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Abstract.

We give eight' linear bases of the ring of polynomials in n indeterminates : Schubert
polynomials, Grothendieck polynomials, flag elementary/complete functions, Demazure
characters (key polynomials) for types A, B, C, D, Macdonald polynomials.

All these bases are triangular in the basis of monomials, with respect to appropriate
orders. We introduce different scalar products and compute the adjoint bases of the
previous polynomials.

We provide recursions (transition formulas) which allow to cut these polynomials
into smaller ones of the same family.

We recover the multiplicative structure of the ring of polynomials by describing the
multiplication by a single variable.

In type A we lift the Schubert polynomials and Demazure characters to the free
algebra.

We recover by symmetrisation Schur functions and symmetric Macdonald polyno-
mials in type A, and symplectic and orthogonal Schur functions in types B, C, D.

'In fact, counting adjoint bases and deformations, many more, but the next lucky number,
88, seems out of reach for the moment.
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Polynomials appeared since the beginnings of algebra, and it may seem that
there is not much to say, nowadays, about the space of polynomials as a vector
space. In the case of a single variable x, many linear bases of Pol(x) other than
the powers of x have been described, starting with the Newton’s interpolation
polynomials. The theory of orthogonal polynomials flourished during the whole
XT1X¢ century, providing many more bases.

In the case of symmetric polynomials, Newton, again, gave a basis of products
of elementary functions. The transition matrices between these functions and the
monomial functions were already considered in the XV III¢ century by Vander-
monde in particular. Later, the chevalier Faa de Bruno, Cayley, Kostka spent
much energy computing different other transition matrices. It happens in fact
that there is a fundamental basis, the basis of Schur functions. A great majority
of the classical problems in the theory of symmetric functions involve this basis,
and leads to a combinatorics of diagrams of partitions and Young tableaux.

The picture is not so bright when one relaxes the condition of symmetry and
consider Pol(x1,...,x,) in full generality. In fact, computer algebra systems like
Maple or Mathematica do not know the ring of polynomials in several variables
with coefficients in Z, but only the ring Z[z1] ® Z[xs] ® -+ ® Z[x,]. Since 40
years, geometry and representation theory provided a new incentive for describ-
ing linear bases of polynomials. The cohomology theory and the K-theory flag
manifolds lead to different bases related to Schubert varieties: Demazure charac-
ters, Schubert polynomials, Grothendieck polynomials. Independently, the theory
of orthogonal polynomials, in conjunction with root systems, developed in the di-
rection of several variables, with the work of Koornwinder, Macdonald and many
others.

In these notes, we shall mostly restrict to Schubert polynomials, Grothendieck
polynomials, Demazure characters (key polynomials), Macdonald polynomials. These
objects will be obtained using simple operators such as Newton’s divided differ-
ences and their deformations. Such operators act on two consecutive variables at
a time, say x;,x;1, and commute with multiplication with symmetric functions
in x;,x;11. Therefore, they are characterized by their action on 1, z;,1 (which is
a basis of Pol(z;, z;11) as a free Gym(z;, z;41)-module). In type A, computations
will not require more than the rules figuring in the following tableau, which ex-
presses the images of 1,x;,; under different operators, and indicates the related
polynomials.
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operator ‘ s#@i & 5 7,1\'1 (1—l’i+1)ai E
1 1 0 1 0 1 t
Tit1 ;-1 -1 0 ~Lit1 TitTip—1 Z;
polynoms | Jack Schubert  Demazure  Demazure G Macdonald
Grothendieck Grothendieck

To be complete, we have to add to this list the operators 72, 7¢ and 72 in the
case of key polynomials for types B,C, D, and the translation f(z1,...,x,) —
flzn/q, 21, .., 20_1)(x,~1) in the case of Macdonald polynomials, but this does
not change the picture: it is remarkable that such simple rules suffice to gen-
erate interesting families of polynomials. As a matter of fact, one also needs
initial polynomials. In the case of Demazure characters, one starts with dominant
monomials z* = xi‘l . xﬁ”, AL > Ay > --- > \,. For Schubert polynomials, one
introduces another set of variables, and one takes Yy := [];_1 ,, j—1 (@i —y;). For
Grothendieck polynomials, one takes G\ := [T;—1 5, j—1.,(1 — iji_l), still with the
requirement that A\; > --- > \,. In the case of Macdonald polynomials, one needs
only one starting point, which is 1, because the translation operator increases
degree and allows to generate polynomials of any degree.

Schubert and Macdonald polynomials can also be defined by interpolation
properties. Indeed, to each v € N"| one associates a spectral vector (v)¥ (which is
a permutation of yi,ys,...), and another spectral vector (v)' (with components
which are monomials in ¢, ¢). Now the Schubert polynomial Y,, and the Macdonald
polynomial M, are the only polynomials, up to normalization, of degree d = |v| =

v1+...+v,, such that
Yv<<u>y> =0 & MU(<u>tq> =0Vu: Jul <d,u#wv.

it is easy to check that the vanishing conditions imply a recursion on poly-
nomials, the image of a Schubert polynomial under 9; being another Schubert
polynomial (when it is not 0), and the image of a Macdonald polynomial un-
der T;+c being another Macdonald polynomial (when choosing appropriately the
constant c).

Divided differences are discrete analogues of derivatives. One can thus expect
a discrete analogue of the multivariate Taylor formula. In the case of functions of a
single variable, this discrete analogue is the Newton interpolation formula. In the
multivariate case, the universal coefficients appearing as coefficients of products
of divided differences are precisely the Schubert polynomials, and this is a direct
consequence of their vanishing properties.

In these notes, we have put the emphasis on Grothendieck polynomials, be-
cause the literature on this subject is rather scanty , apart from the Graffmannian
case, which the case where the polynomials are symmetric and can be treated as



4 Chapter 0 — CONTENTS

deformations of Schur functions. We do not touch the subject of Schubert polyno-
mials for types B, C, D (see [9, 40, 42, 34, 111, 112]). They require introducing the
operation xz,, — —x,, while, for Demazure characters and K-theory, one must use
r, — x,. In type A on the contrary, cohomology and K-theory can be mixed,
operators like 7; + 0; make sense.

Linear algebra is not enough, the ring Pol(z1, ..., x,) has also a multiplicative
structure that one needs to describe. We mostly restrict to multiplication by a
single variable, which is enough to determine the multiplicative structure in each
of the bases that we consider. Already this simple case involves fine properties of
the Ehresmann-Bruhat order on the symmetric group (or on the affine symmetric
group in the case of Macdonald polynomials). It is clear, however, that more
work should be invested in that direction, the product of two general Schubert
polynomials or two Grothendieck polynomials having, for example, many geomet-
rical consequences . Fomin and Kirillov [33] have introduced an quadratic algebra
to explain the connections between the Ehresmann-Bruhat order and Schubert
calculus.

Having different bases, one may look for the relations between them. We con-
sider the relations between Schubert and Grothendieck, Schubert and Demazure,
Macdonald and key polynomials, but this subject is far from being exhausted.

Polynomials can be written uniquely as linear combination of flag elementary
functions) (products of the type ...e;(x1, X, x3)e; (21, x2)ex(x1)). Since the nat-
ural way to lift an elementary function of degree k in the free algebra is to take
the sum of all strictly decreasing words of degree k, one has therefore a natural
embedding, as a Z-module, of Pol(zy,...,x,) in the free algebra on n letters. We
shall rather use a distinguished quotient of the free algebra, the plactic algebra
Plac(n), quotient by the relations

cab = acb, bac = bea, baa = aba, bab = bba, a < b < c.

The lift of Gym(zy ..., x,) in Plac(n) has now recovered its multiplicative struc-
ture, compared to the lift in the free algebra where one must have recourse to
operations like shuffle instead of concatanation of words. In others words, one has
an embedding of Gym(z; ..., x,) into a non-commutative algebra, and therefore
any identity on symmetric polynomials translates automatically into a statement
in the non-commutative world. Combinatorists will have no difficulty in going
one step further in the translation and use Young tableaux, Dyck paths or non-
intersecting paths instead of mere words.

Simple transpositions can be lifted to the free algebra, inducing an action of
the symmetric group on the free algebra. The isobaric divided differences m; can
also be lifted to the free algebra, but they do not satisfy the braid relations any
more. This does not prevent using them on the lifts of Schubert polynomials and of
Demazure characters. In particular, this is the most sensible way of understanding
the decomposition of Schubert polynomials as a positive sum of key polynomials.

We use two structures on the ring of polynomials in 1, . . ., z,,, with coefficients
in y: as a module over Z[y] with basis the infinite family of Schubert polynomials
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{Y,(%n,y) : v € N"}, or as a free module of dimension n! over Z[y| ® Gym(x,,),
with basis {Y,(x,,y) : v < p=[n-1,...,0]}. We show how to extend this finite

Schubert basis in type C so as to obtain a pair of adjoint bases for Pol(zf, ..., zF)

as a free-module under the invariants of the Weyl group of type C', but do not
treat the case of type D for lack of energy.
The Hecke algebra is used in the generation of Macdonald polynomials. We say

a word about the Kazhdan-Lusztig basis and its relation with key polynomials.
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Operators on polynomials

PP PP TP dEbe P
o o o o o o o o o o o o o o o o

11 A, BC,D
What are the simplest operations on vectors ?
e add
e concatanate
e transpose two consecutive components
e multiply a component by -1

Thus, acting on vectors v € Z"™ one has the following operators (denoted on
the right) corresponding to the root systems of type A, B,C, D :

vSs; — [...,UZ'+17U1',...], 1§Z<n,
vsP =vs? = [ —u,.. ], 1<i<n,
D .
vsy = [..,—v, —viq,..], 2<i<n.
The groups generated by si,...,8, 1 (resp. si,...,8,.1,85, resp. si,...,

Sn_1,87) are the Weyl groups of type A, BC, D. We shall distinguish between B

n
and C' later, when acting on polynomials.

The orbit of the vector [1,2,...,n| consists of all permutations of 1,...,n for
type A, all signed permutations for type B, C, and all signed permutations with
an even number of “-” in type D. The elements of the different groups can be

denoted by these objects.
The generators satisfy the braid relations (or Cozeter relations)

8§;Si+1S8; = Si+15iSi+1 & S5iSj = S5jSi, |'l — ]| 7é 1, (111)
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sn,lsfsn,lsf = sfsn,lsfsn,l & sisf = sfsi, i<n-—2, (1.1.2)

sn,gsfsn,g = sfsn,gsf & sisf = sfsi, i#En—2. (1.1.3)

An expression of an element w of the group as a product of generators is called
a decomposition, and when this product is of minimal length, it is called a reduced
decomposition, the length being called the length of w and denoted ¢(w).

By recursion on n, it is easy to write reduced decompositions of the maximal
element wy of the group for type A,,_1, B,, Cy,, D,,. Write 1,...,n for s{,...,s,_1
and s? or s”. Then w, admits the following reduced decompositions (that we
have cut into self-explanitory blocks; read blocks from left to right)

o type A 0 |n-1] |n2\n-1| - | 1|2 |- |n-1
1 2 n
n-1| n
e type BC n
n—-1 2
1
-1 1 1
e type D (n ) n—2<n >n—2 12---n—2<n >n—2---21
n n n

In the case of type D we have written (”;1) for the commutative product
Sp_182.

Erase in each block a right factor'. The resulting decomposition is still reduced,
and the group elements are in bijection with these decompositions. Therefore, the
sequence of lengths of the remaining left factors codes the elements for type A
and B. In type D, one has to use an extra symbol to distinguish between a factor
Sk -+ Sp_25,—1 and a factor sp--- s, _25,.

Many combinatorial properties of permutations are more easily seen by taking,
in type A, another decomposition. Instead of reading the successive rows of

n type Dg, for example, the right factors of the block 1@)1 are 0, 1, 21, 31, (g)l, 1@)1.
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n-1
n-2{n-1 one takes the successive columns,
and thus chooses the decomposition
112 n—-1
n-1
n-1
(Tl—l, ’ 1)(%—1, ) 2) : (n_l) A n—1
2
2
1

It is easy to check that the decompositions obtained by taking arbitrary right
factors of the successive blocks (= bottom parts of the columns) are reduced and
in bijection with permutations.

For example, for n = 5,

(0321) (eee) (o3) (4) ()
code 3 0 1 1 0

e

is a reduced decomposition, that we shall call canonical reduced decomposition,
of the permutation sszsqsisgsy = [4,1,3,5,2], and the sequence [3,0,1,1,0] of
lengths of the right factors is called the code of the permutation. Given o in
the symmetric group &, its code ¢(o) can also be described as the vector v of
components v; := #{j : j > i & 0; > 0;}, which describes the inversions of o.
The sum |v| = vy + - - - + vy is therefore the length /(o) of o.

Having groups, one has also group algebras. Instead of enumerating the ele-
ments of the group W, together with their lengths one can now write a generating
series which is called the Poincaré polynomial

Z qﬁ(w) )

weW

From the preceding canonical decompositions, denoting by [i] the g-integer
(¢" —1)/(q — 1), one obtains the following Poincaré polynomials :

e type A [1][2] -+ [n] ,
e type BC [2][4] --- [2n] ,
e type D [2][4] --- [2n — 2] [n]
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One can embed a Weyl group of type B, C,, D, into Gy,, as a subgroup, by
sending s; to s;59n_s, 1 < i < n-1, sZ and s¢ to s,, and s to s,8,115,_15n.
This amounts transforming a signed permutation v by v; — o; = v; if v; > 0,
and v; = o0; = 2n+1l+v; if v; < 0,2 = 1,...,n, and completing by symmetry:
Oon_; = 2n+1 — 0;, thus obtaining a permutation in G,,.

An inversion of a permutation o € S, is a pair (¢, j) such that i < j and o; >
0. One inherits from the embedding into &,,, taking into account symmetries,
inversions for type B,C, D. If w is sent to o, then an inversion is a pair 7,7 : 1 <
t < j < n such that o; > o; or such that o; > 03,,41—;. In type B, C, the indices
i: 1 <4 < mnsuch that w; < 0 (equivalently, o; > 09,41_;) are also inversions. It
is easy to see by recursion that the length coincides with the number of inversions.

1.2 Reduced decompositions in type A

In type A, we shall use graphical displays to handle more easily the braid relations.
A column is defined to be a strictly decreasing sequence of integers. Any two-
dimensional display of integers must be read columnwise, from left to right, each
integer i being interpreted as s; (or some other operators indexed by integers,
depending on the context). A display is reduced if the corresponding product of
s;’s is reduced. For example, ' %% must be read (1)(321)(32) and interpreted as

515352815352 (which happens to be a reduced decomposition of the permutation
[4,3,2,1]). With these conventions, the braid relation s;s2s; = s95152 becomes
12 — 2. More generally, one has the following commutation lemma.

Lemma 1.2.1. Let u,v be two columns such that uv is reduced and each letter of
u also occurs in v. Then uv = vu™, where u" is obtained from u by increasing
each letter of u by 1.

Proof. By induction on the size of u, the statement reduces to the case where u =1
is a single letter. Because iv is reduced, v must be of the type v = v’ i+1iv”, with
all the letters of v’ bigger or equal to i+2, and all the letters of v” less or equal to
i—1. In that case,

w=1v1i+rliv” =v i+liitlv” = v i+liv"i+1,

as wanted. QED
For example, starting from the canonical reduced decomposition of w = [5, 4, 3,2, 1],
one obtains the decompositions

=N QO
[\SJULF
|
=W
— DN QO
|
=W
N W
=N Qo
I
=0
=W
=N QO
I
=N
=W
=N QO
Il
=
=W
=N QO
I
=W
=N QO

4

(these are 7 among the 2% x 3 reduced decompositions of w).
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1.3 Acting on polynomials with the symmetric
group

Of course, considering vectors as exponents of monomials: ¥ = x{*z5 - - -, we get
operators on polynomials: v — vs; induces the simple transposition of z;, z;11 :
x¥ — x%, and similarly for types B, D. No need to point out that addition of
exponents corresponds to product of monomials, and that concatenation corre-
sponds to a shifted product that we shall use when considering non-commutative
symmetric functions:

weZ' v elZ" — 2" =alt -yt
If v is such that vy > --- > v, then v is called dominant (we also say that
v is a partition, terminal zeros being allowed). When v; < .-+ < v, then v
is antidominant. The reversed vector [vy,...,v;] is denoted vw. Reordering v

increasingly (resp. decreasingly) is denoted v 1 (resp. v ).

Instead of vectors in N, one may use permutations. We have just to reverse
the correspondence seen above between permutations and codes’. One identifies
o € Sy and [0, N+1, N+2, .. .]; this corresponds to concatenating 0’s to the right
of the code of 0. For example, one identifies the two permutations (2,4, 1,5, 3] and
2,4,1,5,3,6,7,...], as well as their codes [1,2,0,1,0] and [1,2,0,1,0,0,0,...].

Let us consider in more details the space Pol(x, x5) of polynomials in zi, 23,

with the simple transposition s of 1, z9. One remarks that s commutes with multi-
plication with symmetric functions in x4, x5 (whose space is denoted Sym(z1, x2)).
Every f € Pol(z1,x2) can be written

:f_|_f5+f—f5:f—|—fs+($l_x2)<f_fs> ‘

/ 2 2 2 2(x1—12)

This means that every polynomial in Bol(x1, x2) can be written uniquely as a linear
combination of the polynomials 1 and (x;-z3), with coefficients in Gym(xy, z3).
In other words Pol(z1,z2) is a free Sym(zy, 22)-module of rank 2, and one can
choose as natural bases {1, z1-x2} , {1, 22} or {1, 21} .

The last choice corresponds to writing f as

Fo (f_fs>—|—x1 <$1f8—$2f> ’
T1—T2 T1—=T2

the action of s being determined by

{121} — {1, 29 = —21 + (21+22)}

2This correspondence is in fact due to Rothe (1800), who defined a planar diagram repre-
senting the inversions of a permutation.



12 Chapter 1 — Operators on polynomials

and represented by the matrix

1 1+ 2
0 -1 '

Since a 2 x 2 matrix has 4 entries, this is not a big step to consider more
general actions, such as

{1,z:} — {0,1},

which, for a general polynomial f, translate into

f_><f_f8) ::falu

T1 — X2

and is called Newton divided difference.

Similarly
1
{1,2} — {1,0} induces f — (z1f — x2f") = fm,
1 — T2
{1,21} = {0,292} induces f — (f— fS)L = [T,
Ir1 — X2

{1,295} = {t, 21} induces [ — fm(t—1)+ f°:=fT1,

{1,2:} — {1, tzs} induces f— fr(t—1)+f>:=fT},

which are, respectively, two kinds of isobaric divided differences, and two choices
of a generator of the Hecke algebra Hy of the symmetric group G,.

Of course, for every pair of consecutive variables x;, x;,1, one defines similar
operators 0;, w;, m;, T}, TZ The following table summarizes their action on the basis
{1,241} of Pol(x;, x;+1) as a free Sym(z;, ;41 )-module :

~

operator S; 81 5 7/'(\'Z T; T;

equivalent form <1_Si)x-—;-+1 xl& 8i.l’i+1 T (t—l) + 8; ﬁl(t—l) + S
1 1 0 1 0 t 1

Tit1 T -1 0 -z T Tt i1t

Equivalently, these different operators are represented, in the basis {1, x;,;}
of the free module Bol(x;, x;11), by the matrices

_]-xz'"’xi—i-l _0—]. _10
82_[0 _1 ‘|782_l0 0‘|7W1_[0 0‘|7
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All these operators are of the type
Di = 1P(£L‘i,l'7;+1) +8i Q(l’i,$i+1), (131)

with P, () rational functions, that is to say, they are linear combination of the iden-
tity operator and a simple transposition with rational coefficients. The operators
0;, m;, 7, T, T; all satisfy the type A-braid relations

One discovers that these operators also satisfy a Hecke relation

SiS; = 1, 8181 = 0, T = Ty, 7/'(\'17?1 = —’//'FZ', (T;—t)(ﬂ-l—l) = 0, (ﬁ-&-t)(ﬁ—l) = 0.

Let us check for example the relation 00,0, = 050,0>. These two operators
commute with symmetric functions in xq, x9, x3, and decrease degree by 3. We
can take as a basis of Pol(x,) (as a free module over Gym(x3)) the 6 monomials
{z":[0,0,0] <wv < [2,1,0]}. The first five are sent to 0 by 91020, and 050,09, for
degree reason, there remains only to check that z21°9,0,0; = 221°0,0,0, = 1 to
conclude that, indeed, 010,01 = 050,0-.

As a consequence of the braid relations, there exists operators 9,, 7., Ty, 1.,
indexed by permutations o, which are obtained by taking any reduced decompo-
sition of ¢ and the corresponding product of operators D;.

1.4 Commutation relations

Divided differences satisfy Leibnitz® formulas®, as easily seen from the definition:

f90i = f(90i) + fO0; g = g (f0;) + 90; f* . (1.4.1)

Iterating, one obtains the image of fg under any product of divided differences :
fg 81@ e 8h

= > (foay o) (gsiol s 0 oy ) L (14.2)

€i7~--6h€{071}

It may be appropriate to use a tensor notation, the above formula being the
expansion of

3For fear of being called Leinisse, Leibnitz chosed the spelling “Leibnitz” in his letters to the
Académie des Sciences. We shall respect his choice.

4Notice that formulas are disymmetrical in f, g, one has two expressions for the image of a
product.
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In particular, when g = x;, relations (1.4.1) may be seen as commutation
relations :

9318, = 8i1'i+1 +1 & XTiT; = T; L4541 + x; & 1’27/1\'1 = 7ATZ'1'H_1 + Tit1, (143)

the relations z;T; = T;x;+1+ (t-1)x; together with the trivial commutations z;7; =
Tixj, when |j — i # 1, being taken as axioms of the affine Hecke algebra’.

Since m; = Ojxiy1, one has also 7;x; = 0jx; 14, = xi12;0; = T;1m;, and by
iteration, reading the objects by successive columns,

Tn Tni1 Tn, ~ ~
- ’ﬂ'] ...’ﬂ'n x]-‘rl 7'('] ...7Tn
Tpn—1 Tpn—1 .
. pu— y : =
7| T Titj—m = T | Ly Mitj—m T

We shall need some more commutation rules. For example,
T ToM3L1ToL3 = LoX3L 4T Ty + T1XoT3L4T 1o + L1 XL gTT1 Ty + T1X3L4T2T3

and to iterate such relations, we prefer to represent them graphically as

953 LT T
T To z1 (1] [2] [e]

T x4+ T3 T4
(1] o] [8] " [o] [2] [3]

In general, given an antidominant v € N¥, the v-diagram V is the array with

columns of length vy, ..., v, filled by decreasing integers as follows :
]
Ug |- - -
VY = ,
Uy
1 2 e k:
where u = v +[0,1,...,k-1], and 7V, 7V, are the columnwise-reading of V, inter-

preting ¢ as m; or 7; respectively.
Iterating the preceding commutation rules, one obtains the following lemma.

Lemma 1.4.1. Let v € N* be antidominant, V its associated diagram, n be an
integer such n > vp+k. Then

1 1
7TV = 7TV.
X1+ Tk mvl+1...ka+k

5 For the double affine Hecke algebra for the type A, omnipresent in the work of Cherednik,
one needs also to define T or an affine operation.
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Equivalently, multiplying by the factor x; ...z, which commutes with m;, @; for
1 <mn, one has

r1...,T ~
7TV Tkt -.- Ty = B e 7TV . (144)
$U1+1 e ka+k

A punched v-diagram U is what results after punching holes in a v-diagram, in
such a way that there are no two holes in the same row or same column, and such
that no two holes occupy the South-West and North-East corner of a rectangle

[ ]
contained in the diagram. We forbid [e] Te], ,
[ ]
Label the rows of a v-diagram by the first entry of each row, and the columns
by v1+1,...,v,+n. The weight of a punched v-diagram U, that we denote 2,

is the product [1,ows Ti [leotumns ©j, keeping the indices of punched rows, and of
full columns. By 7% we mean the reading of U columnwise, from left to right,
interpreting each 7 as m; and ignoring the holes.

Let us give an example of a punched diagram for v = [2,2, 4,4, 4].

T3 Ty Ty Tg X9 T3 g
6|78 ¢ o 78| ws
5167 Ts 50617
213456 T2 2|04 |5(6| T2
112|3(4|5] ™1 11234 1
coordinates and filling weight of a punched diagram

The punched 133-diagrams with two holes, together with their weights, are

® 5 415 4| e 415
314 4 314 3|e
1213 213 213 2|3
T1T4Te T1 T3 Te T1 X5 Ty T1 x5 T3

® 5 ® 5 415

3| e 314 .
11213 112]|e 112]|e
Lo Ty X3 Lo Ty L1 To T3 L1

We shall need more commutation relations.

Lemma 1.4.2. For any positive integer n, one has

1 "1
T Tp @1 Ty = —T T+ Y Ty T 1Tl T, (1.4.5)

Ty Tpt T i—1 LTi+1

T MLy "Ly T Tp_1 :’IS".xn-i-lﬂ-l"'ﬂ-nﬂ-l"'ﬂ-n—l' (146)
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Given v € N" antidominant, V its associated diagram, then

™ax, =) atd?, (1.4.7)
u

sum over all the punched v-diagrams.

Proof. The first two assertions are obtained by iterating the relation m;z; = x; 1w+

x;. Let us check the last one by recursion, adding a top row to the diagram V.
One therefore has to evaluate a product of the type 7, - - - m,,2% 7, where the
restriction of 24 to {x,,..., ¥y} is a subword of x, - - - z,, which points out full
columns in U.
Let us first examine the case where x,, € U. Taking specific values to simplify

the exposition, ignoring the left part figured by hearts, one has to evaluate

mT15 T 717 718 719
Ti16 L1t - T19

Ol14 | 15|16 | 17| 18

O Ol e 1415|1617

O QOli1213]14] 15 16

O Ql11l12]13] | 15

By commutation of the incomplete columns with the complete ones, one obtains

T5 716 T17 T18 719
Ti6 X1t : Z19

Q- 15116 - | 18

O Qlej14|l15|16]|17]18|>

© Ol1213]14| - |16] 17

O Q1111213 e | 15] 16

from which one extracts the left factor (mi5miemi7 16717 T15716) (T18719 T19 T18),
which, thanks to (1.4.6), is equal to x17218%90 (T15T16T15T177T16) (T18T19718). We
therefore have transformed 24 7 into 2¥" 7", where U™ is obtained from U by
adding a top row.

Let us consider now the case where z, € 2¥. Still with the same example, one
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has to evaluate
mT5 716 717 718 719

T15 L1 T17 : Z19

Ol14 | 15|16 | 17 | 18

© Ql13|14|15]16 |17

© QOl12]13]14|15] 16

© Ql11l12]13| ¢ | 15

Thanks to (1.4.5), the factor msmemi7 (T15716217) is equal to the sum

Ti6 Tir T18 + Ti7 T18 + T16 18 + Ti6 17 .
™5 M6 T17 Ti5 ® Tie T1v Ti5 T15 ® T7 L5 Ti5 Ti16 @
Adding a top row to the diagram )V has resulted in adding a top row to U, or
adding a row with only one hole, in all possible manners such that the new hole
is left of the already existing holes in the last block of columns. This finishes the
proof of the lemma. QED

For example, for v = [1,2,2], one has

314 T1XaX3 = Ty Ts5 314
1/2]3 11]2]3
+ 17475 314 + Tox375 °l4 + T1x275 314
le|2]3 [1]2]3 [1[e]3
+ Tox32T4 3] + 1Ty 314 + 11375 |4
11]2]3 [1[2]e e]2]3
31|e
+ T123%4 + T12223 .
e]2]3 [1[2]e

Comparing the relations mxy = x1m-22 and x1(-7) = (-71)xe—22, one ob-
tains a symmetry between commuting any m, with a polynomial f, and commuting
[ and T -1,

Lemma 1.4.3. Given n, 0 € &, and a polynomial f(x,), suppose known the
commutation

o f (Xn) = ZC 9 (%) e -

Then one has
F) Fug1 = D (DT OT 0 ge (). (1.4.8)

Similarly,

T (%) = 30 9c(%0) e
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implies
FX) Ty = Zg(_l)e(au(c)ﬂwlw ge(x2) . (1.4.9)

For example, for n = 3, one has

MMoXy = T3MTo + X17M — T,

.1727/1\'17/7\'2 = ﬁlﬁ'gl’l — 7AT2[E3 — T3
and

~ ~ 2 2~ ~ ~
T1ToXy = XT3M1T2 + .173(.’13'1-‘1-.1'3)71'1 + 2322,

2 2
rommy = mmexy — ma(x1(xy + x3) — T122 .

Punched diagrams can also be used to describe the commutation of a product
7Y with a monomial. For an antidominant v € N*, n = v, +k, V associated to v, let
us take the monomial zj; ...x,. Transposing diagrams along the main diagonal,
and introducing signs exchange the two cases. For example, for v = [2,2], one has

T3 Ty To g XT3 T2 X1 T4 T3 T To2 T
2131 — [2]3 ®|3 2@ 213 213 |3
1|2 112 + 1|2 + 1(2 + o) + 1l|e + 1]e] "’
1 T2
that is,

ToT3M X 1Ly = X3L4ToT3M Mo + LoX T3 My + T3LoMoM T

+ XXy Ty + X3X 1 ToM3T] + L1XoT3T s

while

ToT3M M3y = ToX MMM Ty — T3T1 MM Ty — LT T T2

— ToT3ToM3 Ty — ToXgTo 3T + X3T4T3 T

can be displayed as

2] x |12 21 |1|2] x3|®|2| X4

T3 [e
T4 |1

[\]
w

2|r3 11

213174 _ T2[273] _7T3[e[3] _T4[2[e] T2
1 1

=D
[ 2SN

+

[ 2O\

The operators of the type (1.3.1) and preserving polynomials are character-
ized in [106]. They are essentially deformations of divided differences, though
their explicit expression can look more frightening. For example, the operators
(depending on the parameters uy, ..., u4, p,q,7)

((qui + pus)z; + (qua + puy))(usTip1 + ug)
UiUg — U2U3

f—=1f O +rf*:=fD;

do satisfy the braid relations.
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1.5 Maximal operators for type A

The operators associated to the maximal permutation w = [n,...,1] play a
proeminent role. In fact, they all come from the projector onto the alternating
1-dimensional representation of &,,, already used by Cauchy and Jacobi :

f= > ().

oeGy,

1 2

Indeed, writing A for the Vandermonde [, <; j<,,(z;—x;), and 2 for z7~
one has the following proposition.

Proposition 1.5.1. Given x of cardinality n, the divided differences 0,,, m, and
T, verify :

1
o = > (—1)“”0&, (1.5.1)
ceG,
T = a’ Yy (—1)“%2 : (1.5.2)
ceG,
p\w
7 o= 3 (1)1 (IA) . (1.5.3)

O'EGn

Proof. The monomials z* : u < p are a basis of Pol(n) as a free Sym(n)-module.
They all are sent to 0 by 0, or 3 +0A~! for degree reasons, except z* which is
sent to 1 (this is the only computation to make) by both operators. This proof
can be adapted for m, and 7. QED

We have not mentionned 7, in the proposition, because this is not a sym-
metrizer, since, for n = 2 for example, xoT) = z1. However, xo(T7 + 1) = 1 + 29
and 1(77 4+ 1) = t 4+ 1. This indicates that one has to take the Yang-Baxter defor-
mation of T, for v = [1,¢,...,t" '] if one wants a symmetrizer. Indeed one has,
as we shall see in more details in (1.9.8), the following symmetrizer in the Hecke
algebra (as shows the last expression):

(T1+1)<T2+;2__11> (T3+;__11>---(T1+1)(T2+;__11>(T1+1)
= Z T, = H (tz; — ;) 0, .

o€, 1<i<j<n

We shall frequently use the action of d,, on a product fi(z1)--- fu(z,) of func-
tions of a single variable. In that case, the sum 3 g, (~1)%?) (fl (1)~~~ fn(ocn))(7

fi(z;)

is equal to the determinant , and one may view

AT (1.5.4)

i,j=1..n

fi(zy) - fulwn) O, = fl(xj)

xg_ e
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as the discrete Wronskian of the functions fi,..., f.. .

Schur functions correspond to the case where fi, ..., f,, are powers of a variable,
factorial Schur functions arise when taking instead modified powers z(z—1) ... (z—
k), while g-factorial Schur functions stem from g-powers (z —1)(z —q) ... (z —¢~).
More precisely, for any v € N™, the Schur function s,(x,) is equal to "7 d,,, the
factorial Schur function of index v is equal to

<x1(x11) . (x1v1n+2)> . <xn(a:n1) . (xnvn+1)) )
and the g-factorial Schur function of index v is equal to
(@-D@-g).-(m-¢" ) o (@D @) (mg™)) 0.

For example, when n = 3 and v = [5, 2, 1], then the corresponding factorial Schur
function is equal to

(ZEl — 1) Ce ($1 — QG)(ZL‘Q — 1)(1’2 — (])(1’2 — qz)(l’g — 1)8321

1 (1-1) ... (21-¢%) (22-1)...(29—¢%) (23-1)...(23-¢%)
= —|(z1-1)...(x1-¢*) (w2-1)...(22-¢%) (w3-1)...(23-¢%)|.
2 r1-1 To—1 r3—1

We shall interpret it later as the specialization y; = 1,y = ¢,y3 = ¢°,... of the
Grafimannian Schubert polynomial Y95(x,y).
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Divided differences can be defined for any pair z;, z;, and not only consecutive
variables :

O = (f = ) (@ —x5)7",
7;; being the transposition of x;,z;. We shall need these differences to factorize

Oy

Lemma 1.5.2. Letn =2m, ' =[m,...,1,2m,...,m+1], w = [2m,...,1]. Then

&J/ 81’m+1827m+2 c. amgm 0w/ = (—1)(7;>m' 8w . (155)
Proof. The left-hand side commutes with multiplication by elements of Gym(x,,),
and decreases degree by (’;‘) It is therefore sufficient to test its action on x” to
m707n

characterize it. One has x*0,, = 2™ , 0,y Ot g1 - - - Omyom = > ¥, sum over

all v € N" such that v; + v, = m-1, 1 =1,...,m. Each such monomial has a
non-zero image under d,, if and only if vy, ..., v, is a permutation of [m-1,...,0].
There are m! such monomials, which each contribute to z™ 1-0.0m=1g = —

(71)(7;) to the right-hand side. QED

For example, for n = 4, one has 8214381382482143 = —284321. Many other
decompositions are possible, e.g.

a12814834823613824 = a4321 = a14813024023824813 = 823813624814834612 .
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1.6 Littlewood’s formulas

One can combine the above operators with change of variables x; — ¢(z;). The

maximal divided difference 9, becomes 3 (+0) A(p(x))™F = 9,A(x)A(p(x)) 71,

and it remains to find functions ¢ furnishing an interesting Vandermonde A(¢(x)).
Notice that if ¢(x;) = g(z;)/f(x;), then

S gy e o) | <TI0 Al

i=1..

Taking f(%) =z, g(z;) =1+ xf, k > 0, and remarking that (1 + :cf)/gz:Z —(1+
)/% = (2, —x; 1)(1 — xiszk_g(xﬁxj)), one obtains that

et 2 (L) o (et

A(x)™

i=1...n

= (1450 +252 . (1+z,)" ' m
= 11 (1 - xﬂjsk—Q(Ifrxj)) . (1.6.1)

1<i<j<n

the first equality resulting from the definition of 7.
In the case k = 2, the preceding determinant can be transformed into

ot A (1ea?)  alA(leaf) - (L

! 2n— 2)

i=1...n

Since the operator m, sends z¥, v € N" onto the Schur function s,), the
preceding identity, still in the case k: = 2, can be written as

[T (1—m)=(+ad) A+ .. (1+22)" ) m,

1<i<j<n
=(1+z)(1+23)...(1+22" 7,
= >, (=15 106, 260....20-2)en] (X) = 1 + s02(x) + 004(X) + S024(x) + . ..
e=[e1,...,en]€{0,1}™

=1- Sll(X) + 8211(X) — SQQQ(X) + ...

=1+ 2D s () (162

sum over all 7, all @ = [ay,...,q,], a1 > @ > ..., > 0, using the Frobenius
notation® for partitions.

Similar identities, known to Littlewood [122], [123, p. 78], can be obtained as
easily, the reordering of the indices of the Schur functions being translated into

6
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properties of diagonal hooks.

[T0-=z) TI (1-mr)=0-z)0-ad).. Q-2 ")m,

i 1<i<j<n

== Z (71)|€|S[61,362 ,,,,, (2n—1)en] (X)

e=[e1,...,en]€{0,1}7
=1— 51(x) — S03(x) + s13(x) — S005(x) + S105(X) + S035(X) — S135(%) +
=1 S1 (X) + S91 (X) — SQQ(X) — 8311(X) + 8321(){) — 5332(}() + 8333(X) +

=143 (D) (x). (1.6.3)

=1- SQ(X) — 804(X) + So4
=1 — s9(x) + $31(x) — S33

— S006(X) + 5206(X) + S0a6(X) — 5246(x) +
— 5411(X) + 8431(x) — 8442( ) + Saa4(x) +

r.B

~— —

X

ﬁ(l —z;) ] (1 — x;15)

i=1 1<i<j<n

=1 —az)I—a)(1—23)(1 —23)...(L—ap)(1 — 23" m,

= (1 = s1(x) + s11(x) — s111(x) + .. ) Z (‘1)|€|5[2el,462 ..... one,] (X) . (1.6.5)

€,€{0,1}

One can generalize these formulas by adding letters to the alphabet x. For
example, using x U {1} in (1.6.2), one obtains

o ottt L TP

1 n
U e IR I Sl A(x) Zzl_[l 1<g<n( ’
1 1 1

the factor [[(1-z;)? being due to s;1(x + 1) = s11(x) + s1(x) and A(x+1) =
A(x) [1(1-z;). More variations of this type can be found in [91].

All the preceding formulas can be interpreted, in terms of A-rings, as describing
the plethysms A*(S?) or A’(A?), and have counterparts describing S*(5?) or S%(A?).
Let us show that the symmetrizer 7, still allow to describe the generating function
of this last plethysms.
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Proposition 1.6.1. For a given n, one has

1
1 —zx)t = . (L.6.
g( i) (1-23)(1-2223) ... (1-2% ... 22) T (16.7)
= 2 s
11— zzy)™ = ! 7.[(1.6.8)
i<j I (1*!E1$2)(1*$1...ZE4)(1*ZE1 176)
= X sk
even columns
[Tt-z) '] = wzy)™" = ! T, (1.6.9)
i< (I-z1)(1-x129) ... (1=21 . . . y)

= D s\(x)
[T(t-z)? QA — wzy)™" = ! 5w (1.6.10)

i< (1-x1)?(1-z129)? ... (1-21 . .. xy)

DS (Mgt 1) (Ag-Az+1) .. (A, +1)5(x).(1.6.11)

Proof. One can use induction on n, factorizing n, = w7, with ' = [n-1,...,1].
Thus one is left with computing the image under 7, of the quotient of the two
successive denominators appearing in the left-hand sides. For the first formula, it
means computing

(1—zz,) ... (1 — 22 1) (1 —22)(1 —21...2,) 7,
= (1 —ape; +- -+ (~2)")) (1 — 21 ... 20) 7,

€1,...,6e, being the elementary symmetric functions in x,, and therefore com-
muting with 7. Since z,,,...,2" ! are sent to 0, and (—z,)"1, = —1 ...2,, the
above expression is equal to 1, thus proving (1.6.7). The other formulas require no
more pain. Moreover, the rational functions in the right-hand sides expanding as
sums of dominant monomials, the expressions in terms of Schur functions follow
immediately. QED

One should try expressions more general than products of factors (1 #+ u)*!,
with « monomial. I shall give a single example.

Lemma 1.6.2. Given n, then

1
(1—1’1—1’2)(1—1’22) (1_1’111_17222) (1 ZL’2222) .

=11

7Tw

! H ! . (1.6.12)

2
1—a; —x; Kjl—:v,wj

Proof. Let GG, be the right-hand side. Using induction on n, one has to compute
Gn_1/Gpm,. This depends on parity, and taking n = 4,5 will be generic enough
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to follow the proof.

G3/G47T4321 = (1—$1$4)(1—I2$4)(1—$3$4)(1 — T4 — IZ) 4321
4
= H(l - !L‘iZE4)7T4321 - $4(1*$1IE4)(1*$2$4)(1*!E3$4)7T4321 .
i=1

One has already seen that [[(1 — z;z4)T4321 = 1 — 2?*?2) and one checks that

all the monomials appearing in z4(...) are sent to 0 under my39;. In the case of
G4/G5ms4321 on the contrary, the monomial —z11%%3 is such that —2'10%7y.50, =
~p'MU and thus, Gy/Gsmsazer = 1 — 222222 — 11 In both cases, the resulting
factor is what is required by the left-hand side of (1.6.12) to ensure equality. QED

The left-hand side of (1.6.12) expands as a positive sum of Schur functions,
which multiplicities that are easily written in terms of the multiplicities of parts

in the conjugate partitions.
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1.7 Yang-Baxter relations

With a little more work, one can construct operators offering still more parameters.

The uniform shift D; — D; + 1,7 =1,...,n-1, destroys in general the braid
relations”. For example,

(T4 s1)(1+89)(1+81) =2+ 281 + S+ $152 + S281 + 515281
7 (L4 s52)(1+s1)(1+ s52) -

However
1 1
(1+ 51)(5 +52)(1+51) = (1+ 52)(5 +51)(1+ s2) ,

because both sides expand (in the group algebra of G3) into the sum of all per-
mutations.

Therefore, one abandons uniform shifts, but how to find compatible shifts like
1,1/2,17

The solution is due to Young [162], and called Yang-Baxter equation [161, 4]
because Young-Yang-Baxter would be confusing.

One chooses an arbitrary vector of parameters v = [vy,...,v,] (called spec-
tral vector), and each time one operates with D;, i = 1,...,n-1, one modifies
accordingly the spectral vector by v — vs;.

Now, the shift to use depends only on the difference of the spectral values
exchanged, with similar rules for the different varieties of operators D;.

More precisely, given i, let a = v;, b = v;,1 the corresponding components of
the spectral vector. Then, instead of s;, 0;, m;, T;, T; respectively, one takes

TR S TN SR
Sl 7 ) 777(1 7777-1 7/ 4 ) 7/ 4
b—a b—a b/a—1 b/a —1 b/a—1

(the careful reader adds “provided b # a”).

For n = 3, the Yang-Baxter relations for s;, 0;, m; and T}, and a spectral vector
v are, writing ve-v; = a, v3-vy = b, v3/v] = , v3/vy = f,

7it only works for 7; — 7; + 1 = ;.



§ 1.7 — Yang-Baxter relations 27

SQJF%—H; 81+%+b 32+a%rb 81+%+b
Y A A A
23 31 23 31
31+% Sz—l—% 81—#% az—l—%
321 321

Y Y Y Y

23 31 231 31
7T1+ﬁ 7T2+ﬁ T1+é;_11 772—}—g

321 321

The fact that each hexagon closes means that the two paths from top to bottom
give equal elements when evaluated as products of the labels on the edges.

Thanks to the Yang-Baxter relations, to each spectral vector v, is associated
a family of operators D} : o € G,,, obtained by taking products corresponding to
reduced decompositions.
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For example, for &3, and v = [y1, y2, y3], one has the operators

1 1
Voa = 1, Ve =01 + , Ofag = Oy + ,
123 213 1 Yo — U1 132 2 Ys — Us
N 0105 + O L +0 L + L
— 0102 2 1 )
1 Yo — Y1 Ys — U1 (y2 - yl)(yg - ?Jl)
1 1 1
0319 = 0201 + 01 + 0y + ;
o2 Ys—Ys oy —y (Y3 —v2)(ys — v1)
1 1
8§21 - (918281 + (91(92 + 82(91 + 81
Ys — Y2 Y2 — Y1 (y2 - yl)(ys - y1)
1

o (Y3 — y2)(y3 — 11) " (Y2 — y1)(ys — v1) (Y3 — v2) .

One recognizes that the product (1+ s1)(271 + s3)(1 4 s1) corresponds to the
choice D; = s;, 0 = [3,2,1], v = [1,2,3]. The reader will guess, and prove, that
for any n, the choice D; = s;, 0 = w == [n,...,1], v =[1,2,...,n] gives

1
n—1

+5n1)...(;—|—32)(1+51)): Z o.

(151) (G + 521 +s0)) - (
o€,

One can also twist the action of the symmetric group, and use D; = 0;+s;. The

operators D; still satisfy the braid relations, together with the relations D? = 1.

Therefore, the operators Dy, ..., D, 1 provide a twisted action of the symmetric

group on Pol(x,,). Since the Yang-Baxter shifts are the same for 0; and s;, they can

also be used for 0;+ ;. In particular, one can take the spectral vector [1,2,...,n].

Let us show that the maximal Yang-Baxter element for this choice of spectral
vector is still a symmetrizer. In the case n = 2, one has indeed

81+81+1:(1+I1—1’2>81.
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Lemma 1.7.1. Given n, let

0, = <(D1+1) o (Dyr + 11)> ((D1+1) o (Dys + n12)) <D1) .

Then
O.= [] Q+z—1)0d.. (1.7.1)

1<i<j<n

Proof. Both sides of (1.7.1) commute with multiplication with symmetric func-
tions, it is therefore sufficient to test their action on a basis of Pol(x,,) as a free
Sym(x,,) module. But instead of the basis of monomials {z" : v < p} used above,
we shall use a basis of homogeneous polynomials {Y, : v < p} in their linear
span, such that each Y, has a least one symmetry® in some x;, z;,1, except for
Y,—1,..0 = x”. But using symmetric rational functions in x,, instead of elements of
Sym(x,,), we can take the polynomials Y, [, <;«j<,(1+7;—;) as a test cohort. All
these elements, except in the case v = p, are sent to 0 by [[;<;j<,(1+z; — ;) O,
because the factor [;.;(1 + z; — x;), being symmetrical, commutes with d,,, and
because Y, 0, = 0 for degree reasons.
On the other hand, if Y, has the symmetry x;, x;11, then, by commutation,

Yo I +zj-z:)(0i+si+1) =Y, ( 11 (1+$j:vi)> (1+2;-1541) O

1<i<j<n 1<i<j<n

1<i<j<n

=Y,0; ( 11 (1+a7jx,-)> (1+z;-2i41) = 0.

Since, thanks to Yang-Baxter equation, one can factorize on the left of [J, any
D; + 1, the image of Y, T[(1 + z; — x;) under O, is 0 when v # p. Thus, both
sides of (1.7.1) coincide up to multiplication by a rational symmetric function. To
determine this constant, it is sufficient to see that

1(81+81+1)(61+$1+2_1) coe=nl= H (1+$r1’j) aw ,

1<i<j<n
and this ensures the required equality. QED

The Yang-Baxter rules do not exhaust the realm of interesting factorized ex-
pressions. Let us take’

(1 =1101)(1 = 102) -+ (1 = y10n1))
(1= 4201)(1 = y20s) -+ (1 = Y20n2)) - - - (1 = Yn—101))

8tTo show that such a basis exists is easy by induction on n, we shall see later that the
Schubert polynomials Y, (x, 0) satisfy such properties.

9This product of divided differences is the generating function of Schubert polynomials in the
pair of alphabets y, 0, in the algebra of divided differences, also called the Nil-Coxeter algebra
[32] see (8.2.2).
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and show that this element can be used to transform the staircase monomial x?,
with p = [n-1,...,0], into a product of factors of the type z; — y;.

Let us make the step-by-step computation for n = 4, displaying the factors of
the polynomials planarly.

€3 xs3 xs3

1—y10 1*?4183
To | X2 T To | T2 T2 |r2—y1

T T I T T1 |z1—vy1 T 1 |x1—v1
T3 —Y1 T3—Y1
1fy183 1*?/33%
Ty |r2—y1 T T2 —Yy2lr2—y1
1 | X1 |- z1—y3|T1—y2(T1—Y1

Each step is of the type fxz;(1 — y9;) = f(x; — y), with f symmetrical in
74, Tiy1. In final, we have obtained the function [];, ;<4(2; —y;) by using only that
10; = 0, x;0; = 1. This function, together with the “staircase monomial” 2321,
will play a key role in all the sequel. This identity can be written more compactly,
still reading the planar arrays by columns (by rows still works in the present case),
as

1=y101 [1=y102 [1—9103 T3—Y1
Z3
To | T2 1=y201 |1—y202| — | x2—Yy2 | T2—y1 . (172>
r1p | T1 | T1
1-y301 r1—y3 | x1—y2 | z1—11

1.8 Yang-Baxter bases and the Hecke algebra

The Yang-Baxter relations constitute a powerful tool to define linear bases with
an explicit action of the Hecke algebra (or of the different algebras obtained by
specialization, the first interesting one being the group algebra of the Weyl group).
In this section we shall change the conventions for the Hecke algebra, compared
to the preceding section, to bring into prominence some symmetries.
The Hecke algebra H,, of the symmetric group &,, is the algebra generated by
Ty,..., T, satisfying the braid relations together with the Hecke relations

(ﬂ—tl)(ﬂ—tg)zo, izl,...,n—l,

for some fixed generic parameters t1,t;. For Macdonald polynomials, one takes
ty = t, to = —-1. The 0-Hecke algebra is the specialisation t; = 0, t, = -1 of
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the Hecke algebra (that one can realize as the algebra generated by 7y, ..., Tp_1).
The 00-Hecke algebra, also called NilCoxeter algebra, is the specialisation t; = 0,
to = 0. It can be realized as the algebra generated by 0, ...,0,_1.

From the point of view of operators, the Hecke algebra is the algebra gen-
erated by operators T; such that each T; acts on x;, x;;; only, commutes with
Sym(z;, xi11), and acts on {1,z;41} by

1T =t & Tip1 1y = —tow; .

One has therefore T; = m;(t; + t2) — s;ta.

The general Yang-Baxter equation'’ depends on two generic parameters a, f3
t1+t2> t1+to t1+to
T, T T
<1+a—1 <2+aﬁ—1><1+6—1>

t1+t2 t1+t2 ( t1+t2)
=T T T, +——] . (1.8.1
<2+5—1><1+a5—1> 2T (18.1)

Graphically, it reads

titto t14to
T + ) 15 + 1

Tt Ty
Tl + tl}‘t2 T2 + tl-;tz
Given n, one takes an arbitrary spectral vector [yi,...,7,] of indeterminates.

The Yang-Bazter basis {U) : 0 € &,} corresponding to [y1,...,7,) is defined
recursively, as follows, starting from U} = 1 for the identity permutation:

t1 + 1o

O, =00 |\ i+ —————
’ < 701'4-1/701‘ -1

> for o; < 041 . (1.8.2)

The consistency of the definition is insured by the Yang-Baxter equation (1.8.1).
Notice that arrows are reversible in the generic case. Indeed, for any i, any

10The Yang-Baxter relations for the group algebra of &,,, for the algebra of divided differences,
and for the algebra of isobaric divided differences are the limits ¢ = 1,t; = -1, t; = 0,t2 = 0,
t; = 1,t; = 0 of (1.8.1 respectively.
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v # 0,1, one has

t1+t t1+t t1+t t1+t t to)(t1+t
Tt 1tl2 Tt 1t12 = (44 1tl2 ft 1t12 _ _( 1Y+ 2)( 1t 27) .
v-1 y7i-1 v-1 y1-1 (v —1)2

It is clear that the set {U) : 0 € &,} constitute a linear basis of H,, be-
cause Uy = T, + Xpuw)<i(o) Colv- Since this basis is generated using the T;’s,
it is immediate to write the matrices representing the Hecke algebra in this ba-
sis. The matrices representing each 7; are made of 2 x 2 blocks corresponding
to the spaces (U}, 07,,). They generalize the semi-normal representation of the
symmetric group due to Young''.

Indeed, for &,, and the spectral vector [1,~], the Yang-Baxter basis is {1, 71 +
(t+t2)(y-1)"1}, and the matrix representing T3 is given on the left, while Young’s
matrix (which is the limit for v = (—t1/t2)9, (—t1/t2) — 1) is given on the right
[138] :

—(ty ) (7=1)"1 =ty (Bt (7-1) 2 gt 1
1 (ty+t2)(y1-1)71 ] ' l 1 g ! ] (1.8.3)

One could write the similar matrices for the other types B,C, D, once the
Yang-Baxter relations have been written for these types.

Irreducible representations can be obtained by either degeneration of the spec-
tral vector, or by making the Hecke algebra act on polynomials. For example, in
the case of the symmetric group, a Specht representation is obtained by acting
on a product of Vandermondes on consecutive variables. Similarly, acting on a
product of ¢-t Vandermondes [],<;;<;(#; —tx;) on blocks of consecutive variables
produces an irreducible representation of the Hecke algebra.

Yang-Baxter bases possess many symmetries. Let f — w x f xw be the auto-
morphism of H,, induced by T, — wx T, xw = T,,,,. Then one has

Lemma 1.8.1. The Yang-Baxter bases associated to the spectral vectors [y1, . .., Yn)
and [y, ...,y satisfy the relations
Ot =k OV s | g€ G, (1.8.4)
Proof. In the case n = 2, this is the identity
i+t i+t i+t
T1+_11_12:w*<T1+12>*w:T1+12.
vy —1 y2/y1 — 1 yo/y1 — 1

For a general ¢ and i such that ¢(os;) > ¢(0), putting v =y, /ynt1_;, one has

Ugil,...,yfl (TZ . ty + 7512> = (w* BYLn k) (w* (TZ n ty + t2> *w>
fy —

v—1

t t
:w*<Uij(;;’y" <TZ-—|- b >>*w,
Ynt1-i/Yn—i — 1

11We have taken generic parameters. To build general representations, one also needs blocks
of size 1!.
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and this proves the statement by induction on length. QED
We also need another involution f — f induced by

E%izﬂ—(lﬁl-‘rfg), t1—>—t2, t2—>—t1.

Notice that YA], e ,f n—1 satisfy the braid relations, together with the Hecke rela-
tions

<T\i+t2> (T\i+t1) =0,

and that T, T}, = —t,ts.
Let now f — f¥ be the anti-automorphism induced by (7,)" = T,-1. Define
a quadratic form (, )* on H, by

(f, )" =fg"NT,, (1.8.5)

L.e. by taking the coefficient of T;, in the product faqv.
The basis {7} is clearly the adjoint of {T,,}, i.e. one has

(Tur T) =60, 0.C € 8,

Testing the statements on the pairs T, fcj? one checks :

(Tif, 9" =(f, Touig)® & (fTi, 9)" = (f, gT)*. (1.8.6)

The quadratic form can be restricted to two-dimensional spaces, for which one
has the following property of a Yang-Baxter basis.

Lemma 1.8.2. Let f,g € H,, i, be such that

H H
(f9) =0 & (f(n+““2),g> .y

v—1
Then
H H
t1 + ta t1 + 1o t1 + to
1; =1 & T; , (1 =0.
(£ a4 2E) (154 222 g 1)

Proof. One transfers the factor (T;+e) to the left, and uses that (T;+(t;+t2)(v-1) ") (T;+
(t1+t2)(y~1-1)7') be a scalar. QED

In other words, the two Yang-Baxter bases associated with the spectral vectors
[1,7] and [1,77!] are adjoint of each other with respect to (, ).
Combining the Yang-Baxter relations and the preceding lemma, one can eval-

uate scalar products of factorized elements. For example

t1+t2

af-1

T+

a-1

H
t1+t t1+t t1+t t1+t
((T1+ ! 2)(T2+ . 2),(T1+#)(T2+ ':1[ 2))

B-1 1 L1

t1+to t1+to t1+ts t1+to t1+ts
(( 1+ a—1 )( 2+O{6*1)< 1+ /8*1 )( 2+al/8—1)( 1+ i—l )) 3921
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can be computed by reducing the length of the expression, replacing some factors
T; + (t1+t2) (v 1-1)71) by a sum of two terms (Tj+c;) + ¢ to fit the parameters
in the Yang-Baxter relations. But it is simpler to move the RHS of the scalar
product to the left, obtaining

H
t1+to t1+to t1+to t1+to t1+to
I+ —+—) (1 +—F)1 +—) (e +—) (11 +—F), 1
(( 2+a71571)( |+ i*l)( |+ &_1)( 2+a5_1)( |+ 5_1), )

which reduces to a scalar multiple of (T} + (t1+t2)(8-1)71, | )" =o.

This example is some instance of a general orthogonality of Yang-Baxter bases.
Let us write Tj(a,b) = T; + (t1+t2) (ypy, ' — 1)1, yw = [yn - - ., y1], and first settle
the case of the maximal Yang-Baxter element.

Lemma 1.8.3. The element UY, satisfies the n! equations
H
(Ug, U;‘ﬁ“’) . (1.8.7)

Proof. One takes a reduced decomposition s;,S;,...s;. of 0. Then there exists
integers such that

Ugw - ﬂl (alu bl)ﬂz (CLQ, bZ) o ﬂr<a7’7 b?") .
One can factor w = 0~ !(ow), and correspondingly write the maximal element as

O = Tnfil(blv al)TnfiQ(b% 02) .- -Tnﬂ;(br, @r) oo .

w

Tanks to (1.8.6) ,

H
(8%, Tularbo) - T (o 0)
H
= (Tnlr (CLT, br) e Tnf’h (al, bl) Tnfil (bl, al) e Tnfir (bh CLT) o o0 1)

H
is a scalar multiple of <o XR 1) , and therefore null if ¢ is not the identity

permutation. QED
The following duality property of Yang-Baxter bases is given in [98, Th.5.1].

Theorem 1.8.4. The Yang-Baxter bases associated to the spectral vectors [y1, . .., Yn)
and [Yn, - - ., y1| satisfy the relations

H
(Ug , UZ“> — Gy (1.8.8)

that is, they are adjoint of each other.
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Proof. When o = w, this is property (1.8.7). One proves the general statement by
decreasing induction on ¢(o), using Lemma 1.8.2. QED
Given any product

(ﬂ + Oé(tl-i-tQ)) . (Tk + ’Y(tl-i-tg)) = ZCCTC s
¢

then the product R R
(Ti = a(ti+t2)) .. (T = y(tr+12))

is equal to >, QYA}. This remark allows to rewrite the orthogonality relation
(1.9.4). Define the coeflicients ¢! by U¥ = Y ¢! (y)1,, and recall that the involution
¢ — ¢ acts by t; — —tg, to — —t;.

Corollary 1.8.5. Let 0, € &,,. Then

Yoot DY) = b (1.8.9)
neGn,

—

>y y) = doce (1.8.10)

nedy,

Proof. One uses that .
oY = ZcZ(y;l,...,yl_l)Tn,
1

and that the symmetry (1.8.4) translates into ¢?(y; %, ..., 51" = & (y1, ..., Yn)-
QED
Each of the relations (1.8.9) or (1.8.10) can be used to describe the inverse of

the matrix of Yang-Baxter coefficients cg}
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1.9 tito-Yang-Baxter bases
For k > 1, write

K] =8 —toth 2 o ()P R =T gt ()R
with the convention that [0] = 0, [1] = 1 = [-1]. Define, for all k € Z, k # 0,

T‘—k— -1
k) =T, 4 Dt D :{Z k", k>0

(<ta/t2) =1 | Ti ="k, k<0 ’

adding 7;(0) = T;.

Thus
T1) = Toty, To(2) = T — — 2 T3 =T ts
i — L4702, A — 44 t2_t17 i — 43 t%—tltg—f—t%’,
G tf
Ti(-1) = Ti~ty, Ty(-2) =T, — ——, TY(-3) =T} — ——— .
(1) b Ti(=2) t— s (=3) 13 — tyty + 13

We denote U; = T;(1) and V; = T;(-1) the two factors of the Hecke relation for
T;. Acting on {1, z;}, one checks that

V,- = &(tgmz + tlxi+1) & Uﬂi = (t1$i + t2$i+1)8i . (191)

Notice that for k¥ > 0 one has

(1.9.2)

so that, for k # +1, T;(k) and T;(-k) are inverse of each other up to a scalar.
More generally, the Yang-Baxter equation (1.8.1) implies that, for any i > 0, any
k,r € Z such that k,r, k+r # 0, one has

Ti(k)Tir (k+r)Ti(r) = Tiga (r) Ti(k4r) Tia (K) (1.9.3)

Taking the spectral vectors [t} 1, 7" ty, ..., (~t2)" Y], and [ty ~t1t5 2, ..., (~t))"7Y],
one obtains a pair of adjoint Yang-Baxter bases which are exchanged by the in-
volution exchanging t1,t;. We shall denote these two bases {V, : ¢ € 6,} and
{U, : 0 € &,,} respectively. Here is the basis associated to the spectral vector
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[t§> _t1t2> t%]

Ugiz = T7 — 1o Uigp = T5 — 19
Wagy = T1 151215 Usio = 15T 12T}

t3 T t3 t3 T t3
_tQ*tl 1 + to—t1 _tQ*tl 2 + to—t1

\ /

TVIY Tt T5T T T5

U =
Vaz1 2Ty + 12Ty — t3

and the basis associated to the spectral vector [t2, ~t1to, 3]

/ Vigg =1 \
Vaois =11 —1; Vige =15 — 13
Vg1 = T -1,T5 Vi = 1T -4,Th
t T t t T t
_t1_t2 1 + t1—to _tl_tQ 2 + t1—to

~_ _—

\VA o TlTQTlftlTQTlftlTng
T+ 8T - 8}

One notices that Vo3, V132, Va1, as well as Uay3, U35, U39y are quasi-idempotents.
This is due to the choice of the spectral vectors.
As a special case of (1.9.4), one has

Corollary 1.9.1. The bases {U, : 0 € 6,,} and {V, : 0 € &,} are adjoint of
each other. Precisely, one has

H
(@U , vg) = G (1.9.4)

The preceding corollary furnishes in particular the transition between {U,}

and {V,} :
U, = > (W, @wC)HVC.

(<o

The inverse of the transition matrix is obtained by conjugation with the diagonal
matrix [(-1)%?), ¢ € &,]. Non-zero entries correspond to pairs ¢, o such that
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(¢ < o with respect to the Ehresmann-Bruhat order. Thus this matrix may be
considered as “weighing” the order. We shall see later another weight given by
the Kazhdan-Lusztig polynomials.

The case where o is a Coxeter element is specially interesting since then the
interval [1,0] is boolean. Let us just describe the expansion of U, when o =
2,...,n,1].

Define a function ¢ on permutations as follows, starting from ¢([1]) = 1. For
o €6, if g, # n, then p(0) = p(c \ n)), else

1] [2n-0,_1-1]
n-1] [n-0,_1]

p(0) = pla\n)

For example, @([173747275]) = 90([173747 QD% = 90([17&2])% = 90<[1’ 2DM =
(2] [1][7]

(1] 14](3]"

Proposition 1.9.2. For any integer n one has

Ug . n1 = Z p(¢) V.

¢<[2..n1]

77777

112n-1-v,,_
@[2 ..... n,1] — M[Q ..... n—1,1,n] Tn—l(n_l) = chvv <Tn—1(7/n—1_n) + [ ][ 1]>

[n-1][n-vy,_1]

- Yo (vysnl n “”2”‘1‘””‘1]%) ,

[n-1][n-vp_1]

which is the required property. QED
For example,
2]

[1][4] 3]

Wa31 = Vg + mvlaz + szls + mvlw )
o [2] [1][4] (3]
Uosy = <V2341 + 0 Vizae + [2]2 Vs + [ V1243>
[1][6] [1][4]° [5] [4]
+ ( [3]2 Vasia 3 [2]2 Voaiza + [3]V1324 + [1]V1234> .

The maximal elements U,, V., can be expressed in terms of the maximal
divided difference 9, according to [27] :
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Theorem 1.9.3. Givenn, letw = [n,...,1], w' = [n-1,...,1]. Then the mazimal
elements U,, and V,, have the following expressions

U, = UyT, 1(n-1)...T5(2)T1(1) (1.9.5)
— @w’ (]_ - tQTn_l + t%Tn_lTn_g — 4 (—tg)n_lTn_l “e T1> (196)
= Y (=)™, (1.9.7)
wEGn
1<i<j<n
Vw = Vw/ n,l(l—n) .. TQ(—Q) Tl(—1> (199)
= Vo(l=tTu + BT 1Ty — -+ (1) Ty . T ) (1.9.10)
= Y (=t (1.9.11)
weS,
= 0, [[ (towi+tiz)) (1.9.12)
1<i<j<n

Proof. The first expression for U, and V, result from the definition of a Yang-
Baxter element, choosing the factorization w = w’ s,,_1 ... $1.

By recursion on n, one sees the equivalence of (1.9.10), (1.9.11), products being
reduced.

All the operators occurring in the above formulas commute with multiplication
with symmetric functions in Sym(n), one can characterize them by their action
on the Schubert basis {X,(x,0), 0 € &,,} (see [94]).

Since V;, ¢« = 1,...,n-1, can be factorized on the left from the RHS of
(1.9.11), (1.9.12), these two RHS annihilate all Schubert polynomials, except
X, =271 ... 2% Therefore , is a left factor of them.

Every element of H,, can be written uniquely as a sum ), g, OwPyw With co-
efficients P,, which are polynomials in zi,...,z,. The RHS of (1.9.10) and of
Vo (-t)" 1 Tn_l(—l)}tl . .Tl(—l)_it1 have same coefficient in 9,,. This coefficient
is obtained by mere commutation : fV; = f0;(tex; + t1x;41) ~ O;f% (tax; +
ti1x;11), the extra term (f0;)(tax; + t12,41) imposed by Leibniz formula cannot
contribute to a reduced decomposition of 0,. Therefore, formula (1.9.10) is true
if it is true for n-1. The same reasoning applies to the factorization V, =
Vi Tn-1(1-n)...Ti(-1) which has the same coefficient in d,, than V,,V,,_1 ... V.
By symmetry, the properties of V, imply similar properties of U,,. QED

Let A € N be a composition. Put v = [0, A\, \i+ g, ..., AL+ -+ + N,

Ag\th = H H (t1$i+t2x]‘)

=1 w1 +1<i<i<ug

14
Af\Qtl = H H (tzZEi + tll‘j) .

k=1 wp_1+1<i<j<oy

el
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Let wy be the maximal element of the Young subgroup G, = G, x 6, X - - xG,,.
Then, by direct product, one gets from the preceding theorem

v, = A9, (1.9.13)
V., = 0, AR, 1.9.14
A A A

For example, for A = [3,2], and p € N°, the image of z* under

Viastsa = Y (~t1)" T, = Osp150 A

[ ASCED)

is equal to the Schur function s, 43210(X5) times AZ".
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1.10 B, C, D action on polynomials

As for type A, one transfers operations on vectors to operations on polynomials
by acting on the exponents of monomials.

Thus, s? = s¢ acts on z; only by ; — z;', and s acts on z;_;,2; by
XT; — ZC;}l, Ti—1 — I;l.

We also have divided differences, this time with a difference between types B
and C' :

1 _
.%l- -

1
O =(1—8)——, 78 =2,0°, 7% =007, i=1...n.
T

1 1 1
(1=s7) ! AR % Tiawi) 1 — xi—lla?i7

1
AD:(l—S?)i, Z:2n
xi_lxi—l

As in type A, the above operators can be characterized in a simple manner,
taking into account symmetries. For example, in type C, the divided differences
¢, 78 7#¢ commute with multiplication with functions symmetrical in z;, 1/z;
(which are functions of the variable 28 = z; +2;'). It suffices to give their action
on the basis {1, 2;} of Pol(z") as a free Pol(z$) module :

o¢ o g 7¢
110 1 0
| 1 x+ayt at

For type D, say for i = 2, the space Pol(27", 3 ) is a free module of rank 4 over
the D-invariants. One can take as a basis 1, 22, 5 ', 7", on which the divided
differences act as follows :

D D ~D
9 T2 T2
—1 —1 —1
1 T1Ty T1 + X Lo
To 1 Ty + a7t ot
zy' | —zyay! 0 —xy!
T -1 0 T

For type © = B, the divided differences for two consecutive indices, say
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1,2, satisfy braid relations'?

T Ty T Ty = g T Ty T

but
8208182081 #+ 8182081820 )

In type D, for i # n — 2, then 72 commutes with m;, and 72 commutes with
7;, and

D D D ~D~ ~D _ ~ ~D=
Ty Tp—1T)y = Tp_1 Ty Tn_1 & Ty Tpn—1 Ty, = Tp_1 Ty Tn_1-
Notice that the squares satisfy the same relations than in type A :

007 =0 & mwm =ny & wwy =-7,, V=DB,CD.

7 i 7

Choosing as generators si,...,5, 1,57, Q = B,C, D, one obtains by reduced
products operators 7. and 7, indexed by the elements of the group. Of special
v

importance are those corresponding to wy .

Proposition 1.10.1. Let n be an integer, p = [n-1,...,0], ¥ = z; + z; ",
t=1,...,n. Write 37 for the divided differences relative to the alphabet x* =
{z3,...,20}. Then

o= afnl -l O =aP O el (1.10.1)
Fo = Ay RO =007 R (1.10.2)
o = afalnl o =ar o a7 (1.10.3)
= 2N D)™ I (@ =2 I (@i — 277" (1.10.4)
1<i<j<n 1<i<n
7o = AU RO =00RY R ar (1.10.5)
Notice that 95 = 0, [Licj<n(l — @7 '2;")™" commutes with 7f -7} and
7¢ ... 7% because 27 commutes with 72 and 7¢.

Consequently, images of T and T,g Can be written as symmetric functions

of x%. For example, for n = 3, the image of z*° under 7§, is equal to

(i) (w8 ) (w85)
— ((m{)5 — 4(x3)® + 336{) ((I§)2 - 1) 321

= 5310(X3) — 45110(X3) — 35000(X35) ,

120ne has extra relations, like

6?7‘(13?7‘(1 Wlalcﬂ'lalc
omofm = mofmof
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310 52

since #9020 = %0, and fn{ = (14)° — A(at)® + Bat, a3wf = (23)? — 1.

Let
On = (1+5P) - (1457) +~(1 = sP) o (1= D).
9 2

Proposition 1.10.2. The mazimal divided differences for type D,, satisfy

T = 20,0 (1.10.6)
Fo = 0,051 (1.10.7)

In type B or C, an alternating sum Y_,cy (~1)4*)(2?)"” may be represented as
the determinant
Vj o —’U7
det (:131 v )i,j:l...n '

1
In type D, this alternating sum is equal to half of the sum of two determinants :

—v;

det (m? - I,-_vj) + det (l'? +;

ij=1..n )i7j:1...n ’

the first determinant being null when some v; is equal to 0.

The groups of type B,, or D,, can be embedded into G,,,. However, relations
between type B, C, D divided differences and divided differences relative to Ss,
are not straightforward. The next proposition describe ﬂgo in terms of &, using
the specialization x9;_1 — x;, Xo; — xi_l, 1<i<n.

Proposition 1.10.3. Given n, let ( = (51 Son—1)(S1 " Son—3) - - - (515253)(s1).
Then

7TC = T¢ y

Wo -1 -1
x—{r1,2] " ,w2,2y ..}

as operators on Pol(x,,).

Proof. The ring Pol(x2,) is a free-module over Sym(xa,, ), with basis {Y, : [0,...,0] <
v < [2n-1,...,0]}. The submodule Pol(x,) has basis {Y, : [0,...,0] < v <
2n-1,...,n,0,...,0]}. One can as well take {z" : [0"] < v < [2n-1,...,n]}, or,
our present choice,

{z": [1-2n,...,-n] <v <[0"]}.

-1

n

Specializing symmetric functions of x,,, into symmetric functions of x1, 27", ..., xp, x
one sees that the same set of monomials'® span Pol(x,) as a Sym(x?)-module.
Therefore it is sufficient to test the proposition on these monomials.

Since both wgo and 7, admit the symmetrizer 7, w = [n, ..., 1] as a left factor,
the test can be restricted to all Schur functions of xV := {z7!,..., '} indexed
by partitions contained in n".

13 but they are no more independent. For example, for n = 2, %72 = 2731 —qz=271 +
b~ b7t — 290 with a = 21 + 2o + Il_l + x;l, b=1x120 + 2131562_1 + xle_l + 1+ xl_lxz_l.
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Instead of enumerating partitions, one can introduce y = {y1, ..., y,} and test

the single function
n

R(x",y) = I (=" — ).
ij=1
Let us first consider R(x,y)n$ . The monomials 2* in the expansion of
R(xY,y) which give a non-zero contribution are those such that u + p, with p =
[n,...,1], has all its component different in absolute value. Since [0,...,1-n| <
u+ p < p, the vector u + p must be a signed permu&ation of p, in which case

a"7$ = +1. Therefore, the sum Zw:I:<:BPR(XV,y)) (AY)~L, which expresses

R(xY,y) WSO, is independent of x. Specializing x =y, only the subsum

S £ (o)) (A%6) T = X #(e) Ry

weSy, weG,

survives. After simplification, this subsum appears to be equal to

vioyn IT (1= i)
1<j<n

Let us now treat m; = m, (7, - - - Map—1) Ty, With m,) = (M1 - - - Top_3) - - - (W23 (71).
The symmetrizer 7, preserves R(y",y) , the operator (m, - -, 1) acts only on
the factor R(x,;',y) and sends it to (-1)"y; - - - y,. One is left with the computa-
tion of

/
R(X 7Y) 7T’V] = )
T2i=Tg; 1

with x' = {a7',...,2,',}. Assuming by induction the validity of the proposition
for n — 1, this last function is equal to R(x',y)m,;, with wy relative to C,,_;.

The monomials " appearing in the expansion of R(x’,y) being such that
[-1,...,-n+l] <u+p <, with p) = [n-1,...,1], then for the same reason as
above, the sum

2 i<$le(X’, y))w(AC(xl, @)

does not depend on x. Specializing 1 = y1,...,%,_1 = Yn_1, the sum reduces to
AV 1
> yp) R(y'y) =y Yo I (= vy R yn) s
weGnl( Ac(yl’ ce ’yn—l) i<j<n-—1 !

with y' = {y;*,...,%,%}. In final, the two operators send the test function
R(x',y) to the same element, and therefore are equal. QED
For example, for n = 2, one has

xllOO(

7T17'('27T3)(7T1) = (5E1+ZE2>(I3+{L’4) + T1T9

and this polynomial is transformed, by x — [z, 27", 72, 75 '], into

$117r17r207rl7r20 = (IE1+ZU1_1)($2+1'2_1) +1,
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which is equal, as we shall see later, to K, _.
0

i

v

The two families of divided differences 7;”, 7;” are related by the equations

m=1+m,i=1,....n-1 & n’ =147 ,V=B,C,D.

For any element w of the Weyl group of type ©, by taking any reduced decomposi-
tion of it and the corresponding products of 7;’s or 7;’s, one obtains an expansion
of m,, in terms of 7,, and conversely, of 7, in terms of 7,. From a simple property
that followers of Bourbaki call the exchange lemma, which describes the growth of
intervals for the Bruhat order with respect to w — ws;, one obtains the following
relations between the two families of divided differences (given for type A in [85]).

Lemma 1.10.4. For any element w of a Weyl group of type O = A, B,C, D, one
has the following sums over the Bruhat order :

Tw = Y T (1.10.8)
v<w

T = > (=10 (1.10.9)
v<w

For example, for type C, and w = [2, -3, -1], then w = s 518955 and

T = (1+ 7)1+ 71) (1 + ) (1 + 7§) = Fras + (Fars + Frsa + Fro3)
+ (7?231 + o153 + Mgz + 7?132) + (7?231 + T3 + 7AT1:§§> + To31 -
On the other hand, for type D, w = [2,-3,-1] = s;s2, and
Tw = (1 4+ 1) (1 +75) = T1as + T3 + T133 + Toz -

As a matter of fact, Stembridge [?] shows that the 0-Hecke algebra furnishes
the easiest way to compute the Mobius function relative to the Bruhat order of
Coxeter groups'’.

4 the operators m; and 7; give two realizations of the 0-Hecke algebra, since (m; —0)(m; —1) = 0
and (7 —0);(7m; +1) =0.
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1.11 Operators on symmetric functions

Divided divided differences commute with multiplication with symmetric func-
tions. They can nevertheless be used to build operators on symmetric functions,
after breaking the initial symmetry, say for example, by sending z; to 27 ', or to
qx1, or using derivatives, then symmetrizing.

As a first example, let us use isobaric derivatives §; : f — xiﬁ( f), and

more conveniently, symmetric functions in the alphabet 1 = {= 6; — %, To=
b — 3, =10+ 1-n}.

The following lemma shows that symmetric functions in 9, followed by 7, act
diagonally on Schur functions.

Lemma 1.11.1. Let g € Gym(x,), A € N" be a partition, A, be the alphabet
{/\1_%7 )\2_%7 ) >‘n+%_n}' Then S/\(Xn)g(el) Tw = g(A)\)S)\(Xn)'

Proof. Writing 7, = 2*0,,, one can commute z with g(9), at the cost of changing
9 into U= {/\1+%—n, /\2+%—n, ...,)x,ﬁ%—n}, due to the fact that (6; — a)z; =
z;0; —a — 1. Factorizing 9, = (Y ,ee, £0) A(x,) !, one can commute Y +o with
the symmetric function in ', thus obtaining

(%) (1) T = sx(xn)2” D o g(T)A () ™ = 53(%0) A (%) (1) A(x)

The action of g(7) on s)(x,)A(x,), written as a determinant of powers of 1, ..., z,
is immediate, furnishing the result. QED

Since p;(9) acts by multiplication by d — n?/2 on homogeneous symmetric
functions of degree d, the first interesting operators occur in degree 2. Indeed the
1(2n+1

operator po( N, — Z( 3 ) may be found in different places, as a Hamiltonian. It

can be written, in terms of derivatives with respect to power sums, as the operator

. d d
Sym > f — ZZUPHJ‘

i>0 §>0 @%(f>+(l+j)pipj7(f)-

dpi-i-j

As a second example, let us introduce two parameters «, 5 and consider the
Sekiguchi operator

Q= (ad+B)...(ad, + f-n+l) 7, ,

on symmetric functions of x = x,,. To explicit the action of {2, we shall take as a
linear basis of Gym(x) the Schur functions in the alphabet x* = éx. Equivalently,
we introduce a second alphabet y of cardinality n, and compute

o(xy)Q = HH(I - a:iyj)_l/o‘ Q.

Since (1 — z;y) Y (ad; + ) = zy(l — ziy) Yo' + (1 — z;9)"Y*, one sees
that there exists a function F(x,y) independent of « such that o(x%y)Q2 =
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F(x,y)o ((1 +1)x ) This function may be determined by putting o = 1, and

is thus equal to o(xy Q‘ (-2xy). We have seen just above that € | may
be written A(x)(d; + 7) .. (5 +7), with v = 8+ 1 —n. Thanks to Cauchy,
o(xy)A(x) = A(ly) det(l_;iyj), and therefore

1 Y+ (1 =y)wy; ) 1
0<X3’)Q’a:1 " Ay) det ( (1 — zy;)? ) Alx)’

and F(X,Y) is the numerator of this last function.

As in the case of Gaudin determinant det ((1 — x;y;) (1 — z;y; + )71, or
Izergin-Korepin determinant det ((1 — z;y;) ' (1 — qx;y;) '), one can write the
quotient of the numerator of a(xy)Q’a_ by the two Vandermonde as a prod-

uct of two rectangular matrices [87, 95]. Explicitly, let M¢(x,) be the matrix

M®(x,) = [(1)J‘—iej_i(x)(5 it 2i— j)} . (1.11.1)

i=1...
j=1.2n

Then F(x,y) is the determinant of the product of this matrix with

hi—j (Y)} i=L.2n’

For example, for n = 2, F(x,y) is the determinant of the product

ho O

[60(5 - 1) *el(ﬂ - 2) Gg(ﬁ - 3) 0 ‘| hl ho
0 el —e1(B—1) ex(B—2)| [ha h1|’

hs  ho

where, by symmetry between x and y, the h; are the complete functions of one
alphabet, and the e;, of the other alphabet. In terms of products of Schur functions
of x5 and ys, one has

F(x2,y2) = B(6-1) — (8-1)%s181 + 2511511 + (8-1)(8-2)(s2511 + 51152)
— (8-2)s21521 + (8-2)(8-3) 522522 -
The function o(x“y) expand as > S, (x%)S,(y), sum over all (increasing) par-

titions in N”. Therefore, the image of S,(x*) under 2 is equal to the coefficient
of S,(y) in F(x,y)o((1 +a t)xy), that is equal to

1
SUJ+]—Z((1+Q)X):| 1=1...2n
j=l.n

S MES,). ((1+1)x)> — det (Me- ) L (1112)
ut a

denoting by M¢ the minor of M on columns u;+1, ... u,+n. The matrix M€ is in
fact the sum of the two matrices

(177 (b —n+i)eja(x)] and [(~1)77 (i — j)e;-i(x)] .
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Let M?(x,) be the n x co matrix of power sums

B+l-n pi(x)  pa(x) pa(x)
0 f+2-n p1(x)  pao(x)

MP(x,) = : '
0 e B p1(x)
Since Y (-1)%e;(x)o((14+a1)x) = o(x*), and Y (-1)"e;(x)o((14+a1)x) = (p1(x)+
pa(x) +...)o(x*), the product (1.11.2) can be transformed into the product

MP(x,) - (1.11.3)

Using Newton’s relations 52, p;(x)o(x) = 352, 45;(x), one obtains that S, (x*){2
is equal to the determinant of

me+j—o+5—n+g%ﬂi@%} . (1.11.4)

ij=1..n

For example,

(la+ 5 —2S(x") (da+B—2S(x") (8a+ - 2)5(x)
S136(x*)Q = [(0a + 5 —1)S1(x*) (Ba+ S —1)S3(x*) (Ta+ —1)S.(x)] .
0 (20 + 3)S2(x*) (6a + B)Se(x*

The shifts f-n+i in (1.11.4) are constant by rows. The expansion by rows of the
determinant expressing S, (x*)(2, starting from the bottom, may be written

> (D) g((A+ p)o — p) SAHAT(x)

O'GGn

with A = v, where, for u € N" §%(x) denotes the product of complete functions
Suy (X)) ... Sy, (xY), and p(u) = (auy + B) ... (qu, + f+1-n).
Introduce another alphabet z, and denote S2z the linear morphim

Sym(z) > sy(z®) = Y +2(AFP)7=P ¢ Yol (z)

by 225 the linear morphism sending z* onto the product S*(x%).
The preceding computation may be interpreted as the following factorization
of the Sekiguchi operator:
Sym —22 Pol(z) iU Pol(z) =22 Sym.
Let 9 = {N\= ad — %, To= by — %, o 9= ad, + %—n} The Sekiguchi
operator may be written >(3 + 1)"¢;(1)m,,, and therefore determines the action

of each elementary function e;(9)m,. Since e;(17) acts as a scalar on homogeneous
polynomials, one more generally knows the action of any linear combination of
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e1(1)*e; (), for example e1(1)* —e2(1) = pa(), e1()* —3e1(Nea () +e3() = pa(),
e1(Mea () — ez(7) = s21().

Explicitly, for any polynomial f in 9, any v € N”, let s (v) =
f(owr%, e ,own+%fn). Then the description of the action of the Sekiguchi op-
erator entails

Lemma 1.11.2. Let f = po,ps3 or sa1. Then the action of f(N)m, on Gym fac-
torizes as i i
Sym —52 Yol(z) Y yol(z) 225 Sym.

The Sekiguchi operator preserves degrees. Expression (1.11.4) shows that is
triangular in the basis {s)(x%), ¢(\) < n}. Since ¢ takes distinct values on N™,
the eigenspaces of 2 are 1-dimensional, their generators being the Jack symmetric
polynomials. Since these polynomials are specializations of Macdonald polynomi-
als, we postpone at this point any further comments about them. The operator

(pg(‘"l) — i(zn; 1)) 7, 18 also diagonal in the basis of Jack polynomials, with eigen-

values Y (a\; + 1/2 — 1) — i<2"3+1) = oY N+ aX(1-2i))\;. It is in fact a
rewriting of the Calogero-Sutherland Hamiltonian, and has been considered by
physicists [58], see also [13]. To my knowledge, the operators corresponding to
p3() and s91(7) have not been used, though they also diagonalize in the basis of
Jack polynomials. Beware that the operator ps(7)m, does not act diagonally on
Jack polynomials'®.

It is easy to transform isobaric factorized operators into degree-raising opera-
tors, by introducing inside the factorization of the operator the multiplication by a
fixed polynomial. For example, let us see how to transform the first operator that
we saw in this section into an operator deforming the product of Schur functions.

Let A be a partition in N*. Then the operator Q) = z*(6; + ) ...(d, +
f+1-n)m, acting on Gym(x,) may be rewritten

22?3 £0) (01 + B+1-n) ... (0, + B+1-n)m,
= s$x (%) A(x,) (61 + B+1-n) ... (6, + B+1-n)7y, ,

and therefore the image of a Schur function s,(x,) under Q, is equal to

Y (a8, 80) (1 + B) .o (v + B+1-n)s,(x4)

v

where the coefficients (sys,, s,) are the structure constants appearing in s, (x,)s,(x,) =
> (8284, Su)su(x,). We shall meet similar operators in the case of Macdonald
polynomials.

One can also use the divided differences associated to types B, C, D to define
operators on Gym.

15This is compatible with the fact that py = e} — 4eZeq + 4ejes + 2em2 — 4ey, the term €3
preventing to apply the preceding considerations.
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Let us first consider the action of ~x7*7Pz¥ k € Z, on functions of ;.

. —r/2 . . .
Since S, (z1+1)z; "/2 i3 invariant under sB . one has

_ _ +1][2k-r-1] if & > r/2
— S (ry+ Dz FrBal = —[r+1 gt kB gk — iy ,
(el Py = Sretlry ™ ~a 1] [ 1-2K] if k< /2
with [j] = 1421+ ... +a7.

One notices that the same functions can be obtained by combining 0; with the
specialization x5 = 1. More precisely, one checks that for all » > 0, all k¥ € Z, one
has

—S(z1+1) ml_kﬂfx’f_l = S,,((xl_l + x9) x%k_lal

xo=1
The next proposition shows how to extend this observation to any n, and will
constitute our last example for this section.

Proposition 1.11.3. Let A € N” be a partition. Then one has, for any k €€ Z,

(~1)"sx(xp + V) " r B0k m, 1 om(ey . x,) 7t = sy sBa710, ... 0,

Tpn4+1=1

(1.11.5)
Proof. By recurrence on n, one sees that, for any symmetric function f(z1,...,z,),
one has

floy, ..o xn) " m an ... T

1 z2h1 1
+ f(z1,. .. x)

=2 G ) R e ()

This is a Lagrange-type sum ([94, Th. 7.8.2]) which can be written

1

f(fUl, o ’xn)s?x?kfl(l—xl)flal e Op1 + f(xla ces 7xn>m )

but one can make this expression more symmetrical by considering the alpha-
bet x1,...,%,41, and by supposing'® that f is the specialization z,.; = 1 of a
symmetric function of z, ..., x,.1, thus obtaining the stated identity. QED
For example, for n =3, A = [1,0,0], k = 3, one has
—s1(xg+1) 2378 2s = (14w +wy) (w3 + +- - - + 23) + (v3+ai+al),

whose image under mom; is (31(x3+1) + 521(x3+1))$1x2x3.
On the other hand,

(27! 4 2o + w3 + 24)75 010205 = s1(X4) + So1(X4) ,

and this agrees with the proposition.

16This is no restriction: s)(x,) = sx(Xn+1 — 1)|$ et
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1.12 Weyl character formula

Irreducible characters for type © = A, B, C, D have been described by Weyl. For
A € N" dominant'”, Weyl’s character formula reads

o Lul-1) (a0)"
T TS (1)) (o)

(1.12.1)

where p = [n-1,...,0] intype A, D, p=[n,...,1]in type C and p = [n—1 ,%]

in type B. ’
Using the factorization of the alternating sum of the elements of each group,
one recognizes that the characters XE\? are equal to the image of 2 under 7r§jo.
Each 7r§30 has 0, as a right factor. Since, for any functions fi(x),..., fu(z),
one has

fu(w1) -+ falwn) 0 = det(filw;))/ det(a] ™)

one may write the numerators of Weyl character formula as the following deter-
minants (still with A\, = 0 for type D) :

det(z)"™"77) type A (1.12.2)

det(x;\j+n_j+1/2 - :Ei_/\j_"ﬂ_lﬂ) type B (1.12.3)
det(z) I 7MY type € (1.12.4)

! det(z)9"" 7 4 275" type D (1.12.5)

Let A(x) = [li<j<jen(zi — ;). Then the denominators A% AB AY AP of
Weyl character formula are respectively equal to

still using the notation x* = {%,..., 2%}, with 28 = z; + z; .

The numerators of Weyl’s formula may also be written as determinants, so
that the right hand side of Weyl’s formula for type A, B,C, D, say in the case
A = [3,1,0], would look like

/2 —11/2  5/2  —-5/2  1/2 12
oz 1] | " —a ; ) =2y Y
/2 _—11/2 /2 —5/2  1/2 —1/2
x5 22 1 $2/ — Ty / 51”2/ — T } 902/ — Xy )
53 /2 —11/2 52 ~5/2  1/2  —1/2
x3 w5 1 x3' " —x x2' T — A
3 T3 3 3 3 3 3 3
2 » 1 5/2 _—5/2 _3/2 _—3/2 _1/2 __—1/2| °
rp 1 9171/ — T / 371/ — I / :C1/ — I /
3wy 1 T B T T Ve R VR VRV
2 Ty 2 T Ly 2 T T
2
x3 x3 1 xg/z _ x;5/2 $§/2 _ x§3/2 le))/z _ 3351/2

"For simplicity, we impose A\, = 0 in type D, but we shall lift this restriction later.
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.7716 —.1‘1_6 .T13 _x1_3 X1 —l’l_l $15+$1_5 .Z‘12 +LL’1_2 1
ZEQG — ZE2_6 ZE23 — ZE2_3 XTo — 1’2_1 1325 + 1'2_5 ZE22 + ZL’Q_Z 1
ZL‘36 — IL‘376 ZL’33 — ZL’373 T3 — 13371 I35 + IL‘375 ZL‘32 + ZL’372 1
.7713 —.Z‘l_s xlz —[El_Q X1 —l’l_l ’ 1’12+JI1_2 X1 +.I1_1 1
ZEQS — [Eg_s ZL’22 — ZEQ_Q To — Ig_l 5(322 -+ Ig_z To + 1?2_1 1
ZL‘33 — IL‘373 ZL’32 — ZE372 T3 — 13371 1’32 + 1‘372 T3 + .17371 1

When A is an integral multiple of p, the numerator in Weyl’s character formula
is the image of the denominator under raising the variables to some power. Writing
k(p) for [kp1,kpa, ..., kp,), and hi(a+b) for the complete function of degree k in
the variables a, b, one has

k1 k1
A [i<icjen(zi™ —2i7)
Xk(p) = = H hk(xiJrajj) 5
H1§i<j§n(xi =) 1<i<j<n
k=1, —k—1
4 lli<icj<n (1 —x; T )

D
Xk(p) = Xk(p) T 1

H1§i<j§n - €

= H hk(xﬁxj)hk(lmi_la:;l) ,

1<i<j<n

n . (k+1)/2 —(k+1)/2
B D Z; — L
Xk(p) = Xk(p) H 1/2 12

i=1 ry —I;

n 1

— hy <\/ZC_@ + ) by (zita;) hy (T4 sty
i:q \/‘r_z 1§i1<_£§n ’ ’

R W

n 1

1<i<j<n

For example, for n = 2, k = 2, one has

1 1 1 1
C 2 2 2 2
=241+ ) (22414 | (@@ tmamtad) (1+— +—— ).
X2 ( L I’%) ( 2 $%>( ! e 2>< T1T2 x%x%)
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1.13 Macdonald Poincaré polynomial

The length of a reduced decomposition of an element w of a Weyl group is equal,
using standard notions from the theory of root systems, to the number of roots in
the intersection of R* and —wR™.

Instead of enumerating inversions, let us define an inversion weight as follows.
Embed the Weyl group of type B,,C,, D, into &s,. Given w € W and the
corresponding o € Gy, to a pair (i,7) : 1 < i < j < n, such that o; > 0
associate a factor hj. To a pair such that o; > 09,41_; associate a factor h;;.
Moreover, to all 7 : 1 <17 < n such that w; < 0 associate a factor h; in type B,
and a factor h;; in type C. The inversion weight Z(w) of w € W is the product
of these factors.

One can also define Z(w) recursively by left multiplication by simple transpo-
sitions. Given w, s; such that ¢(sw) > ¢(w), then w and s,w either differ in two

positions i, j or (spw); = —w;. In that last case (which do not occur for type A
or D), one has Z(syw)/Z(w) = h; in type B and = h;; in type C. In the first
case, if wyw; > 0 and [...w;...wj...] = [...w;...w;...], then Z(spw)/Z(w) =
h;i. Otherwise, if w;w; < 0, then [...w;...w;...] = [... —wj... —w;...] and

I(spw)/Z(w) = hyj.
For example, for type C}, one has the following chain of inversion factors :

2,4]

34 h3s [

]54 h22[

2,4,T,3]¢4"2[2,4,T, 3]¢82 2,3, T, 4] <18 11, 3,

g2l 1y 93 4]y 9 T 3101, 2,4, 3] [1, 2,3, 4]

The inversions are more straightforward to read when writing the inverse ele-
ments :

84 hoo [

3,1,4,2] &2 3, 1,4, 2] 12 31 2, 4) 18 ] 39 4]
FELERIIDN S S TTR RIS B B S COD R UL R FRD I WS

For each Weyl group of type © = A,,_1, B,,C,,, D,,, Macdonald defined the
following kernel'® M® | introducing formal parameters hj; :

Mt =T (= hjage?)
1<i<j<n

MD == MA H (1-]’LUI,L_1{L’;1>
1<i<j<n

MB = MP T (1= hayh)
1<i<n

MC — MD H (1—h“$;2)
1<i<n

18 Of course, Macdonald does not mix types, but taking a pure combinatorial point of view
leaves us more freedom.
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For example, for A, and Ds, one has

MA = (1 . h21$2> (1 _ h31$3> (1 o h32$3> 7
T I )
MD :MA (1 _ h12 > (1 o h13 ) <1 B h23 ) ‘
T1 X2 13 To T3

The following theorem, due to Macdonald [124, Th.2.8], generalizes the enu-
meration of elements of a Weyl group according to their length.

Theorem 1.13.1. For a Weyl group of type O = A, B,C, D, with mazimal ele-
ment wy, one has
My =" T(w).

weWw

Proof. Each kernel, multiplied by 2#” is a sum of monomials ", where the expo-
nents respectively satisfy the conditions (componentwise comparison) : for type
A [0,...,0) <v < [n-1,...,n-1],

for type B, [1-n,...,1-n] <v+[L, ..., <[n,...,n],

for type C, [-n,...,-n| <v <|n,...,n),

for type D, [1-n,...,1-n] < v < [n-1,...,n-1].

Under the operator Zw(—l)f(w)fﬂ,, such monomials are sent to 0, or to +1
if they appear in the expansion of AY. One checks that in that last case, the
coefficient is indeed the inversion weight Z(w). QED

For example, for type Cs, the contributing terms are

2,1 2,—1 1,—2 —1,-2 1,2
r =X hoo + x highey — x hi1 hig hog — x7%hoy

+ 22 hot hit — 27> hot hat haa + 7% hat hay hag hos

One could have decided'” to denote the elements of the group by the element
of the orbit of p¥. In type A, one would have permutations of [n-1,...,0], in
type B, signed permutations of [n-1,...,1], in type C, signed permutations of
[n,...,1], and finally, in type D, signed permutations of [n-1,...,0].

The usual Poincaré polynomial is obtained by specializing all h;, h;; to ¢ and
thus is obtained by symmetrizing the “g-Vandermonde”.

One could have taken an arbitrary subsum of the expansion of M". Mac-
donald’s theorem states that the only terms surviving after symmetrization are
those having for coefficient the inversion weight of an element of the group. The
following theorem shows how to apply this property to generate intervals for the
weak order.

For v,w € W, write w > v if the product (wv™') v is reduced, i.e. if {(w) =
((wv™") 4 £(v). In that case Z(v) is a factor of Z(w). In the following statement,

9Tn type A, Cauchy considered the Vandermonde determinant, that he in fact introduced,
as the generating function of permutations together with their signs, and consequently, the
Vandermonde determinant as the “generic” determinant.
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we shall use the same notation Z(w) for the set of inversions and the inversion
weight of w € W.
Let h%; = hjwja; ', j >4, and hf = hyay oy, i < j, h = hay .

Theorem 1.13.2. Given a pair w,v such that w >, v, then

I a=-p) I e, = Y I(v). (1.13.1)

a€Z(w)\Z(v) a€Z(v) U W ULV

Proof. We already remarked that we have only to extract the products of h;; which
are inversion weights of elements of W. But v € W is such that w > w if and only
if Z(u) divides Z(w), thus w in the RHS if and only if it belongs to the left-order
interval [w, v]. QED

It is interesting to notice that the interval [1,w] for the Bruhat order can be
obtained, thanks to Lemma 1.10.4, by taking any reduced decomposition w =
s;---s; and evaluating the product (14 7;)--- (14 7;). On the other hand, the
preceding theorem gives the interval [1, w];, for the weak order by symmetrizing a
factor of degree ¢(w).

For example, for w = [3,4,1,2] € &, the initial interval for the Bruhat order
is given by

Tya12 = Momammy = (1 + 2) (1 + 73) (L + 1) (1 + 73)
= Ta412 + 3214 + T3142 + T3124 + T2413 + Ta314 + T2143

+ To134 + 1432 + T1423 + T1342 + T1324 + T1243 + T1234

while the initial interval for the left order is obtained by computing

X T X T
(]- - h313> <1 - h323> (]- - h414> <1 - h424> T4321
X To T )

= 1+ hsa + h3i1hsz + haahaa + haihaohas + hathaihsahys
which translates, passing from the inversion weights to the permutations, into
[1,2,3,4],[1,3,2,4],[1,4,2,3],(2,3,1,4],[2,4,1, 3],[3,4, 1, 2] .

The Poincaré polynomial is obtained by specializing all h,, to q. For example,
let w=15,2,4,6,1,3], v=1[3,1,2,5,4,6] in Sg. Then

I([57 27 47 67 ]" 3])/2([37 17 27 5a 47 6] - h51h52h53h61h63h64 ) I([?)a ]-7 27 57 47 6]) - h21h31h54

and the polynomial of the interval is equal to

(1 - h51x5> (1 - h52‘”5) (1 - h535“5) (1 - hm%) (1 - fmxﬁ) (1 - hm%)
T X9 T3 T X3 Ty

T i xz
X <—2> (—3) <—5> Tes4321 = +2¢° +2¢" + 33+ 24> +2¢ + 1.
X1 T Xyq hji=q
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We end by giving an example in type C, for n = 3, writing the interval and
the inversions in the order they are created.

Thus, the Poincaré polynomial for this interval is equal to 14 hoy + hss + hoghss +
hoihss + hishashss + hoirhizhss + hoirhishiihas 4 hoihisheshss + hoihighashii hss.
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Linear Bases for type A

PP TTYPIEEE®

2.1 Schubert, Grothendieck and Demazure

To interpolate a function f(z1) at points y;, ys, .. .,, Newton [130] chose the basic
polynomials Yy = 1, Y7 = (z1-v1), Y2 = (x1-y1)(x1-y2), ... and found that the
coefficients of f(x1) in this basis could be obtained by divided differences.

One can add the remark to Newton’s computations that the Newton basis
Yy, Y1,Ys, ... is invariant under the divided differences 9. Indeed, Y0y = -Y;_1,
and Y07 = 0 for i # k. It is therefore natural to generate bases of polynomials
using the different operators 0;, m;, 7;, T; that are at our disposal. However, we also
need starting points, i.e. polynomials such that them together with their descent
will constitute a basis. In the case of non symmetric Macdonald polynomials,
because one also has “raising operators” which increase degree, we need only one
starting point, which is 1. For the other families of polynomials, the starting
points will be associated to the diagrams of partitions, to the cost of having to
check compatibility conditions between the different starting points.

Given A € N" a partition (i.e. Ay > --- >\, > 0), then

Y)\ = H ($Z — y]) & G)\ = H (1 - iji_l)

i=1.n,j=1.)\; i=1.n,j=1.)\;

are the dominant Schubert polynomials and the dominant Grothendieck polynomial
respectively, of index A, and

K)\:IA:}/(\)\

are the dominant Demazure characters for type A. We shall rather say key
polynomials instead of Demazure characters [21] in reference to their combinatorial
interpretation in terms of keys.

57
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_ _ 1YL | -2
1 2
To—Y1|T2—Y2 To | T2 1—%2 1—%2
Ty | T1 | T1 Y1 Y2 Y3
T1-Y1|T1-Y2|T1-Y3 1*;1 17;1 175
Y390 K329 Gaao

We define Schubert polynomials to be all' the non-zero images of the dominant
Schubert polynomials under products of 9;’s and Grothendieck polynomials® to
be all the images of the dominant Grothendieck polynomials under products of
m;’s. Similarly, the two types of key polynomials are defined by taking all images
under products of 7;’s or of 7;’s respectively.

Since the operators satisfy relations, we cannot index the polynomials by the
choice of the starting point and the sequence of operators used. In fact, all these
polynomials can be indexed by weights in N, the recursive definition being

Y Vig1,vi—1,.. — Y, 82 & G~~77Ji+1,”0i—17m = Gv T when Vi > Vig1 (211)

ceey

K,mi=K, & K, 7 = k\vs“ when v; > v;11 . (2.1.2)

Thus, the operators act on the indices just by sorting increasingly in the case of
key polynomials, and by sorting and decreasing the biggest of the two components
exchanged, in the case of Schubert and Grothendieck polynomials®.

It is clear that these four families constitute linear bases of Pol(n), because Y,
K,, K, have leading term® 2¥, and G, has leading term z~*. However, it is un-
satisfactory to have mere bases, one must be able to express a general polynomial

! There are dominant polynomials in the images of a dominant polynomial, in the Schubert
and Grothendieck cases; therefore, one has to check consistency, as we already mentioned, but
this easy.

2As a natural continuation of my work about syzygies of determinantal varieties, I had de-
termined the classes, as polynomials, of the structure sheaves of the Schubert subvarieties of
a flag manifold. It was a time where Grothendieck had some complaints about the world of
mathematicians. I proposed to M.P. Schiitzenberger to call these classes Grothendieck polyno-
mials, to which suggestion he readily agreed. They appear under the label G-polynomials in
the paper[104] introducing them, the referee having disagreed with the terminology. The said
referee fortunately forgot to extend his ban to future work. Moreover, Alexandre Grothendieck
did not protest against this appellation.

3Choosing permutations as indexing sets, then the action is simply sorting. We did not give
the case v; < v; 41 because it is determined by the relations 83 =0, 7ri2 =Ty, ﬁf = —7;. Thus in
that case,

~

Y'uai = 07 Gvﬂ-i = Gv7 K’uﬂ— = Kv; I?U%i = _Kv .

4Notice that 2910; = 2/~ Li42I =24+ ... 4 283 =1 and that 29 = 291 4ad =L 4o ghd,
From this, it is easy to prove by induction that the monomials z* appearing in Y,, K, are such
that u, < wvn, up +tp—1 < vy +vp—1,.... In particular, u < v for the right lexicographic order,
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in term of these bases. We shall see how to do it in the next section, by defining
a scalar product.

As examples of Schubert and Grothendieck polynomials, one obtains the fol-
lowing polynomials starting from the dominant ones Y515 and Gayg.

_ (2 —wy1)
y510<_.($1 —y1) (z1—9y2)

Yigo = Ti—y e Yo10 = z1+22-Y1-Y2
/
\ Yooo =1
Gao= 1 8) 1oy
" \
G- E) o G = (1) (1-2)
1 P 1
H
Gloozl_.y1 . Goo =1 — 242
© /
\ Gooo = 1

For these two families, only the polynomial indexed by 010 is not dominant.
However, in general Schubert and Grothendieck polynomials do not factorize,
though they still have the same type of vanishing properties than the dominant
ones.

Our starting Schubert polynomials are products of linear factors z; — y;. We
shall be able to express general Schubert or Grothendieck polynomials as sums of

i.e. the order such that if u < v then there exist k£ such that u; = v; for i = k+1,...,n and
u < vg. Similarly, all monomials " appearing in the expansion of G, are such that —u,, < -v,,
“Up—Up—1 < ~Vp=Vp—1,----
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products of linear factors’. For example, using Leibnitz’ formula, one obtains the
sequence of polynomials

To—=Y1|T2~Y2 T37Y2 T2~
Y320 = , Y301 = + ;
T1=Y1|T17Y2|T17Ys3 T1=Y1|T17Y2|T17Y3 T1=Y1|{T17Y2(T17Y3
T3=Y2 T3=Y2 T2=Y1 T3=Y2 T2=Y1
Yoo1 = + + + + ,
To=Y2|T2=Y3| [T1=Y1|T2=Y3| [T1=Y1|T2=Y3| [T1=Y1|T17Y2| [T1=Y1|L1~Y2

and the last polynomial, Yjo;, does not factorize anymore.

2.2 Using the y-variables

Some properties of Schubert and Grothendieck polynomials are easier to follow
using permutations for the indexing. Given a permutation o of code v, then one
uses both notations Y, (x,y) and X,(x,y) for the same Schubert polynomial, as
well as G, (x,y) and G, (x,y) for the same Grothendieck polynomial.

Both families satisfy a fundamental symmetry in x,y. Indeed, given i < n-1,

denoting as usual w = [n,...,1], then it is immediate, because the statement
reduces to compute the image of (2;-y,_;) or (1-y,_z; '), that
Xw (X7 Y> azx - _Xw(xv Y) 83:—1
Guxy)m = Guxy)m?, (2.2.2)

where 7r711/_ ¥ denotes the isobaric divided differences relative toy¥ = {y; ', 5%, ... }.
By iteration, noticing that the symmetry is valid for X, (x,y) and G, (x,y),
one obtains the following proposition.

Proposition 2.2.1. The Schubert and Grothendieck polynomials satisfy the re-
cursion

Xsicr(xa Y> = _Xcr<x7 y) azy & G(sia) (X, Y) = G(a) (X7 Y) 7Ti1/y ) (223)
for i such that €(s;0) < l(0), as well as the symmetry
X, (x,y) = (-1)"X,1(y,x) & Guyx,y)=Gry)(y’',x"). (2.2.4)

Symmetry in consecutive variables can be seen on the indexing. Indeed, if ¢
and v are such that v; < v;,q, then Y, and G, are symmetrical in z;, x;,1, because
they are equal to Y,0; and G,m; respectively, with v = [... v + 1, v;,.. ]
Consequently, one has the following lemma.

Sthese expressions are not unique.
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Lemma 2.2.2. Let i, j,v be such that v; < vy < --- < w;. Then'Y,,G,, K, are
symmetric in Ty, ..., T;.

In the case where v € N" is antidominant (i.e. v = v?), then Y,, G,, K, are
therefore symmetric in x4, ...,z,. In fact, let A = v | be the decreasing reorder-
ing of v. Then K, = 2*n, = 2’79, is equal to the Schur function sy(x,), and
Y, = Y\4,0. specializes to s)(x,) for y = 0, because Y, specializes to P,
The polynomial G, v antidominant, can also be considered as a deformation of
a Schur function. It still possesses a determinantal expression. Geometrically,
it is interpreted as the class of the structure sheaf of a Schubert variety in the
Grothendieck ring of a GraBmannian and I described it in [81] by pure manipula-
tion of determinants without using divided differences.

Let us call Graffmannian Schubert (resp. Grothendieck) polynomials.  the
polynomials indexed by antidominant v.

2.3 Flag complete and elementary functions

Both Schubert, Demazure and Grothendieck polynomials are non symmetric gen-
eralizations of the fundamental basis of symmetric functions that are Schur func-
tions. In fact, the present notes will illustrate that many properties of the Schur
basis can be extended to properties of the Y, K,, G, bases. But there are other
bases of Gym(x), particularly the products of elementary functions e;(x) and the
products of complete functions h;(x). Let us generalize these into flag elementary
functions and flag complete functions.

Definition 2.3.1. For any r, any v € N', v < [r-1,...,0], let
P, = ey, (erl) T Gy, (Xo)

and, for any n, any v € N", let
Hy = hy, (x1) -+ by, (%5)

It is clear that {H, : v € N"} is a linear basis of Pol(x,,), which is triangular
in the basis of monomials. Identifying v and Ov, one checks that U,.{P, : v € N"}
is also a linear basis of the space of polynomials in zi,xs,.... Notice that the
restriction on v eliminates the elementary functions which are null because of
degree strictly higher than the cardinality of the alphabet. Beware that P,y is
different from P,, because of the order we write the flag of alphabets. This change
of convention for the indexing of the basis of flag elementary functions will be
justified by the non-commutative extension of P,.

It is not straightforward to express monomials in these two bases. For example,

2
Ty = P1,1,0,0 - P2,0,0,0 - Pl,l,O

= (21 + 29 + x3) (21 + T2) — (T123 + 2122 + Tax3) — (71 + T2)71
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$§ = H(]’Q — Hl,l = (l’% + X129 + 33%) — .1'1(.151 + 33'2) .

We shall obtain such expansions by using a scalar product on polynomials.
More generally, monomials can be written as flag Schur functions. Let v € N™,
U = [Up,...,v1]. Then [94, 1.4.10]

x’ = Su(xna c ,$1) = hujJrj,i(XnJrl,j) . (231)

For example,

x = 55,1,3,0(X4, X3,X2,X1) = b

( ( (x2) hs(x1)

0,3,1,2 hi(xa) hi(x3) ha(x2) ho(x1)
( ( (x2) hi(x1)|

(x2) ho(x1)

Expanding by columns (but from the right!), one finds the expression of the mono-
mial in the H-basis :

03,12 _
x = Hos12— Hip12 — Hoap2 + Hap02 — Hosz2:
+ Hipo1+ Hos01 — Hz01 + Hou20— Hoo20— Hos10+ Hzo10-
The following proposition illustrates that Schur functions in x, can also be

easily expressed in these two bases, using flags of alphabets® in the Jacobi-Trudi
determinants.

Proposition 2.3.2. Let v be the increasing reordering of a partition A, u € N be
the reordering of the conjugate \~. Then the Schur function s\(x,), also denoted
Sy(x,), s equal to both determinants

SU(Xl/XQ/ .. /Xn) =

ho+j-i(Xi)
and Ay (Xpjr—1/Xnir—2/ - .. [Xn) = |€u;4j—i(Xngr—i)| - (2.3.2)

The expansions of these determinants furnishes the required expressions of
sx(xy,). For example, for n = 3, A = [4, 2], one has \~ = [2,2,1,1] and

S42(X3) = Sooa(X1/X2/X3) = 0 ha(x2) hs(x2)

i 0 ’ e(l)(Xi) ez(Xi) €3<Xi) = Az (Xe/Xs5/Xa/X3) ,
0 0 e1(xs) ea(xs)

Sbut this time, flags are constant by rows.
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which entails
Sa2(x3) = Hoo4 — Hos1 = P1122000 — P1,1,31,000 — P2022000
+ P10,02000 T 2031000 + 1,401,000 — £1,302000 — £50,0,1,0,0,0 -

Given 1, there is at most one component of the function P, and of the function
H, which is not symmetrical in x;, x;,1. Since

er(x;)0; = (ek(xi—l) + xz‘@k—l(Xi—ﬂ) 0; = ep—1(xi—1)

and

hi(xi) T = hp(Xiq1)
the image of P, = - - - ex(x;)es(x;_1) - - - under 0; is a flag - - - e_1(x;_1)ep(x;_1) - - -
which is not permitted if (k—1)¢ # 0. Similarly, the image of H, = - - - hg(x;) he(Xit1) - - -

under 7;,which is - - - hy(X;41)he(Xi41) - - -, is also illegal if k€ # 0.
But, from the case of order 2 of (2.3.2), one has, with @ = min(k-1,¢) and
B = max(k-1,7),

ex—1(Xi—1)ee(xi-1) = <€a(xi)€6(xi—l> + ea—1(Xi)ep1(Xim1) + -
+ eo(xz‘)66+a(xi—1)> - (66+1(Xi)€a—1<xi—1) +oee Tt €5+a(Xz‘)€0(Xz‘—1)> ;
and, with & = min(k, ¢), f = max(k, (),
P (Xig1) he(Xig1) = (ha(Xi)hB(XiJrl) +oeet hO(Xi)hﬁ+a<Xi+1>)

- (h5+1(Xz‘)ha—1(Xz’+1) -+ h6+a(Xz‘)h0(Xz’+1)> :
This entails the following actions of 0; and ;.

Lemma 2.3.3. Let n,v be two positive integers, 0 < i < n, v € N” being such

that v < [n-1,...,0], « = min(v,—; — 1, v,_i11), B = max(v,—; — 1, v4_i41). Then
Puavn_ivn-i11000i = Y Posajprjes = D Poeprja—jos- (2.3.3)
j=0 j=1

For v e N", o = min(v;, v41), 8 = max(v;, vi41), one has

(6% «
Huvi,vi_Hoo T = Z Hooa—j,ﬁ+jo. - Z Hnﬁ-t,-j,a_j.. . (234)
j=0 j=1
For example,
Ps20321005 = Pasos210 + Pisos210 + (Posos210) — Psios210 — FPeoos210

H92699 g = H92699 + H91799 + H90899 - H97199 - H98099 )

the term Ppgosa1o being null because eg(x5) = 0.



64 Chapter 2 — Linear Bases for type A

2.4  Three scalar products

Let us first look for a scalar product on QPol(n) compatible with the product
structure and with degree.
When n =1,
1
(fan),gan) = OT (fan)g(-))

1

where C'T" means “constant term”, is a good candidate. Generalizing to (f,g) =
cT (f(:cl, Cey X)), g(i), e i)) means considering the ring of polynomials as
a tensor product of rings of polynomials in 1 variable, a rather poor structure.
Reversing the order of variables in the function g is not enough, one needs a
kernel to link the variables.

We define

(f,g):OT(f(xl,...,xn>g(x;1,...,x;1> I (1—:@»:@;1)), (2.4.1)

1<i<j<n

and write Q, = [T1<;j<,(1 — 227 ") for the kernel.

Explicitely, for two monomials, (2%, z") = (x"*~Vr--"="1 1) and (z%,1) # 0
only when =" appears in the expansion of €),,. In that case (2", 1) = 1 according
to the sign 7 has in 2,,.

Similar definitions and properties hold for the root systems of type B,C, D
(see later sections) with appropriate kernels 22, Q¢ QP

For n = 3, one has

Qg = 7000 — g1m10 _ p00—1 4 g2 1ol 11=2 20,2
and therefore
(20, 1) =1= (721, 1) = (o572 1) & (71, 1) = -1= (297, 1) = (27202,1),

the other monomials being orthogonal to 1 (one has enumerated the positive and
negative roots for type As).
Notice that, for symmetric functions, Weyl has defined the scalar product

(f7 g)Weyl - ;OT(f(xl7 e 7xn)g('r1_17 e 7%;1)92) °

We shall see that in the case of Schur functions

(SM Su) - (S/\7 S#)Weyl - 5%# )

so that the restriction of all these scalar products to symmetric functions coincides
with the usual scalar product with respect to which Schur functions constitute an
orthonormal basis.
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However, we have also to use the structure of Pol(n) as a free Sym(n)-module.
We define for f, g € Pol(n),

(f,9)°:=1fg0. & (f,9)":=fgm..

These quadratic forms take values in Gym(n) and are Gym(n)-linear.
The main properties of all these quadratic forms is the compatibility with the
operators used to define the different bases.

Proposition 2.4.1. Fori: 1 <1 <n-1,

e T; is adjoint to m,_; with respect to ( , ),

o 0; is self-adjoint with respect to (, )7,

o ; is self-adjoint with respect to (1, )™ .

Proof. Let us check that all these statements reduce to the case n = 2.
(fai79)8 = ((fai)g> 0o = (f0:9)0i0s,, = ((fai)(gai)>asiw

The last expression being symmetrical in f, g, one has, indeed, (f9;, 9)? = (f, g9;)°.

The same computation applies to the case ( , )".

The kernel €, can be written Q' (1 — z;z, +11), with ' symmetrical in z;, z;1,
and one can first compute the constant term in z;,z;.1. Let us write f = f; +

xi+1f27 9(33;17 cee 7*%;1) - h<$17 cee 7:Cn) =01 + Ti+192, with f17 f27 g1, 92 invariant
under s;. The difference fm;h — hm;f = fa;h — h7; f is equal to (fig2 — g1 f2) i1
Therefore the constant term

O (k= b f) (1= i/ a130)Y
- CTIBi,wi+1 ((fﬁ-lh - hﬁ—zf) (1 - xi/xi—Fl)Q/)
= CT$i7$i+l ((xi+1 - Iz) (f192 - glfQ)Q/)

is null, because the function inside parentheses is antisymmetrical in x;, x;1. Tak-
ing into account the transformation x; — a:,:}rl_i, this nullity proves that =; is
adjoint to m,_;. QED

Thanks to Proposition 2.4.1, the scalar products ( f, sx(x,)) can be rewritten as
scalar products with dominant monomials. Indeed sy (x,) = 2’7, and therefore

<f, s,\(xn)> = (f, x’\7rw) = (fﬂw,x’\m) = (fﬂw,x’\).
On the other hand,

(F530)” = (£ D7s300) & (foa(x0)

since these last two scalar products are Gym(x,,)-linear.

™

(£, 1) sx(xa)
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2.5 Kernels

With a scalar product and a basis defined by self-adjoint operators, it is easy to
find the adjoint basis. Once more, it is sufficient to understand the case n = 2.

Lemma 2.5.1. Let i € {1,...,n—1},/l\?l- =7, D; = 7 (resp. D; = 0; = /52)
Let f,g € Rol(n), f' = fD;, ¢ = gD;. Then the two equalities (f,g)” = 0,
(f',9)P =1 imply that (f',9")P =0 and that (f,g" ) = 1.

Proof. Consider first the case D; = m; and write f = fi1 + 2,11 f2, g = g1 + Ti1102-
Then ' = f1, ¢ = g(m; — 1) = g1 — g. Consequently,

(f,9)" = (fr,00" = (£,9)" = (f9)" =1 & (f,9)" = (f1,91)" = (f1,9)" = 0.

The computation is similar for D; = 0;. QED
This lemmma will allow propagating orthogonality relations. But to produce
a hen, we need an egg, or conversely.
Let

oy = J] wi—ux) & ¢ = [ Q-=zu").

1<i<j<n 1<i<j<n
Lemma 2.5.2. Letv: 0<p=[n-1,...,0]. Then

(1, 6;)7 = 0= (G0, 7)7,
except for v =0, in which case

(Y079z)8 =1 = (Go, @S)ﬂ-

Proof. By definition, (f(x),0Y)? = f(x)OY 4, for any polynomial f(x). If this
polynomial belong to the span of z¥ : v < p, then f(x)©} belong to the span
of ¥ : v < [n-1,...,n-1] and its image under 0, is a symmetric polynomial
of degree 0 (only the monomials which are a permutation of z* have a non-zero
image). On the other hand, the scalar product can also be written as a sum :

Y o vy 1
01 = S (el 5

Since this is a function of degree 0 in x, one can specialize x = y without changing
its value. However, all (©Y)° then vanish, except for the identity, in which case
OY specializes to A. Therefore,” (Y,,0Y)? = Y,(y,y) = d,0.

The proof is similar for Grothendieck polynomials. QED

"The vanishing of Y, (y,y), which is evident for dominant v, is proved following an induction
which in fact furnishes more specializations. Thus we do not prove it at this point, but refer to
Corollary 3.1.3 below.
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2.6 Adjoint Schubert and Grothendieck polyno-
mials

The ring Pol(n) is a free Sym(n)-module with bases {2V : v < p} and {z7V: v <
p} (one takes Laurent polynomials in the second case). Therefore {Y, : v < p}
and {G, : v < p} are two linear bases. Starting with Y, := @ and G, := 09,
instead of Y, and G, one generates recursively two other bases

~

Y. viiviet,.. = Yy 0 & G...,viﬂ,v,‘fl,‘.. = G, 7; when v; > v . (2.6.1)

Here are these bases for n = 3.

S -z -
Pypo = 1~ 73) (12— 7s)

(yl —$2)
Yio = (y1 — 23)(y2 — 23) ?200:(%—%3)
110 hn H 3)\Y2 3 (y1—x2)
?100:%—1‘?&—1’2—1’3 37010:%—953
Yoo = 1
. (-3 -2
Gao = n v
(1-5)
_ _ 1—
Guo=2(1-1)1-5) Gaoo = :;;’El gég
Y1

Lemmas 2.5.1, 2.5.2 give the following pairs of adjoint bases.

Theorem 2.6.1. The bases {Y, : v < p} and {)A:U c v < p} oare adjoint with

respect to (, )2. The bases {G, : v ; p} and {G, : v < p} are adjoint with
respect to (1, )".

More precisely, the pairing is

(Yo, Yu)? =6y pu = (G, G)™. (2.6.2)
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The two bases {Y,} and {G,} can in fact be easily obtained as images of {V,}
and {G,} respectively. Indeed, €2 is obtained from Y, by reversing the alphabet
x, but divided differences satisfy

Similarly, let & be the involution z; — x,,1,_;. Then
&ﬂ'i & = TTn—q & wz™’ v P = _%n—i . (264)

Extend the involution to codes of permutations : u & = v if and only iff the
corresponding permutations o, (, are such that wow = (. Then, the relations
(2.6.3, 2.6.4) induce

Lemma 2.6.2. The adjoint polynomials Y, and G, are related to the original ones
by

(V)" =(D"Va & (G) =(-1 a;’yf. (2.6.5)

As a consequence, for any o,( € &,,, one has
d
(Xa(x,y), Xc(xw,y)) = (-1)"96,, (2.6.6)
z’ hY “«)
Gy (x,¥), JG(O(XJ) = (-1)"9¢,, (2.6.7)

The decomposition of any polynomial in the Schubert or Grothendieck basis
can easily be computed using the scalar products with their adjoint bases. Here
is the matrix of change of basis between monomials 2V : 0 > v > [-2,-1,0] and
Grothendieck polynomials :

| 000 100 010 200 110 210

1/200 | 1 0 0 0 0 0
1 / 2100 L L 0 0
Y1 Y1
1/:10010 1 1 _1 0 _1 0
Y2 Y1 Y2 Y1
Va0 g 000
1
1/240 | L 0 —--L 0 0 0
Y1Y2 Y1y2
1 / 2210 1 1 1 1 1 1
y12y2 y12y2 yly2 Y1ty y1lye y12y2

2.7 Bases adjoint to elementary and complete
functions

Expanding the kernels ©F and ©¢, one finds the bases adjoint to monomials, for
the two scalar products (, )? and (, ).
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Proposition 2.7.1. Given n, let x¥ = {z1',...,2;}. Then for any u,v : u <

rrn
p, v < p one has

(Ppu(x), 2™)

The basis adjoint to {H, : v < p} requires a little more work, because the
monomials appearing in the expansion of H, do not respect the condition that
their exponent be majorized by p. We first some technical properties of divided
differences.

7]

s

= ()8, = (Po(x"), &) " (2.7.1)

Lemma 2.7.2. Let a,b,k,n € N be such that 1 <k <n, 0 <a,b <n-k. Then

(-1)* if a+b=n-k

] (2.7.2)
0 otherwise

Slb(Xn — Q?k)Sa(Xk)ak Ce 81 = {

Proof. One expands Sys(x, — 2x) = Siv(X,) — TuS16(X,) + -+ + (-2)?. On the
other hand, x%S,(xy) = Sayi(xx) — 3 %, sum over monomials 2%, u € N¥ such
that uyp < i-1. The initial function is therefore equal to

(51b(xn)5a(xk) — Spo-1(Xn) Sa1(Xg) — -+ + (_1)bSO<Xn)Sa+b(Xk)) = cut",

with ¢, € Gym(x,) and uN* such that uj, < b-1 < n-k. The extra monomials 2"
are sent to 0 by O ...0,_1 for degree reason. The sum inside parentheses is sent
to

S16(%Xn)Sa—ntk(Xk) = S1o-1(Xn) Sat1—ntr(Xk) — .
+ (71)b50(xn)5a+b—n+k:(xk) = (71)b‘5’a+b—n+k(xn - Xn) .

This last function is different from 0 only in the case Sy(x,-%,) = 1, that is only

for a+b = n—k. QED

Proposition 2.7.3. Given n, for any v < p, let H, = Siu (x, — x1)S102 (%, —
x9) ... S1n 1 (X, — xp_1). Then

(}I\v, Hu>a = (-1)"6y 0, u,v < p. (2.7.3)
Proof. Factorize 0, = (05-1)(0n—20,_1) ... (01...0,_1). By decreasing induction
on k, one has to compute
<Slv1 (xp — 1) ... Spon (%, — mk)> (Sm (x1)...S, (xk)>0k e On1
= f (Slvk (Xn — xk)Svk (Xk)) 8k Ce 8n_1 s

with f symmetrical in zy, ..., z,, and therefore commuting with 0y ...0,_1. Eq.
2.7.2 forces the equality vy+ur = n—k, to have non nullity, and we can proceed

with k-1. QED
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For example, for n = 3, one has the following pair of adjoint bases.

Hog = 23(z1+2) Hypo = 1
Hiqo = @1 (21+22) Hoygo = 23 Hugp = ~wo-24 Hyg = —51-73
Hiypo = 71 Hoio = 21+ ﬁllﬂ = (zotx3)(T1+73) f‘f\zoo = T3
Hypo =1 ﬁzw = —wox3(21+T3)

2.8 Adjoint key polynomials

The two families {Y, : v € N*}, {G, : v € N"} are bases of Jol(n) (as a vector
space). We have also given two other bases, {K, : v € N"} and {K, : v € N"},
that are in fact adjoint with respect to (, ), as states the next theorem.

First, one checks that for any partition )\, then (K,,2*) = 0, except when
v =X v = [An,..., \1], in which case (Ky,,2*) =1 (cf. [37, Cor 12]). Using that
m; is adjoint to m,_;, this allows to compute any (K, K,). For example, writing
in a box the non-zero scalar products, the knowledge of all (K, K361)

(K6317 f{\361)

_— T~

(K3617k\361) (K6137k\361)

(K3167k\361) (K1637k\361)

T~ =

(K1637k\361)
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determines all (K,, f(\gm)

(K6317 R\316)

_— ~_

(K316, k\316) (K13, k\316)

(K3167k\316) (K1637k\316)

\ /

(K163, fA{316)

In conclusion, one has the following property (cf. [37, Th 15]) :
Theorem 2.8.1. Given u,v € N", then (K,, [A(u) =0, except (KU,KM) =1.

In particular, if X is dominant, then (K, 2*) = 0, except if v = A\w, in which
case K, is a Schur function.

Notice that the pairing, for Schubert and Grothendieck polynomials, is also
the reversing 0 — ow, when indexing these polynomials by permutations, but not
when using codes.
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2.9 Reproducing kernels for Schubert and Grothendieck

In the theory of orthogonal polynomials in one variable one finds it convenient
to make use of reproducing kernels K,(x,y) = Py(z)FPo(y) + -+ + Pu(z)Pu(y),
associated to a family of polynomials Py(z), Pi(z), ... of degree 0,1, ..., which are
orthonormal with respect to a linear functional f — | f. The name “reproducing”
comes from the property that

[ f@)Ka(a.y) = 1)

whenever f is a polynomial of degree < n.

The Cauchy kernel [Tyexyey(1 — 2y)~" plays a similar role in the theory of
symmetric polynomials. It does not require much effort nor imagination to deduce
from the preceding section kernels corresponding to the bases {Y,}, {G,} or {K,}.
Write Gym(x,,) = Sym(y,,) for the identification of any symmetric function of z,,
with the same symmetric function of y,,.

Theorem 2.9.1. For anyv: 0 <v < p, one has
2] T
(@Z, x“) =y’ & (@S, z’”) =y . (2.9.1)
For any Laurent polynomial f in x,, one has, modulo Gym(x,) = Sym(y,),

(0, 1) =) & (69, /)" = f(y). (2.9.2)

The two kernels expand as follows

@Z(X>Z): H (Zi_l‘j) = ZY;)<Z7Y>171)—U<X?Y) (293)

1<i<j<n v<p
oSxz) = ] (l-mzh) = Y Guzy)Goulxy)  (294)
1<i<j<n v<p

There is no real need of a proof. The reproducing property has been obtained
in the course of proving Lemma 2.5.2. Taking coefficients in Gym(x,,), one obtains
(2.9.2) from (2.9.1). The function ©Y (x,z) belongs to the span of {z%z" : u,v <
p}, and therefore can be written

Or(x,2) =Y cuo(y) Yulz y)Y,—u(x,y) .

Therefore, for any v < p, one has (@}:(X, z),YQJ(X,y))a = Y. Cus(y) Yu(z,y).

However, the reproducing property shows that this is also equal to Y,(z,y) and

this proves (2.9.3), the case of Grothendieck polynomials being similar. QED
For example, for n = 2, one has

0Y(x,z) =1 —xy/2 = GOO(Z7Y)GIO<X7Y> + G1o(z, y)GOO(X7 y)

:1.<1_$2> N (1_%&).%2'
n Z1 n
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For n = 3, Maple computes

O3 (x,2) = (21 — 22) (21 — @) (22 — @3) = — (=41 + 2) (—y1 + x3) (—y2 + 73)
+ (22 —v2+ 21 —y1) (=1 +23) (—y1 +22) — (=21 +y2) (21 — v1) (1 — 23)
+ (21 = y1) (=2 + 23) (=y1 +23) + (=91 + 22) (21 — v1) (=22 + Y2 + Y1 — ¥3)

— (=21t y2) (21 —y1) (=y1 + 22) -

The essential property of OY (x,y) and ©%(x, y) is that ©Y (y°,y) and 0% (y?, y)
both vanish when o is different from the identity. Along the same lines as for O}
and ©F, one sees that the kernels Y,(x,y) and G,(x,y) satisfy a twisted repro-

duction property :

(Vxy) F0) =76 & (Gxy)  f) =16, (295)

modulo Gym(x,) = Gym(y, ), the equivalence being replaced by an equality when
f belongs to the span of {zV: [0,...,0] < v <0,...,n-1]}. For example,

- Y1 Yo Y1
(Gglo(X,Y),l‘g) = <1 — 371) (1 — 5171) (1 — 362) $§ T30, = y%.

Notice that, using (2.2.4) and (2.6.5), exchanging the role of y and x, one can
rewrite (2.9.4) into

S (-)MG,(x,2) Gyn(x,y) = Yo (z,y) 27" (2.9.6)

v<p
By taking the image of (2.9.3) under products of 0;’s and the image of (2.9.4)

under products of 7;’s, one obtains decompositions of general Y, or general G’v,
and by involution, of general Y, and GG,,. Let us detail these decompositions in the
next sections.

2.10 Cauchy formula for Schubert

Given u, v, w € N" majorized by p, write w = u® v iff and only the permutations
o(w),o(u),o(v) of which they are the codes, are such that o(w) = o(u)o(v) and
the product is reduced®. With this notation one has the following Cauchy formula
for Schubert polynomials (given in [84] for y = 0).

Theorem 2.10.1. Let o be a permutation in S, w € N" be its code. Then

Yo(x,2) = > Yuly.z2)Yu(x,y) (2.10.1)

u,v: uQUV=w

X7 = Y X2 X(xy). (2102
7,v: OnO0y =05

8 i.e. such that lengths add: ¢(o(w)) = ¢(o(u)) + £(o(v)). Notice that the product of two
permutations 7, v is reduced if and only if 0,0, = Oy,
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Proof. One starts from the formula in the case o = w, which is a rewriting of (2.9.3)
using (2.6.5). Supposing (2.10.2) to be true for o, let i be such that ¢(os;) < £(o).
The terms in the RHS are of two types: either ¢(vs;) < ¢(v), or not. These last
terms are such that X, (x,y)0; = 0. Therefore the image of (2.10.2) under 0; is

Xasi(xuz) = Z Xn(yvz> XC(Xuy) )
1,6: OnO0¢ =005,

with ¢ = vs;. QED
For example, for w = [0,3, 1], one has the following expansion of Y3 (x,z),
writing Y, Y, for Y, (y,2)Y,(x,y)

Yos1 (X7Z) = Y0000Y031 )
/ )
~N
~N
Y0100Y030 Y0001 Yo21
N
A ~ / \
Y0101 Y020 Yo02Y011
Y012Y010 YosYo01
Y031 Y000
or, indexing by permutations,
X15324<X, Z) = X12345 X 15324
~
/ >~ ~
X13245 X 15234 X12354 X 14325
~ / \
X13254 X 14235 X12534 X 13425
X13524 X 13245 X15234 X 12435
Xi15324X 12345

In these last conventions, the edges are simple transpositions: X, X, — X,q X¢.

Notice that the above decomposition of Y,(x,z) = ;1 <,(2; — 2;), becomes
similar, when specializing y = 0, to the Cauchy expansion of the resultant
[L; j<n(®i — z;) in terms of Schur functions in x and in z. In fact, let m,r be
two integers such that r +m < n. Then the special case of (2.10.1) for w = ™,
y=0is

Yim(x,2) = Y. Y,(0,2)Y,(x,0) = Y (-1)s,(z,)s\(x), (2.10.3)

u,v: uQU=w AZrm
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sum over all pairs of partitions A, u such that the conjugate of p is [r=Ap,, ..., 7=A\1].

2.11 Cauchy formula for Grothendieck

The analogous formula for Grothendieck polynomials is not more complicated.
Instead of taking reduced products, i.e. products 9,0, # 0, one has to use products
in the 0-Hecke algebra, of the type m,m,.

Theorem 2.11.1. Let o be a permutation in S, w = [n,...,1].
Goyx2) = 3. Go(2Y)Gwo(%y) fus (2.11.1)
(EG,
yP
002 = Y ()G (2y) (G y)mwn)  (2112)
¢

Proof. The first formula is the image of (2.9.4) under 7,,, the second is the image
of the case 0 = w, which is a rewriting of (2.9.6), under 7. QED

For example, for n = 3, writing G, for G,(z,y) and G, for G,(x,y), the image
of Ga19(x,2) = X, G,G210—, under 7y is

6110(X7 z) = (G110 — G210) éooo + (Go10 — Gaoo) @010 + (Gooo — G10o) @110 )
then under 75,

éloo(X, z) = (Goro — Gaoo — G110 + Ga210) é000 + (Gooo — G100) @100 :
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2.12 Divided differences as scalar products

7]

Since the 0;’s are self-adjoint with respect to (, )?, and the m;’s are self-adjoint

with respect to (, )™, one can use (2.9.1) to express any Oy, Ty, -

Proposition 2.12.1. Let f € Pol(x,,y,), 0 € &, and z = z, be an extra
alphabet. Then

o
[Or = (ijw(z,x“)) N (2.12.1)
fr, = <f,G(wJ—1)(X,Z)>ﬂz:xw (2.12.2)
fTe = <f’@(wgl)(x’z)>7rz:x (2.12.3)

Proof. The proofs of the three assertions are similar, let us consider only the first
one.

(71)K(WU)X¢UU (Z’ Xw) = XUflw(Xa Z) W= Xw (X7 Z)awaflw w
= X,(x, Z)w(wﬁw—lww) = X, (x*,2)0,-1(-1)")

and therefore one has

0

) )
(£ Xaolmx)) = (£, X 20051 ) = (F0,, Xulzx?))
Specializing z = x and using the reproducing property (2.9.1), one gets (2.12.1).

QED
For example, for n = 3, o = [2,3,1], one has wo = [2,1,3], wo™! = [1,3,2],

and
) b}
f3231 = falaZ = <f7 X213(Z,Xw) B = (f, 2’1$3> B

)
fmog1 = fmmy = (f, G(132)(X,z)>ﬂ _ <f, 1 2122)7r

T1T2

z=x%

[Toz1 = [Ty = (fa (A;(132)(sz)>7r = (f’ = (1 B IS))W
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2.13 Divided differences in terms of permuta-
tions

Let D = Y(ce, (c¢c(X,) be a sum of permutations with coefficients which are
rational functions in x,,. Any function f(x,,y,) which vanish in all specializations
X7 = yn, except in x,, = y,, can be used to determine the coefficients c;(x,).
Indeed, putting ¢(x,,yn) = f(Xn, ¥n) D, one has g(Xn,y,) = ¢ f(X5,¥n) cc(X4),
and therefore
9(%n, x3) = f(x5,%3) cc(%n) - (2.13.1)
The kernels ©Y,0¢ have the required vanishing properties. In consequence
the operators 0,, m,, T, can be expressed in terms of specializations of Schubert or
Grothendieck polynomials, and one obtains the following expansions (the expres-
sion of the coefficients are not unique, due to the many symmetries of Schubert
and Grothendieck polynomials).

Proposition 2.13.1. Given o € G,,, the divided differences 0,,n,, T, are equal
to the following sums of permutations :

o H (‘TZ - xj) = Z(_l)é(oCch(Xm Xg_lw) (2‘13'2)
1<j<n (<o

T = > Cfo(x§x%) (2.13.3)
(<o

7o |] <1 - ?) = > gG((,w)(x:j,xg_l) , (2.13.4)
1<j<n J (<o

with fcr(XTHYn) = G(wafl)(xnu yn) Hi<j§n(]- - xjxi_l)il‘

For example

1
81(92 = (5182 (1’1—1’2) — 89 (:1:1—962) — (.%1-[173) S1 -+ (.1'1—{133)) A X3)
NN = 8§18 l% — S 1143 — S I%
1 172 (ZElfl'g)([EQ*ZL‘g) 2 ([L’lffﬁg)(l’gfl’?)) ! (I’lfﬁ,’g (lL‘Q*Ig)

T1T2

(z1-22)(v2-73)

[E% ToT3

$1—$3)($2—I3) $1—$2)($2—$3) .
One can compare these expressions to those given in the preceding section. In
fact, they can be obtained by mere expansion of

~ o~

Ty = (5182 —82><

+(1—51)(

1
00 = (1—35 1—s
s ( 1)96’1—$2( 2)932—$3
T T X T

Ty = (81 2 + ! )(52 3 + 2 )

To — X1 1 — X9 T3 — T2 To — T3
A 1
1Ty = (81—1) 3 (82—1)
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This is essentially the method followed by Kostant and Kumar [71, 72], but with
this method properties of the resulting coefficients are more difficult to extract
than when specializing polynomials in two sets of variables. For example we shall
see later that the inverse transition matrices, from permutations to the different
types of divided differences, involve the same coefficients as the transition matrices,
and this fact can easily be obtained from properties of Schubert and Grothendieck
polynomials.

The leading term of 7, and 7,, i.e. the coefficient of ¢, is obtained by mere
commutation. Taking a reduced decomposition o = s;s;sy, - - - s, then this leading
term is

1 1 1
Si —1 Sj —1 Sh Sk 1
l—wwy "1 —mjayy 1 -z

1 SjSp Sk 1 SheeSk 1
=8 Sk \ =1 P e
— X;T; — X;T; — T
1 xlel 1 xjxjjl 1 xxkil

In the language of root systems, this property reads as follows.

Lemma 2.13.2. Let @, ®~ be the positive (resp. negative) roots of the root
system of type A,_1. Then, in the basis of permutations, 7, and T, have leading

term
1

1—ex’

F(o):= ]I
aedtNod—

This leading term intervenes in geometry, for what concerns the postulation
of Schubert varieties.

Let A € N" be dominant weight , v be a permutation of A\, 0 € &,, be of
minimum length such that v = Ao. One defines the limit m — oo of K,,,x™™" to
be

(1 — zaM) ', (1 — za%)

z=x~ Y

Expanding 7, in terms of permutations, one has
1 — z2"
o A\ —1 o vy __ - <
(1= 22" "'me(1 = 22") = F(o) + > [ G

with coefficients ¢§ obtained in (2.13.3). The hypothesis on the pair ), o insures
that all terms, but the first one, vanish under the specialization z = x7%. One
thus recovers in the special case of type A a property due to Peterson and Kumar
in the more general context of Kac-Moody algebras.

Corollary 2.13.3. Let A € N" be dominant, 0 € &, be of minimum length

modulo the stabilizer of \. Then the common limit m — oo of ™ w2~ ™ and
L™ \R, TN s equal to
1
11 1—e>

acdtnod—
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For example, for A = [2,1,0], v = [1,0,2], one has 0 = s;s9 and the limit of
—~ -1

K o2mz ™02 and K, omx~ ™% 2™ is equal to ((1 — 23 )1 — 272:1:51))
The limit of Kggn2%% ™™ = S, (71 + 29 + 23)23™ = Sp(z125" + 2005 + 1) is

-1
also ((1 — 231 — .itga:gl)) , in accordance with the fact that o is still equal
to S1S89.

2.14 Schubert, Grothendieck and Demazure as
commutation factors

One could obtain the expression of permutations in terms of divided differences
by iterating Leibnitz formula, starting with expressions like

595189 = (1 + 82(x3—x2)) (1 + 81(x2—x1)) (1 + 82(3:3—1:2)) .

Let us specially examine the commutation with d, or 7,. For example,

81.1'2 = .1'181 -1
3281321‘213% = Do3010205w3 = (2202 — 1) (2101 — 1)(2202 — 1) = ...
_ :L’210828132 . 1’2008182 . 1’1108281 4 xlOOal 4 (xloo 4 xOlO)aQ —1.

This case shows a disymmetry which can be cured by using Schubert polynomials
instead of monomials :

328132$2$§ = Y210(X, 0)8182 - Yzoo(X, 0)828132 - Yno(X’ 0)8231
+ Yi00(x,0)01 + Yo10(x,0)02 — Yooo(x,0) .

The following theorem states that Schubert and Grothendieck polynomials do
occur in the commutation of some element with d, or m,. Notice that this gives
a generation which does not require division.

Theorem 2.14.1. Fizing n, with p = [n-1,...,0], one has

Z(_ly(a)xﬂ(xay)aa—l = anw(y,Xw) (2141)
ce6G,
Z<_1)Z(0w)aUXU(X>Y) = Xw(y,x‘“)aw (2142)
ceG,
Z (_1)£(a)xpG(G)(X7Y) MTg—1 = Ty Xw(Y,Xw) (2143)
€6y
EZ (-1)" 7, Gy (x,y)2" = X (y,x*) . (2.14.4)
oeG,

Proof. (2.14.1) and (2.14.2) are equivalent, by left-right symmetry of the Leibnitz
relations. Let us prove (2.14.2). The factor X, (y,x*) is the reproducing kernel



80 Chapter 2 — Linear Bases for type A

©Y, and therefore (2.14.2) can be proved by checking that, for any f(x) in the

linear span of (x: 0 < v < p), one has

YD) f(2)0, X (x,y) = f(y).

Introducing an extra alphabet z, one needs a single check,

Xu(y,z) = Z(*l)Z(U)Xw(Xa 2)0, X0 (X,y) = Z(*l)e(g)Xwa(Xa z) X, (X,y) .

(e g

But this is the Cauchy formula

Xw()’a Z) = Z XLM(Xv Z)AXU*1 <Y7 X) .

g

Similarly, (2.14.4) is proved by checking the action on G(,)(x,z). Thanks to
(2.9.6), one has

G(w) (Xv Z) Z(fl)g(a)ﬂ-aG(a) (Xv Y) ¥ = Z(fl)e(U)G(wa) (Xa Z)G(a) (Xa y) z’
= Xu(y,z).

On the other hand, X, (y,x*)y " = 0% is a reproducing kernel with respect
to m,,, and therefore, one has

G(w) <X7 Z)Xw (y7 Xw) Ty = G(w) (y7 Z)yp .
In final, the images of G(.)(x,z) under the two sides of (2.14.4) are equal. QED
By specialisation of y, one obtains the following commutations :

S (149, X,(x,0) = 2", (2.14.5)
ST Giy (%, 1) o1 = my (1-x2) ... (1-2,)" 7 . (2.14.6)

For example, for n = 3, one has

mmym (1-5)(1-23)* = { ~(21-1)*(22-1)mmam

—$210G2107T17T27T1
[El(flj'lfl)(ﬂfzfl)ﬂﬂﬁ $2($1*1)27T17T2
90210G110 T2 95210G200 172

{ *l’lxg(l’l*l)ﬂ'l { *l’l({fll‘gfl)ﬂ'g

210 210
S CAT | -G T2

279
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Given n, using on products of divided differences and rational functions in x
the double reversal

&P(‘)] R akQ — Q“@n_k R Pwan_i ,
one transforms (2.14.3) into

Xu(X,¥) 0y = Z oG (wow) (X7, Y) - (2.14.7)

a€6n

For example,

X301 (X, y) 0321 = Tiftafs(1-vaa5 ") (1-yiay ") (L-yoxy )+ F1Re(1-yaz5 ') (1-yaa3 )
+ oy (1-yrag ) (=g ') + T (1-yryors a5 ) + To(l-gazg ') + 1
= Mmm1GEn) (X7, y) + MG (XY, y)
+ M1 Gl231) (X7, ) + T1Gas2) (X7, y) + T2Ga13) (X, y) + 1.

Notice that pushing the coeflicients on the right in X(0,x")d,, for any ¢ €
S, can be obtained by expanding X, (y,x“) in (2.14.2).

In fact, X, (y,x“) may be thought as the generating function of a linear basis
of Pol(x,,) as a Sym(x,,)-free module. Hence Formula 2.14.2 implies that for any
function g(x,,), one has

9(x2) 0, = > (-1)"70, (g(x0) Do) (2.14.8)

O’GGn

When restricting the action of g(x¥) d,, to functions having partial symmetries,
one reduces summation (2.14.8), as in the next case.

Corollary 2.14.2. Let m < n, r = n-m, k > 0. For any partition X < r™,
denote

5’\ == <8m ce . 6m+,\1_1) ‘e (81 ce . (9/\m_1) .

Then the restriction of the action of Y (x*,y) 0" to Sym(m,r) is equal to

Yir (x,y) o = Z (,1)|M|a>\ }/E)Hr’]g_um(].“r—l*HT7]€_NT71"“70#1_#27]4;—”1 (x,¥),

Arm
(2.14.9)
denoting by p the partition which is conjugate to [r=Xp, ..., 7=\].

Proof. The operators X,,(x“,y)0, and Y (x¥,y)0" have the same action on
Sym(m,r), up to sign. Moreover, the permutations o which are not minimal in
their coset (&,, X G,) o annihilate elements of Sym(m, ), and therefore disappear
from summation (2.14.8). QED
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For example, for n = 5, m = 2, writing % 3 I for (0205 ...)(01...), one has

Yee6 (Xw, Y)

=N

1_[2BMAy. 2By 2131y,
3 TToT317%% ~ 175 6605 1 TTo" 66004

3

2
+ % 31 4|Y6055 — % 3 |Y60504 —[213T4Yoss5 + Y60044
+ Yos504 — [2]Yos0a4 + [ ]Y00444 -

Formula 2.14.4 :

Z (_1)“0)71-0' G(o‘) (Xa y) = Xw()’, Xw) ﬂ-wx_p

ceS,

can be rewritten

> (-1)“r, (G(w)(x, y)7rW> = (-1)" @G (X, )T ?,

0'6677,

and implies that, for any function g(x,), one has

S (C1)fe)n, (g(xn)ﬁw> — (X Mo = g(x) 7 (2.14.10)

ceS,

Using, thanks to (2.6.4), that 7, = (~1)“2Pw 7,4, wr ™", putting ( = wow,
h = (z”g)¥, this last equation can be transformed into

> -1z, (h(xn)?rw> = h(x*) 7, . (2.14.11)

0'6671

Taking g(x,) = 2* = h(x,), with A dominant, one obtains key polynomials by
commutation :

Theorem 2.14.3. Given an integer n and a partition A € N", then one has

> (D), (Kam,) = (27) mpa (2.14.12)
Y (D) Ky = 27, (2.14.13)

c€B,,, 0 min

the sum being limited, in the second expression, to the permutations minimum in
their coset modulo the stabilizer of X.

For example, for A = [3,1,0], one has

7T27T17T2K310 - 7Tl7T2K130 - 7T27T1K301 + 7T1K103 + 7T2K031 - K013



§ 2.14 — Schubert, Grothendieck and Demazure as commutation factors 83

and for A = [1,0,0], one has
#1ita1 Rioo — 717 Koto + 1 Kooy = 2% 7
9Ty 100 — 172 fAo10 T 148001 = T 7321 -

Using (1.4.8), one rewrites (2.14.13) into the following commutation of 7, with
a dominant monomial :

T, = Z IA(,\U(XW)WW, (2.14.14)

c€Gy,0min

sum over all permutations ¢ which are of minimum length in their coset modulo
the stabilizer of .
For example,

mmem 3 = 1°%mmym + (xozo + xml) T + (ZB200 + 20 4 xml) Up)
T w 7% w 73 w
= KQ(X )7T17T27T1 —|— KOQ(X )7T17T2 —|— KO()Q(X )7'('2 .

Taking in (2.14.10) g(x,) = GA(X,y), with A dominant, one obtains again
Grothendieck polynomials by commutation :

CAX* Y) T =Y o (1) iy (Galx, y)7s ) - (2.14.15)

For example, for A = [1, 1, 0], one has

(1 — yla:2_1> (1 — ylxgl) T391 = (mom Ty — T Ta) (1 — ylxl_1> (1 — y1x2_1>
+ (—mem + ) (1 — ylasfl) + (m — 1)
= (mamimy — M) G110 + (—mem + m1)Groo + (T2 — 1)Gogo -

Thanks to the symmetry (1.4.8), one deduces from the preceding formula the
expression of the product of 7, with a dominant Grothendieck polynomial in terms
of 7,:

T G Y) =Y o (CA6Y)7s) T (2.14.16)

For example, for n = 3, one has

7T321G210(X, Y) = Gzlo(Xw,Y) 1o + GQOO(XwaY) ToT + G110(Xw7Y) 1T
+ Go1o(x¥,y) 11 + Gio0(x¥,y) T2 + Gooo (X7, y) -

The expression of m,G(x,y) can be reduced when A has repeated parts, i.e.
when there exists ¢ such that G, (x,y)m = GA(X,y). Thus

T301G110(X,y) = G110(X”,y) T172T1 + Goo(X”,y) ToTt1 + G110(X¥,y) T172
+ Gooo(x¥,y) 711 + Gio0(x¥,y) T2 + Gooo (X7, y)

can be written, by right multiplication with m, as

77321G110(X7 Y) = Guo(Xw, Y) TiTom + GIOO(Xwa Y) ToT1 + Gooo(Xwa Y) T -
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2.15 Cauchy formula for key polynomials

The usual Cauchy formula is the expansion of []; ;,, (1 — z;y;)” " in terms of Schur

functions. We are going to see that “half” the Cauchy kernel [],; j<,, 1 (1 — Ty;)
expands in terms of key polynomials.
Notice first that

1
(I =2y1)(1 = mwayny2) - (L — 21+ TnY1 - Yn)

— Z .fU/\y/\
A

is the generating function of dominant monomials z*y* in x and y. Its image
under the product of the two symmetrizers 7% 7Y transforms this equality into

IT Q=)' = ;SA(X)SA(Y) :

L,j<n

We can use the same starting point, but symmetrize partially in x and y. Let
En = Yoes, o mo,. Filtering the set of permutations according to the position
of n, one gets the following factorization (we refer to [37] for more details).

Lemma 2.15.1. We have
n—1
= = iy Y
En = Zn1 <Z i, W[n—l:n—l—i}) , (2.15.1)
i=0
where Tp—1.] 1= Tp_1 Tp_2 " Tp_;.
For example, the element =, factorizes as
= = Y. Y.y ~x Y Y ~rox Y ST ST AT
=y =Z3 (mimym] + AymETy + WMy Ty + Wy Ma 7y )

From the definition of key polynomials, the image under =,, of 3 2y is equal
to a sum of products of K,(y), K,(x). More precisely

Z P E, = Z K, (y)Kp(x) .
Y v
Using no more, but repeatedly, that

fL—zig) 'y = f(1 = 239) (1 = 2i419) ™

when f, g belong to &ym(z;, z;11), one checks that the image of (1 — zyy;)7'(1 —
T12Zay1y2) " - -+ under 2, is equal to [Ty j<p i1 (1 —x;y;) " [37, Prop 3]. Hence the
following kernel.

Theorem 2.15.2. For every n one has

[I (—wy) " =Y Ky)Kuulx).

1+j<n+1 veEN"™
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For example, for n = 2, one has

1 ﬂy—i—ﬁm) _ 1 n Y12
(1= z1y)(1 — ;rzoynye) - - (1 —z191)(1 — z190) (1 - «lel>(1 - $2y1)
1
(1 = 21y1)(1 — 2192)(1 — 2291) ; i J§>:Zy

the key polynomials K;;(y) being Schur functions in y;, y2, while f{\ij (x) = K;j(x)—
7% when i < j.
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2.16 7 and 7-reproducing kernels

We have shown in (2.9.2) a reproducing property of the operator f — (f, ©%)".
Let us rewrite it without using the scalar product (, ). Let

TO¢ = Y Ry Gioy(z,%) (2.16.1)
ceG,

Q¢ = 3N 71,1 Gy (2, x¥) (2.16.2)
oe6,

For example, for n = 3, one has

0§ =1+ 7 (1—“)+ﬁ2(1—x1x2>+ﬁﬁ2 <1—”71> (1—”72)

21 Z122
+7?27?1 (1_ xl) <1_$1> +7/1\'17/T\'27/1\'1 (1 - 171) (1— 1:2) (1— 131) .
<1 <2 21 2 29

With the alphabets z, X%,y instead of x,y,z, Formula 2.9.4 reads

0 =3 Gy, x*)G,y(2,x%).

v<p

Indexing by permutations, using the symmetry G(,)(x, 3" )&% = G(,-1)(y,x*) given
in (2.2.4), and the conjugation ;& = m,_;, one rewrites this last formula as

0i(z,y) = Y O5(x,y)me1 Go)(2,x°) (2.16.3)
v<p
= Of(x,y)"ey, (2.16.4)

In other words, for any v : [0,...,0] < v < [0,...,n-1] = p“, one has the
reproducing property z¥ 0% = 2¥. Equivalently, (2.16.4) rewrites as

G,(x,y)"0% = G, (z,y). (2.16.5)

A similar computation shows that for 0 < v < p, one has 7" ?@f =z7", or,
equivalently,
G,(x,y)"0% = G, (z,y). (2.16.6)

These two sets of monomials are bases of Pol(x,,) as a free Sym(x,,)-module,
and therefore the reproducing property extends to the full space, after identifying
Sym(x,) and Sym(z,). In final, one has

Proposition 2.16.1. For any f € Pol(x,,) one has

f(x,)"0% = f(z,) = f(xn)?@g, (2.16.7)

modulo Gym(x,) = Gym(z,).
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Notice that the two operators "% and ?@S are not equal. Thus

~ T
[E2W9§ = T3 (]_ + 7/'(\'1(]_ - Zl)> = 1311‘22’1_1 s
1

z z
CCQTF('“)QG = T2 (2 +7T1(1 — 2)) = Z9,
i) i)
evaluating modulo Gym(x2) = Sym(z2) being necessary to insure equality.
Notice also that the two formulas 2V "O¢ = 2¥ for 0 < v < p* and x7°"QY =
27V for 0 < v < p show that both operators "O¢ and "O¢ take values in Gym(x,,)®
Pol(z,,).
In the case n = 2, one can rewrite ?65 =T — 81%, “@g = m; — O0129. This
prompts us to define, for any 7,
~ al’ixiﬂ

0; = mi — O . & b =m — 0izit1 .
i

These operators do not satisfy the braid relations if the parameters z; are not all
equal. Let us show however, that one can use them to factorize "©¢ and "¢

The action of 650,60, on @210(x,y) is such that each step is of the type (1 —
xiﬂyj_l)fQi =(1- zi+1yj_1)f, with f symmetrical in x;, x;;1. Therefore one has
G210(x,y)020192 = églo(Z,Y), and, more generally,

Go(%,5) (On1)(On20n 1) ... (61...0,1) =G, (z,y).

One checks similarly that

~

Go(x,¥) (01)(0201) ... (61 ...0,) = G,o(z,y).

Hence, these two products of operators have the same action on ol(x,,) than "O¢
and "OY respectively, and one has the following proposition.

Proposition 2.16.2. Given n, one has the factorizations

"OY = (0n-1)Op-20p-1)...(01...0,1) (2.16.8)
Q% = (6,)(020,)...(0,_y...0,). (2.16.9)
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2.17 Decompositions in the affine Hecke algebra

The elementary constituents of all the operators that we have used so far in type A
are divided differences, together with “multiplication by elements of SRat(x)”, the
ring of rational functions in x. One could as well take permutations and elements of
Rat(x). Indeed, the algebras generated by {0;,7 = 1...n-}URat(x,) , or {s;,i =
1...n-}URRat(x,) , or {m,i=1...n-}URat(x,), or {T;,i =1...n-}URat(x,)
all coincide. With M.P. Schiitzenberger, we call it algebra of divided differences,
Bourbaki prefers produit croisé de l'algébre du groupe symétrique et de Rat(x),
Kostant and Kumar use the expression smash product, and finally, the terminology
affine Hecke algebra for type A puts the emphasis on the elements T;.

Every element of this algebra is uniquely written as a sum 3, 05 R,
Yooes, OB, Yo, To D, Y ocs, %URE, or Y ce, ToRE respectively, choosing to
put the coefficients on the right. Symmetry properties like (1.4.8) allow to pass
from the right module structure to the left one.

We show in (3.3.1), as a consequence of the multivariate Newton interpolation
formula, how to pass from divided differences to permutations using Schubert
polynomials, or conversely in (3.3.3). In fact, this type of expansions uses only
the obvious fact that the kernel ©Y (x,y) vanish for all specializations y = x¢,
except when ( is the identity. Instead of ©Y(x,y), one could as well use as a
kernel Y,(x,y), G,(x,y), or G,(x,y), the non vanishing being obtained for the
identity or for the maximal permutation according to the choice of the kernel.

More generally, given any f(x,) € Pol(x,), let ©7(x,y) = f(x,)O}. Then for
any element V = Y, 0 RS, one has ©/(x,y)V = ¥, 07(x?,y) RS, and therefore

(o] o
the coefficients are such that

1
RS =0/ (x,y)o"'V

Yy=x f(xn)A(xn) .

Similar expressions hold for the other coefficients RY, RT, RE.

As a matter of fact, some of the formulas in preceding sections may be inter-
preted as identities in the affine Hecke algebra. For example, taking z = x¢ in
(2.16.7), one obtains the expansion of any permutation in the basis {7, } or {7, }.

Let us summarize the main expansions, that will be needed later, of any ele-

ment V of the affine Hecke algebra.

V- Yo <X0—1(X,y)v

y:x> (2.17.1)

oe6y,
= Yo Il @'V (2.17.2)
oSG2 1<i<<j<n y=x

- Z Ty (@(01)(x,y“’)v

O'EGn

yx> (2.17.3)

= Z To <G(Ul)(x7 Y)v

0'6671

) ) . (2.17.4)
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For example,

S = X Rt Golxtony)| =14 a0 g (1—”)

€G3 y=x 31 T3

o202 ae 22
T T3 T3 T3
-+ﬂ@ﬁ(1—%)(1—“ﬂ(1—%>
T3 T3 T/ ly=x
:1+%20—->+m(1—>4wmm<y—)<1—xﬂ.
T3 3 x3 Z3

Specific cases of the above expansions appear in the literature. Kostant and
Kumar [71] consider the transition matrices {o} <> {0,}. Berline and Vergne
(6], Arabia [1], Kostant and Kumar [72] consider the transition matrices {c} >
{m}. Kumar shows in [77] how to relate the entries of these last matrices (which
are specializations of Grothendieck polynomials) to the singularities of Schubert
varieties.

Notice that the above expansions are obtained by specializing polynomials in
x,y. These polynomials are not unique. For example, instead of (2.17.3), one
could use as well

)

Let us mention in final the interest of expressing the basis of the usual Hecke
algebra (with normalization (7;-t;)(7;-t2) = 0) in terms of the basis {7,}. For
example, for n = 3, one has

V = Z T < (X, ¥) o1V

ceG,

(ot + 21t (23t + 20t
T1:7T1—( 2 1[E ! 2) —|—t1 & T2:7T2—( 3 11‘ 2 2) +t1
2 3

~ ~ (xzst t t t ~ (z3t to)t ~ (—zit2?+m3ty?
T Ty = iyt 8042 Z)S(rfl 2tosh) 4 7, @ 1—;:2 2h g 7T1< o ) + 112

2 2
~ ~ (zoti+zito)(z1ta+z3t) ~ (7x1t2 +zsty ) ~ ti(xatitmita) 2
TQTl = To7 Tam2 + 9 3 + st T2 + tl

T1T2T1 — 7?17?27?1 (LL‘3 1+ 22 2) (:L‘1 2 + T3 1) (332 1+ 2 2)

.772.1'32
A 11+ xot9) T to + w3t A t1 + x1t to + x3t1)t
+7Tl7T2(I31 T2 2) 12($12 X3 1)+7T27T1($21 T 2)($12 €3 1)1
T3 T3T2
—T1ty2 t2)t —x1ty> th2)t
+7?2( 1ty +3731)1+7AT1( Tte® + w3ty ?) 4y 9
I3 T3

and these expansions specialize to the expression of permutations in the basis {7, }
for t; = 1, t = -1, the coefficients being then specializations of Grothendieck
polynomials.
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Chapter

Properties of Schubert polynomials

3.1 Schubert by vanishing properties

To have linear bases, we could have considered only the special case where y = 0
in the case of Schubert polynomials, and y = 1 in the case of Grothendieck poly-
nomials. But doing so, we would lose many interesting specialization properties
that these polynomials possess, and that can be used to characterize them easily,
as we are going to see in this section for Schubert polynomials.

Given a permutation o (considered as an element of &, whose code is v), let
() =37 = [ors -+ o)

We call (v) a spectral vector' and write f <<U>) for the specialisation of f €

Pol(x,,, y) IN 1 = Yoy -+ Ty = Yoy, -

Theorem 3.1.1. Given v € N", and o such that v = (o), then the Schubert
polynomial Y, (x,y) is the only polynomial in the space of degree < |v| in x,, such
that

Vo((u),y) = 0, uv, [u] <o (3.1.1)
Yo((0),y) = A = H _(yai—ya,-) (3.1.2)

The specialization M(v) is called the inversion polynomial of o. We shall also
denote it M(c) when no ambiguity is to be feared.
Proof. First, it is straightforward that the dominant Schubert polynomials, which
are products of linear factors, satisfy both (3.1.1, 3.1.2).

1 'We use the same term as for the Yang-Baxter equation, because these two uses are related
in several ways. Notice that X' = [x9,z1,23,...], X*1%2 = [T2,23,21,...] = [Toy, Tos, Tos),
with 0 = s150 = [2,3,1]. We are acting on the components of the vector [z1,x2,...]. On the
other hand, the action on the right on exponents of monomials: x§ = g[100ls1s2 — 5001
2§ = xl00lsis2 — 4100 = gl00Usis2 — 2010 — 4, inyolves the inverse permutation
[3,1,2].

= I3,
= T, 'rg
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Therefore, we have just to check the behaviour of these conditions with respect
to divided differences.

Lemma 3.1.2. Let v € N*, 0 = (v), i be such that v; > v;11. Suppose that Y,
satisfies (3.1.1, 3.1.2). Then Y, 0; also satisfies (5.1.1, 3.1.2) for the index
v = [v1, .., Vi1, Vg1, Ui— 1, Uiy, . ., U], which is the code of os;.
Proof. Write Y, = f(z;, xi11) — wit19(x;, xi41), with f, g € Sym(z;, x;11). Let us
check that g is the polynomial defined by (3.1.1, 3.1.2) for the index index v'.

If Y, vanishes in [x;,2;11] = [a,b] and [z;, z;11] = [b,a], with a # b, then g
inherits these vanishings: ¢(a,b) = g(b,a) = 0. On the other hand, in the points
(v) and (v'), one has

YU<<U>7Y) - rm(”) = f(yO'“ yo’i+1) - y0'1'+1g(y0'i’ ya'i+1)
Y;1<</U,>?y) = O = f(yo'i7 y0i+1) - yaig(yaiayai+1) .

-1
Therefore (Yo, ,,Yo:) = ﬁﬂ(v)(g/ai — Yo, +1> is the inversion polynomial of os;,
and g satisfies the conditions (3.1.1, 3.1.2). This proves the lemma. But Y,0; =

—r;1190; = g, and therefore g is the Schubert polynomial of index v". This proves
the theorem. QED

For example,

Yzom(X’ Y) = ($1 - yl)(xl - y2)(952 + T3 — 9 — y?)

is characterized, among all polynomials in x, zs, x3, x4 of degree no more than 3,
by the vanishing in all x;, = ¢, ¢ € &y, £(¢) < 3, ¢ # o = [3,1,4,2], and by the
normalization

Y2010(y7,y) = (y3 — y1) (Y3 — y2) (1 +ya — y1 — y2) = M([2,0,1,0]).

A consequence of the theorem is the following vanishing property (which evi-
dent only for dominant polynomials), corresponding to (0) = [y1,¥2, ..., Yn].

Corollary 3.1.3. For any v # [0,...,0], one has Y,(y,y) = 0.

3.2 Multivariate interpolation

We have already used several times the vanishing in x = y = (0), this property is
better understood as a special case of (3.1.1).

Notice that the polynomials Yy, = (x; —y1) - - (x1 — y) are the interpolation
polynomials that Newton used in his famous interpolation formula. The next the-
orem states that the Schubert polynomials are precisely the universal coefficients
in the generalization of Newton’s formula to several variables (this theorem could
be deduced from the Cauchy formula that we gave in Th. 2.10.2.
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Given v € N*, let 0” be any product of divided differences” such that Y,0" =
Yo.0. It is easy to see that for any u # v, then Y,0V is either 0 or a Schubert
polynomial of index # [0,...,0].

Theorem 3.2.1 (MultivariateNewton). For any f € Pol(x,y), one has the ex-
pansion

f) = Y F0d]

veN”?

Yo(x,y)- (3.2.1)

Proof. Test the statement on the Schubert basis. In that case, f(x)0" is either 0 or
a Schubert polynomial, whose specialization in x =y (i.e. in the point (0...0))
is # 0 (and equal to 1) iff f(x) =Y. QED

The preceding theorem gives the expansion of any polynomial in the Schubert
basis, the coefficients being all the non-zero images under divided differences. In
particular, one can take the key polynomials, or the Grothendieck polynomials®.
For example, the polynomial Ky, has only 6 non-zero images under divided dif-
ferences, the images under 1, 05, J5, 0203, J30s, D30505. Writing the coefficients in
y as key polynomials, one has

Koo (x) = Ko(y)Yo21 + Ko1(y) Yoo + Ko1.1(y) Yo
+ Ko,01(¥)Y0,1,1 + Ko2(¥) Y001 + Ko21(y)Yo .

In the case where f is a polynomial in z; (and y) only, the only non-zero
divided differences are 0y, f010s, f010205, ..., and the theorem is the original
theorem of Newton, apart from notations :

flx) = fly)+ forYi+ f010.Ys+ f010205 Y3+ - - (3.2.2)
= [(y) + foi(z1 —y1) + fO10a(x1 — y1) (21 — y2) + -+

The interpolation of functions f(z,x2) of two variables reads

f(z1,22) = f(y1,y2)Yoo + fO2Yo1 + fO1 Y10 + f0205Y02 + f0201 Y11
+ f010:Yo0 + f02050,Y03 + f020501 Y19 + [020102Yo1 + f010205Y50 + . ..

In the case that f(x1,xs) is symmetrical, then fd; = 0, and only the terms
Y ;, @ < j, which are those symmetrical in x1, x5, survive in the preceding formula:

flx1,22) = f(yr,y2)Yoo + fO2Y01 + f0205Y02 + f0201Y11 + f020504Y0s
+ f020301Y12 + f02050405Y04 + f02030401Y13 + f02050102Y02 + . ...

2Take any reduced decomposition 5i8j -5 of o, with o of code v. Then 0y - --0;0; is such
product.

3after some change of variables, like x; — 1/x; or #; — 1/(1—x;), to transform Grothendieck
polynomials into polynomials in x, and not in xl_l, Ty Lo
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Interpolation methods can also be used in the theory of symmetric polynomials.
If f(x,) belongs to Gym(x,,), then only anti-dominant indices occur in the RHS
of (3.2.1). In other words, Newton’s interpolation give an expansion of symmetric
polynomials in terms of Grafimannian Schubert polynomials.

For example, the Schur function ssy(x3), which is equal to Yjo3(x,0), has the
following expansion in terms of Grafimannian Schubert polynomials (writing Y, Y,
for Y, (y,0)Y,(x,y)) :

832(X3) = Y023(X> 0) = Y000Y023 — Y00001 Y022 — Y001 Y013 + Yo0101 Y012
+ Y011 Y003 — Yo1101 Y002 — Yo0201 Yo11 + Yo1201 Yoo1 — Yo2201 Yo00 -

Such expansions have been considered by Chen and Louck [17] and by Olshan-
ski and Okounkov [137], in the case where y = {0,1,2,...} or y = {¢°, ¢', %, ...}
(in which case the polynomials are called factorial Schur functions).

Newton interpolation is compatible with symmetry by blocks. Indeed, let

f(x) € Gym(m,n,p,...),i.e. f(x)isafunction which is symmetrical in xy, ..., Z,
symmetrical in Z,, 41, ..., Tmin, &c. Then f(x) =Y ¢,Y,(X,y), the set of indices
v being restricted to those such that v; < -+ < vy, V1 < -0 < Vg, &co,

i.e. to those v for which Y,(x,y) belongs to Sym(m,n,p,...). Otherwise, there
would exist a divided difference 0; annihilating f(x) and not 3 ¢,Y,,. For example,
if f € Gym(3,4,2), then the interpolation

fx) =3 f(x)0"

Yy (x,y)

xX=y

involves only the v € N? such that v, < vy < vy, v4 < v5 < v5 < V7, Vg < V.

3.3 Permutations versus divided differences

Fashion has changed since Newton, and it may seem of little interest to interpolate
functions by polynomials. In fact, classical interpolation theory may be thought as
a way of producing algebraic identities involving polynomials or rational functions
in several variables. In this interpretation, it still begs the right to exist, even to
expand. Moreover, one can disguise interpolation under a more sophisticated
terminology.

For example, consider the problem of expressing a permutation ¢ € &,,, con-
sidered as an operator on JPol(x,), in terms of divided differences. The image of
(3.2.1) under o is

fx7) = > f(x)0"

veEN?

Yy (x7,y)-

ey Lo (X7, Y)

Putting y = x gives the following property obtained by Kostant and Kumar [71]
in the more general context of Kac-Moody groups (they call the algebra of divided
differences the nil Hecke ring).
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Proposition 3.3.1. Any permutation o € &,, expands, in terms of divided dif-
ferences, as
o=> 0"Y,(x7,x). (3.3.1)

v<p
For example,

S981 = 1 + 82(1'3 — ZL‘1) + (91(1‘2 — Il) + 8281(1’3 — {L‘l)(l‘g — 1'1) s

595183 = 1 + 61(1’2 — (L’1> —|— 62(x4 — Il) + 83(1'4 - ZL'3) + 8283(5(]4 — £L'3)(ZL'4 — 5(71)
"‘8183(!172—1’1)(1’4—333)+8281(.’172-371)(&34-371)+828183(Q?2—Il)($4—$1)($4—$3) .

Conversely, one may express divided differences in terms of permutations, and
more generally, any linear combination with rational coefficients in x.

Lemma 3.3.2. Let n be an integer, ©Y (X,y) := [li<icjcn(yi — 2;) as before, and
h =73 scs, 0he be a sum with rational coefficients h, in x. Then
O xy) k| =(1)"h ] (w1 (3.3.2)
y=x 1<i<j<n
Proof. We have already used that ©Y (x,x¢) vanishes for all permutations ¢ dif-
ferent from the identity. Therefore ©Y (y?,y¢) vanishes except for ¢ = o, and the

sum ©Y (x,y) h = 3 ©Y (x7, y)h, reduces to a single term when specializing y to
a permutation of x. QED

We can take now i = 0,. Then

@Y (X7 y)aﬂ' =X, (va Y>a7' =X, (X, Y> wa‘rw w
= (_1>Z(T)Xw(xu Y) awr_lww = <_1>Z(T)XT_1LU(XW7 y) :
In final, one has the following expression of 0, [94, Prop. 10.2.5] :

Proposition 3.3.3. Let 7 € &,,. Let 0, = > (¢ be the expression of O, in terms
of permutations. Then

1 1

— = X (%, X)) —— . 3.3.3

Ay Mg s 099
Notice that, apart from signs and the factor A(x), the entries of the transition

matrix from permutations to divided differences, and its inverse, are the same.
Here are the two transition matrices for n = 3, to be read by rows, coding

[El—1‘2:12,$1—1‘3:13,$2—I’3:23Z

\1 Oy O 010, a0, 01020,

(10 e = (-7 X (x5, %)

1 1 0 O 0 0 0
S 1 23 0 0 0 0
S1 1 0 12 0 0 0
ses1 |1 23 13 0 23-13 0
s1s9 (1 13 12 13-12 0 0
s18951 |1 13 13 12-13 13-23 12-13-23



96 Chapter 3 — Properties of Schubert polynomials

‘ 1 S92 S1 S1S2 S951 5152851
A 12-13-23 0 0 0 0 0
DA —-12-13 12-13 0 0 0 0
A —-13-23 0 13-23 0 0 0
0201 A 13 —13 —23 0 23 0
010, A 13 —12 —-13 12 0 0
010,05 -1 1 1 -1 -1 1

Pairs of permutations 7, o such that the specialisation X, (x?,x) is not a divisor
of the Vandermonde correspond singularities of Schubert varieties. There are only
two singularities when n = 4. One of them occurs in the expansion of 003005,
which involves the specializations of Xo143 = (21 — x2)(x1 + 22+ ys — y1 — Y2 — ¥3),
among which one finds (z; — x4)2.

The full expansion of 05030,05 is

T — T4

(x3 — x4) (12 — 24) (g — x3)(—23 + 21)(T1 — T2)
1 1

(x3-x4)(v2—23)(—23 + 1) (21-22) B (x3-24)(Ta—x4) (T2—23) (21-22)
1 1

($3*I4) (IE2*$4) ($2*$3) ($1*$3) s ($2*$4) ($2*$3)($1*$3) (!101*!102)

(1—32)<

+ S389

+ 518 L -S1838 L >
! 3(:1:3—334)(.7:2—963)(551—3:4)(3:1—:152) 13 2(332—:1:4)(xQ—azg)(xl—m)(—xg+x1)

The other singularity, when n = 4, occurs for 030,0,0,05, which requires spe-
Cializing X1324 =2+ X9 — Y — Yo

8362818283 A= (1 — 31)(1 — 83) ((1‘1 + 2o — 23— $4) — 52(271 — 374) + 8233(1171 — 1’3)

+ 8281(%2 — 33'4) — 828153(%’2 — ng)) .

On could obtain the expansion of a reduced product 0;---9; by writing it
as (1 — s;)(z; — zip1) "t (1 — sj)(x; — x;41)" " and enumerating all subwords
of s;---s;. This is the method followed by Kostant and Kumar [71]. We prefer
relating the coefficients to Schubert polynomials, in particular because the number
of subwords of a reduced decomposition of a permutation o is far greater than the
number of permutations in the interval [1, o].

Since the coefficients ¢f in (3.3.3) must vanish when ¢ does not belong to the
interval [1, 7], one obtains the following characterization of the Ehresmann-Bruhat
by vanishing properties of Schubert polynomials, which generalizes (3.1.1).

Proposition 3.3.4. Given n and two permutations o,( € &, then X,(x%,x) # 0
if and only if o <  with respect to the Ehresmann-Bruhat order.
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Graffmannian Schubert polynomials Y, : v € N, v = v 1 are symmetrical in
x1,...,%,. One does not need to specialize them in all permutations of y;, s, . . .,
but, by symmetry, only in (u) = [Ys,, ..., Ys,] With o of code u0...0 such that
u = u7T. In that case, the last proposition becomes :

Corollary 3.3.5. Let u,v € N" be anti-dominant. Then Y,((u),y) # 0 if and
only if v < u (componentwise).

This property is given by Okounkov [133] in the case where y = {0, 1,2,...}.

3.4 Wronskian of symmetric functions

Given a positive integer r, and r functions f; of a single variable, the determinant
|fi(x;| is divisible by the Vandermonde in x1,zs, ..., and the quotient may be
thought as a discrete analogue of the Wronskian [94, Prop. 9.3.1].

Writing f;(x;) = fi(x1)s1...s;_1, and using (3.3.1), one sees that

fi(z;) I[[ (zj—a) "=

r>5i>i>1

fixl 6’1 ce 83‘_1

ij=1,..r ij=1,..r

The same formula (3.3.1) may be applied to symmetric functions, replacing
the integer r by a partition. Let A € N" be a partition. To a family of symmetric
functions fi(x,), f2(X,), ... of cardinality the number of partitions contained in
A, we shall associate a Wronskian Wy (f;).

For each u C A, let 0* be the Gramannian permutation of code p1. Thanks
to (3.3.1), every symmetric function f(x,) satisfies

f(:caii,...,xoﬁ) = f(xn) + -+ fOT @ (a").

Therefore, a determinant

fi (qu)’ may be transformed, by multiplication by a

unitriangular matrix, into the determinant | f;(x,)0*" m (a“)’.

Definition 3.4.1. Given a partition A\ € N, and a family of symmetric func-
tions fi(x,) of cardinality the number N of partitions contained in X\, then the
Wronskian s

Wi(fi(xn)) = fio

i=1...N -
HCA

The preceding analysis has shown that the Wronskian is equal to
o 1
fi (Xnu)

Hug)\ @(0’“) .

For example, let n = 4, A = [3,1,0,0]. Then the family {u1}, as well as the
inversion polynomials M(c*), are displayed on the next figure (writing ji instead
of z;-x;). The family {0*1} is the set of paths from the origin.
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43,73,75,76

In the case where the family {fix,)} is the set of Schur functions {s,(x,) :
1 € A}, the Wronskian is unitriangular, and thus its determinant is equal to 1.

In the case of a rectangular partition A C 7", the sets {o*(x,)} are all the
subsets of cardinality n of {xy,...,2Z,,}. Given any f € Gym(x,), and i :
1 < i < n+r-1, then the set {f*'} is such that, either f*T and f*19; occur
simultaneously, or f#19; = 0. Thanks to the Leibnitz formula, this forces the
Wronskian W, (f1, fo,...) to be annihilated by all 9;, i = 1,...,n+r-1. In other
words, the Wronskian is a symmetric function when A is a rectangular partition.
Moreover, any inversion (j,7), n+r > j >4 > 1, occurs ("2:2) times in the set of
GraBmannian permutations {o*}.

In summary, one has the following lemma.

Lemma 3.4.2. Let n,r be two positive integers, let fy,..., fn, with N = ("Z’j,
belong to Sym(x,,1,). Then

1

fi(X)

i=1.. N :Wr”(.fla"'afN)

Tr—2
)('ﬂnil ) XC{Z‘l,.-...,.Z’n+T}

[Lhirsjsizt (xj T

is a symmetric function of Ty, ..., Tpiy.
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For example, for n = r = 2, the Wronskian

Was (Yo (x, 0), Yor (%, 0), Yi1(x,0), Yis(x, 0), Yas(x, 0), Ya4(x, 0) )
\ 1 0y 001 0,035 020301 02030109

Yo |Ye 0 0 0 0 0
Yo |Yoo Yo 0 0 0 0
=Yu|Yu Vi Yo 0 0 0
Yos [ Yos Yooz 0 Yoo O 0

}/23‘}/23 }/202 YEJIZ }/2001 YE]lOl %001
}/35 ‘ YE’)5 }/304 }/024 YE’)O(B }/OQOB YE)013

is equal to
Yooo1 (%101%013 - Yo203Y0001) = Y01 Yous -
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3.5 Yang-Baxter and Schubert

One can degenerate Yang-Baxter bases of Hecke algebras into bases of the algebra
of divided differences. However, instead of taking products of factors of the type
0;+1/c, let us take factors 14 cd;. Accordingly, given a spectral vector [yi, ..., Yn],
one defines recursively a Yang-Baxter basis U2, starting from 1 for the identity
permutation, by

Uisi =02 (1 + 05 (Yoryr — ygz)> for o; < 041 . (3.5.1)

For example,

U391 = (1 + 01 (y2—y1) (1 + a(ys—11)) (1 + 01 (ys—y2))
=1+ 01(y3—y1) + O2(y3—y1) + 0102 (y2-y1) (y3—¥1)
+ 0201 (y3-42) (Ys—y1) + 010202 (y2-y1) (Y3—v1) (Y3~Y2)

One remarks that the coefficients are the same as in the expression of o =
3,2, 1] in terms of divided differences.

The following proposition shows that this property is true in general, and that
the coefficients are still specialisations of Schubert polynomials.

Theorem 3.5.1. The matriz of change of basis between {62} and {0,A(y)}, and
its inverse, have entries which are specializations of Schubert polynomials :

07 = Y aX(y), (3.5.2)
v<o
9, Aly) = Y07 Xy, y*) . (3.5.3)

Proof. Let o and i be such that ¢(c) < €(os;). Suppose known the expansion

02 = Z 8” XV(ya7 Y) + ausi Xl/si (ya, Y) )
with v : €(v) < £(vs;). Then its product by 1+(yo,,, Vs, )0; is
Z 81/ Xll(yoa Y> + 8”81' (XVSi (yg’ y) + XV(yav y) (yo'i+1 _yai)> !

and the identities

X,y7y) & X, (YY) = Xos (7 y) + Xo (Y7, Y) Woiis Vo)

give a similar expansion for V. QED
Notice that to expand products of factors 1 + 9;(x;41 — x;), one has used the
Leibnitz relations while in the present case the coefficients (in y) commute with
the operators acting on x.
The analogy between Yang-Baxter elements and permutations can be materi-
alised by acting on a proper element, as shows the following proposition.
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Proposition 3.5.2. For any o € &,,, one has
X, (x,y°) U2 = X, (x,y7) (3.5.4)

Proof. In the step by step action of the factorised element U2, each step is of the

type, f(zi —ye) (1 + 0i(yr — y;) = f(zi — y;), f € Sym(zi, i41). QED
For example, for o = [3,4, 1, 2|, writing the non-symmetric factor in a box, one

has U3y = (1+ da(ys — 1)) (1+ A(ys — 1)) (1+ Bs(ya — 1)) (1 + Balya — 1))

and

T1—Y2 T1—Y2 T1—Y2

1+02(y3—y2) 1+01(y3—v1) z,— —
T1—Y3 | T2—Y3 T1—Y3 | T2—Y2 1—Y1 T2—Y2
— T iy v [mew]

T1—Y4 T2—Y4s T3—Y4 T1—Y4 T2—Y4 T3—Y4

T1—Y2 _

403(Ya—v2) 21 —y) ao—yo 1+02(ya—y1) Eig? R
T1—Ya T3—Y2 T1—Y4 T2—Y1 T3—Y2
2143
= X4321(X7 X ) .

The general properties of Yang-Baxter bases induce properties of specialisa-
tions of Schubert polynomials.
The symmetry (1.8.4) entails

(_1)Z(V)Xu(ygv Y) - wa(yww, yw) . (355)

Each of the equations (1.8.9) and (1.8.10) gives in turn

Z(_l)Z(V)XV(y(r? Y)Xllw(yca y) = A(y> 507@1 ? (356)

v

but this is a special case of Cauchy formula

S DX, Y) X y) = Y Xy, ¥) Xy y) = Xu(yS.y7).

v

The quadratic form (, )* defined in (1.8.5) degenerates into the form

(f, 9" =fg"na,, (3.5.7)

still denoting f — fV be the anti-automorphism of the algebra of divided differ-
ences induced by (9,)" = 9,-1.
Property (1.9.4) becomes

Proposition 3.5.3. The Yang-Baxter bases associated to the spectral vectors
(Y1, -, Y] and [yn, ..., 1] satisfy the relations

HOO
(Uﬁ’y , U?yw) = Gy AY7). (3.5.8)
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For example, for o0 = { = [2, 3, 1], one has to take the product of
U3 =1+ 0i(y2 — y1) + Oa(ys — v1) + 10a(y2 — 1) (s — 1)
and
(Ggfﬁw)v =14+ 01 (y2 — y3) + O2(y1 — y3) + 0201 (y2 — y3) (Y1 — ¥3) -

The coefficient of 955; in this product is;oqoual to (yo—y1) (Ys—y1) (Y2—vys)+(Y2-11) (Y2-y3) (Y1-y3) =
0, and this proves that <U§33{ , Ugé’{w) =0.
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3.6 Distance 1 and multiplication

The ring Gym(x) has a linear basis consisting of Schur functions. Its multiplicative
structure is determined by the Pieri formulas, i.e. by the products of Schur func-
tions by the elementary (or complete) symmetric functions. In the non-symmetric
case, the requirement to recover the ring structure is easier. Polynomials being
sums of monomials, and monomials being products of variables, we need only
describe the images of the different bases under multiplication by zy, o, .. ..

Our bases being obtained by the use of 9;’s or m;’s, we could use the commu-
tation properties of these operators with multiplication by a single variable.

In the case of Schubert polynomials, let us rather use interpolation methods.
This time, it will be more convenient to index polynomials by permutations, pass-
ing from the notation Y, to the notation X,, where v is the code ¢(o) of o.

Definition 3.6.1. v € N" is a successor of u if |v| = |u] +1 & Y,((v),y) # 0.
Given two permutations (,o, then ( is a successor of o iff this is so for their
codes.

Theorem 3.6.2. A permutation ¢, of code v, is a successor of o iff (o™! is a
transposition (a,b), and £(¢) = €(o) + 1. In that case,

Xo((v),y) = m(v) (g, — ye.) -

Proof. If u = ¢(0) is dominant, then it is immediate to write the specializations of
Y, and check the proposition in that case. Let us therefore suppose that there ex-

ists ¢ such that u; < w;;1, and let n be such that ¢(n) = [u1, ..., wi—1, U1 +1, Ui, Uito, . . .

Since for any permutation ( of code v, one has

(2,((0),y) = (X (), 3)*) (e, — veee) ™" = Xo((0), ),

¢ can be a successor of ¢ only if ( = n, or if (s; is a successor of 7. In the first
case,

Xo((0)y) = X, ((0), Y)W, = Ynon) " = M),

while in the second,

— X, ()™, ) m(e(¢si)) _ Mm(e(0))

Yo — Yeinn Yeirs = Ye)We, — Yeu) Yo, — Y

Y

and this proves the proposition. QED

Corollary 3.6.3 (Monk formula [69]). Given v € N*, 0 = (v), k € {1,...,n},
then

(T = Yo ) Xo(X,¥) = D Xor,(x,¥) = D Xor, (X,Y) (3.6.1)

>k j<k

summed over all transpositions Ty, ; such that ((oTy, ;) = (o) + 1.

7un]-
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Proof. The polynomial (x; —y,, )X, (x,y) belongs to the linear span of Y,, : |w| =
lu| + 1, because it is of degree |v| 4 1 and vanishes in all y® : |w| < |v|. Writing
it Y ccXe(x,y), and testing all the specializations y¢, one finds that the permu-
tations appearing in the sum are exactly the successors of o such that y., # yo,.
QED

Instead of multiplying by z, on can equivalently multiply by z1 + -+ + x
at once, obtaining the following Pieri formula generalizing the product of a Schur
function by the elementary symmetric function of degree 1.

Corollary 3.6.4 (Degree 1 Pieri formula). Given n,k: k <n, v € N", 0 = (v),
ie{l,...,n}, then

([L'1+ T — Yoy *yo—k) XO-(X, y) - Z XO'T,"J' (X7 Y) ) (362)

1<i<k<j
summed over transpositions 7; ; such that {(oT; ;) = {(o) + 1.

One can iterate Monk formula. Let us call k-path of length r a sequence of
permutations 0% ¢! ... 0" such that £(c"™') = {(c") + 1 and (¢c't')"10?) is a
transposition (k, 7).

A k-path can be denoted by the sequence [a,, .. ., ag] of values permuted, with

ag = (O‘O)k, a; = (O‘l)k, cesay = (0"

For i = 1,...,r, each permutation ¢*(¢°)~! is a cycle (a;...a1aq). The following

proposition shows that the multiplication by a power of x; can be described in
terms of k-paths, the coefficients being complete functions S;() of the variables
y; indexed by the values permuted.

Proposition 3.6.5. Let 0 € &, k < n, m € N. Then, modulo Sym(x,) =
Sym(y,), one has

:CZL XU(X7 y) = Z € Smflf'r (ya()? R yar) XTar,a.r71~~-Ta1a0(7(X7 y) ) (363>

sum over the k-paths of length < m, the sign being given by the number of times
Taiai, transposes a value at position smaller than k.

Proof. Multiplying by «}*, using (3.6.1), involves enumerating paths with possi-
ble loops ¢' = o't having weight y;, with j = (0%);. The proposition results
from grouping all the paths differing only by their loops, this explaining that the
coefficient be a complete function. Each application of Monk formula possibly
involves increasing the size of the symmetric group. One avoids that by using the
ideal generated by the identification of symmetric functions in x,, with the same
symmetric functions in y,,. QED

The following tree describes the product x3 X31405(%,y), writing each permu-
tation ¢ above the coeflicient of X, (x,y).
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3[1]425
3
Y1
e N
3[2]415 3[4]125
Sa(y1, y2) S2(Y1, Ya)
| N
3[4]215 4[3]125 3[5]124
Y1+ Y2+ Y3 Y1 — Y3 — Ya Y1+ Ys+Ys
N | |
4[3]215 3[5]214 4[5]123 5(3]124
—1 1 ~1 —1

or, for the readers who prefer one-dimensional formulas,

25 Xa1425 = Vi Xarao+ (Ui +yi+v192) Xaaro+ (Ui +4192+5) Xaoar +(y1+Ys+ya) X3s124
—(ys+y1+ys) Xus12+(Yaty1+y2) Xsa91 — Xas103+ Xs61245 — X312+ X35014 — Xas01 -
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3.7 Pieri formula for Schubert polynomials

The Italian geometer Pieri described the intersection of a Schubert cycle by a
“special” one in the cohomology ring of the Grassmannian. In modern terms, he
described the product of a Schur function by an elementary or complete function,
the remarkable property being that there is no multiplicity in his formula.

Let us generalize Pieri’s result to Schubert polynomials, the presence of extra
variables y allowing to interpret the intersection numbers 1 as complete functions
of degree 0.

Our starting point will be the following case.

Lemma 3.7.1. Let n,k,r € N, p = [n-1,...,0], m = max(n-k,0) and y¥ =
{Ymi1, Y2, Ymsss--- }. Then

Yo (%, ) Yor-1,(x,2) = ¥, (%, y)Yokfl (y".2)

+ZZ +01 1 jon— k X y)}/bk I+jp— J(yv,Z). (371)

i=175=1

Proof. One uses Newton’s interpolation (3.2.1) on the product fg, with f =
Y,(x,¥), g = Ygr-1,(x,2), using Leibnitz’ formula (1.4.2). The images of f un-
der products of divided differences are 0 or Schubert polynomials that one has
to specialize in x = y. Only Y, o subsists. Let us first suppose that n < k.
Inasum ¥ . c01} (fafia;j . -8,?) (gs?@il_gis;j (9;_6j syt i_eh) there remains
only divided differences 0;, i < n acting on f, s; preserving g, and products
OkOk+1 * + - Op+j—1 acting on g and sending it to Yor-1+s,_;(X, 2).

In final, for n = 3 = k for example, the only non-zero contributions in Newton’s
formula are for 050,05(0304 -+ ), O2(F304 -+ )0102 and (030, - - - )00, 05, and this
corresponds indeed to the RHS of (3.7.1).

In the case where n > k, writing y* = {yn_1, Yx+1, - - -}, one factors Y, (z,y) =
Y-kt n—k-1,..00%¥) Ye-1,..0(X, y"), and write the interpolation for the product
kal,...,0<X7yQ)YE)k—lr(X7Z)' QED

For example, for n =5, k=3, 7 = 2, one has y° = {y3, 44, ...} and

Yizo10(%, ¥) Yooa (X, 2) = Yizo10(%, y) Yoo (y¥, 2) + (Y53210(X7 y) + Yiio(x,y)
+ Yiss10(x, Y)) X Yoom(}’@, z) + (Yﬁszlo(X, Y) + Yaso10(x,y) + Yizaro(x, Y)) .

To describe the general Pieri formula, it is convenient to index Schubert poly-
nomials by permutations, and generalize consecutivity in the Bruhat order.

Given an integer k, a pair of permutations 0,7 : ¢ < 7 is called a k-souléevement
of degree ¢(n)-{(o) if each cycle (; in the cycle-decomposition no=! = (; - - - {,,, is of
the type ¢ = (@, 0,7, ..., 8) withd >~y >--- > >, {d,...,a}N{o1,...,0} =
{a} and l(n) = (o) + (#( — 1) + -+ + (#(n — 1). Denote furthermore y=" =
{Yours - Yo, Uy s i € {GIU---U{Gn}}-
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For example the pair o = [5,2,7,4,1,6,8,3,9], n = [6,2,9,4,3,5,7,1,8]) is a
5-soulévement of degree 1+1+2 = £(n) —{(0), because no~' = (1,3)(5,6)(7,9,8),
and y©7 = {ys, Y2, Y7, Y, Y1} U {y1, y3} U{Ys, Ys } U {y7, Yo, Ys}
= {Ys, Y2, Y7, Ya, Y1, Yo, Yss Yo }-

Theorem 3.7.2. Letn,k,r € N, 0 € &,,. Then

X, (x,y)Yor-1,(x,2) = Z X (%, ¥)Yor-14i,—(y"", 2) | (3.7.2)
n

sum over all k-soulévements (o,n) of degree 7 =0,... 7.

Proof. The divided differences in y send X, _1(x,y) onto any X, (x,y), up to sign.
Thus, the theorem can be proved by decreasing induction on ¢(¢), checking the
evolution of the RHS of (3.7.2) under a simple divided difference in y, starting
from (3.7.1). QED

For example of the recursion, the term Xszy71256(X,y)Yos2(Ys3, Y1, Ys, Ya, Y7, Us)
occur in the expansion of X31542(X,y)Yo05(X,z), and the permutation
3,4,7,1,2,5,6][3,1,5,4, 2] ! is equal to the product of cycles (1,4)(5,7,6). Under
—04, this term gives, in the expansion of Xyi543(X,y)Yo05(X,2z) the two terms
Xsar1256(X, ¥) Yoo1 (Y2, Y1, Ys, Ya, Y3, Y7, Ys) and
Xoar1356(X, ¥) Yos2 (Y2, Y1, Ys, Ya, Y7, Ys ), in accordance with

3,4,7,1,2,5,6][2,1,5,4,3] " = (1,4)(2,3)(5,7,6) ,
[2,4,7,1,3,5,6][3,1,5,4,2] "t = (1,4)(5,7,6).
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3.8 Transition for Schubert polynomials

The right-hand side of Monk formula (3.6.1) involves two sets W, W_ of permu-
tations:

(@ = Yo )Xo (x,y) = D Xe(xy)— > Xolxy),

CEWy vEW_

Let us call transition the case where W, is a singleton, rewriting the equation

Xe(x,y) = (@ — Yo ) Xo(x,y) + Y. Xu(x,y), (3.8.1)

the set W_ depending on the pair (k, (), or equivalently, the pair (k, o) as described
in (3.6.1).
For example,

Xso186347(X,Y) = (72-91) Xs1286347(X, Y)
= (I4—y7)X5217634(X, y) + Xsor1634(X, Y)
+Xs5712634(X, y) + Xr215634(X, Y)
= (5-ya) Xs2184367(X, y) + Xs2a81367(X, ¥) + Xsa180367(X, y)

Transitions are compatible with Young subgroups. Indeed, let ( belong to
Syjn—r- Then ¢ = ('¢", where ¢’ fixes 7+1,...,n and (" fixes 1,...,7. Any
transition for ¢’ induces a transition for . A transition

Xo(xy) = (25 = 4o, ) Xo(x,y) + D Xu(x,),

veW_
all the permutations v fix r+1,...,n, and therefore one has the transition
Xe(5,y) = (0 = o) Xoor (x,¥) + 3 Xoon(x,). (3.82)
veW_

By recurrence on the length of (', one obtains the following factorisation property
of Schubert polynomials.

Corollary 3.8.1. Let ( belong to a Young subgroup, and ¢ = ('(" its corresponding
factorisation. Then

Transitions may be used recursively to decompose Schubert polynomials into
sums of "shifted monomials" [](z; — y;), stopping the process when arriving at
dominant polynomials.

Among all transitions for a given (, let us choose the one for which £ is max-
imum, and call it maximal transition. For this transition, let us rather index
polynomials by codes instead of permutations. Let v € N be the code of (, and
k be such that that vy > 0, vy = 0 = -+ = v,. Let v/ = v — [0F7110"7¥]
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and o = (v). In other words, #¥ = 2z, with k maximal. Then the maximal
transition rewrites as

Y;,(X, y) = (xk - yak)Y;)’ (X7 y) + Zu YU(X7 y) ) (384>

summed over all u such that |u| = |v| and (u)o~! is a transposition 75, with ¢ < k.
For example, starting with v = [2,0,3], (v} = 0 = [3,1,5,2,4], one has the
following sequence of transitions :

Yoos(x,y) = (23— ys)Yo02(X,y) + Yas0(x,y) + Yainr (X,Y),
Yoso(x,y) = (x2 —ya)Yooo(X,y) + Ya20(X,y),
Yio1(x, }’) = (£U3 - yz)ﬂoo(& y)+ Y410(X> y),

that one terminates when attaining dominant indices. Finally, writing each shifted
monomial as a diagram of black squares in the Cartesian plane ( a square in column

i, row j corresponds to a factor (z;-y;) ), the polynomial Ys3(x,y) reads

o n D4

S N TN
I N ]

+

the first diagram, for example, coding the product

u ’ ) (903*%)

u : : (903*94)
IR (1-y2) - (w3-12)
. . . (‘rl_yl.

We shall give in the sequel a different combinatorial description of Schubert
polynomials in terms of tableaux.

Fomin and Kirillov [32] give configurations from which one reads a different
decomposition of Schubert polynomials into shifted monomials.

3.9 Branching rules

Let us ignore the term (25, —vy,, )Y (X, y) in the maximal transition formula (3.8.4)
and write

Y, =Y o X,—=> X, (3.9.1)
u ¢

where the u’s or (’s are described in (3.8.4).
However, if v is dominant, then Y, = (2 — ¥, )Y and it would not be very
informative to write Y, — 0. Let us introduce the equivalence v ~ [0, v], allowing
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the concatanation of 0's on the left, which corresponds to identify &,, and its
image 61 x G, in G,,,1.
We can now iterate (3.9.1), producing an infinite graph.

Let us examine more closely the case where a permutation ¢ has only one
successor. Write this permutation 0 = A2B4C3 D, with 2 <3 <4, A,B,C,D
being factors’ such that C'3 D is increasing, D > 4 and BN [2,...,3] = 0. The
successors of o are all the permutations obtained by exchanging 3in A2 B3C4 D
with a letter on its left such that length increases by 1 only. The permutation
( = A3B2C 4D fulfills this requirement, and if B does not contain any letter
smaller than 2, then it is the unique successor of o.

This indicates that permutations avoiding the pattern 2143 play a special role.
Let us say that o is vezillary® if there does not exist i, j, k, 1 : 0; < 0; < 07 < 0.
A wvexillary code is the code of a vexillary permutation.

We have just seen that if ¢ is vexillary, then it has only one successor in
a transition. In terms of codes, transition for vexillary codes reads as follows
(eventually transforming v into [0, v]).

Lemma 3.9.1. Let v = [AbDc| € N" be a vexillary code, with ¢ # 0, the letter
b being the rightmost occurence of the maximal value in {AbD} N{0,1,... c-1}.
Let ' =[AbDc-1], u=[AcDUV], 0 = ('), k = 0,. Then v' and u are vexillary
codes, and

Yo(x,y) = (20 — yp) Yo (x,¥) + Yu(x,y) . (3.9.2)
With this rule, here is the graph originating from the vexillary code [0, 1,2, 8,2, 7,6, 4] :

0,1,2,8,2,7,6,4] — [0,1,2,8,4,7,6,2] — [0,2,2,8,4,7,6,1]
—[1,2,2,8,4,7,6] = [1,2,2,8,6,7,4] — [1,2,4,8,6,7,2]
—5[2,2,4,8,6,7,1] ~[0,2,2,4,8,6,7,1]
—5[1,2,2,4,8,6,7] — [1,2,2,4,8,7,6] — [1,2,2,6,8,7,4]
—[1,2,4,6,8,7,2] — [2,2,4,6,8,7,1] — ...

Since a vexillary code has only one successor, one can truncate any transition
graph, stopping at each vexillary code. For example, for v = [0,3,1,2,0,2], the
transition graph is :

40 is considered as a word, and the letters 2,3,4 are not necessarily consecutive in the

alphabet. One requires only that 2 < 3 < 4.

® There are a lot of flags in a flag variety, but M.P. Schiitzenberger and I needed still more,
to describe the properties of certain permutations. This is why we introduced the latin root
“vexillum”, which survived a first period of drought and flourished afterwards.
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1/031202

7

}/03122 YE)31301

\
/ \
Yos3131 Yos23

| e

Yisi3 Y0332 You20

Garsia [43] studies in detail this transition tree.
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3.10 Vexillary Schubert polynomials

To a permutation o, with code v € N", one associates two partitions u, A € N”
as follows. Let w € N be such that w; = max(j : j > 4,v; > v;). Then p, is the
decreasing reordering of w and A be the minimum dominant weight such that Y,
is the image of Y) under a product of divided differences.

The next property shows that vexillary Schubert polynomials can be expressed
as a multi-Schur function.

Proposition 3.10.1. Let v be a vexillary code, p and X be the associated partitions
defined just above. Then

Yo(%,¥) = Sot(Xpuy — Vs« Xp —Yau) - (3.10.1)

Proof. Normalize v by suppressing terminal 0’s, so that one may suppose r = v,, #
0. Then the transition formula (3.9.2) states that

Yo(x,y) = (Tn — yp) Yo (X,y) + Yu(x,y)

Suppose the proposition to be true for v/, by induction on weight, and u. The two
Schur functions differ in only one column the sum being

(an - yk)So,’r—l,o(.a Xn = Yi-1, .) + SO,T,'('? Xp—-1 — Yk-1, .) .
Since for any j, any A (here, A =x,_1 — yx_1), one has
(Tn — yg)Si—1(A+ x,) + S;(A) = Sj(A+ z0 — yi)

this sum is equal to the expected multiSchur function S, (e, %, — yi,®). One

initiates the proposition by the Grasmannian case, where the determinant is ob-

tained as the image of Y)(x,y) under 0,,. QED
For example, for v = [0,2,7,2,4,5,5,4] one has

Yo2724554
= S02244557(X8_YO7 X8~Y3,X87Y3, 7 X8~Y7,X77Y9, X77Yo, X7‘Y9)
= (358—?/7)3/027245530000 + Y027445520000
= ($8*y7)502234557(X8*YO, X8~Y3,X87Yy3, , X8~Y7, X77Y9, X77Y9, X7*Y9)
+ 502244557(X8_YO7 X87Ys3,Xs87Y3, , X8=Y7, X77Y9, X77Y9, X7—Y9) .
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3.11 Stable part of Schubert polynomials

In the theory of symmetric functions, one usually prefers to eliminate variables by
taking the projective limit Gym(x.,) of the ring Gym(xy,...,z,), which amounts
to using infinite alphabets.

In terms of Schubert polynomials, the embedding Sym(x,) — Sym(x,41)
translates into the transformation Y,(x,0) — Yy,(x,0) for v antidominant. This
leads to define the stable part St(Y,) of a Schubert polynomial Y, (x,y), as

St(Y,) = Yon o(x,y)

. )
zj=0=y;,j >N

with N big enough, and consider it as an element of Gym(x) @ SHm(y ).
We first need to analyze the transformation Y,(x,y) — Yo,(x,y) to compare
Yon o(%,y) and Yyv+1,(x,y) and precise what “N big enough” means.

Lemma 3.11.1. Letv € N", v <[n,...,1]. Then

Y,(x,0)72 .17 = Y, (x,0) (3.11.1)
Yo(x,y)me . ..oinl . om) = You(x,y) . (3.11.2)

Proof. By trivial commutation, one writes 77 ... 77 = x,,...210% ...07, and one
uses that Y,(x,0)z,...21 = Y,11n(x,0) when v € N". This proves the first
statement. Writing Y,(x,y) as a sum Y ¢, Y (%,0)Y,(y,0), one obtains that
Yo(x,y)mZ ... 7w} is equal to 3 ¢y You (X, 0)Yow (y, 0), that is, to Yy, (x,y). QED

Lemma 3.11.2. Let f € Pol(x,) @ Pol(ym), wn = [n,..., 1], wp = [m,..., 1],
Tosn = (Tn o Top_1) ... (m ... 7). Then

frl wl =y Toxm . (3.11.3)

wntw
oo z;=0,i>n,y,;=0,j>m

Proof. Any monomial z¥; v € N" can be written ¥ = Sy, (Xn, Xp_1,---,X1),

and its image under m, ... 7, 1 is equal to Sy, (Xon, Xn_1, .- ., X1), which is sent

t0 Spw(Xon, Xon_1,Xp_2,...) under 7, 1...79, o. In final, 2%m,y, is equal to
Svw(Xon, Xon_1, - - -, Xpy1), and this function restricts to Sy, (x,) = 2'7,,.  QED

Forv < [n,...,1], the stable part of Y, (x, y) is obtained by computing Yo, (x,y),

which is the image of Y, (x,y) under (7 ...77) ... (75, _,...77) (74 .. 7)) .. (75 _y ... 7Y)
according to (3.11.2). But the product of divided differences can be rewritten

T mommi AL n2n, 1 TasxnTnxn- Lhe first two factors preserve functions of

x,, and y,. Therefore,

Ybnv(X, Y) = YU(X’ Y) 7T£><n7Tz><n .

Using (3.11.3), one sees that

St(Yy(x,¥)) = Yo(X,¥) T senTirsn - (3.11.4)

nxXn
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A transition

Y;)<X7 Y> = (xk_yj)Y;;’ (X7 Y) + Z YU(X7 Y)

uel

entails a transition

YE)”U(X7 Y) = (mk—i—n*yj-l—n)yz)”v’ (Xa Y) + Z YE)"u(X7 Y) :

ueU

Therefore transitions may be used to compute stable parts :

St(Y,(x,y)) = St(Yors(x,y)) = Y St(Yu(x,y)). (3.11.5)
ueU
The determinantal expression of a vexillary polynomial, for v < [n,... 1],

shows that its stable part is equal to

St(}/()"v<xv Y)) - SUT(XR - yn) .

One can in fact relax the condition on v. If Y)(x,y) is a dominant ancestor of
Y,(x,y), with v € N* and m = Ay, then Y, (x,y) is a polynomial in 1, ..., z, and
Y1, - Ym. Using (3.11.2) and (3.11.3), one sees” that

Yo(x,y) 5, 7, = Sut(Xn — ¥m) - (3.11.6)

In summary, one has the following three ways of determining the stable part
of a Schubert polynomial.

Theorem 3.11.3. Let v € N, Y, be a dominant ancestor of Y,, m = \y. Let
You(x,¥) = (2k—y;) Yo (X,¥) + Xuey Yu(X,y) be a transition. Then

SHYu(x,y) = Yalx,y)asat, (3.11.7)

= Yorrm(x,Y) (3.118)
z;=0,i>n,y;=0,>m

= Y St(Yulx,y)). (3.11.9)

ueU

For example, the transition graph for v = [0, 3,1, 2,0, 2] given above has five
terminal vertices: Y3129, Y1331, Y1412, Y0332, Y0400, and this implies that

St(Y031202(X, Y)) = 83221 (Xoo—Yoo) + 53311 (Xoo—Yoo) + S4211(Xoo—Y o)
+ 5332(Xoo—Yoo) + S122(Xoo—Yoo) -

6 The action of 7w, on the determinant of complete functions of x; —y; expressing Y, (x,y)
consists in replacing all x; by x,,. The action of 7, is much more delicate, one has to use that
some determinants of complete functions in x; —y; can be written as determinants of complete
functions in y; — x; (cf. [81]). For example, the equality X, (x,y) = (-1)“9) X,-1(y,x) gives
such a transformation of determinants in the vexllary case. We have bypassed this transformation
by using Y, (x,y) = Yov,(X,y).
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We shall see later that
Yo31202(%, 0) = K31902 + K31301 + Ka1201 + K323 + Ko -

Since evidently the image under 7, of a key polynomial is a Schur function, the de-
composition of a Schubert polynomial (specialized in y = 0) into key polynomials
is still another way of computing its stable part.

A special case of the determination of the stable part of a vexillary Schubert
polynomial is the Sergeev-Pragacz formula showing that a Schur function of a
difference of alphabets x,,-y,, can be obtained by symmetrization of a product of
differences x;-y;. Indeed, let A € N" be dominant, m > ;. Then

YA(x,y)m, 7 = Sx(Xn, Ym) - (3.11.10)

For example, writing the explicit expression of 7, a a sum over the symmetric
group, one has

_ r Y
5024(X3 - Y4) = Y20 T301 321

1 ot
= (_1)4(0’)-‘1-5(4) m210y3210 Y>\ )
A<x1’$27'I3)A(y17y2ay37y4) O’EG%EGX ( )
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3.12 Schubert and the Littlewood-Richardson rule

When a permutation o € G,, belongs to a Young subgroup &, X G,,», the Schubert
polynomial X,(x,y) = Y, ., (X,y) factorizes. This factorization is compatible
with the restriction” of Yy v (X, y) to Xn,yn, and therefore in that case

St(}/”u <X7 Y)) = St(yu’ (X7 y)) St(%” (X7 y)) :

In particular, when the Schubert polynomial factorizes into two vexillary Schu-
bert polynomials, then its stable part is the product of two Schur functions. Since
the stable part can be computed by transition, this observation furnishes many
ways, different from the usual Littlewood-Richardson rule, of computing the prod-
uct of Schur functions.

For example, to compute the square of sg;, one can start with any v =
v'v” with o', v" € {[2,1,0],[2,0,1,0],[1,2,0,0]}. Here are two possible transi-
tion graphs, starting with [2,1,0,2,1,0] or [2,1,0,1,2,0,0], which are the codes
of the permutations [3,2,1,6,5,4] € 63 x &3 and [3,2,1,5,7,4,6] € &3 x &4, and
stopping at vexillary codes.

Y1021
Yo112 Y2202 Y3102
| | |
Yo2121 Y02 + Yas01 Y310 + Va3 Yo
| |
Yio12 Y + Yo
|
Y1201 + Y311
Yi20021
/ \
Yi2012 Yi3002
| T
Yi2021 Y1302 Y4001
] | |
Yio12 Y2202 Yigo + Va3 Yiio1
| | |
Y1921 + Y311 Yo00 + Yaso1 Yig1 + You

Tusing symmetization is more delicate, since symmetrization does not commute vith product

in general.
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Both graphs imply that

891821 = S42 + Sa11 + S33 + 28321 + S3111 + S222 + S2211 -
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Chapter

Products and transitions for
Grothendieck and Keys

4.1 Monk formula for type A key polynomials

Instead of considering the multiplication by each x; in the key basis, let us describe
the multiplication by

This element is invariant under the symmetric group acting on z; and y; simulta-
neously, and therefore, for any permutation ¢, one has (£)7" = (£)")".

Since key polynomials are obtained by applying on dominant monomials the
operators m,, 0 € G,,, we essentially need to describe the products 7,&, that we
shall write

Tol = X105 + -+ + T, 00 .

The commutation relations m;x; = x; 1743, Tx01 = X;T—X; = T, Ty .. TTirg =
17y ... 7; imply

Y

S

T T =T Mg (§) 1y + T T2 @1 (Yh—1 — Yi)
s¥ | sY
=Ty .. g (§) k21T oy
+ 7 3Tk 2T 1 (Yh—2 — Yk) + 171+ Teo3(Yr—1 — k) -

Iterating and grouping the coefficients of y;, one obtains
Yy Yy ~ ~ o~ ~
T .- 7Tk_1§ = (5)81'"‘9’“*171'1 e Tp—1 + 21 <7T1 e T 1Yk + T Te—2Yk—1

—f—ﬁ'l .. .ﬁk_gyk_gﬂ'k_l + 7/'(\'1 .. -ﬁk—4yk—37rk;—27rk;—1 + -4+ Y7o .. .7Tk) . (411)

Given a permutation o € G,,, let us write it 0 = (s1 ... S,_1, with ( € G1xn_1.
Relation 4.1.1 entails

y
S1-Sp_

803:<902> P T, 12> 2

e

119
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%17=7T<<y17T2-~7Tk+"'+7AT1---7ATk—1yk>,

while 90% = TcY1-
These recursions furnish an induction on n for the products K.

Proposition 4.1.1. Letv € N*", A =wv ], 0 € 6,, ( € Gixn_1 be such that
Kym, = :c’\7r<7rl ... Tp_1. Then

y oy
81--Sp_1
+
y1=0

l‘)\l’lﬂ'c (ylm TR WYL T T .%k_lyk> . (4.1.2)

K, = (m’\wcf

For example, when v = [1,3,5,7], one has A\ = [7,5,3,1], 0 = [4,3,2,1],
¢ =1[1,4,3,2]. Supposing known that
K35 & — y1 Kgi3s = (y4K7136 + (y3s — ya) Kri63 + (y2 — y3)K7613)
+ (y3K7145 + (y2 — y3)K7415) + Y2 K 7235,

one obtains

™ (x290121321 + :133502321 + $4903321) = (?/3K1367 + (y2 — y3) Kig37
+ (yl - y2)K6137> + <y2K1457 + (yl — y2)K4157> + 11 Koss7

while

7531 1 ~ ~ A ~ A A~
T T1P391 = K71351‘1(?J17T27T3 + T1Y2T3 + T1T2ys + 7r17r27r3y4)

= yaKizss + (Y3 — ya) Kuzss + (2 — y3) Kigss + (Y1 — y2) Ksiss
the sum of these two terms being equal to Ki357&.
A fully explicit Monk formula would require finding combinatorial objects com-

patible with the above recursion, as well as a justification of the fact that the
coefficients seem to be of the type y; or (y; — y;) only. For example,

Koou24 & = ys Kaoazs + (Y3 — y5) Koos24 + (Y2 — y3) Kaso2a + (y1 — y3) Ks0224
+ (Y1 — Y2) Ks2104 + (Y3 — Y2) Ks2024 + YaK 0434 + Y2 21424
+ (y1 — Ya) K30424 + (Ya — Ys) Kooasz + (Y5 — ya) Koosaz + (Y2 — ya) Kaza04 -

4.2 Product G,z;...x;

We first need to extend the Ehresmann-Bruhat order to weights. Let u,v € N"
be permuted of each other. Then uw > v if and only if for £ = 1,...,n one has
[, ... ug] 1> [v1, ..., 0] T componentwise.



§ 4.2 — Product G,z ...x% 121

Given v € N", k < mn, let
Cluk)y={u:u>v& (Vz’ # k,us; > v implies us; > u)}

In other words, C(v, k) is the set of weights above v which are minimum in the
intersection of their coset modulo Gy, with the interval [v,[n...1]].

Using these sets, we define two operations ®, ®. Given v € N*, k < n, z € N¥,
let u € C(v, k) be such that [uy,...,ux] T= [z1,..., 2] T if it exists. In that case,
define

vezr=u & v®z=u-+[1"0"""].

Otherwise put v© 2 =0 =v ® 2.
For example, for v = [3,5,1,6,2,4], z = [6, 3, 2], one has

vez=[3,6,2,514 & v®z=[47,3514].

We have given in Lemma 1.4.2 the normal reordering of products of the
type myx1 - - - x. These reorderings provide the decomposition of G,z - - -z and
K,xy---xp in the Grothendieck or key basis respectively, in terms of punched
diagrams.

Let us index Grothendieck polynomials by permutations, putting Gy = 0, and
let us introduce the ideal Gym(x,, =y, ) generated by e;(x,) —e;(yn), i =1...n.

Theorem 4.2.1. Let 0 € S,,, k < n. Then, modulo the ideal Sym(x, = y,), one
has

G(U)xl T = Z Yy Yny, G(T) = Z Yzy v Yz, G(O’@Z) . (421)

T€C(0,k) ZENF:in>z1> 2

Proof. Let ¢ be the maximal permutation in the coset Gy (n—x). Then

Gloyo1 -k = G Tw)T(ctwo) X1 Tk = G)Twe) L1 Tk T(¢-lwo) -
Thanks to (1.4.7), the product (. 1 - - - 2 is equal to a sum S 247 over some
punched diagrams. However, for any 7, one has'

H;zl 12} (v;—y;) = 0, hence G(w)(l—ynﬂ,ix;l) = 0, that is, G(w)%; = G (w)Yn+1—i-
Therefore G521 - - - 7y is congruent to a sum >_ . ¢,G (), with ¢; a monomial in y,
of degree k. It remains, but we shall not do it, to check the equivalence between
enumerating punched diagrams and permutations in C(o, k). QED

' For every i < n, one has [[\_; [Th=1(zi — y;) = Stny1—i)yi (Xi = ¥n—i) = Sns1-ipyi (¥n —
Ynti1—i) — (Xn — %xi) + (Xn — yn)) = Sint1—i))i ((yn — Ynt1-i) — (xXp — x,)) his last function is
null because the cardinality of y,, — yn4+1-; is < ¢ and the cardinality of x,, — x; is < n+1-i.
For example, for n =5, i =2, Sy4(x2 —y4) = Sus (y5 — (z3+ 24 + :1:5)) =0.
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For example, foro = [4, 2, 1, 5, 3], and k = 3, then G(42153) = G(54321)7T17Tg71’27'('471’3
and one has to enumerate the punched 122-diagrams to describe the product
G(42153) 112273 = G31010 T1T2T3 =

<$2I4$5| 1 ;) ;L — y4y2y1G(42153)) + ($1$4$5| . 2 ;L — y5y2y1G(5214g))
4 4
+ x2x3x5| Ik — Yay3y1G z1a2) | + $1I2$5| TTel3 — Ys¥a¥1G (45123)
I 3|e G 314 G
2$3$4| 5 — YaY3Y2Ga2351) | + $1$2$4| T2 — YsYaY2 (s (42513)
+ °ld G 31 G
$1$3$5| T2 — YsYs1G(53142) | + $1$3$4| 213 — YsY3Y2(r(52341)

+ ($1$2$3| 1 ; il —>y5y4y3G(43512)) .

One obtains the products G, x1xe3, for any n in the coset 0G3x2, by taking
the image of the preceding expansion under products of 7;’s, i # 3. For example,
G (24153) T17273 = G(42153) T17273m) Tesults from sorting each permutation 7 in the
preceding sum into [[11, 2] T, 73, 74, 75].

The number of terms in (4.2.1) is equal to the number of strict partitions
z € N¥ between u and [n, ..., n+1-k], where u = [o1,...,0%] |, or, equivalently,
the number of partitions containing [u;-n, ..., u,-1] and contained in [(n-k)¥].

The original Schubert calculus involved Grafimannians, and, in our terms,
Schubert and Grothendieck polynomials indexed by Grafimannian permutations.
For any GraBmannian permutation o, corresponding to the partition u = [ox-k, ..., 01-1],
any r, the number of terms in the expansion of G (@1 ---x;)" is the dimension
of some space of sections, and is called a postulation number. From what pre-
cedes, it is equal to the number of increasing chains of partitions pu° = pu < pt <
oo <k <kt = [(n—k)*]. This number has a determinantal formula proved by
Hodge, with some help from Littlewood.

For example, the product G(145236)(x1$2x3)2 involves 46 chains of strict parti-
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tions [541] < ! < p? < [654] (represented as two-columns Young tableaux) :

5[5 616] [5]6 6]16] [6]6] [5]6
414 | Gaasese) + | [4]4]+[4]4]) Gasess)y + [ [4]5]+[5]5] T [4]5]] Gse2ss
1|1 11| [1]1 11| [1]1] [1]1
5151 [5]5 5151 [6]5] [5]5
+ | [4]4]+[4]4]] Gaasize) + | [4]4]+[a]4]+[4]4]] G345126)
112] [2]2 3131 [1[3] [2]3
6161 [6]6] [5]6] [5]6
+ |44+ 44|+ [4]4]+[4]4]] G(246135)
1121 2121 [1[2] [2]2
616] [6]6] [6]6] [6]6] [5]6] [5]6
+ 45|+ 5[5+ [5]56|+[4]5]+[4][5]t[4]5]] Gse134)
1121 2121 [12] 2121 [112] [2]2
616] [5]6] [6]6] [6]6] [5][6] [5]6
+ (44| + 44|+ [al4|+ 44|+ 4[4+ [4]4]] Gacizs)
1131 [313] [2[3] [313] [1[3] [2]3
616] [6]6] [6]6] [5l6] [6]6] [6]6] [5]6] [6]6] [5[6
+ 45+ 55] 45|+ [45]t[5][5]+[4][5]+ 45|+ [4]5]| Geseie
1131 [313] [213] [313] [213] [1[3] [113] [3[3] [2]3
616] [5]6] [6]6] [6]6] [5]6] [6]6] [6]6] [5]6] [6]6] [6]6
+H a5+ 45|t [5[5] T [5[5|t4l5| 45|t [5[5]T[4[5] 45|+ [5]5]] Gusei2s)
14| [214] [314] [2]4] [3]4] [2]4]| [1]4]| [1]4] [3]4] [4]4

4.3 Product K,x;...x;

The computations of K, x;---x; and G,z -- -1, are similar, and use the same
equivalence, detailed in the appendix, between enumerating punched diagrams and
describing sets C(v, k). It translates into the following theorem for what concerns
key polynomials.

Theorem 4.3.1. Letv € N*, kK <n. Then

K’U 'Tl DY xk pr— Z Ku_"_[lk,o,n,k] pr— Z K’U@Z P (431)

ueC(v,k) z

sum over all z € N¥, z = 21, z subword of v 1.

For example, for v=[2132], k = 2, we frame the elements of C([2132]) inside
the interval [2132,3221], and figure the intersection of this interval with cosets
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modulo Gyys.
[3221]

[2321] 3212]

2231] 2312 3122]

2132]

On the other side, the subwords of length 2 of vt= [1223] are 12, 13, 22, 23 and
one has v ® 12 = [2132] + [1100], v ® 22 = [2231] + [1100], v ® 13 = [3122] + [1100],
v ® 23 = [2312] 4 [1100], so that

Koizow1za = Korza+1100 + Ko2si41100 + Ks12241100 + K2312+1100
= Kaso30 + K31 + Ky290 + Ksa12 .

Notice that

Ko300170 = K391 T3 1T = $32211’2£174| I g + 1732211171$3| I %

LSy g, o] g2ty g 31 sty g @ ’
L1 [e]2 [e]2

\V)

but that the term :L’3221x1x3|. ; = 2?11, = 0 disappears.

Dominant monomials can be written as products of fundamental weights z1 - - - x4.
Iterating (4.2.1) and (4.3.1), one obtains the product of a Grothendieck or a key
polynomial by any dominant monomial. The rule will however take (later) a more
satisfactory formulation when stated in terms of the plactic monoid.

4.4 Relating the two products

Let us show how to relate the products G(U)x’\ and K,z

Proposition 4.4.1. Let 0 € G,, A\ € N be a partition, r > A, and u =
[roy,...,ro,). Then K2t =¥, Ky, is a sum without multiplicities and G(U)a:)‘ 18
a sum over the same weights :

A w
Gor* =Dy Gew)

with C(w) = [[wi/r],..., [wa/r]], 2 = w1, (w) = [21-7,.. ., z0-7].
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Proof. The product by z* is a chain of A\; multiplications by monomials of the
type 1 ---xp. From the preceding theorems, it can be written in terms of the
operators x'm,, with ¢ < [Ay,..., A;]. The hypothesis on u is such that each ul +¢
is dominant, and therefore, gives the key polynomial indexed by [u] +t]n. On
the other hand, the same operator z'm, contributes to a Grothendieck polynomial
multiplied by the monomial in y of exponent [¢, ..., t]. QED

2200

The following table describes the product Gz as the same time, taking

r = 3, as the product Ky 31267%?%.

G321 y0112 K14,10,7,3

G312 y2020 K11,5,12,6

G341 ?/0121 K11,13,7,3

G312 ?J1012 K14,10,4,6

G3oa1 Y120 4 0220 Ki18123 + Ki17,124

G132 Y20 4 42002 Kis596 + Ki3s106

G412 Yo%t 440022 K146 + Ki11,1346

Guoz yP2H 4y 022y 102 0y s g 105 + Kiagos + Kiazo4 + Kis7,104

Of special importance is the case of multiplication by z*+!. Let us show in the
next lemma a case where it is of interest to mix bases.

Lemma 4.4.2. Let k < n, u € N" be such that uy > -+ > ug, Ugy1 > -+ > Up.
Then .
K, xlf o 'xz—ﬁk = Yu+[k,...,1,0n—k](x7 0) :

Proof. The hypothesis on u implies that, with A\ = wu [, there exists a strictly
increasing v € N* such that

o~

Ku:f{\)\(ﬁ-vl...7?1)(77-”2...77-2)...(77-Uk...7?k)

:R\)\<av1"'81132"'xv1+1)<av2"‘a2x3"'«77v1+1)"'(avk"'akszrl"'kaJrl)

Using repeatedly that (0, - - - 0;xiy1 -+ Tj1)21 -2 = X1+ Tjp1_J- -+ O0;, one can
transfer all monomials to the left and obtain

f(\ux’f"'xk:l')\(xl"‘xv1+1)"‘(xl"‘ka+l)(av1"'al>"'(8vk"'ak)-

This is the image of a dominant monomial under a product of divided differences,
hence the lemma after identifying the index of the Schubert polynomial.  QED

4.5 Product with (z;...xz;)"!

The original formulas of Pieri involved intersection of Schubert varieties with spe-
cial Schubert varieties corresponding to elementary symmetric functions. At the
level of Grothendieck polynomials, one has to consider products of Grothendieck
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polynomials with some special ones, for example with Ggr-1; = 1—y; - - ypry oyt

This is not what we have done in (4.2.1), having taken x; - - -z intead of its in-
verse. Let us repair this in the next theorem, which can be found in [85, Th 6.4].

Theorem 4.5.1. Let 0 € &, k < n. Let ( € S, be such that [(1,...,(] =
01, ok by [Cevty -, G = [Oka1, -5 0n] |, and w = [n, ... 1]. Then, modulo
the ideal Sym(x,, = y,), one has

ym"'yak_ ~
G, 7k = Gy Fwe Te—1g - 4.5.1
O —— (w) Tw¢ M1 (4.5.1)

Proof. The hypothesis on ¢ implies that, with V the diagram of v = [n—(3,...,n—
k 4+ 1 — (], one has m,c = 7. Thanks to (1.4.4), one has 7 (z1---a3)"" =
(Togt1 -+ Typtx) - @Y. Since the factor (xy - - - x) ! commutes with 7.-1,,, because

(!0 belongs to Syxn_i, the theorem follows. QED

For example, for k = 3, 0 = [4,3,6,7,8,2,1,5], one has ( = [6,4, 3,8,7,5,2, 1],
v=18,7,6]—[6,4,3] =1[2,3,3], V=3 ;,1 451 ,and ("o =12,3,1,5,4,7,8,6] has
reduced decomposition s1S89848657. A t10g2et?1er,

YalYysYs __ ~m m m m am ~
G(o) = G <7r27r1 T4 T3 T 7T57T47r3) (7T17T27T47T67T7>
L1223

= G3678215 — Gusres215 — Ge3678210) T G5376821,4)

— G5678213CG6,4678213) T Ga5768213) — G5476821,3) -

V. Pons [140] shows that the expansion of the right hand side of (4.5.1) in the
Grothendieck basis is a signed interval. Lenart and Postnikov [120] give a more
general equivariant K-Chevalley formula valid for any Weyl group.

The preceding theorem involves products of 7;’s and 7;’s, that one can study
using key polynomials rather than Grothendieck polynomials. Let V be an ar-
bitrary product of m;’s and 7;’s, i,7 < n. If G )V = Y c;G(r), then K,V =
> ¢ K, with the same coefficients, since every m; acts in the same manner on the
indices of both families of polynomials. This will allow us to reformulate (4.5.1)
in the next statement.

Proposition 4.5.2. Let k < n, v € N* be antidominant, V be the v-diagram and
o be a permutation in Syy,—r. Then

K,7¥m, =Y K,, (4.5.2)

sum over all weights T in the interval [n,no), with n € N" permutation of w =
[n, ..., 1] such that m = ve+k, ... ,nx = v1+1, Ny > -+ M.
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Proof. The weight 7 is such that K, 7¥ = R\n- The operator 7, is equal to a
sum ),<, T, where all v belong to Gyx,—x. Hence products are reduced and

K,7a¥7m, =3, uk,,. QED
For example, let &k = 3, v = [1,2,2], 0 = [3,1,2,5,4]. Then n = [4,2,1,5,3]
and

N oA A A A

= Kyo153 + <K41253 + Koqs3 + K42135) + (K14253 + K135 + K24135) + K235 -

This is also equal to K14235 — K15234 — K14325 + K15324, in accordance with

Y1Y2Y4 _ G(

14235) — G'(15234) — G (14325) + G (15324) -
T1T9T3

G (14235)

4.6 More keys: K¢ polynomials

Stability properties of Schubert polynomials can be analyzed by using the isobaric
divided differences ;. Let us show that the operators

play a similar role for what concerns the Grothendieck polynomials.

These operators satisfy the braid relations, being the images of the m; under
the transformation z; — x;—1. As an operator commuting with multiplication by
elements of &ym(x;, z;11), D; is characterized by

More generally, D, = (21-1)""'... (2,-1-1)9, = G,(x,1) 7, is characterized by
the fact that it commutes with multiplication by elements of Gym(x,,) and sends
any 2V : 0 <wv <[0,...,n-1] to 1. Indeed, 2"D,, may be written (z*, G,(x,1))",
and Formula 2.9.5 tells that (z¥,G,(x,y)) = y*“.

Taking the same starting points as for G,(x, 1), one defines recursively K¢
polynomials by

K{ = G(x,1) when A dominant & Kfsi = K¢ D; when v; > vy, . (4.6.2)

The operators D;, combined with multiplication by G1x(x,1), can be used to
generate recursively the Grothendieck polynomials G, (x,1).

Proposition 4.6.1. Given v € N*. If0 & v, then
Go(x,1) = (1-27Y) ... (1-2, 1) Gy_1n(x, 1) .
Otherwise, let k be such that vy, =0 and v; > 0 fori < k, let
u=[vi-1,...,05_1-1, 0611, ...,0,]. Then
Go(x,1) = Gyu(x,1) (1-2;.1,) -+ (1-27") Dy -+ Dy,
=Gu(x,1) Dy 1+ Dy (1-2 1) - (1-271) . (4.6.3)
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Proof. By trivial commutation, one can transform D,,_;--- Dy
= (1-2, ) mu_y ... (1—zp )y into (1-2,%) ... (123 )71 . .. . Therefore

Gu(x, 1) (1-2,1 ) o (D g o (T ) - (-2 )
=G (x, 1) (1-z;t ) ... (a7 Ty - T
= Gu+1n—l(x7 ].) Tn—1-.-T = GU(X, ]_) y

as claimed. QED
With the same notations than in (?7), if v is vexillary, then w is also vexillary,
as well as v’ = u + [1¥71,0"7*]. Suppose that G/(x,1) = K. Then

GU(X, 1) = Gu+1n—1(X, 1)7Tn_1 TR
=Gu(x,1)(1-2,1) ... (I~ )Ty .. T
=Gu(x,1)Dy_y...Dy =KD, 1...D}, = K& .
By recursion on n this proves

Corollary 4.6.2. If v is vexillary code, then G,(x,1) = K&,

Notice that the shift of indices G,(x,1) — Gg,(x,1) may be obtained with
the D;. Indeed, if v € N, then

Go(x,1)D,, ... Dy = Go(x, )(1-z;Y) ... (1-2y 7. .. mp
= GU+1n (X, 1)7Tn LT = GOU(X7 ]_) .
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4.7 Transitions for Grothendieck polynomials

We have seen that multiplication by x;, in the case of Schubert polynomials, can
be used to provide a recursive definition of these polynomials. We are going to
show that one still has a transition formula for Grothendieck and key polynomials
(and later also Macdonald polynomials).

The case of Grothendieck polynomials is an extension of the case of Schubert
polynomials, and is described in [90, Prop. 3]. Since it is proved by a straighfor-
ward recursion, let us state the property without proof (caution: in reference [90],
one uses the variables 1 — 1/z; instead of x;).

It is more convenient to use indexing by permutations and write G, instead
of G,, if v is the code of o. In terms of permutations, the maximal transition
formula for Schubert polynomials (3.8.4) reads as follows.

Given ( and its code v, let k be such that v; =0 for ¢ > k and v, > 0. Let o
be the permutation whose code is v — [0¥7110"7*]. Then

sum over all transpositions 7;; such that o = [...0...5...], 0 =[...7...0...]
and {(1j,0) = {(1) + 1.

Order decreasingly the integers i occuring in (4.7.1): i, > -+ > iy, and write
(1 = 75) % G(oy for G(o) — G(r;,0). With these conventions, one has

Theorem 4.7.1. With the conventions of (4.7.1), one has the following transition
formula
Tk
(Gio) = Go)) = (1—75,) % (1 = 7ji,) * Go) - (4.7.2)
j
For example, for ( = [5,7,3,4,1,8,2,6], one has 0 = [5,7,3,4,1,6,2,8], k = 6,
j =6, and
x
(G(5734l628) - G(57341826)) yj = (1 - 7’65) * (1 - 7'64) * (1 - 7'61) * G(57341628)
6
is equal to the alternating sum of Grothendieck polynomials displayed below (with
both indexings) :

57341628
45220100 _

67341528 57361428 T T 57346128

55220100 45230100 45222000

67351428 67345128 57364128

55230100 55222000 45232000
67354128

55232000
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Relation (2.6.5) allows to transform transition for G-polynomials to transition
for G-polynomials.

Corollary 4.7.2. With the conventions of (4.7.1), writing i’ for n+l-i, i =
1,...,n, one has the following transition formula

(é(wo'w) + é(wgw)> ZI;;/ = (1 + Tj’ién) * - (1 -+ Tj’i’1> * é(waw) . (473)

For example, the transition for G (wlw) = G (37185624) 15 the image of the transition
for Gy given above :

~ ~ T3 ~
(G(17385624) + G(37185624)) % = (1 + 734) * (1 + 735) * (1 + 738) * G17385624)
6
and can be displayed as
17385624
05142200 _
17485623 17583624 T T 17835624
05242200 05341200 05512200
17584623 17845623 17853624
05342200 05522200 05531200
17854623
05532200

One could in fact extend all transitions of Schubert polynomials, and not only
maximal transitions, to transitions of Grothendieck polynomials. This is useful in
the case of a permutation ( = (’¢” belonging to a Young subgroup as in (3.8.3).
One has the same property as in (3.8.2). A transition

Ty
(G~ Gier) v (1= 7jiy ) - (1= 750, ) + Goy
j
entails the relation
Tk
(G(Ugu) — G(C)) yf = (]_ — Tjim) koo (]_ — Tjil) * G(JC”) . (474)
j

As a consequence, Grothendieck polynomials satisfy the following factorization
property (shown in [85, Prop. 6.7] for the polynomials G¢)(x,1)).

Corollary 4.7.3. Let ¢ belong to a Young subgroup, and ¢ = ('C" its corresponding
factorisation. Then

G(x,y) =Gey(xy) Gen(x,y) . (4.7.5)
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Using the recursive definition of Grothendieck polynomials to prove factoriza-
tion would be delicate. For example, Gpi90(X,y) is a sum of 12 monomials which
does not factorize’. Its image under 73 is equal to

Go101(X,y) = Go1(X,¥)Gooor (X, y) = (1 — y1y2> <1 — yly?yi”y‘*) ‘

1T T1T2T3T4

2We shall see in (??) that it is equal to Sooa(x3,X3 — y2,X3 — y4)/2%22.
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4.8 Branching and stable G-polynomials

As in the case of Schubert polynomials, one can use the transition formula (4.7.2)
to obtain a transition graph with root a Grothendieck polynomial (indexed by a
permutation), vertices being + a Grothendieck polynomial, stopping at vexillary

permutations.

For example, for o = [3,1,6,2,7,4, 5], one has

G (5162347

G (4163257)

G (4261357)

G (5241367)

G (3162745)

—

G (3165247)

—

G (3461257)

—G (5341267)

T~

G (1523167)

The corresponding tree for X3i69745 is

If v € N* is antidominant, then K¢ is symmetrical in zy, ..

has the stability property K&

X3162745

|

X3165247

|

X3461257

X5162347

X4163257

X4261357

T

X5241367 X4523167

Tp4+1=1

T~
T~
—

—G (5163247)

—G (4361257)

T

—G (4531267)

—G (5421367)

G (5431267)

., T,, and one

= KY. As for Schubert polynomials, this

leads to define the stable part of a Grothendieck polynomial®, for v € N™ and

w=1In,..., 1.

St(Gy) = Gy(x,1)D,, = Gyny(x, 1)

3Contrary to the Schubert case, we eliminate for simplicity the alphabet y.

Tpp1=1==T2n

(4.8.1)
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A transition
Gonv(X, 1) = (1 — xgl)GonU/<X, 1) + 33";1 Z Gonu(x, 1)
induces the equality
St(G,) =Y St(G.),

and therefore, the transition graph is a convenient way of obtaining the stable
part of a Grothendieck polynomial.

For example, the above graph shows that the stable part of G si62745) is equal
to

St(G 5162347)) + SE(G 5201367)) + St(Gas21367)) — SE(G (5421367)) + St(G (3461257))
— St(G (5341267)) — St(Gas31267)) + SE(G (5431267)) — St(G (5163247))
= KGhoo124 + Kioooasa + Kooooza — 2KGooor34
+ Koo0223 — KGoooaza + Koooorss — Kooozss -

The terms St(G sa21367)) and St(Gs163247)) are both equal to K134, hence a
multiplicity 2.
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4.9 Transitions for Key polynomials

Key polynomials satisfy a similar transition formula, exhibiting a boolean lattice,
except that now one uses weights instead of permutations. The following consid-
erations are drawn from an unpublished manuscript with Lin Hui and Arthur L.B.
Yang.

Let v € N”, let k be such that v; = 0 for ¢ > k and v > 0. The leading term z
of K, is equal to z"xy, and we want to describe the difference K, — x, K, as a sum
of key polynomials. We can suppose that v; > --+ > wv,_1, because mq,...,Tp_o
commute with multiplication by x.

Let us compute an example :

T K543103 = Ks43104 -
| T
— K544103 — K543401 ) — K543140
— |
Ks44301 Ks44130 Kis43410
/
— Ks544310

Using the same notation as above for operations on indices, one may rewrite
the preceding identity into

26K 543103 = (1 — 7u3) * (1 — 7a1) * (1 — 7o) * Ks43104 -

We have used transpositions of values 74;, ignoring the leftmost 4. However,
this example is not generic enough. What to do when values ¢ are repeated?

Let us take a bigger example, which, this time, will pass the test of genericity.
Let v =[5,4,3,3,1,1,1,0,5]. We have to compute

K5,4,3,3,1,1,1,0,4 L9 = K5,4,4,3,3,1,1,1,0 m3...T8Xg .

Noticing, by the Leibnitz’ commutations (1.4.3), that

A A A A A A

one obtains that K5 43311104 %9 = K54331,11,04. The general case is similar and
given in the following statement.

Lemma 4.9.1. Let v € N" be such that vy > -+ > wv,_1, v, # 0, and let
u=/[..,0_1,0,-1]. Then
K,z,=K,. (4.9.1)
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Expanding K, in terms of K, (which means taking the Ehresmann-Bruhat
interval), one obtains the transition for key polynomials in that case. Let us show
the evolution of the transition under successive applications of m;, i # n—1.

We begin with the transition for Ky3295 :

Kiz995 — Ki322475 = Ki32005 — Ki3295
= <K5,3,2,2,4+K4,5,2,2,3+K4,3,2,5,2) — (K5,4,2,2,3+K5,3,2,4,2+K4,5,2,3,2) + (K5,4,2,3,2) ;

that we display as a boolean lattice (forgetting signs), writing the starting element
as the bottom element

[5,4,2,3,2]

P

5,3,2,4,2]  [4,5,2,3,2] [5,4,2,2,3]

|

[4,3,2,5,2]  [5,3,2,2,4]  [4,5,2,2,3]

[4,3,2,2,5]

Applying 7o, then 7, then again 7, one obtains the transitions for K 4325
and K273’472’5 :

[5,2,4,3,2]

P

5,2,3,4,2)  [4,2,5,3,2] [5,2,4,2,3]

4,2,3.5,2  [5,.2.3,2.4  [4,2,5,2,3]
[4,2,3,2, 5]
2,5, 4,3,2] 2,3, 5,4,2]

2,5,3,4,2]  [2,4,5,3,2] [2,5,4,2,3]  [2,3,4,5,2] 2,3,5,2, 4]

[2,4,3,5,2

2,3,4,2,5]

] [2,5324  [2,4,52,3]

/

2,4,3,2, 5]
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The terms which are not underlined cancel two by two at the last stage, because
(Kojioo - Kojioo) g = 0.

To write the general transition, we need to introduce, for each pair of integers
i,J, an operator 7; ; on linear combinations of K,, defined* by

Then, one has the following transition formula, similar to the one for Grothendieck
polynomials.

Theorem 4.9.2. Let v € N, such that v, > 0, and v = [vy,...,v, 1,0, —1]. Let
11 < --- <1, <n be the places i such that v; is strictly maximal among the values
{vj i <j<n, vy <v,}. Then

Koz, =Kyx(1—=7;) (1 —Tin). (4.9.2)

Pro/gf. When vy > --+ > v,,_1, the statement comes from rewriting the expansion
of K, in (4.9.1) in terms of the operators 7;,.

Given any k such that vy > vg1q, one has K, z, m, = Ky, ©,. On the other
hand, the product of the RHS of (4.9.2) is obtained by replacing v by wvs; and
exchanging k£ and k+1 in the indices of the operators 7;,, except one has the
double factor (1 — 74,)(1 — Tkt1,,). In that case the factor (1 — 7,) disappears,
and this corresponds to the pairs K, — K5, which vanish under 7. QED

The four examples above must be rewritten

Kyzpoqws = Kyzaosx (1 - 7'15)(1 - 7'25)(1 - 745)
K304 5 = Kyso4 05Ty = Kyozos * (1 — 715)(1 — 735) (1 — 745)
Koyzoq t5 = Kyogoa v5m = Kogzos x (1 - 7'25)(1 - 7'35)(1 - 745)
Kozaoqws = Kyogoa x50 = Kozaos * (1 - 7'35)(1 - 7'45) .

If v € N" is a vexillary code such that v,, # 0 and there exists ¢ : v; < v,, then
Y,(x,0) and K, satisfy the same transition :

YU(X7 0) = xk}/v’<xa O) + Yu(xa 0) & Kv = kaU/ + K“ )

with v and u vexillary (cf. [105, Lemma 3.10]). Therefore, one has the following
property, which is a special case of the expansion of a Schubert polynomial in
terms of keys given in (7.3.2).

Lemma 4.9.3. If v is a vexillary code, then
Y,(x,0) = K,. (4.9.3)

For example, there are 23 Schubert polynomials Y, (x,0), v < [3,2,1,0], which
coincide with the key polynomial of the same index, while Y}g19(X, 0) = 21 (21 +zo+23)
is different from Kjg19 = z1(z2+23).

4If needed, u is transformed into u,0,0, ...
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4.10 Vexillary polynomials

We have already stated that vexillary Schubert and key polynomials have a deter-
minantal expression. This property is also satisfied by Grothendieck polynomials,
and we collect together these three families in the next theorem.

First, dominant polynomials can be written as multi-Schur functions. Let v
be dominant, u = vw, k = v;. Then

Yo = SuXn— Yo, X1 — Yu,)
G, = (ml---xn)_kSkn(xn—yvn,...,xl —Yu,)
K, = Su(Xp,..., 1)

For example, for v = [6, 3, 1], one has

Si(xz — }’1) 54(X2 — Y3) SS(Xl - Y6)
Ye31 = 5136(X3 — Y1, X2 —Yy3,X1 — Y6) = So(Xs - Y1) 53(X2 - Y3) 57(X1 - YG) )
0 Sa(x2 —y3) Se(x1—ye)

Ges1 = ($1$21‘3)_65666(X3 —¥Y1,X2 — Y3, X1 — }’6) )
K31 = 5136(X37X27X1> .

As we already saw, the action of 0; or 7; on a determinant of complete functions
Sk(x, —y,) is straightforward if only one column or one row is not invariant under
the transposition of x;, x;;1. In that case, one has to transform this row or column,
following the rules Sy(x; —y)0; = Sk—1(Xit1 — ¥), Sk(Xi — y)m = Sk(Xir1 — ).

For example,

32 81
Y31 — Y612 = S126(X3 — ¥1,X3 — ¥3, X1 — Y6)—> Y152

)
= 5125(X3 — Y1, X3~ Y3, X2 — }’6)—2—>Y124 = 5124(X3 —Y1,X3 —Y3,X3 — }’6) )

1

GG:ﬂ(317156'25152«:)6£> = 5666(X3 —Y1,X3 Y3, X1 — }’6)H
= See6(X3 — ¥1,X3 — ¥3,X2 — ¥6)—> = Se66(X3 — ¥1,X3 — ¥3,X3 — ¥s) -

On the other hand, Ys3:01 = Si35(X3 — y1,X2 — ¥3,X2 — ¥6) and we cannot
proceed so easily with Oy, since two columns involve x5 and not xs.

When v is vexillary, we have already used the property that there exists at
least one sequence of operators J; or 7; respectively, starting from a dominant
case, such that at each step, only one column is transformed by the operator

To describe the missing determinants in the Grothendieck case, we have to
follow the same recursion than for Schubert, but with different flags. To any
v € N" let us associate the two following flags of alphabets. Let w be the
sequence w; = max(j : j > i,v; > v;. Then v” is the decreasing reordering of w.
Let now u be the element of N™ obtained by decreasingly reordering v according
to therule [...4,5...] = [... j+1,i...] whenever i < j. Then v¥ is set to be the
increasing reordering of u.
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Theorem 4.10.1. Let v € N™ be vexillary, v*,vY be the two vectors defined above,
k = max(v¥). Then

Y, = Su(xy —Yors s Xuz — Yo, (4.10.1)
G, = Skn( Xye —yvi,...,xvﬁ —yvz)(xl---xn)_k, (4.10.2)
Kv = S’UT(XUf7 e ;Xvﬁ> . (4103)

In particular, when v is vexillary, then K, = Y,(x,0

5, 5], which reorders into
4,0,2) — [6,3,4,0,2] —
) ,6]. Hence, one has

).
For example, for v = [3,5,4,0, 2], one has w = [3, 2, 3,
v* =5,5,3,3,2]. On the other hand, the chain v = [3 5,
6,5,3,0,2] — [6,5,3,3,0] gives the second flag v¥ = |

Yas400 = 502345(?(5—}’0, X57Y3,X37Y3,X37Ys5, X2‘Y6>

—6
Gasa02 = 566666(X5_y07 X57Y3,X37Y3,X37Ys, X2—Y6)(331 .- -335)
Kssa00 = 502345(X5, X5, X3, X3, Xz) .

Property (2.6.5) allows to write from (4.10.2) a determinantal formula for G,
polynomials such that vée be vexillary. This condition is in fact equivalent to
requiring that v be vexillary, since if a permutation ¢ avoids the pattern 2143,
then wow also avoids this pattern, and conversely.
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4.11 Grothendieck and Yang-Baxter

One can degenerate Yang-Baxter bases of Hecke algebras into bases of the 0-

Hecke algebra, i.e. the algebra generated by 7, 7o, .... But as in the case of
divided differences, instead of taking products of factors of the type m;+1/¢, let us
take factors 1 + ;. Accordingly, given a spectral vector [yi, ..., y,], one defines

recursively a Yang-Baxter basis U7, starting from 1 for the identity permutation,
by

oz, =05 <1 + (1 — o > 7?> for o; < 041 - (4.11.1)

Yoipr

For example,

= Y ) Y
b (e (=) ) (e (=) ) (e (=) )
Y2 Y3 Ys
:1+<1—y1>7?1+<1—y1>7?2+<1—y1> <l—y1>7T17T2
Y3 Ys Y2 Ys
O G A G | () e
Y3 Ys Y2 Ys Ys
s As in the case of divided differences, the Yang-Baxter coefficients are speciali-

sations of known polynomials. The proof of the next properties is similar to the
proof of Theorem 3.5.1, and we can avoid repeating it.

Theorem 4.11.1. The matriz of change of basis between {O7} and {7,}, and its
inverse, have entries which are specializations of Grothendieck polynomials :

~

O, = XRGny), (4.11.2)
v<o
yl g )—L\v ;T\ w o
H <1 o > = Z(_l)f( )—H )60' G(V—lw)(y Y ) . (4113)
i<j Y o<v

For example, for v = [2,3,1], one has v™'w = [2,1, 3], and the coefficients of
the expansion of 73, are specialisations of the polynomial G213 = 1— yrx7t. One

has

To31 H yzyj UTQ?,G(213(Y3217 Y) - 67513@(213(}’321, y213)
1<j<3

- 67{32(;(213(}’321: y132) + Ug:ﬂG(ﬂB(ysma y231)

U1 - Y2 - n - Y2 ~
=|1-= Te— |1 — 22 ra— |1 == 10T+ (1 -2 T
< ” ) 123 ( Vs > 213 ( Us ) 132 ( ” > 231

The general properties of Yang-Baxter bases induce properties of specializa-
tions of Grothendieck polynomials.
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The symmetry (1.8.4) entails

o * wow W

using the involution & : y; — Y, t1_;, i = 1,...,n introduced in (2.6.4).
Each of the equations (1.8.9) and (1.8.10) gives, after some rewriting,

v o o Yi
Z(_l)é( AN )G(V)<y JY>G(uw)(yC7Y) - 50,@) H (1 - > s (4115)

v i<j Yj

which is a special instance of formula (2.9.4).
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