = Ev(y)

with periodic boundary conditions.
Yang looked for solutions of the form

=3 00y") D Ae(r)eY

TEGn 0'6671
where &,, is the symmetric group, x = (z1,...,2,) € C" is the vector of
spectral parameters, x7 := (x,,, ..., ., ), and 6 is the characteristic function

of the domain y; < y5 < ... < y,. The unknown coefficients A,(7) form an
n! x n! matrix, and it is convenient to regard each A, as a function on the
symmetric group, or equivalently as an element of its group algebra.

Yang’s construction can be interpreted as follows. Given any sequence
of spectral parameters x1,...,x,, there exists a linear basis {Y,, 0 € &,},
the Yang-Bazter basis, of Clzy,...,x,][6,], which is defined through the
following recursions :

Yos, = Yo (1+ (%o, — o) 51) 5 Llos;) > L(0). (1)

The validity of such a definition is insured by the Yang-Baxter relations :

(1+as;) 1+ (a+ F)sit1) (L4 Bs;) =
(1+ Bsiv1) T+ (a+ B)si) (1 + asitr) . (2)

Now, Yang’s coefficients are the coefficients of the expansion of Yang-
Baxter elements in the basis of permutations.

It is interesting to note that Young’s construction of irreducible repre-
sentations of the symmetric group can be interpreted as giving a solution
to the Yang-Baxter equation, the spectral parameters being the distance of
entries, in a Young tableau, to the main diagonal (these distances are called
contents). Jucys [15], then Cherednik [5], have shown moreover that Young’s
natural idempotents are limits of some Yang-Baxter elements when spectral
parameters are specialized to the contents of a Young tableau.



The same construction is valid for the different deformations of C[&,,],
that is, for the algebras generated by T,..., T,_; satisfying the braid rela-
tions, together with a Hecke relation (with fixed q1, ¢2) :

(Ti—Ch)(Tz’—Ch):O- (3)

The two cases relevant to geometry (for the cohomology ring, and the
Grothendieck ring respectively) are

(TN”)2 =0 Nil-Hecke algebra
(T»OH)2 = I 0-Hecke algebra

7

Expanding the corresponding Yang-Baxter elements YV and Y% one
gets coefficients :

R S 8
WY g ©

The link with the preceding section is provided by the following property
[19] :

Proposition 2 The Yang-Baxter coefficients ¢, and g, are spectalizations
of Schubert and Grothendieck polynomials :

a=Xx",x) & g =G, x), (6)
denoting by X" the reordering x,,, ..., %, of the spectral parameters.

Notice that recursions by divided differences, for Schubert and Grothendieck
polynomials, are hidden when one specializes one set of parameters to a per-
mutation of the other; Schubert and Grothendieck polynomials are easier to
compute than expansions of Yang-Baxter elements.

Keys and weights of ASM

Ehresmann [10] gave a cellular decomposition of the flag manifold Flag(C"),
from which he deduced the homology ring of it. His construction amounts to
say that the set of complete flags of a vector space with a basis {ey,..., e,}
can be partitionned into cells, each of which contains a coordinate flag, that
is a complete flag of subsets of {ey,..., e,} (Ehresmann was not using per-
mutations to index cells, but flags of sets, and gave in this set-up the first
definition of the Bruhat order on the symmetric group).

9



We chose matrices as basic objects, having already indicated that each
ASM can be considered as a sequence of sets of respective orders 1, 2, 3,.. ..
The case of a permutation o is when one takes as a sequence the complete
flag of sets

{es,} CH{eoys€0,F C--CH{egyyos €0, } .

For the order 3, there is only one ASM which is not a permutation matrix :

[g —11 g} < sequence of sets {es}, {e1,e3}, {e1,e2,e3} .

Given a point B in Z x Z, it determines a SE-quadrant (all the points
South and East of it, including horizontal and vertical, minus B itself). Let

us call neighbours of B in an ASM the entries 1 in its SE-quadrant such that

" -
R |

the submatrix (on consecutive rows and columns) has only 0 entries,

outside the two pointed vertices.

The domain covered by all the submatrices associated to the neighbours
of B is a Ferrers’ diagram [26], with 1’s at its corners, 0’s elsewhere (apart
from W).

Inflating a Ferrers’ diagram consists in replacing it by a bigger diagram,
with inner corners where the original corners were :

(VARVERV

in flation

ACRCECRCH |
3IBA3
I3

ACRCRECRCH |

IABABABA

XCRCRCRCRC
I3
3IBA3
3IBA3

The original Ferrers’ diagram, as well as its image under inflation, covers the
places where © is written (apart from H).

An entry -1 in an ASM is remowable if its SE-quadrant contains no other
-1 entry. Remowing this -1 consists in inflating the Ferrers’diagram it deter-
mines, filling it with 0’s, except at its corners when one puts 1’s.

19 Q9 9 01 vIEVERVINVIRVIRY
O QY 0 00 , vIEVERVENVIRVIRY
Q910 0 0 R VIR VIR VIR VIRV |
Q0 0 VIEVERY
1 0 0 VNV

10



The original Ferrers’ diagram, as well as its image under inflation, covers the
places where £1 or © (which is a zero entry) are written. It is clear that this
operation gives a new ASM.

One checks :

Lemma 3 Given an ASM, and two removable -1, then the ASM obtained
by removing the two -1 is independent of the order in which one removes
them.

Corollary 4 Removing successively all -1’s in an ASM asm produces a
unique permutation matric Key(asm) called its key.

Here is an example of a sequence producing a key (0 entries are written with
a dot).

R N B T 1 - -

T N A HE A PR 1-

Given a permutation matrix, let us call pivot the position occupied by the
top box of the leftmost column of its SE-diagram. The pivot of an ASM is
the pivot of its key. Let us call top of an ASM the 2 x 2 submatrix containing
the pivot, and the two entries 1 in the same column, above, and in the same
row, on the left.

Lemma 5 In an ASM there is no —1 entry in a column left of the pivot, nor
in the same column above it.

Proof. If asm is not a permutation matrix, remove all -1 from right to left,

from bottom to top, except the last one. The two entries 1 in the top of

-1: %Y will remain 1’s in Rey(asm). Therefore, the place occupied by this

-1 is a box of the SE-diagram of Key(asm), and satisfies the geographical

constraints fixed by the lemma with respect to the pivot. QED
This remark allows us to define transition on ASM.

Definition 6 For each ASM asm, let B be its pivot. Let Trans(asm) be the
matriz obtained from asm by transforming its top as follows. If the pivot
contains a 0, change its top

11



If it contains a —1, then change

0. 1 1.0
[: : ] into [ Do ]
| 0.0
(the pivot cannot contain a 1).

Proposition 7 Given a permutation o, the image under Trans of ASM (o)
is the union of all ASM(n) : n € B(o).

Proof. Let asm € ASM(o). The neighbours of its pivot are not neighbours
of any -1 not located in the pivot. Therefore, one can remove all -1 located
outside the pivot and restrict to ASM having at most one -1, located in the
pivot.

If there is a 0 in the pivot, then asm is a permutation matrix (= o), and
its image under a transition is K(v), where v is the minimum element of
B(o). If there is a -1, removing it gives K (o), and this means that inflating
the Ferrrers’diagram of B in asm gives the Ferrrers’ diagram of B in K (o).
Each pair of consecutive neighbours of B in asm gives a neighbour of B in
K (o), and conversely, the neighbours of B in asm are in bijection with a
subset of neighbours of B in K (o), and the inflated Ferrers’ diagram is a
subset of the Ferrers’ diagram of B in K (o) (we have framed the 1’s giving
back asm from K(o), and restricted matrices to their relevant part) :

| EVAVEVEVEVEVEVEVET | IVEVEVEVIVIIVEvEV Y
VEVEVEVEVEVRVEN SN CRVIVEVEVIIVIIVEVEVIRY)
VVVYVV 1000 VEVEVEVIVEVEVIVIVIEY
©V00000 VVIVAVEVIVIRY;
asm= 100000 7 K(a):®vvvv

00 - - gg::
88.1 NI

' VY
00
10 v [1]

On the other hand, the generators of the boolean lattice B(c) can be de-
scribed on K (o), rather than using the formulation of Proposition 1. Read-
ing from left to right the position of the 1’s, one has to find the first column
where there is an increase (noting ¢ the entry 1 of this column), take in its
SW-quadrant the upper 1 (noted b), and look at all 1’s in the SE-quadrant
of ¢ such that the rectangle with corner a, and edges on the vertical of ¢
and the horizontal of b only contains 0’s, apart from a. In other words, the
NW corner of the rectangle is the pivot, and a is a neighbour of it. Then
exchanging 0, ¢, a into ¢, a, b produces a new permutation which is a generator

12



of B(o), and conversely every generator is obtained in this manner [22].

0"C C"O

b mBO0OOOO 0. -mMOOOUb
0000 0 0000 0
0000 a @ 00 0 0

The minimum element of B(o) is obtained by passing from ¢,b to b,c :

= QED

Main property

Let us now introduce parameters ..., Ty, Y1, .., Yn. Given an ASM,
attribute to each entry 0 belonging to the SE-diagram the weight i’—; -1, to
each entry -1 the weight g—], where i, j are the coordinates (and the weight 1
to all other entries). The weight ¢(asm) of an ASM is the product of all the
weights of its entries.

I can now explain how to obtain Yang-Baxter coefficients, Grothendieck
and Schubert polynomials from enumeration of square ice-configurations.
Since Schubert polynomials and Yang-Baxter coefficients are instantly de-
duced from Grothendieck polynomials, it is sufficient to state the property
in terms of Grothendieck polynomials only.

Theorem 8 Given an integer n, and a permutation o € S, let
w=n,...,1] € &,. Then the Grothendieck polynomial G, satisfies

(-G, =) ¢(asm)
with the sum over all ASM with key equal to o~ w.

Proof. The generators of the lattice B(o) are obtained by taking the pivot,
one of its neighbour, and transforming the submatrix of order 3 of the key

0« 1 0 1.0 - 0
S - T into 0. W1
b 0 i O 1o 0

Let the pivot of o have coordinates r, k.

13



The effect of a transition on the weight of an asm with key o, is just to
suppress the factor yy /x,, if there is a —1 at the pivot, or to suppress the factor
yr/x, — 1, if there is a 0 at the pivot. Therefore, thanks to Proposition 7, the
SUIN D e en(asm)—o @(8M) satisfies the same recursion, under transition, as
(—1)Hwngq,,. QED

For example, the Grothendieck polynomial of index [4,2,1,5, 3] is given
by the four ASM, with key equal to [4,1, 5,2, 3], having the following weights
(remember that columns are numbered from right to left; only SE-type 0’s
are indicated):

5] S

415 1

31415 1-1. 1 ¢ Y3 (UL V(Y2 1) (¥ _1)(¥2_1)(¥_
2121214 1 ._(l) _g wi(a:; 1)(:17; 1)(901 1)(90? 1)(90? 1)
1[1[1]1]4] 12 2

5] o1 :

415 1

A 11 1 =0 | m(mo gy () (Lo1)(2-1) (21
2121214 1 _(|) _(l) $4($3 )(Iz )(arz )(m )(azl )(g;l )
Llefafufal] 12528 28

H .

415 |

31415 | 1

St B |10 | GrDEDEDE-DED
1[1]1]1]4] !

5] 1 :

415 A |

335 1-11 . =0 | ms(m pym qy(zoq)(2 1)(2 1
2 2 3 4 o . 1 _6 I4(I3 )(Iz )(arl )(ajl )(371 )
N H PR e e e

Therefore, the Grothendieck polynomial G49153 is equal to

n 7 Yo Y3 Y1Y2Ys
Gaasg = (1-72) (1-) (1-5) (1-20) (1-=——7)
s = (1= (1= (1= 2)(1- ) (1= 1)

Since the —1’s are located at the pivot, the image under transition of the
four matrices are permutation matrices, and one has

Y3
(G42135 - G42153)x_ = G135 — Guz125 — Gaozis + Gazars -
4

There exists a Cauchy kernel for Grothendieck polynomials, which gen-
eralizes the Cauchy kernel for Schur functions. Rewriting Theorem 2.8 and

14



Lemma 2.9 of [16], the existence of such kernel amounts to the following iden-
tity involving three sets of variables {x1,..., 2.}, {y1,.- ., un}, {z1,---, 2a}
(writing ow for [o,,...,01], 0 € &,,) :

il ] (1 - i) = Y (VG (0 y) Colzy) . (T

B Zi Ij
i+j<n 0EG,

The same kernel also expands in terms of Schubert polynomials. Using The-
orem 8, one can write the kernel as a statistics on pairs of ASM.

Bousquet-Mélou and Habsieger [2] give a sum over ASM, which in our
terms, states that

Z (_1)Z(U)GU(X7 1) = xrllilxgiz T x% )

0’6671

and is obtained by specializing Eq.7.

Their summation involves counting the number of SE-zeroes in each col-
umn of an ASM, as well as the ~1. Robbins and Rumsey [27] express the
g-Vandermonde [ [, ;, (i +qz;) through a summation on the ASM of or-
der n, this time recording the SW-zeroes as well. Chapman [4], refines their
construction and gives a combinatorial description of [[, o, <, (i + ;).
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