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Abstract.
We give eight1 linear bases of the ring of polynomials in n indeterminates : Schubert

polynomials, Grothendieck polynomials, flag elementary/complete functions, Demazure
characters (key polynomials) for types A,B,C,D, Macdonald polynomials.

All these bases are triangular in the basis of monomials, with respect to appropriate
orders. We introduce different scalar products and compute the adjoint bases of the
previous polynomials.

We provide recursions (transition formulas) which allow to cut these polynomials
into smaller ones of the same family.

We recover the multiplicative structure of the ring of polynomials by describing the
multiplication by a single variable.

In type A we lift the Schubert polynomials and Demazure characters to the free
algebra.

We recover by symmetrisation Schur functions and symmetric Macdonald polyno-
mials in type A, and symplectic and orthogonal Schur functions in types B,C,D.

1In fact, counting adjoint bases and deformations, many more, but the next lucky number,
88, seems out of reach for the moment.
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Introduction

’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo

Polynomials appeared since the beginnings of algebra, and it may seem that
there is not much to say, nowadays, about the space of polynomials as a vector
space. In the case of a single variable x, many linear bases of Pol(x) other than
the powers of x have been described, starting with the Newton’s interpolation
polynomials. The theory of orthogonal polynomials flourished during the whole
XIXe century, providing many more bases.

In the case of symmetric polynomials, Newton, again, gave a basis of products
of elementary functions. The transition matrices between these functions and the
monomial functions were already considered in the XV IIIe century by Vander-
monde in particular. Later, the chevalier Faa de Bruno, Cayley, Kostka spent
much energy computing different other transition matrices. It happens in fact
that there is a fundamental basis, the basis of Schur functions. A great majority
of the classical problems in the theory of symmetric functions involve this basis,
and leads to a combinatorics of diagrams of partitions and Young tableaux.

The picture is not so bright when one relaxes the condition of symmetry and
consider Pol(x1, . . . , xn) in full generality. In fact, computer algebra systems like
Maple or Mathematica do not know the ring of polynomials in several variables
with coefficients in Z, but only the ring Z[x1] ⊗ Z[x2] ⊗ · · · ⊗ Z[xn]. Since 40
years, geometry and representation theory provided a new incentive for describ-
ing linear bases of polynomials. The cohomology theory and the K-theory flag
manifolds lead to different bases related to Schubert varieties: Demazure charac-
ters, Schubert polynomials, Grothendieck polynomials. Independently, the theory
of orthogonal polynomials, in conjunction with root systems, developed in the di-
rection of several variables, with the work of Koornwinder, Macdonald and many
others.

In these notes, we shall mostly restrict to Schubert polynomials, Grothendieck
polynomials, Demazure characters (key polynomials), Macdonald polynomials. These
objects will be obtained using simple operators such as Newton’s divided differ-
ences and their deformations. Such operators act on two consecutive variables at
a time, say xi, x+1, and commute with multiplication with symmetric functions
in xi, xi+1. Therefore, they are characterized by their action on 1, xi+1 (which is
a basis of Pol(xi, xi+1) as a free Sym(xi, xi+1)-module). In type A, computations
will not require more than the rules figuring in the following tableau, which ex-
presses the images of 1, xi+1 under different operators, and indicates the related
polynomials.
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operator si+∂i ∂i πi π̂i (1−xi+1)∂i Ti

1
xi+1

1
xi−1

0
−1

1
0

0
−xi+1

1
xi+xi+1−1

t
xi

polynoms Jack Schubert Demazure Demazure G̃ Macdonald
Grothendieck Grothendieck

To be complete, we have to add to this list the operators πBn , πCn and πDi in the
case of key polynomials for types B,C,D, and the translation f(x1, . . . , xn) →
f(xn/q, x1, . . . , xn−1)(xn−1) in the case of Macdonald polynomials, but this does
not change the picture: it is remarkable that such simple rules suffice to gen-
erate interesting families of polynomials. As a matter of fact, one also needs
initial polynomials. In the case of Demazure characters, one starts with dominant
monomials xλ = xλ1

1 . . . xλnn , λ1 ≥ λ2 ≥ · · · ≥ λn. For Schubert polynomials, one
introduces another set of variables, and one takes Yλ := ∏

i=1..n,j=1..λi(xi−yj). For
Grothendieck polynomials, one takes Gλ := ∏

i=1..n,j=1..λi(1−yjx
−1
i ), still with the

requirement that λ1 ≥ · · · ≥ λn. In the case of Macdonald polynomials, one needs
only one starting point, which is 1, because the translation operator increases
degree and allows to generate polynomials of any degree.

Schubert and Macdonald polynomials can also be defined by interpolation
properties. Indeed, to each v ∈ Nn, one associates a spectral vector 〈v〉y (which is
a permutation of y1, y2, . . .), and another spectral vector 〈v〉tq (with components
which are monomials in t, q). Now the Schubert polynomial Yv and the Macdonald
polynomial Mv are the only polynomials, up to normalization, of degree d = |v| =
v1+ . . . +vn, such that

Yv
(
〈u〉y

)
= 0 & Mv

(
〈u〉tq

)
= 0 ∀u : |u| ≤ d, u 6= v .

it is easy to check that the vanishing conditions imply a recursion on poly-
nomials, the image of a Schubert polynomial under ∂i being another Schubert
polynomial (when it is not 0), and the image of a Macdonald polynomial un-
der Ti+c being another Macdonald polynomial (when choosing appropriately the
constant c).

Divided differences are discrete analogues of derivatives. One can thus expect
a discrete analogue of themultivariate Taylor formula. In the case of functions of a
single variable, this discrete analogue is the Newton interpolation formula. In the
multivariate case, the universal coefficients appearing as coefficients of products
of divided differences are precisely the Schubert polynomials, and this is a direct
consequence of their vanishing properties.

In these notes, we have put the emphasis on Grothendieck polynomials, be-
cause the literature on this subject is rather scanty , apart from the Graßmannian
case, which the case where the polynomials are symmetric and can be treated as
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deformations of Schur functions. We do not touch the subject of Schubert polyno-
mials for types B,C,D (see [9, 40, 42, 34, 111, 112]). They require introducing the
operation xn → −xn, while, for Demazure characters and K-theory, one must use
xn → x−1

n . In type A on the contrary, cohomology and K-theory can be mixed,
operators like πi + ∂i make sense.

Linear algebra is not enough, the ring Pol(x1, . . . , xn) has also a multiplicative
structure that one needs to describe. We mostly restrict to multiplication by a
single variable, which is enough to determine the multiplicative structure in each
of the bases that we consider. Already this simple case involves fine properties of
the Ehresmann-Bruhat order on the symmetric group (or on the affine symmetric
group in the case of Macdonald polynomials). It is clear, however, that more
work should be invested in that direction, the product of two general Schubert
polynomials or two Grothendieck polynomials having, for example, many geomet-
rical consequences . Fomin and Kirillov [33] have introduced an quadratic algebra
to explain the connections between the Ehresmann-Bruhat order and Schubert
calculus.

Having different bases, one may look for the relations between them. We con-
sider the relations between Schubert and Grothendieck, Schubert and Demazure,
Macdonald and key polynomials, but this subject is far from being exhausted.

Polynomials can be written uniquely as linear combination of flag elementary
functions) (products of the type . . . ei(x1, x2, x3)ej(x1, x2)ek(x1)). Since the nat-
ural way to lift an elementary function of degree k in the free algebra is to take
the sum of all strictly decreasing words of degree k, one has therefore a natural
embedding, as a Z-module, of Pol(x1, . . . , xn) in the free algebra on n letters. We
shall rather use a distinguished quotient of the free algebra, the plactic algebra
Plac(n), quotient by the relations

cab ≡ acb, bac ≡ bca, baa ≡ aba, bab ≡ bba, a < b < c .

The lift of Sym(x1 . . . , xn) in Plac(n) has now recovered its multiplicative struc-
ture, compared to the lift in the free algebra where one must have recourse to
operations like shuffle instead of concatanation of words. In others words, one has
an embedding of Sym(x1 . . . , xn) into a non-commutative algebra, and therefore
any identity on symmetric polynomials translates automatically into a statement
in the non-commutative world. Combinatorists will have no difficulty in going
one step further in the translation and use Young tableaux, Dyck paths or non-
intersecting paths instead of mere words.

Simple transpositions can be lifted to the free algebra, inducing an action of
the symmetric group on the free algebra. The isobaric divided differences πi can
also be lifted to the free algebra, but they do not satisfy the braid relations any
more. This does not prevent using them on the lifts of Schubert polynomials and of
Demazure characters. In particular, this is the most sensible way of understanding
the decomposition of Schubert polynomials as a positive sum of key polynomials.

We use two structures on the ring of polynomials in x1, . . . , xn, with coefficients
in y: as a module over Z[y] with basis the infinite family of Schubert polynomials
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{Yv(xn,y) : v ∈ Nn}, or as a free module of dimension n! over Z[y] ⊗Sym(xn),
with basis {Yv(xn,y) : v ≤ ρ = [n−1, . . . , 0]}. We show how to extend this finite
Schubert basis in type C so as to obtain a pair of adjoint bases for Pol(x±1 , . . . , x±n )
as a free-module under the invariants of the Weyl group of type C, but do not
treat the case of type D for lack of energy.

The Hecke algebra is used in the generation of Macdonald polynomials. We say
a word about the Kazhdan-Lusztig basis and its relation with key polynomials.
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Chapter 1
Operators on polynomials

’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo

1.1 A,B,C,D

What are the simplest operations on vectors ?

• add

• concatanate

• transpose two consecutive components

• multiply a component by −1

Thus, acting on vectors v ∈ Zn one has the following operators (denoted on
the right) corresponding to the root systems of type A,B,C,D :

v si = [. . . , vi+1, vi, . . .] , 1 ≤ i < n,

v sBi = v sCi = [. . . ,−vi, . . .], 1 ≤ i ≤ n,

v sDi = [. . . ,−vi, −vi−1, . . .], 2 ≤ i ≤ n .

The groups generated by s1, . . . , sn−1 (resp. s1, . . . , sn−1, s
B
n , resp. s1, . . .,

sn−1, s
D
n ) are the Weyl groups of type A,BC,D. We shall distinguish between B

and C later, when acting on polynomials.
The orbit of the vector [1, 2, . . . , n] consists of all permutations of 1, . . . , n for

type A, all signed permutations for type B,C, and all signed permutations with
an even number of “-” in type D. The elements of the different groups can be
denoted by these objects.

The generators satisfy the braid relations (or Coxeter relations)

sisi+1si = si+1sisi+1 & sisj = sjsi , |i− j| 6= 1 , (1.1.1)

7
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sn−1s
B
n sn−1s

B
n = sBn sn−1s

B
n sn−1 & sis

B
n = sBn si, i ≤ n− 2 , (1.1.2)

sn−2s
D
n sn−2 = sDn sn−2s

D
n & sis

B
n = sBn si, i 6= n− 2 . (1.1.3)

An expression of an element w of the group as a product of generators is called
a decomposition, and when this product is of minimal length, it is called a reduced
decomposition, the length being called the length of w and denoted `(w).

By recursion on n, it is easy to write reduced decompositions of the maximal
element w0 of the group for type An−1, Bn, Cn, Dn. Write 1, . . . , n for s1, . . . , sn−1
and sBn or sDn . Then w0 admits the following reduced decompositions (that we
have cut into self-explanitory blocks; read blocks from left to right)

• type A ∅ n−1 n−2 n−1 · · · 1 2 · · · n−1

• type BC n
n−1 n

n−1
· · ·

1 2 . . . n

...
2

1

• type D
(
n− 1
n

)
n−2

(
n− 1
n

)
n−2 · · · 1 2 · · ·n−2

(
n− 1
n

)
n−2 · · · 2 1

In the case of type D we have written
(
n−1
n

)
for the commutative product

sn−1s
D
n .

Erase in each block a right factor1. The resulting decomposition is still reduced,
and the group elements are in bijection with these decompositions. Therefore, the
sequence of lengths of the remaining left factors codes the elements for type A
and B. In type D, one has to use an extra symbol to distinguish between a factor
sk · · · sn−2sn−1 and a factor sk · · · sn−2sn.

Many combinatorial properties of permutations are more easily seen by taking,
in type A, another decomposition. Instead of reading the successive rows of

1In type D3, for example, the right factors of the block 1
(2

3
)
1 are ∅, 1, 21, 31,

(2
3
)
1, 1

(2
3
)
1.
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n−1

n−2 n−1

· · · · · · · · ·

1 2 · · · n−1

one takes the successive columns,
and thus chooses the decomposition

(n−1, . . . , 1)(n−1, . . . , 2) . . . (n−1) ↔

n−1
...
2

1

n−1
...
2

· · · n−1 .

It is easy to check that the decompositions obtained by taking arbitrary right
factors of the successive blocks (= bottom parts of the columns) are reduced and
in bijection with permutations.

For example, for n = 5,

(• 3 2 1) (• • •) (• 3) (4) ()
code 3 0 1 1 0 ⇔

•
3
2
1

•
•
•

•
3 4

is a reduced decomposition, that we shall call canonical reduced decomposition,
of the permutation s3s2s1s3s4 = [4, 1, 3, 5, 2], and the sequence [3, 0, 1, 1, 0] of
lengths of the right factors is called the code of the permutation. Given σ in
the symmetric group Sn, its code c(σ) can also be described as the vector v of
components vi := #{j : j > i & σi > σj}, which describes the inversions of σ.
The sum |v| = v1 + · · ·+ vN is therefore the length `(σ) of σ.

Having groups, one has also group algebras. Instead of enumerating the ele-
ments of the group W , together with their lengths one can now write a generating
series which is called the Poincaré polynomial∑

w∈W
q`(w) .

From the preceding canonical decompositions, denoting by [i] the q-integer
(qi − 1)/(q − 1), one obtains the following Poincaré polynomials :

• type A [1] [2] · · · [n] ,

• type BC [2] [4] · · · [2n] ,

• type D [2] [4] · · · [2n− 2] [n] .
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One can embed a Weyl group of type Bn, Cn, Dn into S2n, as a subgroup, by
sending si to sis2n−i, 1 ≤ i ≤ n−1, sBn and sCn to sn, and sDn to snsn+1sn−1sn.
This amounts transforming a signed permutation v by vi → σi = vi if vi > 0,
and vi → σi = 2n+1+vi if vi < 0, i = 1, . . . , n, and completing by symmetry:
σ2n−i = 2n+1− σi, thus obtaining a permutation in S2n.

An inversion of a permutation σ ∈ Sn is a pair (i, j) such that i < j and σi >
σj. One inherits from the embedding into S2n, taking into account symmetries,
inversions for type B,C,D. If w is sent to σ, then an inversion is a pair i, j : 1 ≤
i < j ≤ n such that σi > σj or such that σi > σ2n+1−j. In type B,C, the indices
i : 1 ≤ i ≤ n such that wi < 0 (equivalently, σi > σ2n+1−i) are also inversions. It
is easy to see by recursion that the length coincides with the number of inversions.

1.2 Reduced decompositions in type A
In type A, we shall use graphical displays to handle more easily the braid relations.
A column is defined to be a strictly decreasing sequence of integers. Any two-
dimensional display of integers must be read columnwise, from left to right, each
integer i being interpreted as si (or some other operators indexed by integers,
depending on the context). A display is reduced if the corresponding product of
si’s is reduced. For example, 1 3

2 3
1 2

must be read (1)(321)(32) and interpreted as
s1s3s2s1s3s2 (which happens to be a reduced decomposition of the permutation
[4, 3, 2, 1]). With these conventions, the braid relation s1s2s1 = s2s1s2 becomes
1 2

1 = 2
1 2 . More generally, one has the following commutation lemma.

Lemma 1.2.1. Let u, v be two columns such that uv is reduced and each letter of
u also occurs in v. Then uv = vu+, where u+ is obtained from u by increasing
each letter of u by 1.

Proof. By induction on the size of u, the statement reduces to the case where u = i
is a single letter. Because iv is reduced, v must be of the type v = v′ i+1 i v”, with
all the letters of v′ bigger or equal to i+2, and all the letters of v” less or equal to
i−1. In that case,

iv = v′ i i+1 i v” = v′ i+1 i i+1 v” = v′ i+1 i v” i+1 ,

as wanted. QED
For example, starting from the canonical reduced decomposition of ω = [5, 4, 3, 2, 1],

one obtains the decompositions

4
3 4
2 3 4
1 2 3 4

=
3 4
2 3
1 2 4

1 3 4
=

3
2 3 4
1 2 3

2
1 4

=
2 3 4
1 2 3

1 2
1 4

=
2 3
1 2

1 3 4
3
2
1

=
2
1 2 3 4

2 3
1 2

1
=

1 2 3 4
1 2 3

1 2
1
.

(these are 7 among the 28 × 3 reduced decompositions of ω).
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1.3 Acting on polynomials with the symmetric
group

Of course, considering vectors as exponents of monomials: xv = xv1
1 x

v2
2 · · · , we get

operators on polynomials: v → vsi induces the simple transposition of xi, xi+1 :
xv → xvsi , and similarly for types B,D. No need to point out that addition of
exponents corresponds to product of monomials, and that concatenation corre-
sponds to a shifted product that we shall use when considering non-commutative
symmetric functions:

u ∈ Zn, v ∈ Zm → xu,v = xu1
1 · · ·xunn xv1

n+1 · · ·xvmn+m .

If v is such that v1 ≥ · · · ≥ vn, then v is called dominant (we also say that
v is a partition, terminal zeros being allowed). When v1 ≤ · · · ≤ vn, then v
is antidominant. The reversed vector [vn, . . . , v1] is denoted vω. Reordering v
increasingly (resp. decreasingly) is denoted v ↑ (resp. v ↓).

Instead of vectors in Nn, one may use permutations. We have just to reverse
the correspondence seen above between permutations and codes2. One identifies
σ ∈ SN and [σ,N+1, N+2, . . .]; this corresponds to concatenating 0’s to the right
of the code of σ. For example, one identifies the two permutations [2, 4, 1, 5, 3] and
[2, 4, 1, 5, 3, 6, 7, . . .], as well as their codes [1, 2, 0, 1, 0] and [1, 2, 0, 1, 0, 0, 0, . . .].

Let us consider in more details the space Pol(x1, x2) of polynomials in x±1 , x±2 ,
with the simple transposition s of x1, x2. One remarks that s commutes with multi-
plication with symmetric functions in x1, x2 (whose space is denoted Sym(x1, x2)).

Every f ∈ Pol(x1, x2) can be written

f = f + f s

2 + f − f s

2 = f + f s

2 + (x1 − x2)
(
f − f s

2(x1−x2)

)
.

This means that every polynomial inPol(x1, x2) can be written uniquely as a linear
combination of the polynomials 1 and (x1−x2), with coefficients in Sym(x1, x2).
In other words Pol(x1, x2) is a free Sym(x1, x2)-module of rank 2, and one can
choose as natural bases {1, x1−x2} , {1, x2} or {1, x1} .

The last choice corresponds to writing f as

f =
(
f − f s

x1−x2

)
+ x1

(
x1f

s − x2f

x1−x2

)
,

the action of s being determined by

{1, x1} −→ {1, x2 = −x1 + (x1+x2)}
2This correspondence is in fact due to Rothe (1800), who defined a planar diagram repre-

senting the inversions of a permutation.
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and represented by the matrix [
1 x1 + x2
0 −1

]
.

Since a 2 × 2 matrix has 4 entries, this is not a big step to consider more
general actions, such as

{1, x1} −→ {0, 1} ,

which, for a general polynomial f , translate into

f −→ (f − f s) 1
x1 − x2

:= f ∂1 ,

and is called Newton divided difference.
Similarly

{1, x2} → {1, 0} induces f → (x1f − x2f
s) 1
x1 − x2

:= f π1 ,

{1, x1} → {0, x2} induces f → (f − f s) x2

x1 − x2
:= f π̂1 ,

{1, x2} → {t, x1} induces f → fπ1(t− 1) + f s := f T1 ,

{1, x1} → {1, tx2} induces f → fπ̂1(t− 1) + f s := f T̂1 ,

which are, respectively, two kinds of isobaric divided differences, and two choices
of a generator of the Hecke algebra H2 of the symmetric group S2.

Of course, for every pair of consecutive variables xi, xi+1, one defines similar
operators ∂i, πi, π̂i, Ti, T̂i. The following table summarizes their action on the basis
{1, xi+1} of Pol(xi, xi+1) as a free Sym(xi, xi+1)-module :

operator si ∂i πi π̂i Ti T̂i
equivalent form (1−si) 1

xi−xi+1
xi∂i ∂ixi+1 πi(t−1) + si π̂i(t−1) + si

1
xi+1

1
xi

0
−1

1
0

0
−xi+1

t
xi

1
xi+xi+1−txi+1

Equivalently, these different operators are represented, in the basis {1, xi+1}
of the free module Pol(xi, xi+1), by the matrices

si =
[
1 xi+xi+1
0 −1

]
, ∂i =

[
0 −1
0 0

]
, πi =

[
1 0
0 0

]
,

π̂i =
[
0 0
0 −1

]
, Ti =

[
t xi+xi+1
0 −1

]
, T̂i =

[
1 xi+xi+1
0 −t

]
.
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All these operators are of the type

Di = 1P (xi, xi+1) + siQ(xi, xi+1) , (1.3.1)

with P,Q rational functions, that is to say, they are linear combination of the iden-
tity operator and a simple transposition with rational coefficients. The operators
∂i, πi, π̂i, Ti, T̂i all satisfy the type A-braid relations

DiDi+1Di = Di+1DiDi+1 & DiDj = DjDi , |i− j| 6= 1 .

One discovers that these operators also satisfy a Hecke relation

sisi = 1, ∂i∂i = 0, πiπi = πi, π̂iπ̂i = −π̂i, (Ti−t)(Ti+1) = 0, (T̂i+t)(T̂i−1) = 0.

Let us check for example the relation ∂1∂2∂1 = ∂2∂1∂2. These two operators
commute with symmetric functions in x1, x2, x3, and decrease degree by 3. We
can take as a basis of Pol(xn) (as a free module over Sym(x3)) the 6 monomials
{xv : [0, 0, 0] ≤ v ≤ [2, 1, 0]}. The first five are sent to 0 by ∂1∂2∂1 and ∂2∂1∂2 for
degree reason, there remains only to check that x210∂1∂2∂1 = x210∂2∂1∂2 = 1 to
conclude that, indeed, ∂1∂2∂1 = ∂2∂1∂2.

As a consequence of the braid relations, there exists operators ∂σ, πσ, π̂σ, Tσ,
indexed by permutations σ, which are obtained by taking any reduced decompo-
sition of σ and the corresponding product of operators Di.

1.4 Commutation relations
Divided differences satisfy Leibnitz3 formulas4, as easily seen from the definition:

fg∂i = f (g∂i) + f∂i g
si = g (f∂i) + g∂i f

si . (1.4.1)
Iterating, one obtains the image of fg under any product of divided differences :

fg ∂i∂j . . . ∂h

=
∑

εi,...εh∈{0,1}

(
f∂εii ∂

εj
j · · · ∂

εh
h

)(
gsεii ∂

1−εi
i s

εj
j ∂

1−εj
j · · · sεhh ∂

1−εh
h

)
. (1.4.2)

It may be appropriate to use a tensor notation, the above formula being the
expansion of

f ⊗ g (∂i ⊗ si + 1⊗ ∂i)(∂j ⊗ sj + 1⊗ ∂j) . . . (∂h ⊗ sh + 1⊗ ∂h) .
3For fear of being called Leinisse, Leibnitz chosed the spelling “Leibnitz” in his letters to the

Académie des Sciences. We shall respect his choice.
4Notice that formulas are disymmetrical in f, g, one has two expressions for the image of a

product.
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In particular, when g = xi, relations (1.4.1) may be seen as commutation
relations :

xi∂i = ∂ixi+1 + 1 & xiπi = πixi+1 + xi & xiπ̂i = π̂ixi+1 + xi+1 , (1.4.3)

the relations xiTi = Tixi+1+(t−1)xi together with the trivial commutations xjTi =
Tixj, when |j − i| 6= 1, being taken as axioms of the affine Hecke algebra5.

Since π̂i = ∂ixi+1, one has also π̂ixi = ∂ixi+1xi = xi+1xi∂i = xi+1πi, and by
iteration, reading the objects by successive columns,

π̂n
π̂n−1
...
π̂i xi

=

xn+1 πn
πn−1
...
πi

,

π̂j · · · π̂n
... ...

π̂i+j−n · · · π̂i xi

=
xj+1 πj · · · πn

... ...
πi+j−n · · · πi

We shall need some more commutation rules. For example,

π1π2π3x1x2x3 = x2x3x4π1π2π3 + x1x2x3x4π1π2 + x1x2x4π1π3 + x1x3x4π2π3

and to iterate such relations, we prefer to represent them graphically as

1 2 3
x1 x2 x3

= x2 x3 x4
1 2 3 + x2 x3

x1 1 2 •

+ x2 x4
x1 1 • 3 + x3 x4

x1 • 2 3

In general, given an antidominant v ∈ Nk, the v-diagram V is the array with
columns of length v1, . . . , vn filled by decreasing integers as follows :

V =

uk
u2 · · · ...... · · · ...

u1 ... · · · ...... ... · · · ...
1 2 · · · k

,

where u = v + [0, 1, . . . , k−1], and πV , π̂V , are the columnwise-reading of V , inter-
preting i as πi or π̂i respectively.

Iterating the preceding commutation rules, one obtains the following lemma.

Lemma 1.4.1. Let v ∈ Nk be antidominant, V its associated diagram, n be an
integer such n > vk+k. Then

πV
1

x1 · · ·xk
= 1
xv1+1 · · ·xvk+k

π̂V .

5 For the double affine Hecke algebra for the type A, omnipresent in the work of Cherednik,
one needs also to define T0 or an affine operation.
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Equivalently, multiplying by the factor x1 . . . xn which commutes with πi, π̂i for
i < n, one has

πV xk+1 . . . xn =
(

x1 . . . , xn
xv1+1 · · ·xvk+k

)
π̂V . (1.4.4)

A punched v-diagram U is what results after punching holes in a v-diagram, in
such a way that there are no two holes in the same row or same column, and such
that no two holes occupy the South-West and North-East corner of a rectangle

contained in the diagram. We forbid • • ,
•

•
,

•

•
.

Label the rows of a v-diagram by the first entry of each row, and the columns
by v1+1, . . . , vn+n. The weight of a punched v-diagram U , that we denote xU ,
is the product ∏rows xi

∏
columns xj, keeping the indices of punched rows, and of

full columns. By πU we mean the reading of U columnwise, from left to right,
interpreting each i as πi and ignoring the holes.

Let us give an example of a punched diagram for v = [2, 2, 4, 4, 4].

x3 x4 x7 x8 x9

6 7 8
5 6 7

2 3 4 5 6
1 2 3 4 5

x6
x5
x2
x1

coordinates and filling

x3 x8

• 7 8
5 6 7

2 • 4 5 6
1 2 3 4 •

x6

x2
x1

weight of a punched diagram

The punched 133-diagrams with two holes, together with their weights, are

• 5
3 4

• 2 3
x1 x4 x6

4 5
• 4

• 2 3
x1 x3 x6

4 •
3 4

• 2 3
x1 x5 x4

4 5
3 •

• 2 3
x1 x5 x3

• 5
3 •

1 2 3
x2 x4 x3

• 5
3 4

1 2 •
x2 x4 x1

4 5
• 4

1 2 •
x2 x3 x1

.

We shall need more commutation relations.

Lemma 1.4.2. For any positive integer n, one has

1
x1 · · ·xn+1

π1 · · · πn x1 · · ·xn = 1
x1
π1 · · · πn+

n∑
i=1

1
xi+1

π1 · · · πi−1πi+1 · · · πn , (1.4.5)

π1 · · · πn x2 · · ·xn π1 · · · πn−1 = x3 · · ·xn+1 π1 · · · πnπ1 · · · πn−1 . (1.4.6)
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Given v ∈ Nn antidominant, V its associated diagram, then

πV x1 · · ·xn =
∑
U
xU πU , (1.4.7)

sum over all the punched v-diagrams.

Proof. The first two assertions are obtained by iterating the relation πixi = xi+1πi+
xi. Let us check the last one by recursion, adding a top row to the diagram V .

One therefore has to evaluate a product of the type πr · · · πmxU πU , where the
restriction of xU to {xr, . . . , xm+1} is a subword of xr · · ·xm which points out full
columns in U .

Let us first examine the case where xr 6∈ U . Taking specific values to simplify
the exposition, ignoring the left part figured by hearts, one has to evaluate

π15 π16 π17 π18 π19
· x16 x17 · x19

♥

♥ ♥

♥ ♥

♥ ♥

14 15 16 17 18

• 14 15 16 17

12 13 14 15 16

11 12 13 • 15

By commutation of the incomplete columns with the complete ones, one obtains

π15 π16 π17 π18 π19
· x16 x17 · x19

♥

♥ ♥

♥ ♥

♥ ♥

· 15 16 · 18

• 14 15 16 17 18

12 13 14 · 16 17

11 12 13 • 15 16

,

from which one extracts the left factor (π15π16π17 x16x17 π15π16)(π18π19 x19 π18),
which, thanks to (1.4.6), is equal to x17x18x20 (π15π16π15π17π16)(π18π19π18). We
therefore have transformed xU πU into xU+

πU
+ , where U+ is obtained from U by

adding a top row.
Let us consider now the case where xr ∈ xU . Still with the same example, one
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has to evaluate
π15 π16 π17 π18 π19
x15 x16 x17 · x19

♥

♥ ♥

♥ ♥

♥ ♥

14 15 16 17 18

13 14 15 16 17

12 13 14 15 16

11 12 13 • 15

Thanks to (1.4.5), the factor π15π16π17 (x15x16x17) is equal to the sum

x16 x17 x18
π15 π16 π17

+ x17 x18
x15 • π16 π17

+ x16 x18
x15 π15 • π17

+ x16 x17
x15 π15 π16 •

.

Adding a top row to the diagram V has resulted in adding a top row to U , or
adding a row with only one hole, in all possible manners such that the new hole
is left of the already existing holes in the last block of columns. This finishes the
proof of the lemma. QED

For example, for v = [1, 2, 2], one has

3 4
1 2 3

x1x2x3 = x2x4x5
3 4

1 2 3

+ x1x4x5
3 4

• 2 3
+ x2x3x5

• 4
1 2 3

+ x1x2x5
3 4

1 • 3

+ x2x3x4
3 •

1 2 3
+ x1x2x4

3 4
1 2 •

+ x1x3x5
• 4

• 2 3

+ x1x3x4
3 •

• 2 3
+ x1x2x3

• 4
1 2 •

.

Comparing the relations π1x2 = x1π1−x2 and x1(−π̂1) = (−π̂1)x2−x2, one ob-
tains a symmetry between commuting any πσ with a polynomial f , and commuting
fω and π̂ωσ−1ω :

Lemma 1.4.3. Given n, σ ∈ Sn, and a polynomial f(xn), suppose known the
commutation

πσf(xn) =
∑

ζ
gζ(xn) πζ .

Then one has

f(xωn) π̂ωσ−1ω =
∑

ζ
(−1)`(σ)−`(ζ)π̂ωζ−1ω gζ(xωn) . (1.4.8)

Similarly,
π̂σf(xn) =

∑
ζ
gζ(xn) π̂ζ
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implies
f(xωn) πωσ−1ω =

∑
ζ
(−1)`(σ)−`(ζ)πωζ−1ω gζ(xωn) . (1.4.9)

For example, for n = 3, one has

π1π2x2 = x3π1π2 + x1π1 − x1 ,

x2π̂1π̂2 = π̂1π̂2x1 − π̂2x3 − x3

and

π̂1π̂2x
2
2 = x2

3π̂1π̂2 + x3(x1+x3)π̂1 + x3x2 ,

x2
2π1π2 = π1π2x

2
1 − π2(x1(x1 + x3)− x1x2 .

Punched diagrams can also be used to describe the commutation of a product
π̂V with a monomial. For an antidominant v ∈ Nk, n = vk+k, V associated to v, let
us take the monomial xk+1 . . . xn. Transposing diagrams along the main diagonal,
and introducing signs exchange the two cases. For example, for v = [2, 2], one has

2 3
1 2
x1 x2

=
x3 x4

2 3
1 2 +

x2 x4

• 3
1 2 +

x3 x2

2 •
1 2 +

x1 x4

2 3
• 2 +

x3 x1

2 3
1 • +

x2 x1

• 3
1 • ,

that is,

π2π3π1π2x1x2 = x3x4π2π3π1π2 + x2x4π3π1π2 + x3x2π2π1π2

+ x1x4π2π3π2 + x3x1π2π3π1 + x1x2π3π1 ,

while

π̂2π̂3π̂1π̂2x3x4 = x2x1π̂2π̂3π̂1π̂2 − x3x1π̂3π̂1π̂2 − x4x1π̂2π̂1π̂2

− x2x3π̂2π̂3π̂2 − x2x4π̂2π̂3π̂1 + x3x4π̂3π̂1

can be displayed as

2 3
1 2

x4
x3

= x2
x1

2 3
1 2 −

x3
x1
• 3
1 2 −

x4
x1

2 •
1 2 −

x2
x3

2 3
• 2 −

x2
x4

2 3
1 • + x3

x4
• 3
1 • .

The operators of the type (1.3.1) and preserving polynomials are character-
ized in [106]. They are essentially deformations of divided differences, though
their explicit expression can look more frightening. For example, the operators
(depending on the parameters u1, . . . , u4, p, q, r)

f → f
((qu1 + pu3)xi + (qu2 + pu4))(u3xi+1 + u4)

u1u4 − u2u3
∂i + rf si := f Di

do satisfy the braid relations.
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1.5 Maximal operators for type A
The operators associated to the maximal permutation ω = [n, . . . , 1] play a
proeminent role. In fact, they all come from the projector onto the alternating
1-dimensional representation of Sn, already used by Cauchy and Jacobi :

f →
∑
σ∈Sn

(−1)`(σ) fσ .

Indeed, writing ∆ for the Vandermonde∏1≤i<j≤n(xi−xj), and xρ for xn−1
1 xn−2

2 · · ·x0
n,

one has the following proposition.

Proposition 1.5.1. Given x of cardinality n, the divided differences ∂ω, πω and
π̂ω verify :

∂ω =
∑
σ∈Sn

(−1)`(σ)σ
1
∆ , (1.5.1)

πω = xρ
∑
σ∈Sn

(−1)`(σ)σ
1
∆ , (1.5.2)

π̂ω =
∑
σ∈Sn

(−1)`(σ)σ
(xρ)ω

∆ . (1.5.3)

Proof. The monomials xu : u ≤ ρ are a basis of Pol(n) as a free Sym(n)-module.
They all are sent to 0 by ∂ω or ∑±σ∆−1 for degree reasons, except xρ which is
sent to 1 (this is the only computation to make) by both operators. This proof
can be adapted for πω and π̂ω. QED

We have not mentionned Tω in the proposition, because this is not a sym-
metrizer, since, for n = 2 for example, x2T1 = x1. However, x2(T1 + 1) = x1 + x2
and 1(T1 + 1) = t+ 1. This indicates that one has to take the Yang-Baxter defor-
mation of Tω for v = [1, t, . . . , tn−1] if one wants a symmetrizer. Indeed one has,
as we shall see in more details in (1.9.8), the following symmetrizer in the Hecke
algebra (as shows the last expression):

(T1 + 1)
(
T2 + t− 1

t2 − 1

)(
T3 + t− 1

t3 − 1

)
· · · (T1 + 1)

(
T2 + t− 1

t2 − 1

)
(T1 + 1)

=
∑
σ∈Sn

Tσ =
∏

1≤i<j≤n
(txi − xj) ∂ω .

We shall frequently use the action of ∂ω on a product f1(x1) · · · fn(xn) of func-
tions of a single variable. In that case, the sum ∑

σ∈Sn (−1)`(σ)
(
f1(x1) · · · fn(xn)

)σ
is equal to the determinant

∣∣∣∣fi(xj)∣∣∣∣, and one may view

f1(x1) · · · fn(xn) ∂ω =
∣∣∣∣fi(xj)∣∣∣∣

i,j=1...n
∆−1 (1.5.4)
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as the discrete Wronskian of the functions f1, . . . , fn. .
Schur functions correspond to the case where f1, . . . , fn are powers of a variable,

factorial Schur functions arise when taking instead modified powers x(x−1) . . . (x−
k), while q-factorial Schur functions stem from q-powers (x−1)(x−q) . . . (x−qk).
More precisely, for any v ∈ Nn, the Schur function sv(xn) is equal to xv+ρ ∂ω, the
factorial Schur function of index v is equal to(

x1(x1−1) . . . (x1−v1−n+2)
)
. . .
(
xn(xn−1) . . . (xn−vn+1)

)
∂ω

and the q-factorial Schur function of index v is equal to(
(x1−1)(x1−q) . . . (x1−q

v1+n−1)
)
. . .
(

(xn−1)(xn−q) . . . (xn−qvn)
)
∂ω .

For example, when n = 3 and v = [5, 2, 1], then the corresponding factorial Schur
function is equal to

(x1 − 1) . . . (x1 − q6)(x2 − 1)(x2 − q)(x2 − q2)(x3 − 1)∂321

= 1
∆

∣∣∣∣∣∣∣
(x1−1) . . . (x1−q

6) (x2−1) . . . (x2−q
6) (x3−1) . . . (x3−q

6)
(x1−1) . . . (x1−q

2) (x2−1) . . . (x2−q
2) (x3−1) . . . (x3−q

2)
x1−1 x2−1 x3−1

∣∣∣∣∣∣∣ .
We shall interpret it later as the specialization y1 = 1, y2 = q, y3 = q2, . . . of the
Graßmannian Schubert polynomial Y125(x,y).
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Divided differences can be defined for any pair xi, xj, and not only consecutive
variables :

∂i,j : f → (f − f τij)(xi − xj)−1 ,

τij being the transposition of xi, xj. We shall need these differences to factorize
∂ω.

Lemma 1.5.2. Let n = 2m, ω′ = [m, . . . , 1, 2m, . . . ,m+1], ω = [2m, . . . , 1]. Then

∂ω′ ∂1,m+1∂2,m+2 . . . ∂m,2m ∂ω′ = (−1)(
m
2 )m! ∂ω . (1.5.5)

Proof. The left-hand side commutes with multiplication by elements of Sym(xn),
and decreases degree by

(
m
2

)
. It is therefore sufficient to test its action on xρ to

characterize it. One has xρ∂ω′ = xm
m,0m , xρ∂ω′ ∂1,m+1 . . . ∂m,2m = ∑

xv, sum over
all v ∈ Nn such that vi + vm+i = m−1, i = 1, . . . ,m. Each such monomial has a
non-zero image under ∂ω′ if and only if v1, . . . , vm is a permutation of [m−1, . . . , 0].
There are m! such monomials, which each contribute to xm−1,...,0,0,...,m−1∂ω′ =
(−1)(

m
2 ) to the right-hand side. QED

For example, for n = 4, one has ∂2143∂13∂24∂2143 = −2∂4321. Many other
decompositions are possible, e.g.

∂12∂14∂34∂23∂13∂24 = ∂4321 = ∂14∂13∂24∂23∂24∂13 = ∂23∂13∂24∂14∂34∂12 .
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1.6 Littlewood’s formulas
One can combine the above operators with change of variables xi → ϕ(xi). The
maximal divided difference ∂ω becomes ∑ (±σ) ∆(ϕ(x))−1 = ∂ω∆(x)∆(ϕ(x))−1,
and it remains to find functions ϕ furnishing an interesting Vandermonde ∆(ϕ(x)).

Notice that if ϕ(xi) = g(xi)/f(xi), then∣∣∣∣f(xi)n−1 f(xi)n−2g(xi) · · · g(xi)n−1
∣∣∣∣
i=1..n

=
∏
i

(f(xi)n−1 ∆(ϕ(x)) .

Taking f(xi) = xi, g(xi) = 1 + xki , k ≥ 0, and remarking that (1 + xki )/xi − (1 +
xkj )/xj = (x−1

i − x−1
j )

(
1− xixjsk−2(xi+xj)

)
, one obtains that

∣∣∣∣xn−1
i xn−2

i (1+xki ) · · · (1+xki )n−1
∣∣∣∣
i=1...n

∆(x)−1

= (1 + xk2)(1 + xk3)2 . . . (1 + xn)n−1 πω

=
∏

1≤i<j≤n

(
1− xixjsk−2(xi+xj)

)
, (1.6.1)

the first equality resulting from the definition of πω.
In the case k = 2, the preceding determinant can be transformed into∣∣∣∣xn−1

i xn−2
i (1+x2

i ) xn−2
i (1+x4

i ) · · · (1+x2n−2
i )

∣∣∣∣
i=1...n

.

Since the operator πω sends xv, v ∈ Nn onto the Schur function sv(x), the
preceding identity, still in the case k = 2, can be written as

∏
1≤i<j≤n

(
1− xixj) = (1 + x2

2)(1 + x2
3)2 . . . (1 + x2

n)n−1)πω

= (1 + x2
2)(1 + x4

3) . . . (1 + x2n−2
n )πω

=
∑

ε=[ε1,...,εn]∈{0,1}n
(−1)|ε|s[0ε1,2ε2,...,(2n−2)εn](x) = 1 + s02(x) + s004(x) + s024(x) + . . .

= 1− s11(x) + s211(x)− s222(x) + . . .

= 1 +
∑
r,α

(−1)|α|s(α|α+1r)(x) , (1.6.2)

sum over all r, all α = [α1, . . . , αr], α1 > α2 > . . . αr ≥ 0, using the Frobenius
notation6 for partitions.

Similar identities, known to Littlewood [122], [123, p. 78], can be obtained as
easily, the reordering of the indices of the Schur functions being translated into

6
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properties of diagonal hooks.
∏
i

(1− xi)
∏

1≤i<j≤n

(
1− xixj) = (1− x1)(1− x3

2) . . . (1− x2n−1
n ) πω

=
∑

ε=[ε1,...,εn]∈{0,1}n
(−1)|ε|s[ε1,3ε2,...,(2n−1)εn](x)

= 1− s1(x)− s03(x) + s13(x)− s005(x) + s105(x) + s035(x)− s135(x) + . . .

= 1− s1(x) + s21(x)− s22(x)− s311(x) + s321(x)− s332(x) + s333(x) + . . .

= 1 +
∑
α

(−1)|α|s(α|α)(x) . (1.6.3)

∏
1≤i≤j≤n

(
1− xixj) = (1− x2

1)(1− x4
2) . . . (1− x2n

n ) πω

=
∑

ε=[ε1,...,εn]∈{0,1}n
(−1)|ε|s[2ε1,4ε2,...,2nεn](x)

= 1− s2(x)− s04(x) + s24(x)− s006(x) + s206(x) + s046(x)− s246(x) + . . .

= 1− s2(x) + s31(x)− s33(x)− s411(x) + s431(x)− s442(x) + s444(x) + . . .

= 1 +
∑
r,β

(−1)|β|s(β+1r|β)(x) . (1.6.4)

n∏
i=1

(1− xi)
∏

1≤i≤j≤n

(
1− xixj)

= (1− x1)(1− x2
1)(1− x2

2)(1− x3
2) . . . (1− xnn)(1− xn+1

n ) πω
=
(
1− s1(x) + s11(x)− s111(x) + . . .

) ∑
εi∈{0,1}

(−1)|ε|s[2ε1,4ε2,...,2nεn](x) . (1.6.5)

One can generalize these formulas by adding letters to the alphabet x. For
example, using x ∪ {1} in (1.6.2), one obtains
∣∣∣∣∣∣∣∣∣∣
xn1 xn−1

1 + xn+1
1 . . . 1 + x2n

1
... ... ...
xnn xn−1

n + xn+1
n . . . 1 + x2n

n

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣
1

∆(x) =
n∏
i=1

(1− xi)2 ∏
1≤i<j≤n

(
xixj − 1) , (1.6.6)

the factor ∏(1−xi)2 being due to s11(x + 1) = s11(x) + s1(x) and ∆(x+1) =
∆(x)∏(1−xi). More variations of this type can be found in [91].

All the preceding formulas can be interpreted, in terms of λ-rings, as describing
the plethysms Λi(S2) or Λi(Λ2), and have counterparts describing Si(S2) or Si(Λ2).
Let us show that the symmetrizer πω still allow to describe the generating function
of this last plethysms.
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Proposition 1.6.1. For a given n, one has
∏
i≤j

(1− xixj)−1 = 1
(1−x2

1)(1−x2
1x

2
2) . . . (1−x2

1 . . . x
2
n) πω (1.6.7)

=
∑

even rows

sλ(x)

∏
i<j

(1− xixj)−1 = 1
(1−x1x2)(1−x1 . . . x4)(1−x1 . . . x6) . . . πω(1.6.8)

=
∑

even columns

sλ(x)

∏
(1−xi)−1 ∏

i<j

(1− xixj)−1 = 1
(1−x1)(1−x1x2) . . . (1−x1 . . . xn) πω (1.6.9)

=
∑

sλ(x)∏
(1−xi)−2 ∏

i<j

(1− xixj)−1 = 1
(1−x1)2(1−x1x2)2 . . . (1−x1 . . . xn)2πω (1.6.10)

=
∑

(λ1−λ2+1)(λ2−λ3+1) . . .(λn+1)sλ(x).(1.6.11)

Proof. One can use induction on n, factorizing πω = πω′πω, with ω′ = [n−1, . . . , 1].
Thus one is left with computing the image under πω of the quotient of the two
successive denominators appearing in the left-hand sides. For the first formula, it
means computing

(1− x1xn) . . . (1− x1xn−1)(1− x2
n)(1− x1 . . . xn)−1πω

= (1− xne1 + · · ·+ (−xn)nen))(1− x1 . . . xn)−1πω ,

e1, . . . , en being the elementary symmetric functions in xn, and therefore com-
muting with πω. Since xn, . . . , xn−1

n are sent to 0, and (−xn)nπω = −x1 . . . xn, the
above expression is equal to 1, thus proving (1.6.7). The other formulas require no
more pain. Moreover, the rational functions in the right-hand sides expanding as
sums of dominant monomials, the expressions in terms of Schur functions follow
immediately. QED

One should try expressions more general than products of factors (1 ± u)±1,
with u monomial. I shall give a single example.

Lemma 1.6.2. Given n, then

1
(1−x1−x2)(1−x22)(1−x111−x222)(1−x2222) . . . πω

=
∏
i

1
1− xi − x2

i

∏
i<j

1
1− xixj

. (1.6.12)

Proof. Let Gn be the right-hand side. Using induction on n, one has to compute
Gn−1/Gnπω. This depends on parity, and taking n = 4, 5 will be generic enough
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to follow the proof.

G3/G4π4321 = (1−x1x4)(1−x2x4)(1−x3x4)(1− x4 − x2
4) π4321

=
4∏
i=1

(1− xix4)π4321 − x4(1−x1x4)(1−x2x4)(1−x3x4)π4321 .

One has already seen that ∏(1 − xix4)π4321 = 1 − x2222, and one checks that
all the monomials appearing in x4(. . . ) are sent to 0 under π4321. In the case of
G4/G5π54321 on the contrary, the monomial −x11003 is such that −x11003π54321 =
−x11111, and thus, G4/G5π54321 = 1− x22222 − x11111. In both cases, the resulting
factor is what is required by the left-hand side of (1.6.12) to ensure equality. QED

The left-hand side of (1.6.12) expands as a positive sum of Schur functions,
which multiplicities that are easily written in terms of the multiplicities of parts
in the conjugate partitions.
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1.7 Yang-Baxter relations

With a little more work, one can construct operators offering still more parameters.
The uniform shift Di → Di + 1, i = 1, . . . , n−1, destroys in general the braid

relations7. For example,

(1 + s1)(1 + s2)(1 + s1) = 2 + 2s1 + s2 + s1s2 + s2s1 + s1s2s1

6= (1 + s2)(1 + s1)(1 + s2) .

However

(1 + s1)(1
2 + s2)(1 + s1) = (1 + s2)(1

2 + s1)(1 + s2) ,

because both sides expand (in the group algebra of S3) into the sum of all per-
mutations.

Therefore, one abandons uniform shifts, but how to find compatible shifts like
1, 1/2, 1 ?

The solution is due to Young [162], and called Yang-Baxter equation [161, 4]
because Young-Yang-Baxter would be confusing.

One chooses an arbitrary vector of parameters v = [v1, . . . , vn] (called spec-
tral vector), and each time one operates with Di, i = 1, . . . , n−1, one modifies
accordingly the spectral vector by v → vsi.

Now, the shift to use depends only on the difference of the spectral values
exchanged, with similar rules for the different varieties of operators Di.

More precisely, given i, let a = vi, b = vi+1 the corresponding components of
the spectral vector. Then, instead of si, ∂i, πi, π̂i, Ti respectively, one takes

si + 1
b− a

, ∂i + 1
b− a

, πi + 1
b/a− 1 , π̂i + 1

b/a− 1 , Ti + t− 1
b/a− 1

(the careful reader adds “provided b 6= a”).
For n = 3, the Yang-Baxter relations for si, ∂i, πi and Ti, and a spectral vector

v are, writing v2−v1 = a, v3−v2 = b, v2/v1 = α, v3/v2 = β,

7it only works for π̂i → π̂i + 1 = πi.
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123

213 132

231 312

321

s1 + 1
a

s2 + 1
b

s2+ 1
a+b s1+ 1

a+b

s1 + 1
b

s2 + 1
a

123

213 132

231 312

321

∂1 + 1
a

∂2 + 1
b

∂2+ 1
a+b ∂1+ 1

a+b

∂1 + 1
b

∂2 + 1
a

123

213 132

231 312

321

π1 + 1
α−1 π2 + 1

β−1

π2+ 1
αβ−1 π1+ 1

αβ−1

π1 + 1
β−1 π2 + 1

α−1

123

213 132

231 312

321

T1 + t−1
α−1 T2 + t−1

β−1

T2+ t−1
αβ−1 T1+ t1−1

αβ−1

T1 + t−1
β−1 T2 + t−1

α−1

The fact that each hexagon closes means that the two paths from top to bottom
give equal elements when evaluated as products of the labels on the edges.

Thanks to the Yang-Baxter relations, to each spectral vector v, is associated
a family of operators Dv

σ : σ ∈ Sn, obtained by taking products corresponding to
reduced decompositions.
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For example, for S3, and v = [y1, y2, y3], one has the operators

∂v123 = 1 , ∂v213 = ∂1 + 1
y2 − y1

, ∂v132 = ∂2 + 1
y3 − y2

,

∂v231 = ∂1∂2 + ∂2
1

y2 − y1
+ ∂1

1
y3 − y1

+ 1
(y2 − y1)(y3 − y1) ,

∂v312 = ∂2∂1 + ∂1
1

y3 − y2
+ ∂2

1
y3 − y1

+ 1
(y3 − y2)(y3 − y1) ,

∂v321 = ∂1∂2∂1 + ∂1∂2
1

y3 − y2
+ ∂2∂1

1
y2 − y1

+ ∂1
1

(y2 − y1)(y3 − y1)

+ ∂2
1

(y3 − y2)(y3 − y1) + 1
(y2 − y1)(y3 − y1)(y3 − y2) .

One recognizes that the product (1 + s1)(2−1 + s2)(1 + s1) corresponds to the
choice Di = si, σ = [3, 2, 1], v = [1, 2, 3]. The reader will guess, and prove, that
for any n, the choice Di = si, σ = ω :== [n, . . . , 1], v = [1, 2, . . . , n] gives

(1 + s1)
(

(1
2 + s2)(1 + s1)

)
· · ·

(
( 1
n− 1 + sn−1) · · · (1

2 + s2)(1 + s1)
)

=
∑
σ∈Sn

σ .

One can also twist the action of the symmetric group, and useDi = ∂i+si. The
operators Di still satisfy the braid relations, together with the relations D2

i = 1.
Therefore, the operators D1, . . . , Dn−1 provide a twisted action of the symmetric
group onPol(xn). Since the Yang-Baxter shifts are the same for ∂i and si, they can
also be used for ∂i+si. In particular, one can take the spectral vector [1, 2, . . . , n].

123

213 132

231 312

321

∂1 + s1+1 ∂2 + s2+1

∂2 + s2+ 1
2 ∂1 + s1+ 1

2

∂1 + s1+1 ∂2 + s2+1

Let us show that the maximal Yang-Baxter element for this choice of spectral
vector is still a symmetrizer. In the case n = 2, one has indeed

∂1 + s1 + 1 = (1 + x1 − x2) ∂1 .
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Lemma 1.7.1. Given n, let

�ω =
(

(D1+1) . . . (Dn−1 + 1
n− 1)

)(
(D1+1) . . . (Dn−2 + 1

n− 2)
)
. . .
(
D1

)
.

Then
�ω =

∏
1≤i<j≤n

(1 + xi − xj) ∂ω . (1.7.1)

Proof. Both sides of (1.7.1) commute with multiplication with symmetric func-
tions, it is therefore sufficient to test their action on a basis of Pol(xn) as a free
Sym(xn) module. But instead of the basis of monomials {xv : v ≤ ρ} used above,
we shall use a basis of homogeneous polynomials {Yv : v ≤ ρ} in their linear
span, such that each Yv has a least one symmetry8 in some xi, xi+1, except for
Yn−1,...,0 = xρ. But using symmetric rational functions in xn instead of elements of
Sym(xn), we can take the polynomials Yv

∏
1≤i<j≤n(1+xj−xi) as a test cohort. All

these elements, except in the case v = ρ, are sent to 0 by ∏1≤i<j≤n(1 + xi− xj) ∂ω
because the factor ∏i 6=j(1 + xi − xj), being symmetrical, commutes with ∂ω, and
because Yv∂ω = 0 for degree reasons.

On the other hand, if Yv has the symmetry xi, xi+1, then, by commutation,

Yv
∏

1≤i<j≤n
(1+xj−xi)(∂i + si + 1) = Yv

 ∏
1≤i<j≤n

(1+xj−xi)
 (1+xi−xi+1) ∂i

= Yv∂i

 ∏
1≤i<j≤n

(1+xj−xi)
 (1+xi−xi+1) = 0 .

Since, thanks to Yang-Baxter equation, one can factorize on the left of �ω any
Di + 1, the image of Yv

∏(1 + xj − xi) under �ω is 0 when v 6= ρ. Thus, both
sides of (1.7.1) coincide up to multiplication by a rational symmetric function. To
determine this constant, it is sufficient to see that

1(∂1+s1+1)(∂1+s1+2−1) · · · = n! =
∏

1≤i<j≤n
(1+xi−xj) ∂ω ,

and this ensures the required equality. QED
The Yang-Baxter rules do not exhaust the realm of interesting factorized ex-

pressions. Let us take9

((1− y1∂1)(1− y1∂2) · · · (1− y1∂n−1))
((1− y2∂1)(1− y2∂2) · · · (1− y2∂n−2)) · · · ((1− yn−1∂1))

8tTo show that such a basis exists is easy by induction on n, we shall see later that the
Schubert polynomials Yv(x,0) satisfy such properties.

9This product of divided differences is the generating function of Schubert polynomials in the
pair of alphabets y,0, in the algebra of divided differences, also called the Nil-Coxeter algebra
[32] see (8.2.2).
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and show that this element can be used to transform the staircase monomial xρ,
with ρ = [n−1, . . . , 0], into a product of factors of the type xi − yj.

Let us make the step-by-step computation for n = 4, displaying the factors of
the polynomials planarly.

x3

x2 x2

x1 x1 x1

1−y1∂1−−−→

x3

x2 x2

x1 x1 x1−y1

1−y1∂2−−−→

x3

x2 x2−y1

x1 x1 x1−y1

1−y1∂3−−−→

x3−y1

x2 x2−y1

x1 x1 x1−y1

· · · 1−y3∂1−−−→

x3−y1

x2−y2 x2−y1

x1−y3 x1−y2 x1−y1

.

Each step is of the type f xi(1 − y∂i) = f (xi − y), with f symmetrical in
xi, xi+1. In final, we have obtained the function ∏i+j≤4(xi−yj) by using only that
1∂i = 0, xi∂i = 1. This function, together with the “staircase monomial” x3210,
will play a key role in all the sequel. This identity can be written more compactly,
still reading the planar arrays by columns (by rows still works in the present case),
as

x3

x2 x2

x1 x1 x1

1−y1∂1 1−y1∂2 1−y1∂3

1−y2∂1 1−y2∂2

1−y3∂1

=

x3−y1

x2−y2 x2−y1

x1−y3 x1−y2 x1−y1

. (1.7.2)

1.8 Yang-Baxter bases and the Hecke algebra
The Yang-Baxter relations constitute a powerful tool to define linear bases with
an explicit action of the Hecke algebra (or of the different algebras obtained by
specialization, the first interesting one being the group algebra of the Weyl group).

In this section we shall change the conventions for the Hecke algebra, compared
to the preceding section, to bring into prominence some symmetries.

The Hecke algebra Hn of the symmetric group Sn is the algebra generated by
T1, . . . , Tn−1 satisfying the braid relations together with the Hecke relations

(Ti − t1)(Ti − t2) = 0 , i = 1, . . . , n−1 ,

for some fixed generic parameters t1, t2. For Macdonald polynomials, one takes
t1 = t, t2 = −1. The 0-Hecke algebra is the specialisation t1 = 0, t2 = −1 of
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the Hecke algebra (that one can realize as the algebra generated by π̂1, . . . , π̂n−1).
The 00-Hecke algebra, also called NilCoxeter algebra, is the specialisation t1 = 0,
t2 = 0. It can be realized as the algebra generated by ∂1, . . . , ∂n−1. .

From the point of view of operators, the Hecke algebra is the algebra gen-
erated by operators Ti such that each Ti acts on xi, xi+1 only, commutes with
Sym(xi, xi+1), and acts on {1, xi+1} by

1Ti = t1 & xi+1 Ti = −t2xi .

One has therefore Ti = πi(t1 + t2)− sit2.
The general Yang-Baxter equation10 depends on two generic parameters α, β :
(
T1 + t1+t2

α−1

)(
T2 + t1+t2

αβ−1

)(
T1 + t1+t2

β−1

)

=
(
T2 + t1+t2

β−1

)(
T1 + t1+t2

αβ−1

)(
T2 + t1+t2

α−1

)
. (1.8.1)

Graphically, it reads

123

213 132

231 312

321

T1 + t1+t2
α−1 T2 + t1+t2

β−1

T2+ t1+t2
αβ−1 T1+ t1+t2

αβ−1

T1 + t1+t2
β T2 + t1+t2

α

Given n, one takes an arbitrary spectral vector [γ1, . . . , γn] of indeterminates.
The Yang-Baxter basis {fγ

σ : σ ∈ Sn} corresponding to [γ1, . . . , γn] is defined
recursively, as follows, starting from fγ

σ = 1 for the identity permutation:

fγ
σsi

= fγ
σ

(
Ti + t1 + t2

γσi+1/γσi − 1

)
for σi < σi+1 . (1.8.2)

The consistency of the definition is insured by the Yang-Baxter equation (1.8.1).
Notice that arrows are reversible in the generic case. Indeed, for any i, any

10The Yang-Baxter relations for the group algebra of Sn, for the algebra of divided differences,
and for the algebra of isobaric divided differences are the limits t1 = 1, t2 = −1, t1 = 0, t2 = 0,
t1 = 1, t2 = 0 of (1.8.1 respectively.
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γ 6= 0, 1, one has(
Ti+

t1+t2
γ−1

)(
Ti+

t1+t2
γ−1−1

)
=
(
t1+

t1+t2
γ−1

)(
t1+

t1+t2
γ−1−1

)
= −

(t1γ+t2)(t1+t2γ)
(γ − 1)2 .

It is clear that the set {fγ
σ : σ ∈ Sn} constitute a linear basis of Hn, be-

cause fσ = Tσ + ∑
v:`(v)<`(σ) c

v
σTv. Since this basis is generated using the Ti’s,

it is immediate to write the matrices representing the Hecke algebra in this ba-
sis. The matrices representing each Ti are made of 2 × 2 blocks corresponding
to the spaces 〈fγ

σ,fγ
σsi
〉. They generalize the semi-normal representation of the

symmetric group due to Young11.
Indeed, for S2, and the spectral vector [1, γ], the Yang-Baxter basis is {1, T1 +

(t1+t2)(γ−1)−1}, and the matrix representing T1 is given on the left, while Young’s
matrix (which is the limit for γ = (−t1/t2)g, (−t1/t2) → 1) is given on the right
[138] :[

−(t1+t2)(γ−1)−1 −(t1γ+t2)(t1+γt2)(γ−1)−2

1 (t1+t2)(γ−1−1)−1

]
,

[
−g−1 1− g−2

1 g−1

]
(1.8.3)

One could write the similar matrices for the other types B,C,D, once the
Yang-Baxter relations have been written for these types.

Irreducible representations can be obtained by either degeneration of the spec-
tral vector, or by making the Hecke algebra act on polynomials. For example, in
the case of the symmetric group, a Specht representation is obtained by acting
on a product of Vandermondes on consecutive variables. Similarly, acting on a
product of t-t Vandermondes ∏a≤i<j≤b(xi− txj) on blocks of consecutive variables
produces an irreducible representation of the Hecke algebra.

Yang-Baxter bases possess many symmetries. Let f → ω ? f ? ω be the auto-
morphism of Hn induced by Tσ → ω ? Tσ ? ω = Tωσω. Then one has
Lemma 1.8.1. The Yang-Baxter bases associated to the spectral vectors [y1, . . . , yn]
and [y−1

n , . . . , y−1
1 ] satisfy the relations

fy−1
n ,...,y−1

1
σ = ω ? fy1,...,yn

ωσω ? ω , σ ∈ Sn . (1.8.4)
Proof. In the case n = 2, this is the identity

T1 + t1 + t2
y−1

1 /y−1
2 − 1

= ω ?

(
T1 + t1 + t2

y2/y1 − 1

)
? ω = T1 + t1 + t2

y2/y1 − 1 .

For a general σ and i such that `(σsi) ≥ `(σ), putting γ = y−1
n−i/y

−1
n+1−i, one has

fy−1
n ,...,y−1

1
σ

(
Ti + t1 + t2

γ − 1

)
= (ω ? fy1,...,yn

ωσω ? ω)
(
ω ?

(
Ti + t1 + t2

γ − 1

)
? ω

)

= ω ?

(
fy1,...,yn
ωσω

(
Ti + t1 + t2

yn+1−i/yn−i − 1

))
? ω ,

11We have taken generic parameters. To build general representations, one also needs blocks
of size 1!.
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and this proves the statement by induction on length. QED
We also need another involution f → f̂ induced by

Ti → T̂i = Ti − (t1+t2) , t1 → −t2 , t2 → −t1 .

Notice that T̂1, . . . , T̂n−1 satisfy the braid relations, together with the Hecke rela-
tions (

T̂i + t2
) (
T̂i + t1

)
= 0 ,

and that TiT̂i = −t1t2.
Let now f → f∨ be the anti-automorphism induced by (Tσ)∨ = Tσ−1 . Define

a quadratic form ( , )H on Hn by

(f , g)H = f g∨ ∩ Tω , (1.8.5)

i.e. by taking the coefficient of Tω in the product f g∨.
The basis {T̂σ} is clearly the adjoint of {Tωσ}, i.e. one has(

Tωσ , T̂ζ
)H

= δσ,ζ , σ, ζ ∈ Sn .

Testing the statements on the pairs Tσ, T̂ζ , one checks :

(Ti f , g)H = (f , Tn−ig)H & (fTi , g)H = (f , gTi)H . (1.8.6)

The quadratic form can be restricted to two-dimensional spaces, for which one
has the following property of a Yang-Baxter basis.

Lemma 1.8.2. Let f, g ∈ Hn, i, γ be such that(
f , g

)H
= 0 &

(
f(Ti + t1 + t2

γ − 1 ) , g
)H

= 1 .

Then(
f , g(Ti + t1 + t2

γ−1 − 1)
)H

= 1 &
(
f(Ti + t1 + t2

γ − 1 ) , g(Ti + t1 + t2
γ−1 − 1)

)H
= 0 .

Proof.One transfers the factor (Ti+•) to the left, and uses that (Ti+(t1+t2)(γ−1)−1)(Ti+
(t1+t2)(γ−1−1)−1) be a scalar. QED

In other words, the two Yang-Baxter bases associated with the spectral vectors
[1, γ] and [1, γ−1] are adjoint of each other with respect to ( , )H.

Combining the Yang-Baxter relations and the preceding lemma, one can eval-
uate scalar products of factorized elements. For example(T1 + t1+t2

α−1 )(T2 + t1+t2
αβ−1)(T1 + t1+t2

β−1 ) , (T1 + t1+t2
1
α
−1 )(T2 + t1+t2

1
αβ
−1)

H

=
(T1 + t1+t2

α−1 )(T2 + t1+t2
αβ−1)(T1 + t1+t2

β−1 )(T2 + t1+t2
1
αβ
−1)(T1 + t1+t2

1
α
−1 )

 ∩ T321
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can be computed by reducing the length of the expression, replacing some factors
Ti + (t1+t2)(γ−1−1)−1) by a sum of two terms (Ti+c1) + c2 to fit the parameters
in the Yang-Baxter relations. But it is simpler to move the RHS of the scalar
product to the left, obtaining(T2 + t1+t2

1
αβ
−1)(T1 + t1+t2

1
α
−1 )(T1 + t1+t2

α−1 )(T2 + t1+t2
αβ−1)(T1 + t1+t2

β−1 ) , 1
H

which reduces to a scalar multiple of (T1 + (t1+t2)(β−1)−1, , 1)H = 0.
This example is some instance of a general orthogonality of Yang-Baxter bases.

Let us write Ti(a, b) = Ti + (t1+t2)(yby−1
a − 1)−1, yω = [yn . . . , y1], and first settle

the case of the maximal Yang-Baxter element.

Lemma 1.8.3. The element fy
ω satisfies the n! equations
(
fy
ω , fyω

σ

)H
= δ1,σ . (1.8.7)

Proof. One takes a reduced decomposition si1si2 . . . sir of σ. Then there exists
integers such that

fyω
σ = Ti1(a1, b1)Ti2(a2, b2) . . . Tir(ar, br) .

One can factor ω = σ−1(σω), and correspondingly write the maximal element as

fy
ω = Tn−i1(b1, a1)Tn−i2(b2, a2) . . . Tn−ir(br, ar) • • • .

Tanks to (1.8.6) ,

(
fy
ω , Ti1(a1, b1) . . . Tir(ar, br)

)H
=
(
Tn−ir(ar, br) . . . Tn−i1(a1, b1)Tn−i1(b1, a1) . . . Tn−ir(br, ar) • •• , 1

)H

is a scalar multiple of
(
• • • , 1

)H
, and therefore null if σ is not the identity

permutation. QED
The following duality property of Yang-Baxter bases is given in [98, Th.5.1].

Theorem 1.8.4. The Yang-Baxter bases associated to the spectral vectors [y1, . . . , yn]
and [yn, . . . , y1] satisfy the relations

(
fy
σ , f

yω
ζ

)H
= δσ,ωζ , (1.8.8)

that is, they are adjoint of each other.
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Proof. When σ = ω, this is property (1.8.7). One proves the general statement by
decreasing induction on `(σ), using Lemma 1.8.2. QED

Given any product(
Ti + α(t1+t2)

)
. . .
(
Tk + γ(t1+t2)

)
=
∑
ζ

cζTζ ,

then the product (
T̂i − α(t1+t2)

)
. . .
(
T̂k − γ(t1+t2)

)
is equal to ∑

ζ ĉζ T̂ζ . This remark allows to rewrite the orthogonality relation
(1.9.4). Define the coefficients cησ by fy

σ = ∑
cησ(y)Tη, and recall that the involution

c→ ĉ acts by t1 → −t2, t2 → −t1.

Corollary 1.8.5. Let σ, ζ ∈ Sn. Then∑
η∈Sn

ĉησ(y−1
n , . . . , y−1

1 ) cωηζ (y) = δωσ,ζ (1.8.9)

∑
η∈Sn

ĉησ(y) cηωζ (y) = δσ,ζω (1.8.10)

Proof. One uses that
fyω
ζ =

∑
η

ĉηζ(y−1
n , . . . , y−1

1 ) T̂η ,

and that the symmetry (1.8.4) translates into cησ(y−1
n , . . . , y−1

1 ) = cωηωωσω(y1, . . . , yn).
QED

Each of the relations (1.8.9) or (1.8.10) can be used to describe the inverse of
the matrix of Yang-Baxter coefficients

[
cησ
]
.
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1.9 t1t2-Yang-Baxter bases

For k > 1, write

[k] = tk−1
1 − t2tk−2

1 + · · ·+ (−t2)k−1 , [−k] = tk−1
2 − t1tk−2

2 + · · ·+ (−t1)k−1 ,

with the convention that [0] = 0, [1] = 1 = [−1]. Define, for all k ∈ Z, k 6= 0,

Ti(k) = Ti + t1 + t2
(−t1/t2)k − 1 =

Ti − tk2 [−k]−1 , k > 0
Ti − t−k1 [k]−1 , k < 0

,

adding Ti(0) = Ti.
Thus

Ti(1) = Ti−t2, Ti(2) = Ti −
t22

t2 − t1
, Ti(3) = Ti −

t32
t22 − t1t2 + t21

, . . . ,

Ti(−1) = Ti−t1, Ti(−2) = Ti −
t21

t1 − t2
, Ti(−3) = Ti −

t31
t21 − t1t2 + t22

, . . .

We denote di = Ti(1) and ∇i = Ti(−1) the two factors of the Hecke relation for
Ti. Acting on {1, xi}, one checks that

∇i = ∂i(t2xi + t1xi+1) & di = (t1xi + t2xi+1)∂i . (1.9.1)

Notice that for k > 0 one has

Ti(k)Ti(−k) = −t1t2
[k−1] [k+1]

[k]2 , (1.9.2)

so that, for k 6= ±1, Ti(k) and Ti(−k) are inverse of each other up to a scalar.
More generally, the Yang-Baxter equation (1.8.1) implies that, for any i > 0, any
k, r ∈ Z such that k, r, k+r 6= 0, one has

Ti(k)Ti+1(k+r)Ti(r) = Ti+1(r)Ti(k+r)Ti+1(k) (1.9.3)

Taking the spectral vectors [tn−1
1 , −tn−2

1 t2, . . . , (−t2)n−1], and [tn−1
2 , −t1t

n−2
2 , . . . , (−t1)n−1],

one obtains a pair of adjoint Yang-Baxter bases which are exchanged by the in-
volution exchanging t1, t2. We shall denote these two bases {∇σ : σ ∈ Sn} and
{dσ : σ ∈ Sn} respectively. Here is the basis associated to the spectral vector
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[t22, −t1t2, t21]

d123 = 1

gggggggggggggggg

WWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWW

d213 = T1 − t2 d132 = T2 − t2

d231 = T1T2−t2T2

− t22
t2−t1T1 + t32

t2−t1

RRRRRRRRR

d312 = T2T1−t2T1

− t22
t2−t1T2 + t32

t2−t1

lllllllll
lllllllll

d321 = T1T2T1−t2T2T1−t2T1T2
+t22T1 + t22T2 − t32

and the basis associated to the spectral vector [t21, −t1t2, t22]

∇123 = 1

gggggggggggggggg

WWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWW

∇213 = T1 − t1 ∇132 = T2 − t1

∇231 = T1T2−t1T2

− t21
t1−t2T1 + t31

t1−t2

SSSSSSSSS

∇312 = T2T1−t1T1

− t21
t1−t2T2 + t31

t1−t2

kkkkkkkkk
kkkkkkkkk

∇321 = T1T2T1−t1T2T1−t1T1T2
+t21T1 + t21T2 − t31

One notices that∇213,∇132,∇321, as well as d213,d132,d321 are quasi-idempotents.
This is due to the choice of the spectral vectors.

As a special case of (1.9.4), one has

Corollary 1.9.1. The bases {dσ : σ ∈ Sn} and {∇σ : σ ∈ Sn} are adjoint of
each other. Precisely, one has (

dσ , ∇ζ

)H
= δσ,ωζ . (1.9.4)

The preceding corollary furnishes in particular the transition between {dσ}
and {∇σ} :

dσ =
∑
ζ≤σ

(
dσ,dωζ

)H
∇ζ .

The inverse of the transition matrix is obtained by conjugation with the diagonal
matrix [(−1)`(σ), σ ∈ Sn]. Non-zero entries correspond to pairs ζ, σ such that
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ζ ≤ σ with respect to the Ehresmann-Bruhat order. Thus this matrix may be
considered as “weighing” the order. We shall see later another weight given by
the Kazhdan-Lusztig polynomials.

The case where σ is a Coxeter element is specially interesting since then the
interval [1, σ] is boolean. Let us just describe the expansion of dσ when σ =
[2, . . . , n, 1].

Define a function ϕ on permutations as follows, starting from ϕ([1]) = 1. For
σ ∈ Sn, if σn 6= n, then ϕ(σ) = ϕ(σ \ n)), else

ϕ(σ) = ϕ(σ \ n) [1] [2n−σn−1−1]
[n−1] [n−σn−1] .

For example, ϕ([1, 3, 4, 2, 5]) = ϕ([1, 3, 4, 2]) [1][10−2−1]
[4][5−2] = ϕ([1, 3, 2]) [1][7]

[4][3] = ϕ([1, 2]) [1][7]
[4][3] =

[2]
[1]

[1][7]
[4][3] .

Proposition 1.9.2. For any integer n one has

d2...n1 =
∑

ζ≤[2...n1]
ϕ(ζ)∇ζ .

Proof. Supposing known the expansion d[2,...,n−1,1,n] = ∑
cν∇ν , one obtains

d[2,...,n,1] = d[2,...,n−1,1,n] Tn−1(n−1) =
∑

cν∇ν

(
Tn−1(νn−1−n) + [1][2n−1−νn−1]

[n−1][n−νn−1]

)

=
∑

cν

(
∇νsn−1 + [1][2n−1−νn−1]

[n−1][n−νn−1] ∇ν

)
,

which is the required property. QED
For example,

d231 = ∇231 + [2]
[1]∇132 + [1][4]

[2]2
∇213 + [3]

[1]∇123 ,

d2341 =
(
∇2341 + [2]

[1]∇1342 + [1][4]
[2]2
∇2143 + [3]

[1]∇1243

)

+
(

[1][6]
[3]2
∇2314 + [1][4]2

[3][2]2
∇2134 + [5]

[3]∇1324 + [4]
[1]∇1234

)
.

The maximal elements dω, ∇ω can be expressed in terms of the maximal
divided difference ∂ω, according to [27] :
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Theorem 1.9.3. Given n, let ω = [n, . . . , 1], ω′ = [n−1, . . . , 1]. Then the maximal
elements dω and ∇ω have the following expressions

dω = dω′ Tn−1(n−1) . . . T2(2)T1(1) (1.9.5)
= dω′

(
1− t2Tn−1 + t22Tn−1Tn−2 − · · ·+ (−t2)n−1Tn−1 . . . T1

)
(1.9.6)

=
∑
w∈Sn

(−t2)`(wω)Tw (1.9.7)

=
∏

1≤i<j≤n
(t1xi + t2xj) ∂ω (1.9.8)

∇ω = ∇ω′ Tn−1(1−n) . . . T2(−2)T1(−1) (1.9.9)
= ∇ω′

(
1− t1Tn−1 + t21Tn−1Tn−2 − · · ·+ (−t1)n−1Tn−1 . . . T1

)
(1.9.10)

=
∑
w∈Sn

(−t1)`(wω)Tw (1.9.11)

= ∂ω
∏

1≤i<j≤n
(t2xi + t1xj) (1.9.12)

Proof. The first expression for dω and ∇ω result from the definition of a Yang-
Baxter element, choosing the factorization ω = ω′ sn−1 . . . s1.

By recursion on n, one sees the equivalence of (1.9.10), (1.9.11), products being
reduced.

All the operators occurring in the above formulas commute with multiplication
with symmetric functions in Sym(n), one can characterize them by their action
on the Schubert basis {Xσ(x,0), σ ∈ Sn} (see [94]).

Since ∇i, i = 1, . . . , n−1, can be factorized on the left from the RHS of
(1.9.11), (1.9.12), these two RHS annihilate all Schubert polynomials, except
Xω = xn−1

1 . . . x0
n. Therefore ∂ω is a left factor of them.

Every element of Hn can be written uniquely as a sum ∑
w∈Sn ∂wPw with co-

efficients Pw which are polynomials in x1, . . . , xn. The RHS of (1.9.10) and of
∇ω′(−t1)n−1 Tn−1(−1) 1

−t1 . . . T1(−1) 1
−t1 have same coefficient in ∂ω. This coefficient

is obtained by mere commutation : f∇i = f∂i(t2xi + t1xi+1) ∼ ∂if
si(t2xi +

t1xi+1), the extra term (f∂i)(t2xi + t1xi+1) imposed by Leibniz formula cannot
contribute to a reduced decomposition of ∂ω. Therefore, formula (1.9.10) is true
if it is true for n−1. The same reasoning applies to the factorization ∇ω =
∇ω′ Tn−1(1−n) . . . T1(−1) which has the same coefficient in ∂ω than∇ω′∇n−1 . . .∇1.
By symmetry, the properties of ∇ω imply similar properties of dω. QED

Let λ ∈ N` be a composition. Put v = [0, λ1, λ1+λ2, . . . , λ1 + · · ·+ λ`],

∆t1t2
λ =

∏̀
k=1

∏
vk−1+1≤i<j≤vk

(t1xi + t2xj)

∆t2t1
λ =

∏̀
k=1

∏
vk−1+1≤i<j≤vk

(t2xi + t1xj) .
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Let ωλ be the maximal element of the Young subgroup Sλ = Sλ1×Sλ2×· · ·×Sλ` .
Then, by direct product, one gets from the preceding theorem

dωλ = ∆t1t2
λ ∂ωλ (1.9.13)

∇ωλ = ∂ωλ ∆t2t1
λ . (1.9.14)

For example, for λ = [3, 2], and µ ∈ N5, the image of xµ under

∇32154 =
∑
σ∈S32

(−t1)`(σ)Tσ = ∂32154∆t2t1
32

is equal to the Schur function sµ−43210(x5) times ∆t2t1
32 .
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1.10 B, C, D action on polynomials
As for type A, one transfers operations on vectors to operations on polynomials
by acting on the exponents of monomials.

Thus, sBi = sCi acts on xi only by xi → x−1
i , and sDi acts on xi−1, xi by

xi → x−1
i−1, xi−1 → x−1

i .
We also have divided differences, this time with a difference between types B

and C :

∂Bi := (1− sBi ) 1
x

1/2
i − x

−1/2
i

, πBi = x
1/2
i ∂Bi , π̂

B
i = ∂Ci x

−1/2
i , i = 1 . . . n .

∂Ci := (1− sCi ) 1
xi − x−1

i

, πCi = xi ∂
C
i , π̂

C
i = ∂Ci x

−1
i , i = 1 . . . n .

∂Di := (1− sDi ) 1
x−1
i−1 − xi

, πDi =
(

1− sDi
1

xi−1xi

)
1

1− 1
xi−1xi

,

π̂Di = (1− sDi ) 1
xi−1xi − 1 , i = 2 . . . n .

As in type A, the above operators can be characterized in a simple manner,
taking into account symmetries. For example, in type C, the divided differences
∂Ci , π

C
i , π̂

C
i commute with multiplication with functions symmetrical in xi, 1/xi

(which are functions of the variable x•i = xi + x−1
i ). It suffices to give their action

on the basis {1, xi} of Pol(x±i ) as a free Pol(x•i ) module :

∂Ci πCi π̂Ci
1 0 1 0
xi 1 xi + x−1

i x−1
i

.

For type D, say for i = 2, the space Pol(x±1 , x±2 ) is a free module of rank 4 over
the D-invariants. One can take as a basis x1, x2, x

−1
2 , x−1

1 , on which the divided
differences act as follows :

∂D2 πD2 π̂D2
x1 x1x

−1
2 x1 + x−1

2 x−1
2

x2 1 x2 + x−1
1 x−1

1

x−1
2 −x1x

−1
2 0 −x−1

2

x−1
1 −1 0 −x−1

1

.

For type ♥ = B,C, the divided differences for two consecutive indices, say
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1, 2, satisfy braid relations12 :

π1 π
♥
2 π1 π

♥
2 = π♥2 π1 π

♥
2 π1

π̂1 π̂
♥
2 π̂1 π̂

♥
2 = π̂♥2 π̂1 π̂

♥
2 π̂1 ,

but
∂C2 ∂1∂

C
2 ∂1 6= ∂1∂

C
2 ∂1∂

C
2 .

In type D, for i 6= n− 2, then πDn commutes with πi, and π̂Dn commutes with
π̂i, and

πDn πn−1 π
D
n = πn−1 π

D
n πn−1 & π̂Dn π̂n−1 π̂

D
n = π̂n−1 π̂

D
n π̂n−1 .

Notice that the squares satisfy the same relations than in type A :

∂♥i ∂
♥
i = 0 & π♥i π

♥
i = π♥i & π̂♥i π̂

♥
i = −π̂♥i , ♥ = B,C,D .

Choosing as generators s1, . . . , sn−1, s
♥
n , ♥ = B,C,D, one obtains by reduced

products operators π♥w and π̂♥w indexed by the elements of the group. Of special
importance are those corresponding to w♥0 .

Proposition 1.10.1. Let n be an integer, ρ = [n−1, . . . , 0], x•i = xi + x−1
i ,

i = 1, . . . , n. Write ∂•i for the divided differences relative to the alphabet x• =
{x•1, . . . , x•n}. Then

πBw0 = xρ πB1 · · · πBn ∂•ω = xρ ∂•ω π
B
1 · · · πBn (1.10.1)

π̂Bw0 = π̂B1 · · · π̂Bn ∂•ω x−ρ = ∂•ω π̂
B
1 · · · π̂Bn x−ρ (1.10.2)

πCw0 = xρ πC1 · · · πCn ∂•ω = xρ ∂•ω π
C
1 · · · πCn (1.10.3)

= xρ+1n∑(−1)`(w)w ·
∏

1≤i<j≤n
(x•i − x•j)−1 ∏

1≤i≤n
(xi − x−1

i )−1 (1.10.4)

π̂Cw0 = π̂C1 · · · π̂Cn ∂•ω x−ρ = ∂•ω π̂
C
1 · · · π̂Cn x−ρ (1.10.5)

Notice that ∂•ω = ∂ω
∏
i<j≤n(1 − x−1

i x−1
j )−1 commutes with πB1 · · · πBn and

πC1 · · · πCn because x•i commutes with πBi and πCi .
Consequently, images of πwB0 and πwC0 can be written as symmetric functions

of x•n. For example, for n = 3, the image of x310 under πCw0 is equal to(
x5

1π
C
1

)(
x2

2π
C
2

)(
x0

3π
C
3

)
=
(
(x•1)5 − 4(x•1)3 + 3x•1

) (
(x•2)2 − 1

)
∂•321

= s310(x•3)− 4s110(x•3)− 3s000(x•3) ,
12One has extra relations, like

∂C1 π1∂
C
1 π1 = π1∂

C
1 π1∂

C
1

∂C1 π̂1∂
C
1 π̂1 = π̂1∂

C
1 π̂1∂

C
1

.
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since x310xρ = x520, and x5
1π

C
1 = (x•1)5 − 4(x•1)3 + 3x•1, x2

2π
C
2 = (x•2)2 − 1.

Let
Θn = 1

2
(1 + sB1 ) · · · (1 + sBn ) + 1

2
(1− sB1 ) · · · (1− sBn ) .

Proposition 1.10.2. The maximal divided differences for type Dn satisfy

πDw0 = xρ Θn ∂
•
ω (1.10.6)

π̂Dw0 = Θn ∂
•
ω x
−ρ (1.10.7)

In type B or C, an alternating sum ∑
w∈W (−1)`(w)(xv)w may be represented as

the determinant
det

(
x
vj
i − x

−vj
i

)
i,j=1...n

.

In type D, this alternating sum is equal to half of the sum of two determinants :

det
(
x
vj
i − x

−vj
i

)
i,j=1...n

+ det
(
x
vj
i + x

−vj
i

)
i,j=1...n

,

the first determinant being null when some vi is equal to 0.

The groups of type Bn or Dn can be embedded into S2n. However, relations
between type B,C,D divided differences and divided differences relative to S2n
are not straightforward. The next proposition describe πCw0 in terms of S2n, using
the specialization x2i−1 → xi, x2i → x−1

i , 1 ≤ i ≤ n.

Proposition 1.10.3. Given n, let ζ = (s1 · · · s2n−1)(s1 · · · s2n−3) · · · (s1s2s3)(s1).
Then

πCw0 = πζ

∣∣∣∣
x→{x1,x

−1
1 ,x2,x

−1
2 ,...}

,

as operators on Pol(xn).

Proof. The ringPol(x2n) is a free-module overSym(x2n), with basis {Yv : [0, . . . , 0] ≤
v ≤ [2n−1, . . . , 0]}. The submodule Pol(xn) has basis {Yv : [0, . . . , 0] ≤ v ≤
[2n−1, . . . , n, 0, . . . , 0]}. One can as well take {xv : [0n] ≤ v ≤ [2n−1, . . . , n]}, or,
our present choice,

{xv : [1−2n, . . . , −n] ≤ v ≤ [0n] } .

Specializing symmetric functions of x2n into symmetric functions of x1, x
−1
1 , . . . , xn, x−1

n ,
one sees that the same set of monomials13 span Pol(xn) as a Sym(x•n)-module.
Therefore it is sufficient to test the proposition on these monomials.

Since both πCw0 and πζ admit the symmetrizer πω, ω = [n, . . . , 1] as a left factor,
the test can be restricted to all Schur functions of x∨ := {x−1

1 , . . . , x−1
n } indexed

by partitions contained in nn.
13 but they are no more independent. For example, for n = 2, x0,−2 = x−3,−1 − ax−2,−1 +

bx−1,−1 − x0,0, with a = x1 + x2 + x−1
1 + x−1

2 , b = x1x2 + x1x
−1
2 + x2x

−1
1 + 1 + x−1

1 x−1
2 .
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Instead of enumerating partitions, one can introduce y = {y1, . . . , yn} and test
the single function

R(x∨,y) =
n∏

i,j=1
(x−1

i − yj) .

Let us first consider R(x∨,y) πCw0 . The monomials xu in the expansion of
R(x∨,y) which give a non-zero contribution are those such that u + ρ, with ρ =
[n, . . . , 1], has all its component different in absolute value. Since [0, . . . , 1−n] ≤
u + ρ ≤ ρ, the vector u + ρ must be a signed permutation of ρ, in which case
xuπCw0 = ±1. Therefore, the sum ∑

w±
(
xρR(x∨,y)

)w
(∆C)−1, which expresses

R(x∨,y) πCw0 , is independent of x. Specializing x = y, only the subsum
∑
w∈Sn

±
(
xρR(y∨,y)

)w
(∆C(y))−1 =

∑
w∈Sn

±
(
xρ
)w
·R(y∨,y)(∆C(y))−1

survives. After simplification, this subsum appears to be equal to

y1 · · · yn
∏

i<j≤n
(1− yiyj) .

Let us now treat πζ = πω(πn · · · π2n−1)πη, with πη = (πn−1 · · · π2n−3) · · · (π2π3)(π1).
The symmetrizer πω preserves R(y∨,y) , the operator (πn · · · π2n−1) acts only on
the factor R(x−1

n ,y) and sends it to (−1)ny1 · · · yn. One is left with the computa-
tion of

R(x′,y) πη
∣∣∣∣
x2i=x−1

2i−1

,

with x′ = {x−1
1 , . . . , x−1

n−1}. Assuming by induction the validity of the proposition
for n− 1, this last function is equal to R(x′,y)πw′0 , with w

′
0 relative to Cn−1.

The monomials xu appearing in the expansion of R(x′,y) being such that
[−1, . . . , −n+1] ≤ u + ρ′ ≤ ρ′, with ρ′ = [n−1, . . . , 1], then for the same reason as
above, the sum ∑

w

±
(
xρ
′
R(x′,y)

)w
(∆C(x1, . . . , xn−1))−1

does not depend on x. Specializing x1 = y1, . . . , xn−1 = yn−1, the sum reduces to∑
w∈Sn−1

(
yρ
′
)w
R(y′,y) 1

∆C(y1, . . . , yn−1) = y1 · · · yn−1
∏

i<j≤n−1
(1− yiyj)R(y′, yn) ,

with y′ = {y−1
1 , . . . , y−1

n−1}. In final, the two operators send the test function
R(x′,y) to the same element, and therefore are equal. QED

For example, for n = 2, one has

x1100(π1π2π3)(π1) = (x1+x2)(x3+x4) + x1x2

and this polynomial is transformed, by x→ [x1, x
−1
1 , x2, x

−1
2 ], into

x11π1π
C
2 π1π

C
2 = (x1+x−1

1 )(x2+x−1
2 ) + 1 ,
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which is equal, as we shall see later, to KC
−1,−1.

The two families of divided differences π♥i , π̂♥i are related by the equations

πi = 1 + π̂i , i = 1, . . . , n−1 & π♥n = 1 + π̂♥n , ♥ = B,C,D .

For any element w of the Weyl group of type ♥, by taking any reduced decomposi-
tion of it and the corresponding products of πi’s or π̂i’s, one obtains an expansion
of πw in terms of π̂v, and conversely, of π̂w in terms of πv. From a simple property
that followers of Bourbaki call the exchange lemma, which describes the growth of
intervals for the Bruhat order with respect to w → wsi, one obtains the following
relations between the two families of divided differences (given for type A in [85]).

Lemma 1.10.4. For any element w of a Weyl group of type ♥ = A,B,C,D, one
has the following sums over the Bruhat order :

πw =
∑
v≤w

π̂v (1.10.8)

π̂w =
∑
v≤w

(−1)`(w)−`(v)πv . (1.10.9)

For example, for type C, and w = [2, −3, −1], then w = sC3 s1s2s
C
3 and

πw = (1 + π̂C3 )(1 + π̂1)(1 + π̂2)(1 + π̂C3 ) = π̂123 +
(
π̂213 + π̂132 + π̂123̄

)
+
(
π̂231 + π̂213̄ + π̂132̄ + π̂13̄2

)
+
(
π̂231̄ + π̂23̄1 + π̂13̄2̄

)
+ π̂23̄1̄ .

On the other hand, for type D, w = [2, −3, −1] = s1s
D
3 , and

πw = (1 + π̂1)(1 + π̂D3 ) = π̂123 + π̂213 + π̂13̄2̄ + π̂23̄1̄ .

As a matter of fact, Stembridge [?] shows that the 0-Hecke algebra furnishes
the easiest way to compute the Möbius function relative to the Bruhat order of
Coxeter groups14.

14 the operators πi and π̂i give two realizations of the 0-Hecke algebra, since (πi−0)(πi−1) = 0
and (π̂ − 0)i(π̂i + 1) = 0.
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1.11 Operators on symmetric functions
Divided divided differences commute with multiplication with symmetric func-
tions. They can nevertheless be used to build operators on symmetric functions,
after breaking the initial symmetry, say for example, by sending x1 to x−1

1 , or to
qx1, or using derivatives, then symmetrizing.

As a first example, let us use isobaric derivatives δi : f → xi
d
dxi

(f), and
more conveniently, symmetric functions in the alphabet � = {�1= δ1 − 1

2 , �2=
δ2 − 3

2 , . . . , �n= δn + 1
2−n}.

The following lemma shows that symmetric functions in �, followed by πω, act
diagonally on Schur functions.

Lemma 1.11.1. Let g ∈ Sym(xn), λ ∈ Nn be a partition, Aλ be the alphabet
{λ1−

1
2 , λ2−

3
2 , . . . , λn+ 1

2−n}. Then sλ(xn)g(�) πω = g(Aλ)sλ(xn).

Proof. Writing πω = xρ∂ω, one can commute xρ with g(�), at the cost of changing
� into �′= {λ1+ 1

2−n, λ2+ 1
2−n, . . . , λn+ 1

2−n}, due to the fact that (δi − a)xi =
xiδi− a− 1. Factorizing ∂ω = (∑σ∈Sn ±σ) ∆(xn)−1, one can commute ∑±σ with
the symmetric function in �′, thus obtaining

sλ(xn)g(�) πω = sλ(xn)xρ
∑
±σg(�′)∆(xn)−1 = sλ(xn)∆(xn)g(�′)∆(xn)−1 .

The action of g(�′) on sλ(xn)∆(xn), written as a determinant of powers of x1, . . . , xn
is immediate, furnishing the result. QED

Since p1(�) acts by multiplication by d − n2/2 on homogeneous symmetric
functions of degree d, the first interesting operators occur in degree 2. Indeed the
operator p2(�)πω− 1

4

(
2n+1

3

)
may be found in different places, as a Hamiltonian. It

can be written, in terms of derivatives with respect to power sums, as the operator

Sym 3 f →
∑
i>0

∑
j>0

ijpi+j
d

dpi

d

dpj
(f) + (i+ j)pipj

d

dpi+j
(f) .

As a second example, let us introduce two parameters α, β and consider the
Sekiguchi operator

Ω = (αδ + β) . . . (αδn + β−n+1) πω ,

on symmetric functions of x = xn. To explicit the action of Ω, we shall take as a
linear basis of Sym(x) the Schur functions in the alphabet xα = 1

α
x. Equivalently,

we introduce a second alphabet y of cardinality n, and compute

σ(xαy)Ω =
∏
i

∏
j

(1− xiyj)−1/α Ω .

Since (1 − xiy)−1/α(αδi + γ) = xiy(1 − xiy)−1/α−1 + γ(1 − xiy)−1/α, one sees
that there exists a function F (x,y) independent of α such that σ(xαy)Ω =
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F (x,y)σ
(
(1 + 1

α
)xy

)
. This function may be determined by putting α = 1, and

is thus equal to σ(xy)Ω
∣∣∣
α=1

σ(−2xy). We have seen just above that Ω
∣∣∣
α=1

may
be written ∆(x)(δ1 + γ) . . . (δn + γ), with γ = β + 1 − n. Thanks to Cauchy,
σ(xy)∆(x) = 1

∆(y) det
(

1
1−xiyj

)
, and therefore

σ(xy)Ω
∣∣∣
α=1

= 1
∆(y) det

(
γ + (1− γ)xiyj

(1− xiyj)2

)
1

∆(x) ,

and F (X, Y ) is the numerator of this last function.
As in the case of Gaudin determinant det ((1− xiyj)−1(1− xiyj + γ)−1), or

Izergin-Korepin determinant det ((1− xiyj)−1(1− qxiyj)−1), one can write the
quotient of the numerator of σ(xy)Ω

∣∣∣
α=1

by the two Vandermonde as a prod-
uct of two rectangular matrices [87, 95]. Explicitly, let M e(xn) be the matrix

M e(xn) =
[
(−1)j−iej−i(x)(β − n+ 2i− j)

]
i=1...n
j=1..2n

. (1.11.1)

Then F (x,y) is the determinant of the product of this matrix with
[
hi−j(y)

]
i=1..2n
j=1..n

.

For example, for n = 2, F (x,y) is the determinant of the product

[
e0(β − 1) −e1(β − 2) e2(β − 3) 0

0 e0β −e1(β − 1) e2(β − 2)

] 
h0 0
h1 h0
h2 h1
h3 h2

 ,

where, by symmetry between x and y, the hi are the complete functions of one
alphabet, and the ei, of the other alphabet. In terms of products of Schur functions
of x2 and y2, one has

F (x2,y2) = β(β−1)− (β−1)2s1s1 + 2s11s11 + (β−1)(β−2)(s2s11 + s11s2)
− (β−2)2s21s21 + (β−2)(β−3)s22s22 .

The function σ(xαy) expand as ∑Sv(xα)Sv(y), sum over all (increasing) par-
titions in Nn. Therefore, the image of Sv(xα) under Ω is equal to the coefficient
of Sv(y) in F (x,y)σ((1 + α−1)xy), that is equal to

∑
u↑
M e

uSv/u

(
(1+

1

α
)x)

)
= det

M e ·
[
Svj+j−i((1+

1

α
)x)

]
i=1...2n
j=1...n

 , (1.11.2)

denoting by M e
u the minor of M on columns u1+1, . . . un+n. The matrix M e is in

fact the sum of the two matrices[
(−1)j−i(b− n+ i)ej−i(x)

]
and

[
(−1)j−i(i− j)ej−i(x)

]
.
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Let Mp(xn) be the n×∞ matrix of power sums

Mp(xn) =


β+1−n p1(x) p2(x) p3(x) · · ·

0 β+2−n p1(x) p2(x) · · ·
... . . . . . .
0 · · · β p1(x) · · ·

 .

Since∑(−1)iei(x)σ((1+α−1)x) = σ(xα), and∑(−1)iiei(x)σ((1+α−1)x) = (p1(x)+
p2(x) + . . . )σ(xα), the product (1.11.2) can be transformed into the product

Mp(xn) ·
[
Svj+j−i(xα)

]
i=1...∞
j=1...n

. (1.11.3)

Using Newton’s relations ∑∞i=1 pi(x)σ(x) = ∑∞
i=0 iSi(x), one obtains that Sv(xα)Ω

is equal to the determinant of[(
α(vj + j − i) + β − n+ i

)
Svj+j−i(xα)

]
i,j=1...n

. (1.11.4)

For example,

S136(xα)Ω =

∣∣∣∣∣∣∣
(1α + β − 2)S1(xα) (4α + β − 2)S4(xα) (8α + β − 2)S8(xα)
(0α + β − 1)S1(xα) (3α + β − 1)S3(xα) (7α + β − 1)S7(xα)

0 (2α + β)S2(xα) (6α + β)S6(xα)

∣∣∣∣∣∣∣ .
The shifts β−n+i in (1.11.4) are constant by rows. The expansion by rows of the
determinant expressing Sv(xα)Ω, starting from the bottom, may be written∑

σ∈Sn
(−1)`(σ)ϕ

(
(λ+ ρ)σ − ρ

)
S(λ+ρ)σ−ρ(xα) ,

with λ = v↓, where, for u ∈ Nn, Su(xα) denotes the product of complete functions
Su1(xα) . . . Sun(xα), and ϕ(u) = (αu1 + β) . . . (αun + β+1−n).

Introduce another alphabet z, and denote S2z the linear morphim

Sym(x) 3 sλ(xα)→
∑
±z(λ+ρ)σ−ρ ∈ Pol(z) ,

by z2S the linear morphism sending zu onto the product Su(xα).
The preceding computation may be interpreted as the following factorization

of the Sekiguchi operator:

Sym
S2z−−−→ Pol(z) zv→ϕ(v)zv−−−−−→ Pol(z) z2S−−−→ Sym .

Let � = {�1= αδ1 − 1
2 , �2= αδ2 − 3

2 , . . . , �n= αδn + 1
2−n}. The Sekiguchi

operator may be written ∑(β+ 1
2)n−iei(�)πω, and therefore determines the action

of each elementary function ei(�)πω. Since e1(�) acts as a scalar on homogeneous
polynomials, one more generally knows the action of any linear combination of
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e1(�)kei(�), for example e1(�)2−e2(�) = p2(�), e1(�)3−3e1(�)e2(�)+e3(�) = p3(�),
e1(�)e2(�)− e3(�) = s21(�).

Explicitly, for any polynomial f in �, any v ∈ Nn, let ϕf (v) =
f(αv1−

1
2 , . . . , αvn+ 1

2−n). Then the description of the action of the Sekiguchi op-
erator entails

Lemma 1.11.2. Let f = p2, p3 or s21. Then the action of f(�)πω on Sym fac-
torizes as

Sym
S2z−−−→ Pol(z) xv→ϕf (v)xv−−−−−−→ Pol(z) z2S−−−→ Sym .

The Sekiguchi operator preserves degrees. Expression (1.11.4) shows that is
triangular in the basis {sλ(xα), `(λ) ≤ n}. Since ϕ takes distinct values on Nn,
the eigenspaces of Ω are 1-dimensional, their generators being the Jack symmetric
polynomials. Since these polynomials are specializations of Macdonald polynomi-
als, we postpone at this point any further comments about them. The operator(
p2(�)− 1

4

(
2n+1

3

))
πω is also diagonal in the basis of Jack polynomials, with eigen-

values ∑(αλi + 1/2 − i)2 − 1
4

(
2n+1

3

)
= α2∑λ2

i + α
∑(1−2i)λi. It is in fact a

rewriting of the Calogero-Sutherland Hamiltonian, and has been considered by
physicists [58], see also [13]. To my knowledge, the operators corresponding to
p3(�) and s21(�) have not been used, though they also diagonalize in the basis of
Jack polynomials. Beware that the operator p4(�)πω does not act diagonally on
Jack polynomials15.

It is easy to transform isobaric factorized operators into degree-raising opera-
tors, by introducing inside the factorization of the operator the multiplication by a
fixed polynomial. For example, let us see how to transform the first operator that
we saw in this section into an operator deforming the product of Schur functions.

Let λ be a partition in Nn. Then the operator Ωλ = xλ(δ1 + β) . . . (δn +
β+1−n)πω acting on Sym(xn) may be rewritten

xλxρ(
∑
±σ)(δ1 + β+1−n) . . . (δn + β+1−n)πω

= sλ(xn)∆(xn)(δ1 + β+1−n) . . . (δn + β+1−n)πω ,

and therefore the image of a Schur function sµ(xn) under Ωλ is equal to∑
ν

(sλsµ, sν)(ν1 + β) . . . (νn + β+1−n)sν(xn) ,

where the coefficients (sλsµ, sν) are the structure constants appearing in sλ(xn)sµ(xn) =∑
ν(sλsµ, sν)sν(xn). We shall meet similar operators in the case of Macdonald

polynomials.
One can also use the divided differences associated to types B,C,D to define

operators on Sym.
15This is compatible with the fact that p4 = e4

1 − 4e2
1e2 + 4e1e3 + 2e22 − 4e4, the term e2

2
preventing to apply the preceding considerations.
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Let us first consider the action of −x−k1 πB1 x
k
1, k ∈ Z, on functions of x1.

Since Sr(x1+1)x−r/21 is invariant under sB1 , one has

−Sr(x1+1)x−k1 πB1 x
k
1 = −[r+1]xr/2−k1 πB1 x

k
1 =

x1[r+1][2k−r−1] if k > r/2
−x2k−r

1 [r+1][r+1−2k] if k ≤ r/2
,

with [j] = 1+x1+ . . . +xj1.
One notices that the same functions can be obtained by combining ∂1 with the

specialization x2 = 1. More precisely, one checks that for all r ≥ 0, all k ∈ Z, one
has

−Sr(x1+1)x−k1 πB1 x
k−1
1 = Sr((x−1

1 + x2)x2k−1
1 ∂1

∣∣∣∣
x2=1

.

The next proposition shows how to extend this observation to any n, and will
constitute our last example for this section.

Proposition 1.11.3. Let λ ∈ Nn be a partition. Then one has, for any k ∈∈ Z,

(−1)nsλ(xn + 1)x−kn πBn x
k
nπn−1 . . . π1(x1 . . . xn)−1 = sλ s

B
n x

2k−1
1 ∂1 . . . ∂n

∣∣∣∣
xn+1=1

.

(1.11.5)

Proof. By recurrence on n, one sees that, for any symmetric function f(x1, . . . , xn),
one has

f(x1, . . . , xn)x−kn πBn x
k
nπn−1 . . . π1

=
n∑
i=1

f(. . . , 1
xi
, . . . ) x2k−1

i

R(xi,xn \ xi)(1−xi)
+ f(x1, . . . , xn) 1

R(xn, 1) .

This is a Lagrange-type sum ([94, Th. 7.8.2]) which can be written

f(x1, . . . , xn)sB1 x2k−1
i (1−x1)−1∂1 . . . ∂n−1 + f(x1, . . . , xn) 1

R(xn, 1) ,

but one can make this expression more symmetrical by considering the alpha-
bet x1, . . . , xn+1, and by supposing16 that f is the specialization xn+1 = 1 of a
symmetric function of x1, . . . , xn+1, thus obtaining the stated identity. QED

For example, for n = 3, λ = [1, 0, 0], k = 3, one has

−s1(x3+1)x−3
3 πB3 x

3
3 = (1+x1+x2)(x3 + + · · ·+ x5

3) + (x3+x2
3+x3

3) ,

whose image under π2π1 is
(
s1(x3+1) + s21(x3+1)

)
x1x2x3.

On the other hand,

(x−1
1 + x2 + x3 + x4)x5

1 ∂1∂2∂3 = s1(x4) + s21(x4) ,

and this agrees with the proposition.
16This is no restriction: sλ(xn) = sλ(xn+1 − 1)

∣∣
xn+1=1.
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1.12 Weyl character formula
Irreducible characters for type ♥ = A,B,C,D have been described by Weyl. For
λ ∈ Nn dominant17, Weyl’s character formula reads

χ♥λ =
∑
w(−1)`(w)

(
xλ+ρ

)w
∑
w(−1)`(w) (xρ)w , (1.12.1)

where ρ = [n−1, . . . , 0] in type A,D, ρ = [n, . . . , 1] in type C and ρ = [n− 1
2 , . . . ,

1
2 ]

in type B.
Using the factorization of the alternating sum of the elements of each group,

one recognizes that the characters χ♥λ are equal to the image of xλ under π♥w0 .
Each π♥w0 has ∂ω as a right factor. Since, for any functions f1(x), . . . , fn(x),

one has
f1(x1) · · · fn(xn) ∂ω = det(fi(xj))/ det(xn−ji )

one may write the numerators of Weyl character formula as the following deter-
minants (still with λn = 0 for type D) :

det(xλj+n−ji ) type A (1.12.2)
det(xλj+n−j+1/2

i − x−λj−n+j−1/2
i ) type B (1.12.3)

det(xλj+n−j+1
i − x−λj−n+j−1

i ) type C (1.12.4)
1
2 det(xλj+n−ji + x

−λj−n+j
i ) type D (1.12.5)

Let ∆(x) = ∏
1≤i<j≤n(xi − xj). Then the denominators ∆A,∆B,∆C ,∆D of

Weyl character formula are respectively equal to

∆A = ∆(x), ∆B =
∏
i

(√xi−
1
√
xi

)∆(x•), ∆C =
∏
i

(xi−
1
xi

)∆(x•), ∆D = ∆(x•),

still using the notation x• = {x•1, . . . , x•n}, with x•i = xi + x−1
i .

The numerators of Weyl’s formula may also be written as determinants, so
that the right hand side of Weyl’s formula for type A,B,C,D, say in the case
λ = [3, 1, 0], would look like

∣∣∣∣∣∣∣
x5

1 x2
1 1

x5
2 x2

2 1
x5

3 x2
3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x2

1 x1 1
x2

2 x2 1
x2

3 x3 1

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣
x

11/2
1 − x−11/2

1 x
5/2
1 − x−5/2

1 x
1/2
1 − x−1/2

1

x
11/2
2 − x−11/2

2 x
5/2
2 − x−5/2

2 x
1/2
2 − x−1/2

2

x
11/2
3 − x−11/2

3 x
5/2
3 − x−5/2

3 x
1/2
3 − x−1/2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x

5/2
1 − x−5/2

1 x
3/2
1 − x−3/2

1 x
1/2
1 − x−1/2

1

x
5/2
2 − x−5/2

2 x
3/2
2 − x−3/2

2 x
1/2
2 − x−1/2

2

x
5/2
3 − x−5/2

3 x
3/2
3 − x−3/2

3 x
1/2
3 − x−1/2

3

∣∣∣∣∣∣∣∣
,

17For simplicity, we impose λn = 0 in type D, but we shall lift this restriction later.
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∣∣∣∣∣∣∣∣∣
x1

6 − x1
−6 x1

3 − x1
−3 x1 − x1

−1

x2
6 − x2

−6 x2
3 − x2

−3 x2 − x2
−1

x3
6 − x3

−6 x3
3 − x3

−3 x3 − x3
−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1

3 − x1
−3 x1

2 − x1
−2 x1 − x1

−1

x2
3 − x2

−3 x2
2 − x2

−2 x2 − x2
−1

x3
3 − x3

−3 x3
2 − x3

−2 x3 − x3
−1

∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣
x1

5 + x1
−5 x1

2 + x1
−2 1

x2
5 + x2

−5 x2
2 + x2

−2 1
x3

5 + x3
−5 x3

2 + x3
−2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1

2 + x1
−2 x1 + x1

−1 1
x2

2 + x2
−2 x2 + x2

−1 1
x3

2 + x3
−2 x3 + x3

−1 1

∣∣∣∣∣∣∣∣∣

.

When λ is an integral multiple of ρ, the numerator in Weyl’s character formula
is the image of the denominator under raising the variables to some power. Writing
k(ρ) for [kρ1, kρ2, . . . , kρn], and hk(a+b) for the complete function of degree k in
the variables a, b, one has

χAk(ρ) =
∏

1≤i<j≤n(xk+1
i − xk+1

j )∏
1≤i<j≤n(xi − xj)

=
∏

1≤i<j≤n
hk(xi+xj) ,

χDk(ρ) = χAk(ρ)

∏
1≤i<j≤n

(
1− x−k−1

i x−k−1
j

)
∏

1≤i<j≤n 1− x−1
i x−1

j

=
∏

1≤i<j≤n
hk(xi+xj)hk(1+x−1

i x−1
j ) ,

χBk(ρ) = χDk(ρ)

n∏
i=1

x
(k+1)/2
i − x−(k+1)/2

i

x
1/2
i − x

−1/2
i

=
n∏
i=1

hk

(
√
xi + 1

√
xi

) ∏
1≤i<j≤n

hk(xi+xj)hk(1+x−1
i x−1

j ) ,

χCk(ρ) = χDk(ρ)

n∏
i=1

xk+1
i − x−k−1

i

xi − x−1
i

=
n∏
i=1

hk

(
xi + 1

xi

) ∏
1≤i<j≤n

hk(xi+xj)hk(1+x−1
i x−1

j ) .

For example, for n = 2, k = 2, one has

χC42 =
(
x2

1 + 1 + 1
x2

1

)(
x2

2 + 1 + 1
x2

2

)
(x2

1 + x1x2 + x2
2)
(

1 + 1
x1x2

+ 1
x2

1x
2
2

)
.
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1.13 Macdonald Poincaré polynomial
The length of a reduced decomposition of an element w of a Weyl group is equal,
using standard notions from the theory of root systems, to the number of roots in
the intersection of R+ and −wR+.

Instead of enumerating inversions, let us define an inversion weight as follows.
Embed the Weyl group of type Bn, Cn, Dn into S2n. Given w ∈ W and the
corresponding σ ∈ S2n, to a pair (i, j) : 1 ≤ i < j ≤ n, such that σi > σj
associate a factor hji. To a pair such that σi > σ2n+1−j associate a factor hij.
Moreover, to all i : 1 ≤ i ≤ n such that wi < 0 associate a factor hi in type B,
and a factor hii in type C. The inversion weight I(w) of w ∈ W is the product
of these factors.

One can also define I(w) recursively by left multiplication by simple transpo-
sitions. Given w, sk such that `(skw) > `(w), then w and skw either differ in two
positions i, j or (skw)i = −wi. In that last case (which do not occur for type A
or D), one has I(skw)/I(w) = hi in type B and = hii in type C. In the first
case, if wiwj > 0 and [. . . wi . . . wj . . .] → [. . . wj . . . wi . . .], then I(skw)/I(w) =
hji. Otherwise, if wiwj < 0, then [. . . wi . . . wj . . .] → [. . . − wj . . . − wi . . .] and
I(skw)/I(w) = hij.

For example, for type C4, one has the following chain of inversion factors :

[2, 4, 1, 3] s
C
4 h22←−−−[2, 4, 1, 3] s3 h42←−−−[2, 3, 1, 4] s1 h13←−−−[1, 3, 2, 4]

s2 h23←−−−[1, 2, 3, 4] s3 h34←−−−[1, 2, 4, 3] s
C
4 h33←−−−[1, 2, 4, 3] s3 h43←−−−[1, 2, 3, 4]

The inversions are more straightforward to read when writing the inverse ele-
ments :

[3, 1, 4, 2]−1 sC4 h22←−−−[3, 1, 4, 2]−1 s3 h42←−−−[3, 1, 2, 4]−1 s1 h13←−−−[1, 3, 2, 4]−1

s2 h23←−−−[1, 2, 3, 4]−1 s3 h34←−−−[1, 2, 4, 3]−1 sC4 h33←−−−[1, 2, 4, 3]−1 s3 h43←−−−[1, 2, 3, 4]−1

For each Weyl group of type ♥ = An−1, Bn, Cn, Dn, Macdonald defined the
following kernel18 M♥, introducing formal parameters hji :

MA =
∏

1≤i<j≤n
(1− hjixjx−1

i )

MD = MA
∏

1≤i<j≤n
(1− hijx−1

i x−1
j )

MB = MD
∏

1≤i≤n
(1− hix−1

i )

MC = MD
∏

1≤i≤n
(1− hiix−2

i )

18 Of course, Macdonald does not mix types, but taking a pure combinatorial point of view
leaves us more freedom.
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For example, for A2 and D3, one has

MA =
(

1− h21 x2

x1

)(
1− h31 x3

x1

)(
1− h32 x3

x2

)
,

MD =MA

(
1− h12

x1 x2

)(
1− h13

x1 x3

)(
1− h23

x2 x3

)
.

The following theorem, due to Macdonald [124, Th.2.8], generalizes the enu-
meration of elements of a Weyl group according to their length.

Theorem 1.13.1. For a Weyl group of type ♥ = A,B,C,D, with maximal ele-
ment w0, one has

M π♥w0 =
∑
w∈W
I(w) .

Proof. Each kernel, multiplied by xρ♥ is a sum of monomials xv, where the expo-
nents respectively satisfy the conditions (componentwise comparison) : for type
A, [0, . . . , 0] ≤ v ≤ [n−1, . . . , n−1],
for type B, [1−n, . . . , 1−n] ≤ v + [ 1

2 , . . . ,
1
2 ] ≤ [n, . . . , n],

for type C, [−n, . . . , −n] ≤ v ≤ [n, . . . , n],
for type D, [1−n, . . . , 1−n] ≤ v ≤ [n−1, . . . , n−1].

Under the operator ∑w(−1)`(w) 1
∆♥ , such monomials are sent to 0, or to ±1

if they appear in the expansion of ∆♥. One checks that in that last case, the
coefficient is indeed the inversion weight I(w). QED

For example, for type C2, the contributing terms are

x2,1 − x2,−1h22 + x1,−2h12h22 − x−1,−2h11 h12 h22 − x1,2h21

+ x−1,2h21 h11 − x−2,1h21 h11 h12 + x−2,−1h21 h11 h12 h22 .

One could have decided19 to denote the elements of the group by the element
of the orbit of ρ♥. In type A, one would have permutations of [n−1, . . . , 0], in
type B, signed permutations of [n− 1

2 , . . . ,
1
2 ], in type C, signed permutations of

[n, . . . , 1], and finally, in type D, signed permutations of [n−1, . . . , 0].
The usual Poincaré polynomial is obtained by specializing all hi, hij to q and

thus is obtained by symmetrizing the “q-Vandermonde”.
One could have taken an arbitrary subsum of the expansion of M♥. Mac-

donald’s theorem states that the only terms surviving after symmetrization are
those having for coefficient the inversion weight of an element of the group. The
following theorem shows how to apply this property to generate intervals for the
weak order.

For v, w ∈ W , write w ≥L v if the product (wv−1) v is reduced, i.e. if `(w) =
`(wv−1) + `(v). In that case I(v) is a factor of I(w). In the following statement,

19In type A, Cauchy considered the Vandermonde determinant, that he in fact introduced,
as the generating function of permutations together with their signs, and consequently, the
Vandermonde determinant as the “generic” determinant.
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we shall use the same notation I(w) for the set of inversions and the inversion
weight of w ∈ W .

Let hxji = hjixjx
−1
i , j > i, and hxij = hijx

−1
i x−1

j , i ≤ j, hxi = hix
−1
i .

Theorem 1.13.2. Given a pair w, v such that w ≥L v, then∏
α∈I(w)\I(v)

(1− hxα)
∏

α∈I(v)
(−hxα) π♥w0 =

∑
u:w≥L u≥L v

I(v) . (1.13.1)

Proof. We already remarked that we have only to extract the products of hji which
are inversion weights of elements ofW . But u ∈ W is such that w ≥L u if and only
if I(u) divides I(w), thus u in the RHS if and only if it belongs to the left-order
interval [w, v]. QED

It is interesting to notice that the interval [1, w] for the Bruhat order can be
obtained, thanks to Lemma 1.10.4, by taking any reduced decomposition w =
si · · · sj and evaluating the product (1 + π̂i) · · · (1 + π̂j). On the other hand, the
preceding theorem gives the interval [1, w]L for the weak order by symmetrizing a
factor of degree `(w).

For example, for w = [3, 4, 1, 2] ∈ S4, the initial interval for the Bruhat order
is given by

π3412 = π2π3π1π2 = (1 + π̂2)(1 + π̂3)(1 + π̂1)(1 + π̂3)
= π̂3412 + π̂3214 + π̂3142 + π̂3124 + π̂2413 + π̂2314 + π̂2143

+ π̂2134 + π̂1432 + π̂1423 + π̂1342 + π̂1324 + π̂1243 + π̂1234 ,

while the initial interval for the left order is obtained by computing(
1− h31

x3

x1

)(
1− h32

x3

x2

)(
1− h41

x4

x1

)(
1− h42

x4

x2

)
π4321

= 1 + h32 + h31h32 + h32h42 + h31h32h42 + h31h41h32h42 ,

which translates, passing from the inversion weights to the permutations, into

[1, 2, 3, 4], [1, 3, 2, 4], [1, 4, 2, 3], [2, 3, 1, 4], [2, 4, 1, 3], [3, 4, 1, 2] .

The Poincaré polynomial is obtained by specializing all hα to q. For example,
let w = [5, 2, 4, 6, 1, 3], v = [3, 1, 2, 5, 4, 6] in S6. Then

I([5, 2, 4, 6, 1, 3])/I([3, 1, 2, 5, 4, 6] = h51h52h53h61h63h64 , I([3, 1, 2, 5, 4, 6]) = h21h31h54

and the polynomial of the interval is equal to(
1− h51

x5

x1

)(
1− h52

x5

x2

)(
1− h53

x5

x3

)(
1− h61

x6

x1

)(
1− h63

x6

x3

)(
1− h64

x6

x4

)
×
(
−x2

x1

)(
−x3

x1

)(
−x5

x4

)
π654321

∣∣∣∣
hji=q

= q6 + 2q5 + 2q4 + 3q3 + 2q2 + 2q + 1 .
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We end by giving an example in type C, for n = 3, writing the interval and
the inversions in the order they are created.

123

213 123̄

213̄ 132̄

312̄ 231̄

3̄12̄ 321̄

3̄21̄

h21 h33

h33 h21 h23

h13 h13

h11 h21

h23 h11

Thus, the Poincaré polynomial for this interval is equal to 1 +h21 +h33 +h23h33 +
h21h33 + h13h23h33 + h21h13h33 + h21h13h11h33 + h21h13h23h33 + h21h13h23h11h33.



Chapter 2
Linear Bases for type A

’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo ’oooooo

2.1 Schubert, Grothendieck and Demazure
To interpolate a function f(x1) at points y1, y2, . . . ,, Newton [130] chose the basic
polynomials Y0 = 1, Y1 = (x1−y1), Y2 = (x1−y1)(x1−y2), . . . and found that the
coefficients of f(x1) in this basis could be obtained by divided differences.

One can add the remark to Newton’s computations that the Newton basis
Y0, Y1, Y2, . . . is invariant under the divided differences ∂y

i . Indeed, Yk∂
y
k = −Yk−1,

and Yk∂y
i = 0 for i 6= k. It is therefore natural to generate bases of polynomials

using the different operators ∂i, πi, π̂i, Ti that are at our disposal. However, we also
need starting points, i.e. polynomials such that them together with their descent
will constitute a basis. In the case of non symmetric Macdonald polynomials,
because one also has “raising operators” which increase degree, we need only one
starting point, which is 1. For the other families of polynomials, the starting
points will be associated to the diagrams of partitions, to the cost of having to
check compatibility conditions between the different starting points.

Given λ ∈ Nn a partition (i.e. λ1 ≥ · · · ≥ λn ≥ 0), then

Yλ :=
∏

i=1..n,j=1..λi
(xi − yj) & Gλ :=

∏
i=1..n,j=1..λi

(1− yjx−1
i )

are the dominant Schubert polynomials and the dominant Grothendieck polynomial
respectively, of index λ, and

Kλ = xλ = K̂λ

are the dominant Demazure characters for type A. We shall rather say key
polynomials instead of Demazure characters [21] in reference to their combinatorial
interpretation in terms of keys.

57
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x3−y1 x3−y2

x2−y1 x2−y2

x1−y1 x1−y2 x1−y3

x3 x3

x2 x2

x1 x1 x1

1− y1
x3

1− y2
x3

1− y1
x2

1− y2
x2

1− y1
x1

1− y2
x1

1− y3
x1

Y322 K322 G322

We define Schubert polynomials to be all1 the non-zero images of the dominant
Schubert polynomials under products of ∂i’s and Grothendieck polynomials2 to
be all the images of the dominant Grothendieck polynomials under products of
πi’s. Similarly, the two types of key polynomials are defined by taking all images
under products of πi’s or of π̂i’s respectively.

Since the operators satisfy relations, we cannot index the polynomials by the
choice of the starting point and the sequence of operators used. In fact, all these
polynomials can be indexed by weights in Nn, the recursive definition being

Y...,vi+1,vi−1,... = Yv ∂i & G...,vi+1,vi−1,... = Gv πi when vi > vi+1 (2.1.1)

Kv πi = Kv si & K̂v π̂i = K̂v si , when vi > vi+1 . (2.1.2)
Thus, the operators act on the indices just by sorting increasingly in the case of
key polynomials, and by sorting and decreasing the biggest of the two components
exchanged, in the case of Schubert and Grothendieck polynomials3.

It is clear that these four families constitute linear bases of Pol(n), because Yv,
Kv, K̂v have leading term4 xv, and Gv has leading term x−v. However, it is un-
satisfactory to have mere bases, one must be able to express a general polynomial

1 There are dominant polynomials in the images of a dominant polynomial, in the Schubert
and Grothendieck cases; therefore, one has to check consistency, as we already mentioned, but
this easy.

2As a natural continuation of my work about syzygies of determinantal varieties, I had de-
termined the classes, as polynomials, of the structure sheaves of the Schubert subvarieties of
a flag manifold. It was a time where Grothendieck had some complaints about the world of
mathematicians. I proposed to M.P. Schützenberger to call these classes Grothendieck polyno-
mials, to which suggestion he readily agreed. They appear under the label G-polynomials in
the paper[104] introducing them, the referee having disagreed with the terminology. The said
referee fortunately forgot to extend his ban to future work. Moreover, Alexandre Grothendieck
did not protest against this appellation.

3Choosing permutations as indexing sets, then the action is simply sorting. We did not give
the case vi ≤ vi+1 because it is determined by the relations ∂2

i = 0, π2
i = πi, π̂2

i = −π̂i. Thus in
that case,

Yv∂i = 0, Gvπi = Gv, Kvπ = Kv, K̂vπ̂i = −K̂v .

4Notice that xji∂1 = xj−1,i+xj−2,i+1+· · ·+xi,j−1 and that xjiπ1 = xj,i+xj−1,i+1+· · ·+xi,j .
From this, it is easy to prove by induction that the monomials xu appearing in Yv,Kv are such
that un ≤ vn, un + un−1 ≤ vn + vn−1, . . . . In particular, u ≤ v for the right lexicographic order,
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in term of these bases. We shall see how to do it in the next section, by defining
a scalar product.

As examples of Schubert and Grothendieck polynomials, one obtains the fol-
lowing polynomials starting from the dominant ones Y210 and G210.

Y210 = (x2 − y1)
(x1 − y1) (x1 − y2)

llllllll
SSSSSSSS

SSSSSSSS

Y110 = (x2 − y1)
(x1 − y1) • Y200 = •

(x1−y1) (x1−y2)

Y100 = •
x1 − y1 •

TTTTTTTTTTTT

Y010 = x1+x2−y1−y2

iiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiii

Y000 = 1

G210 = (1− y1
x2

)
(1− y1

x1
) (1− y2

x1
)

mmmmmmm
RRRRRRRR

RRRRRRRR

G110 = (1− y1
x2

)
(1− y1

x1
) • G200 = •

(1− y1
x1

) (1− y2
x1

)

G100 = •
1− y1

x1
•

SSSSSSSSSSS

G010 = 1− y1y2
x1x2

jjjjjjjjjjjjjjj

jjjjjjjjjjjjjjj

G000 = 1

For these two families, only the polynomial indexed by 010 is not dominant.
However, in general Schubert and Grothendieck polynomials do not factorize,
though they still have the same type of vanishing properties than the dominant
ones.

Our starting Schubert polynomials are products of linear factors xi − yj. We
shall be able to express general Schubert or Grothendieck polynomials as sums of

i.e. the order such that if u < v then there exist k such that ui = vi for i = k+1, . . . , n and
uk < vk. Similarly, all monomials xu appearing in the expansion of Gv are such that −un ≤ −vn,
−un−un−1 ≤ −vn−vn−1, . . . .
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products of linear factors5. For example, using Leibnitz’ formula, one obtains the
sequence of polynomials

Y320 =
x2−y1 x2−y2

x1−y1 x1−y2 x1−y3

, Y301 =
x3−y2

x1−y1 x1−y2 x1−y3

+
x2−y1

x1−y1 x1−y2 x1−y3

,

Y021 =
x3−y2

x2−y2 x2−y3

+
x3−y2

x1−y1 x2−y3

+
x2−y1

x1−y1 x2−y3

+
x3−y2

x1−y1 x1−y2

+
x2−y1

x1−y1 x1−y2

,

and the last polynomial, Y021, does not factorize anymore.

2.2 Using the y-variables
Some properties of Schubert and Grothendieck polynomials are easier to follow
using permutations for the indexing. Given a permutation σ of code v, then one
uses both notations Yv(x,y) and Xσ(x,y) for the same Schubert polynomial, as
well as Gv(x,y) and G(σ)(x,y) for the same Grothendieck polynomial.

Both families satisfy a fundamental symmetry in x,y. Indeed, given i ≤ n−1,
denoting as usual ω = [n, . . . , 1], then it is immediate, because the statement
reduces to compute the image of (xi−yn−i) or (1−yn−ix−1

i ), that

Xω(x,y) ∂x
i = −Xω(x,y) ∂y

n−i (2.2.1)
G(ω)(x,y)πx

i = G(ω)(x,y) π1/y
n−i , (2.2.2)

where π1/y
n−i denotes the isobaric divided differences relative to y∨ = {y−1

1 , y−1
2 , . . . }.

By iteration, noticing that the symmetry is valid for Xω(x,y) and G(ω)(x,y),
one obtains the following proposition.

Proposition 2.2.1. The Schubert and Grothendieck polynomials satisfy the re-
cursion

Xsiσ(x,y) = −Xσ(x,y) ∂y
i & G(siσ)(x,y) = G(σ)(x,y) π1/y

i , (2.2.3)

for i such that `(siσ) ≤ `(σ), as well as the symmetry

Xσ(x,y) = (−1)`(σ)Xσ−1(y,x) & G(σ)(x,y) = G(σ−1)(y∨,x∨) . (2.2.4)

Symmetry in consecutive variables can be seen on the indexing. Indeed, if i
and v are such that vi ≤ vi+1, then Yv and Gv are symmetrical in xi, xi+1, because
they are equal to Yu∂i and Guπi respectively, with u = [. . . , vi+1 + 1, vi, . . .].
Consequently, one has the following lemma.

5these expressions are not unique.
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Lemma 2.2.2. Let i, j, v be such that vi ≤ vi+1 ≤ · · · ≤ vj. Then Yv, Gv, Kv are
symmetric in xi, . . . , xj.

In the case where v ∈ Nn is antidominant (i.e. v = v ↑), then Yv, Gv, Kv are
therefore symmetric in x1, . . . , xn. In fact, let λ = v ↓ be the decreasing reorder-
ing of v. Then Kv = xλπω = xλ+ρ∂ω is equal to the Schur function sλ(xn), and
Yv = Yλ+ρ∂ω specializes to sλ(xn) for y = 0, because Yλ+ρ specializes to xλ+ρ.
The polynomial Gv, v antidominant, can also be considered as a deformation of
a Schur function. It still possesses a determinantal expression. Geometrically,
it is interpreted as the class of the structure sheaf of a Schubert variety in the
Grothendieck ring of a Graßmannian and I described it in [81] by pure manipula-
tion of determinants without using divided differences.

Let us call Graßmannian Schubert (resp. Grothendieck) polynomials. the
polynomials indexed by antidominant v.

2.3 Flag complete and elementary functions
Both Schubert, Demazure and Grothendieck polynomials are non symmetric gen-
eralizations of the fundamental basis of symmetric functions that are Schur func-
tions. In fact, the present notes will illustrate that many properties of the Schur
basis can be extended to properties of the Yv, Kv, Gv bases. But there are other
bases of Sym(x), particularly the products of elementary functions ei(x) and the
products of complete functions hi(x). Let us generalize these into flag elementary
functions and flag complete functions.

Definition 2.3.1. For any r, any v ∈ Nr, v ≤ [r−1, . . . , 0], let

Pv = ev1(xr−1) · · · evr(x0)

and, for any n, any v ∈ Nn, let

Hv = hv1(x1) · · ·hvn(xn) .

It is clear that {Hv : v ∈ Nn} is a linear basis of Pol(xn), which is triangular
in the basis of monomials. Identifying v and 0v, one checks that ∪r{Pv : v ∈ Nr}
is also a linear basis of the space of polynomials in x1, x2, . . .. Notice that the
restriction on v eliminates the elementary functions which are null because of
degree strictly higher than the cardinality of the alphabet. Beware that Pv0 is
different from Pv, because of the order we write the flag of alphabets. This change
of convention for the indexing of the basis of flag elementary functions will be
justified by the non-commutative extension of Pv.

It is not straightforward to express monomials in these two bases. For example,

x2
2 = P1,1,0,0 − P2,0,0,0 − P1,1,0

= (x1 + x2 + x3)(x1 + x2)− (x1x3 + x1x2 + x2x3)− (x1 + x2)x1
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x2
2 = H0,2 −H1,1 = (x2

1 + x1x2 + x2
2)− x1(x1 + x2) .

We shall obtain such expansions by using a scalar product on polynomials.
More generally, monomials can be written as flag Schur functions. Let v ∈ Nn,

u = [vn, . . . , v1]. Then [94, 1.4.10]

xv = Su(xn, . . . , x1) =
∣∣∣∣huj+j−i(xn+1−j)

∣∣∣∣ . (2.3.1)

For example,

x0,3,1,2 = S2,1,3,0(x4,x3,x2,x1) =

∣∣∣∣∣∣∣∣∣
h2(x4) h2(x3) h5(x2) h3(x1)
h1(x4) h1(x3) h4(x2) h2(x1)
h0(x4) h0(x3) h3(x2) h1(x1)

0 0 h2(x2) h0(x1)

∣∣∣∣∣∣∣∣∣ .

Expanding by columns (but from the right!), one finds the expression of the mono-
mial in the H-basis :

x0,3,1,2 = H0,3,1,2 −H1,2,1,2 −H0,4,0,2 +H2,2,0,2 −H0,3,2,1

+H1,2,2,1 +H0,5,0,1 −H3,2,0,1 +H0,4,2,0 −H2,2,2,0 −H0,5,1,0 +H3,2,1,0 .

The following proposition illustrates that Schur functions in xn can also be
easily expressed in these two bases, using flags of alphabets6 in the Jacobi-Trudi
determinants.

Proposition 2.3.2. Let v be the increasing reordering of a partition λ, u ∈ Nr be
the reordering of the conjugate λ∼. Then the Schur function sλ(xn), also denoted
Sv(xn), is equal to both determinants

Sv(x1/x2/ . . . /xn) =
∣∣∣∣hvj+j−i(xi)∣∣∣∣

and Λu(xn+r−1/xn+r−2/ . . . /xn) =
∣∣∣∣euj+j−i(xn+r−i)

∣∣∣∣ . (2.3.2)

The expansions of these determinants furnishes the required expressions of
sλ(xn). For example, for n = 3, λ = [4, 2], one has λ∼ = [2, 2, 1, 1] and

s42(x3) = S024(x1/x2/x3) =

∣∣∣∣∣∣∣
h0(x1) h3(x1) h6(x1)

0 h2(x2) h5(x2)
0 h1(x3) h4(x3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e1(x6) e2(x6) e4(x6) e5(x6)
e0(x5) e1(x5) e3(x5) e4(x5)

0 e0(x4) e2(x4) e3(x4)
0 0 e1(x3) e2(x3)

∣∣∣∣∣∣∣∣∣ = Λ1122(x6/x5/x4/x3) ,

6but this time, flags are constant by rows.
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which entails

s4,2(x3) = H0,2,4 −H0,5,1 = P1,1,2,2,0,0,0 − P1,1,3,1,0,0,0 − P2,0,2,2,0,0,0

+ P4,0,0,2,0,0,0 + P2,0,3,1,0,0,0 + P1,4,0,1,0,0,0 − P1,3,0,2,0,0,0 − P5,0,0,1,0,0,0 .

Given i, there is at most one component of the function Pv and of the function
Hv which is not symmetrical in xi, xi+1. Since

ek(xi)∂i =
(
ek(xi−1) + xiek−1(xi−1)

)
∂i = ek−1(xi−1)

and
hk(xi) πi = hk(xi+1) ,

the image of Pv = · · · ek(xi)e`(xi−1) · · · under ∂i is a flag · · · ek−1(xi−1)e`(xi−1) · · ·
which is not permitted if (k−1)` 6= 0. Similarly, the image ofHv = · · ·hk(xi)h`(xi+1) · · ·
under πi,which is · · ·hk(xi+1)h`(xi+1) · · · , is also illegal if k` 6= 0.

But, from the case of order 2 of (2.3.2), one has, with α = min(k−1, `) and
β = max(k−1, `),

ek−1(xi−1)e`(xi−1) =
(
eα(xi)eβ(xi−1) + eα−1(xi)eβ+1(xi−1) + · · ·

+ e0(xi)eβ+α(xi−1)
)
−
(
eβ+1(xi)eα−1(xi−1) + · · ·+ eβ+α(xi)e0(xi−1)

)
,

and, with α = min(k, `), β = max(k, `),

hk(xi+1)h`(xi+1) =
(
hα(xi)hβ(xi+1) + · · ·+ h0(xi)hβ+α(xi+1)

)
−
(
hβ+1(xi)hα−1(xi+1) + · · ·+ hβ+α(xi)h0(xi+1)

)
.

This entails the following actions of ∂i and πi.

Lemma 2.3.3. Let n, i be two positive integers, 0 < i < n, v ∈ Nn being such
that v ≤ [n−1, . . . , 0], α = min(vn−i− 1, vn−i+1), β = max(vn−i− 1, vn−i+1). Then

P••vn−i,vn−i+1•• ∂i =
α∑
j=0

P••α−j,β+j•• −
α∑
j=1

P••β+j,α−j•• . (2.3.3)

For v ∈ Nn, α = min(vi, vi+1), β = max(vi, vi+1), one has

H••vi,vi+1•• πi =
α∑
j=0

H••α−j,β+j•• −
α∑
j=1

H••β+j,α−j•• . (2.3.4)

For example,

P52 03210 ∂6 = P24 03210 + P15 03210 + (P06 03210)− P51 03210 − P60 03210 ,

H9 26 99 π2 = H9 26 99 +H9 17 99 +H9 08 99 −H9 71 99 −H9 80 99 ,

the term P0603210 being null because e6(x5) = 0.



64 Chapter 2 — Linear Bases for type A

2.4 Three scalar products
Let us first look for a scalar product on Pol(n) compatible with the product
structure and with degree.

When n = 1,
(f(x1), g(x1)) = CT

(
f(x1), g( 1

x1
)
)
,

where CT means “constant term”, is a good candidate. Generalizing to (f, g) =
CT

(
f(x1, . . . , xn), g( 1

x1
), . . . , 1

xn
)
)
means considering the ring of polynomials as

a tensor product of rings of polynomials in 1 variable, a rather poor structure.
Reversing the order of variables in the function g is not enough, one needs a
kernel to link the variables.

We define

(f, g) = CT
(
f(x1, . . . , xn)g(x−1

n , . . . , x−1
1 )

∏
1≤i<j≤n

(1− xix−1
j )

)
, (2.4.1)

and write Ωn = ∏
1≤i<j≤n(1− xix−1

j ) for the kernel.
Explicitely, for two monomials, (xu, xv) = (xu1−vn,...,un−v1 , 1) and (xv, 1) 6= 0

only when x−v appears in the expansion of Ωn. In that case (xv, 1) = ±1 according
to the sign x−v has in Ωn.

Similar definitions and properties hold for the root systems of type B,C,D
(see later sections) with appropriate kernels ΩB

n ,ΩC
n ,ΩD

n .
For n = 3, one has

Ω3 = x000 − x1,−1,0 − x0,1,−1 + x2,−1,−1 + x1,1,−2 − x2,0,−2

and therefore

(x000, 1) =1= (x−2,1,1, 1) = (x−1,−1,2, 1) & (x−1,1,0, 1) = −1= (x0,−1,1, 1) = (x−2,0,2, 1),

the other monomials being orthogonal to 1 (one has enumerated the positive and
negative roots for type A2).

Notice that, for symmetric functions, Weyl has defined the scalar product

(f, g)Weyl = 1
n!CT

(
f(x1, . . . , xn)g(x−1

1 , . . . , x−1
n ) Ω2

n

)
.

We shall see that in the case of Schur functions

(sλ, sµ) = (sλ, sµ)Weyl = δλ,µ ,

so that the restriction of all these scalar products to symmetric functions coincides
with the usual scalar product with respect to which Schur functions constitute an
orthonormal basis.
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However, we have also to use the structure of Pol(n) as a free Sym(n)-module.
We define for f, g ∈ Pol(n),

(f, g)∂ := fg ∂ω & (f, g)π := fg πω .

These quadratic forms take values in Sym(n) and are Sym(n)-linear.
The main properties of all these quadratic forms is the compatibility with the

operators used to define the different bases.

Proposition 2.4.1. For i : 1 ≤ i ≤ n−1,

• πi is adjoint to πn−i with respect to ( , ) ,

• ∂i is self-adjoint with respect to ( , )∂ ,

• πi is self-adjoint with respect to ( , )π .

Proof. Let us check that all these statements reduce to the case n = 2.

(f∂i, g)∂ =
(
(f∂i)g

)
∂ω = (f∂i g)∂i∂siω =

(
(f∂i)(g∂i)

)
∂siω .

The last expression being symmetrical in f, g, one has, indeed, (f∂i, g)∂ = (f, g∂i)∂.
The same computation applies to the case ( , )π.

The kernel Ωn can be written Ω′ (1− xix−1
i+1), with Ω′ symmetrical in xi, xi+1,

and one can first compute the constant term in xi, xi+1. Let us write f = f1 +
xi+1f2, g(x−1

n , . . . , x−1
1 ) = h(x1, . . . , xn) = g1 + xi+1g2, with f1, f2, g1, g2 invariant

under si. The difference fπih− hπif = fπ̂ih− hπ̂if is equal to (f1g2 − g1f2)xi+1.
Therefore the constant term

CTxi,xi+1

(
(fπih− hπif) (1− xi/xi+1)Ω′

)
= CTxi,xi+1

(
(fπ̂ih− hπ̂if) (1− xi/xi+1)Ω′

)
= CTxi,xi+1

(
(xi+1 − xi) (f1g2 − g1f2)Ω′

)
is null, because the function inside parentheses is antisymmetrical in xi, xi+1. Tak-
ing into account the transformation xi → x−1

n+1−i, this nullity proves that πi is
adjoint to πn−i. QED

Thanks to Proposition 2.4.1, the scalar products (f, sλ(xn)) can be rewritten as
scalar products with dominant monomials. Indeed sλ(xn) = xλπω, and therefore(

f, sλ(xn)
)

=
(
f, xλπω

)
=
(
fπω, x

λπω
)

=
(
fπω, x

λ
)
.

On the other hand,(
f, sλ(xn)

)∂
=
(
f, 1)∂sλ(xn) &

(
f, sλ(xn)

)π
=
(
f, 1)πsλ(xn) ,

since these last two scalar products are Sym(xn)-linear.
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2.5 Kernels
With a scalar product and a basis defined by self-adjoint operators, it is easy to
find the adjoint basis. Once more, it is sufficient to understand the case n = 2.

Lemma 2.5.1. Let i ∈ {1, . . . , n−1}, Di = πi, D̂i = π̂i (resp. Di = ∂i = D̂i).
Let f, g ∈ Pol(n), f ′ = fDi, g′ = gD̂i. Then the two equalities (f, g)D = 0,
(f ′, g)D = 1 imply that (f ′, g′)D = 0 and that (f, g′)D = 1.

Proof. Consider first the case Di = πi and write f = f1 + xi+1f2, g = g1 + xi+1g2.
Then f ′ = f1, g′ = g(πi − 1) = g1 − g. Consequently,

(f, g′)π = (f1, g1)π − (f, g)π = (f ′, g)π = 1 & (f ′, g′)π = (f1, g1)π − (f1, g)π = 0 .

The computation is similar for Di = ∂i. QED
This lemmma will allow propagating orthogonality relations. But to produce

a hen, we need an egg, or conversely.
Let

ΘY
n :=

∏
1≤i<j≤n

(yi − xj) & ΘG
n :=

∏
1≤i<j≤n

(1− xjy−1
i ) .

Lemma 2.5.2. Let v : 0 ≤ ρ = [n−1, . . . , 0]. Then

(Yv,ΘY
n )∂ = 0 = (Gv,ΘG

n )π ,

except for v = 0, in which case

(Y0,ΘY
n )∂ = 1 = (G0,ΘG

n )π .

Proof. By definition, (f(x),ΘY
n )∂ = f(x)ΘY

n ∂ω for any polynomial f(x). If this
polynomial belong to the span of xv : v ≤ ρ, then f(x)ΘY

n belong to the span
of xv : v ≤ [n−1, . . . , n−1] and its image under ∂ω is a symmetric polynomial
of degree 0 (only the monomials which are a permutation of xρ have a non-zero
image). On the other hand, the scalar product can also be written as a sum :

(Yv,ΘY
n )∂ =

∑
σ

(−1)`(σ)
(
YvΘY

n

)σ 1
∆(x) .

Since this is a function of degree 0 in x, one can specialize x = y without changing
its value. However, all (ΘY

n )σ then vanish, except for the identity, in which case
ΘY
n specializes to ∆. Therefore,7 (Yv,ΘY

n )∂ = Yv(y,y) = δv,0.
The proof is similar for Grothendieck polynomials. QED

7The vanishing of Yv(y,y), which is evident for dominant v, is proved following an induction
which in fact furnishes more specializations. Thus we do not prove it at this point, but refer to
Corollary 3.1.3 below.
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2.6 Adjoint Schubert and Grothendieck polyno-
mials

The ring Pol(n) is a free Sym(n)-module with bases {xv : v ≤ ρ} and {x−v : v ≤
ρ} (one takes Laurent polynomials in the second case). Therefore {Yv : v ≤ ρ}
and {Gv : v ≤ ρ} are two linear bases. Starting with Ŷρ := ΘY

n and Ĝρ := ΘG
n ,

instead of Yρ and Gρ, one generates recursively two other bases

Ŷ...,vi+1,vi−1,... = Ŷv ∂i & Ĝ...,vi+1,vi−1,... = Ĝv π̂i when vi > vi+1 . (2.6.1)

Here are these bases for n = 3.

Ŷ210 = (y1 − x3) (y2 − x3)
(y1 − x2)

kkkkkkkkkkkkk
QQQQQQQQ

QQQQQQQQ

Ŷ110 = (y1 − x3)(y2 − x3) Ŷ200 = (y1 − x3)
(y1 − x2)

Ŷ100 = y1 + y2 − x2 − x3

WWWWWWWWWWWWWWW
Ŷ010 = y1 − x3

iiiiiiiiiiii

iiiiiiiiiiii

Ŷ000 = 1

Ĝ210 =
(1− x3

y1
) (1− x3

y2
)

(1− x2
y1

)

llllllllllll
QQQQQQQQ

QQQQQQQQ

Ĝ110 = x2
y2

(1− x3
y1

)(1− x3
y2

) Ĝ200 = x3
y2

(1− x3
y1

)
(1− x2

y1
)

Ĝ100 = x3
y1

(
1− x2x3

y1y2

)
UUUUUUUUUUUUU

Ĝ010 = x2x3
y1y2

(
1− x3

y1

)
jjjjjjjjjjjj

jjjjjjjjjjjj

Ĝ000 = x2x2
3

y2
1y2

Lemmas 2.5.1, 2.5.2 give the following pairs of adjoint bases.
Theorem 2.6.1. The bases {Yv : v ≤ ρ} and {Ŷv : v ≤ ρ} are adjoint with
respect to ( , )∂. The bases {Gv : v ≤ ρ} and {Ĝv : v ≤ ρ} are adjoint with
respect to ( , )π.

More precisely, the pairing is

(Yv, Ŷu)∂ = δv,ρ−u = (Gv, Ĝu)π . (2.6.2)
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The two bases {Ŷv} and {Ĝv} can in fact be easily obtained as images of {Yv}
and {Gv} respectively. Indeed, Ω is obtained from Yρ by reversing the alphabet
x, but divided differences satisfy

ω ∂i ω = −∂n−i . (2.6.3)

Similarly, let ♣ be the involution xi → x−1
n+1−i. Then

♣ πi♣ = πn−i & ωx−ρ πi x
ρω = −π̂n−i . (2.6.4)

Extend the involution to codes of permutations : u♣ = v if and only iff the
corresponding permutations σ, ζ, are such that ωσω = ζ. Then, the relations
(2.6.3, 2.6.4) induce

Lemma 2.6.2. The adjoint polynomials Ŷv and Ĝv are related to the original ones
by (

Ŷv
)ω

= (−1)|v| Yv♣ &
(
Ĝv

)ω
= (−1)|v|Gv♣

xρ

yρ
. (2.6.5)

As a consequence, for any σ, ζ ∈ Sn, one has(
Xσ(x,y) , Xζ(xω,y)

)∂
= (−1)`(ζ)δσ,ζω (2.6.6)(

G(σ)(x,y) ,
(
xρ

yρ
G(ζ)(x,y)

)ω)π
= (−1)`(ζ)δσ,ζω (2.6.7)

The decomposition of any polynomial in the Schubert or Grothendieck basis
can easily be computed using the scalar products with their adjoint bases. Here
is the matrix of change of basis between monomials xv : 0 ≥ v ≥ [−2, −1, 0] and
Grothendieck polynomials :

000 100 010 200 110 210
1/x000 1 0 0 0 0 0
1/x100 1

y1
− 1
y1

0 0 0 0
1/x010 1

y2
1
y1

− 1
y2

0 − 1
y1

0
1/x200 1

y2
1
−y2+y1

y12y2
0 1

y1y2
0 0

1/x110 1
y1y2

0 − 1
y1y2

0 0 0
1/x210 1

y12y2
− 1
y12y2

− 1
y12y2

1
y12y2

1
y12y2

− 1
y12y2

2.7 Bases adjoint to elementary and complete
functions

Expanding the kernels ΘY
n and ΘG

n , one finds the bases adjoint to monomials, for
the two scalar products ( , )∂ and ( , )π.



§ 2.7 — Bases adjoint to elementary and complete functions 69

Proposition 2.7.1. Given n, let x∨ = {x−1
1 , . . . , x−1

n }. Then for any u, v : u ≤
ρ, v ≤ ρ one has(

Pρ−v(x) , xuω
)∂

= (−1)|v|δv,u =
(
Pv(x∨) , xuω

)π
. (2.7.1)

The basis adjoint to {Hv : v ≤ ρ} requires a little more work, because the
monomials appearing in the expansion of Hv do not respect the condition that
their exponent be majorized by ρ. We first some technical properties of divided
differences.

Lemma 2.7.2. Let a, b, k, n ∈ N be such that 1 ≤ k < n, 0 ≤ a, b ≤ n−k. Then

S1b(xn − xk)Sa(xk)∂k . . . ∂1 =

(−1)b if a+b = n−k

0 otherwise
(2.7.2)

Proof. One expands S1b(xn − xk) = S1b(xn) − xkS1b(xn) + · · · + (−xk)b. On the
other hand, xikSa(xk) = Sa+i(xk) −

∑
xu, sum over monomials xu, u ∈ Nk such

that uk ≤ i−1. The initial function is therefore equal to(
S1b(xn)Sa(xk)− S1b−1(xn)Sa+1(xk)− · · ·+ (−1)bS0(xn)Sa+b(xk)

)
−
∑

cux
u ,

with cu ∈ Sym(xn) and uNk such that uk ≤ b−1 < n−k. The extra monomials xu
are sent to 0 by ∂k . . . ∂n−1 for degree reason. The sum inside parentheses is sent
to

S1b(xn)Sa−n+k(xk)− S1b−1(xn)Sa+1−n+k(xk)− . . .
+ (−1)bS0(xn)Sa+b−n+k(xk) = (−1)bSa+b−n+k(xn − xn) .

This last function is different from 0 only in the case S0(xn−xn) = 1, that is only
for a+b = n−k. QED

Proposition 2.7.3. Given n, for any v ≤ ρ, let Ĥv = S1v1 (xn − x1)S1v2 (xn −
x2) . . . S1vn−1 (xn − xn−1). Then(

Ĥv , Hu

)∂
= (−1)|v|δv,ρ−u , u, v ≤ ρ . (2.7.3)

Proof. Factorize ∂ω = (∂n−1)(∂n−2∂n−1) . . . (∂1 . . . ∂n−1). By decreasing induction
on k, one has to compute(

S1v1 (xn − x1) . . . S1vk (xn − xk)
)(
Sv1(x1) . . . Svk(xk)

)
∂k . . . ∂n−1

= f (S1vk (xn − xk)Svk(xk)) ∂k . . . ∂n−1 ,

with f symmetrical in xk, . . . , xn, and therefore commuting with ∂k . . . ∂n−1. Eq.
2.7.2 forces the equality vk+uk = n−k, to have non nullity, and we can proceed
with k−1. QED
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For example, for n = 3, one has the following pair of adjoint bases.

H210 = x2
1(x1+x2)

H110 = x1(x1+x2) H200 = x2
1

H100 = x1 H010 = x1+x2

H000 = 1

Ĥ000 = 1

Ĥ100 = −x2−x3 Ĥ010 = −x1−x3

Ĥ110 = (x2+x3)(x1+x3) Ĥ200 = x2x3

Ĥ210 = −x2x3(x1+x3)

2.8 Adjoint key polynomials

The two families {Yv : v ∈ Nn}, {Gv : v ∈ Nn} are bases of Pol(n) (as a vector
space). We have also given two other bases, {Kv : v ∈ Nn} and {K̂v : v ∈ Nn},
that are in fact adjoint with respect to ( , ), as states the next theorem.

First, one checks that for any partition λ, then (Kv, x
λ) = 0, except when

v = λω = [λn, . . . , λ1], in which case (Kλω, x
λ) = 1 (cf. [37, Cor 12]). Using that

πi is adjoint to πn−i, this allows to compute any (Kv, K̂u). For example, writing
in a box the non-zero scalar products, the knowledge of all (Kv, K̂361)

(K631, K̂361)

llllllll
SSSSSSSS

SSSSSSSS

(K361, K̂361) (K613, K̂361)

(K316, K̂361)

QQQQQQQQQ
(K163, K̂361)

llllllll
llllllll

(K163, K̂361)
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determines all (Kv, K̂316)

(K631, K̂316)

mmmmmmmmm
RRRRRRRR

RRRRRRRR

(K316, K̂316) (K613, K̂316)

(K316, K̂316)

RRRRRRRR
(K163, K̂316)

kkkkkkkk
kkkkkkkk

(K163, K̂316)

In conclusion, one has the following property (cf. [37, Th 15]) :

Theorem 2.8.1. Given u, v ∈ Nn, then (Kv, K̂u) = 0, except (Kv, K̂vω) = 1.

In particular, if λ is dominant, then (Kv, x
λ) = 0, except if v = λω, in which

case Kv is a Schur function.
Notice that the pairing, for Schubert and Grothendieck polynomials, is also

the reversing σ → σω, when indexing these polynomials by permutations, but not
when using codes.
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2.9 Reproducing kernels for Schubert and Grothendieck
In the theory of orthogonal polynomials in one variable one finds it convenient
to make use of reproducing kernels Kn(x, y) = P0(x)P0(y) + · · · + Pn(x)Pn(y),
associated to a family of polynomials P0(x), P1(x), . . . of degree 0, 1, . . ., which are
orthonormal with respect to a linear functional f →

∫
f . The name “reproducing”

comes from the property that∫
f(x)Kn(x, y) = f(y)

whenever f is a polynomial of degree ≤ n.
The Cauchy kernel ∏x∈x,y∈y(1 − xy)−1 plays a similar role in the theory of

symmetric polynomials. It does not require much effort nor imagination to deduce
from the preceding section kernels corresponding to the bases {Yv}, {Gv} or {Kv}.
Write Sym(xn) = Sym(yn) for the identification of any symmetric function of xn
with the same symmetric function of yn.

Theorem 2.9.1. For any v : 0 ≤ v ≤ ρ, one has(
ΘY
n , x

v
)∂

= yv &
(
ΘG
n , x

−v
)π

= y−v . (2.9.1)

For any Laurent polynomial f in xn, one has, modulo Sym(xn) = Sym(yn),(
ΘY
n , f(x)

)∂
≡ f(y) &

(
ΘG
n , f(x)

)π
≡ f(y) . (2.9.2)

The two kernels expand as follows

ΘY
n (x, z) =

∏
1≤i<j≤n

(zi − xj) =
∑
v≤ρ

Yv(z,y) Ŷρ−v(x,y) (2.9.3)

ΘG
n (x, z) =

∏
1≤i<j≤n

(1− xjz−1
i ) =

∑
v≤ρ

Gv(z,y) Ĝρ−v(x,y) (2.9.4)

There is no real need of a proof. The reproducing property has been obtained
in the course of proving Lemma 2.5.2. Taking coefficients in Sym(xn), one obtains
(2.9.2) from (2.9.1). The function ΘY

n (x, z) belongs to the span of {zuxvω : u, v ≤
ρ}, and therefore can be written

ΘY
n (x, z) =

∑
u,v

cu,v(y)Yu(z,y)Ŷρ−v(x,y) .

Therefore, for any v ≤ ρ, one has
(
ΘY
n (x, z), Yv(x,y)

)∂
= ∑

u cu,v(y)Yu(z,y).
However, the reproducing property shows that this is also equal to Yv(z,y) and
this proves (2.9.3), the case of Grothendieck polynomials being similar. QED

For example, for n = 2, one has

ΘG
2 (x, z) = 1− x2/z1 = G00(z,y)Ĝ10(x,y) +G10(z,y)Ĝ00(x,y)

= 1 ·
(

1− x2

y1

)
+

(
1− y1

z1

)
· x2

y1
.
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For n = 3, Maple computes

ΘY
3 (x, z) = (z1 − x2) (z1 − x3) (z2 − x3) = − (−y1 + x2) (−y1 + x3) (−y2 + x3)
+ (z2 − y2 + z1 − y1) (−y1 + x3) (−y1 + x2)− (−z1 + y2) (z1 − y1) (y1 − x3)

+ (z1 − y1) (−y2 + x3) (−y1 + x3) + (−y1 + z2) (z1 − y1) (−x2 + y2 + y1 − x3)
− (−z1 + y2) (z1 − y1) (−y1 + z2) .

The essential property of ΘY
n (x,y) and ΘG

n (x,y) is that ΘY
n (yσ,y) and ΘG

n (yσ,y)
both vanish when σ is different from the identity. Along the same lines as for ΘY

n

and ΘG
n , one sees that the kernels Yρ(x,y) and Gρ(x,y) satisfy a twisted repro-

duction property :(
Yρ(x,y) , f(x)

)∂
≡ f(yω) &

(
Gρ(x,y) , f(x)

)π
≡ f(yω) , (2.9.5)

modulo Sym(xn) = Sym(yn), the equivalence being replaced by an equality when
f belongs to the span of {xv : [0, . . . , 0] ≤ v ≤ [0, . . . , n−1]}. For example,

(G210(x,y), x2
3)π =

(
1− y1

x1

)(
1− y2

x1

)(
1− y1

x2

)
x2

3 π321 = y2
1 .

Notice that, using (2.2.4) and (2.6.5), exchanging the role of y and x, one can
rewrite (2.9.4) into∑

v≤ρ
(−1)|v|Gv(x, z)Gρ−v(x,y) = Yρ(z,y)x−ρ . (2.9.6)

By taking the image of (2.9.3) under products of ∂i’s and the image of (2.9.4)
under products of π̂i’s, one obtains decompositions of general Ŷv or general Ĝv,
and by involution, of general Yv and Gv. Let us detail these decompositions in the
next sections.

2.10 Cauchy formula for Schubert
Given u, v, w ∈ Nn, majorized by ρ, write w = u� v iff and only the permutations
σ(w), σ(u), σ(v) of which they are the codes, are such that σ(w) = σ(u)σ(v) and
the product is reduced8. With this notation one has the following Cauchy formula
for Schubert polynomials (given in [84] for y = 0).

Theorem 2.10.1. Let σ be a permutation in Sn, w ∈ Nn be its code. Then

Yw(x, z) =
∑

u,v:u�v=w
Yu(y, z)Yv(x,y) (2.10.1)

Xσ(x, z) =
∑

η,ν: ∂η∂ν=∂σ
Xη(y, z)Xν(x,y) . (2.10.2)

8 i.e. such that lengths add: `(σ(w)) = `(σ(u)) + `(σ(v)). Notice that the product of two
permutations η, ν is reduced if and only if ∂η∂ν = ∂ην .
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Proof. One starts from the formula in the case σ = ω, which is a rewriting of (2.9.3)
using (2.6.5). Supposing (2.10.2) to be true for σ, let i be such that `(σsi) < `(σ).
The terms in the RHS are of two types: either `(νsi) < `(ν), or not. These last
terms are such that Xν(x,y)∂i = 0. Therefore the image of (2.10.2) under ∂i is

Xσsi(x, z) =
∑

η,ζ: ∂η∂ζ=∂σsi

Xη(y, z)Xζ(x,y) ,

with ζ = νsi. QED
For example, for w = [0, 3, 1], one has the following expansion of Y031(x, z),

writing Yu Yv for Yu(y, z)Yv(x,y)

Y031(x, z) = Y0000Y031

sss
sss K

K
K

Y0100Y030

K
K

K
Y0001Y021

sss
sss JJJ

JJJ

JJJ
JJJ

Y0101Y020 Y002Y011

Y012Y010

KKK
KKK

Y03Y001

ttt
ttt

ttt
ttt

Y031Y000

,

or, indexing by permutations,

X15324(x, z) = X12345X15324

ooooooo
PPPP

X13245X15234

PPPP
X12354X14325

ooooooo
PPPPPPP

PPPPPPP

X13254X14235 X12534X13425

X13524X13245

PPPPPPP
X15234X12435

ooooooo
ooooooo

X15324X12345

.

In these last conventions, the edges are simple transpositions: XηXsiζ → XηsiXζ .
Notice that the above decomposition of Yρ(x, z) = ∏

i+j≤n(xi − zj), becomes
similar, when specializing y = 0, to the Cauchy expansion of the resultant∏
i,j≤n(xi − zj) in terms of Schur functions in x and in z. In fact, let m, r be

two integers such that r + m < n. Then the special case of (2.10.1) for w = rm,
y = 0 is

Yrm(x, z) =
∑

u,v:u�v=w
Yu(0, z)Yv(x,0) =

∑
λ≤rm

(−1)|µ|sµ(zr)sλ(xm) , (2.10.3)
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sum over all pairs of partitions λ, µ such that the conjugate of µ is [r−λm, . . . , r−λ1].

2.11 Cauchy formula for Grothendieck
The analogous formula for Grothendieck polynomials is not more complicated.
Instead of taking reduced products, i.e. products ∂η∂ν 6= 0, one has to use products
in the 0-Hecke algebra, of the type πηπν .

Theorem 2.11.1. Let σ be a permutation in Sn, ω = [n, . . . , 1].

Ĝ(σ)(x, z) =
∑
ζ∈Sn

G(ζ)(z,y)Ĝ(ωζ)(x,y) π̂ωσ (2.11.1)

yρ

zρ
G(σ)(x, z) =

∑
ζ

(−1)`(ζ)G(ζω)(z,y)
(
G(ζ)(x,y)π(ωσ)

)
(2.11.2)

Proof. The first formula is the image of (2.9.4) under π̂ωσ, the second is the image
of the case σ = ω, which is a rewriting of (2.9.6), under πωσ. QED

For example, for n = 3, writing Gv for Gv(z,y) and Ĝv for Ĝv(x,y), the image
of Ĝ210(x, z) = ∑

v GvĜ210−v under π̂1 is

Ĝ110(x, z) = (G110 −G210) Ĝ000 + (G010 −G200) Ĝ010 + (G000 −G100) Ĝ110 ,

then under π̂2,

Ĝ100(x, z) = (G010 −G200 −G110 +G210) Ĝ000 + (G000 −G100) Ĝ100 .
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2.12 Divided differences as scalar products
Since the ∂i’s are self-adjoint with respect to ( , )∂, and the πi’s are self-adjoint
with respect to ( , )π, one can use (2.9.1) to express any ∂σ, πσ, π̂σ.

Proposition 2.12.1. Let f ∈ Pol(xn,yn), σ ∈ Sn, and z = zn be an extra
alphabet. Then

f ∂σ =
(
f , Xωσ(z,xω)

)∂∣∣∣∣
z=x

(2.12.1)

f πσ =
(
f , G(ωσ−1)(x, z)

)π∣∣∣∣
z=xω

(2.12.2)

f π̂σ =
(
f , Ĝ(ωσ−1)(x, z)

)π∣∣∣∣
z=x

(2.12.3)

Proof. The proofs of the three assertions are similar, let us consider only the first
one.

(−1)`(ωσ)Xωσ(z,xω) = Xσ−1ω(x, z)ω = Xω(x, z)∂ωσ−1ω ω

= Xω(x, z)ω
(
ω∂ωσ−1ωω

)
= Xω(xω, z)∂σ−1(−1)`(σ)

and therefore one has(
f , Xωσ(z,xω)

)∂
=
(
f , (−1)`(ω)Xω(xω, z)∂σ−1

)∂
=
(
f∂σ, , Xω(z,xω)

)∂
.

Specializing z = x and using the reproducing property (2.9.1), one gets (2.12.1).
QED

For example, for n = 3, σ = [2, 3, 1], one has ωσ = [2, 1, 3], ωσ−1 = [1, 3, 2],
and

f∂231 = f∂1∂2 =
(
f , X213(z,xω)

)∂∣∣∣∣
z=x

=
(
f , z1−x3

)∂∣∣∣∣
z=x

fπ231 = fπ1π2 =
(
f , G(132)(x, z)

)π∣∣∣∣
z=xω

=
(
f , 1− z1z2

x1x2

)π∣∣∣∣
z=xω

fπ̂231 = fπ̂1π̂2 =
(
f , Ĝ(132)(x, z)

)π∣∣∣∣
z=x

=
(
f ,

x2x3

z1z2

(
1− x3

y1

))π∣∣∣∣
z=x

.
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2.13 Divided differences in terms of permuta-
tions

Let D = ∑
ζ∈Sn ζcζ(xn) be a sum of permutations with coefficients which are

rational functions in xn. Any function f(xn,yn) which vanish in all specializations
xσn = yn, except in xn = yn, can be used to determine the coefficients cζ(xn).
Indeed, putting g(xn,yn) = f(xn,yn)D, one has g(xn,yn) = ∑

ζ f(xζn,yn) cζ(xn),
and therefore

g(xn,xζn) = f(xζn,xζn) cζ(xn) . (2.13.1)
The kernels ΘY

n ,ΘG
n have the required vanishing properties. In consequence

the operators ∂σ, πσ, π̂σ can be expressed in terms of specializations of Schubert or
Grothendieck polynomials, and one obtains the following expansions (the expres-
sion of the coefficients are not unique, due to the many symmetries of Schubert
and Grothendieck polynomials).
Proposition 2.13.1. Given σ ∈ Sn, the divided differences ∂σ, πσ, π̂σ are equal
to the following sums of permutations :

∂σ
∏

i<j≤n
(xi − xj) =

∑
ζ≤σ

(−1)`(ζ)ζ Xωσ(xn,xζ
−1ω
n ) (2.13.2)

πσ =
∑
ζ≤σ

ζ fσ(xζ−1

n ,xωn) (2.13.3)

π̂σ
∏

i<j≤n

(
1− xi

xj

)
=

∑
ζ≤σ

ζ G(σω)(xωn ,xζ
−1

n ) , (2.13.4)

with fσ(xn,yn) = G(ωσ−1)(xn,yn)∏i<j≤n(1− xjx−1
i )−1.

For example

∂1∂2 =
(
s1s2 (x1−x2)− s2 (x1−x2)− (x1−x3) s1 + (x1−x3)

) 1
∆(x3)

π1π2 = s1s2
x2

3
(x1−x3)(x2−x3) − s2

x1x3

(x1−x3)(x2−x3) − s1
x2

2
(x1−x2)(x2−x3)

+ x1x2

(x1−x2)(x2−x3)

π̂1π̂2 = (s1s2 − s2) x2
3

(x1−x3)(x2−x3) + (1− s1) x2x3

(x1−x2)(x2−x3) .

One can compare these expressions to those given in the preceding section. In
fact, they can be obtained by mere expansion of

∂1∂2 = (1− s1) 1
x1 − x2

(1− s2) 1
x2 − x3

π1π2 =
(
s1

x2

x2 − x1
+ x1

x1 − x2

)(
s2

x3

x3 − x2
+ x2

x2 − x3

)
π̂1π̂2 = (s1 − 1) 1

1− x1x
−1
2

(s2 − 1) 1
1− x2x

−1
3
.
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This is essentially the method followed by Kostant and Kumar [71, 72], but with
this method properties of the resulting coefficients are more difficult to extract
than when specializing polynomials in two sets of variables. For example we shall
see later that the inverse transition matrices, from permutations to the different
types of divided differences, involve the same coefficients as the transition matrices,
and this fact can easily be obtained from properties of Schubert and Grothendieck
polynomials.

The leading term of πσ and π̂σ, i.e. the coefficient of σ, is obtained by mere
commutation. Taking a reduced decomposition σ = sisjsh · · · sk, then this leading
term is

si
1

1− xix−1
i+1

sj
1

1− xjx−1
j+1

sh · · · sk
1

1− xkx−1
k+1

= si · · · sk
(

1
1− xix−1

i+1

)sjsh···sk ( 1
1− xjx−1

j+1

)sh···sk
· · · 1

1− xkx−1
k+1

.

In the language of root systems, this property reads as follows.

Lemma 2.13.2. Let Φ+, Φ− be the positive (resp. negative) roots of the root
system of type An−1. Then, in the basis of permutations, πσ and π̂σ have leading
term

F (σ) :=
∏

α∈Φ+∩σΦ−

1
1− eα .

This leading term intervenes in geometry, for what concerns the postulation
of Schubert varieties.

Let λ ∈ Nn be dominant weight , v be a permutation of λ, σ ∈ Sn be of
minimum length such that v = λσ. One defines the limit m→∞ of Kmvx

−mv to
be

(1− zxλ)−1πσ(1− zxv)
∣∣∣
z=x−v

.

Expanding πσ in terms of permutations, one has

(1− zxλ)−1πσ(1− zxv) = F (σ) +
∑
ζ<σ

1− zxv
1− zxλζ c

ζ
σ ,

with coefficients cζσ obtained in (2.13.3). The hypothesis on the pair λ, σ insures
that all terms, but the first one, vanish under the specialization z = x−v. One
thus recovers in the special case of type A a property due to Peterson and Kumar
in the more general context of Kac-Moody algebras.

Corollary 2.13.3. Let λ ∈ Nn be dominant, σ ∈ Sn be of minimum length
modulo the stabilizer of λ. Then the common limit m → ∞ of xmλπσx−mλσ and
xmλπ̂σx

−mλσ is equal to ∏
α∈Φ+∩σΦ−

1
1− eα .
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For example, for λ = [2, 1, 0], v = [1, 0, 2], one has σ = s1s2 and the limit of
Km,0,2mx

−m,0,−2m and K̂m,0,2mx
−m,0,−2m is equal to

(
(1 − x1x

−1
3 )(1 − x2x

−1
3 )

)−1
.

The limit of K0,0,mx
0,0,−m = Sm(x1 + x2 + x3)x−m3 = Sm(x1x

−1
3 + x2x

−1
3 + 1) is

also
(
(1− x1x

−1
3 )(1− x2x

−1
3 )

)−1
, in accordance with the fact that σ is still equal

to s1s2.

2.14 Schubert, Grothendieck and Demazure as
commutation factors

One could obtain the expression of permutations in terms of divided differences
by iterating Leibnitz formula, starting with expressions like

s2s1s2 =
(
1 + ∂2(x3−x2)

)(
1 + ∂1(x2−x1)

)(
1 + ∂2(x3−x2)

)
.

Let us specially examine the commutation with ∂ω or πω. For example,

∂1x2 = x1∂1 − 1
∂2∂1∂2x2x

2
3 = ∂2x3∂1x2∂2x3 = (x2∂2 − 1)(x1∂1 − 1)(x2∂2 − 1) = . . .

= x210∂2∂1∂2 − x200∂1∂2 − x110∂2∂1 + x100∂1 + (x100 + x010)∂2 − 1 .

This case shows a disymmetry which can be cured by using Schubert polynomials
instead of monomials :

∂2∂1∂2x2x
2
3 = Y210(x,0)∂1∂2 − Y200(x,0)∂2∂1∂2 − Y110(x,0)∂2∂1

+ Y100(x,0)∂1 + Y010(x,0)∂2 − Y000(x,0) .

The following theorem states that Schubert and Grothendieck polynomials do
occur in the commutation of some element with ∂ω or πω. Notice that this gives
a generation which does not require division.

Theorem 2.14.1. Fixing n, with ρ = [n−1, . . . , 0], one has∑
σ∈Sn

(−1)`(σ)Xσ(x,y) ∂σ−1 = ∂ωXω(y,xω) (2.14.1)
∑
σ∈Sn

(−1)`(σω)∂σXσ(x,y) = Xω(y,xω)∂ω (2.14.2)
∑
σ∈Sn

(−1)`(σ)xρG(σ)(x,y) πσ−1 = πωXω(y,xω) (2.14.3)
∑
σ∈Sn

(−1)`(σ)πσ G(σ)(x,y)xρ = Xω(y,xω)πω . (2.14.4)

Proof. (2.14.1) and (2.14.2) are equivalent, by left-right symmetry of the Leibnitz
relations. Let us prove (2.14.2). The factor Xω(y,xω) is the reproducing kernel
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ΘY
n , and therefore (2.14.2) can be proved by checking that, for any f(x) in the

linear span of 〈x : 0 ≤ v ≤ ρ〉, one has∑
(−1)`(σ)f(x)∂σXσ(x,y) = f(y) .

Introducing an extra alphabet z, one needs a single check,

Xω(y, z) =
∑
σ

(−1)`(σ)Xω(x, z)∂σXσ(x,y) =
∑
σ

(−1)`(σ)Xωσ(x, z)Xσ(x,y) .

But this is the Cauchy formula

Xω(y, z) =
∑
σ

Xωσ(x, z)Xσ−1(y,x) .

Similarly, (2.14.4) is proved by checking the action on G(ω)(x, z). Thanks to
(2.9.6), one has

G(ω)(x, z)
∑

(−1)`(σ)πσG(σ)(x,y)xρ =
∑

(−1)`(σ)G(ωσ)(x, z)G(σ)(x,y)xρ

= Xω(y, z) .

On the other hand, Xω(y,xω)y−ρ = ΘG
n is a reproducing kernel with respect

to πω, and therefore, one has

G(ω)(x, z)Xω(y,xω) πω = G(ω)(y, z)yρ .

In final, the images of G(ω)(x, z) under the two sides of (2.14.4) are equal. QED
By specialisation of y, one obtains the following commutations :∑

(−1)`(σ)∂σXσ(x,0) = x01...n−1 ∂ω (2.14.5)∑
(−1)`(σ)xρG(σ)(x,1) πσ−1 = πω (1−x2) . . . (1−xn)n−1 . (2.14.6)

For example, for n = 3, one has

π1π2π1 (1−x2)(1−x3)2 =
{
−(x1−1)2(x2−1)π1π2π1
−x210G210π1π2π1

llllllll
QQQQQQQ

QQQQQQQ

{
x1(x1−1)(x2−1)π2π1

x210G110 π2π1

{
x2(x1−1)2π1π2
x210G200 π1π2

{
−x1x2(x1−1)π1
−x210G100 π1

TTTTTTTTTTTTTTT

{
−x1(x1x2−1)π2
−x210G010 π2

kkkkkkkkkkkk

kkkkkkkkkkkk

x2
1x2
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Given n, using on products of divided differences and rational functions in x
the double reversal

∂iP∂j . . . ∂kQ→ Qω∂n−k . . . P
ω∂n−i ,

one transforms (2.14.3) into

Xω(x,y) ∂ω =
∑
σ∈Sn

π̂σG(ωσω)(xω,y) . (2.14.7)

For example,

X321(x,y)∂321 = π̂1π̂2π̂3(1−y1x
−1
3 )(1−y1x

−1
2 )(1−y2x

−1
3 )+ π̂1π̂2(1−y1x

−1
3 )(1−y2x

−1
3 )

+ π̂2π̂1(1−y1x
−1
3 )(1−y1x

−1
2 ) + π̂1(1−y1y2x

−1
3 x−1

2 ) + π̂2(1−y1x
−1
3 ) + 1

= π̂1π̂2π̂1G(321)(xω,y) + π̂1π̂2G(312)(xω,y)
+ π̂2π̂1G(231)(xω,y) + π̂1G(132)(xω,y) + π̂2G(213)(xω,y) + 1 .

Notice that pushing the coefficients on the right in Xζ(0,xω) ∂ω, for any ζ ∈
Sn, can be obtained by expanding Xω(y,xω) in (2.14.2).

In fact, Xω(y,xω) may be thought as the generating function of a linear basis
of Pol(xn) as a Sym(xn)-free module. Hence Formula 2.14.2 implies that for any
function g(xn), one has

g(xωn) ∂ω =
∑
σ∈Sn

(−1)`(σ)∂σ
(
g(xn) ∂ωσ

)
. (2.14.8)

When restricting the action of g(xωn) ∂ω to functions having partial symmetries,
one reduces summation (2.14.8), as in the next case.

Corollary 2.14.2. Let m ≤ n, r = n−m, k ≥ 0. For any partition λ ≤ rm,
denote

∂λ =
(
∂m . . . ∂m+λ1−1

)
. . .
(
∂1 . . . ∂λm−1

)
.

Then the restriction of the action of Ykr(xω,y) ∂rm to Sym(m, r) is equal to

Ykr(xω,y) ∂rm =
∑
λ≤rm

(−1)|µ|∂λ Y0µr ,k−µr,0µr−1−µr ,k−µr−1,...,0µ1−µ2 ,k−µ1
(x,y) ,

(2.14.9)
denoting by µ the partition which is conjugate to [r−λm, . . . , r−λ1].

Proof. The operators Xω(xω,y)∂ω and Ykr(xω,y) ∂rm have the same action on
Sym(m, r), up to sign. Moreover, the permutations σ which are not minimal in
their coset (Sm×Sr)σ annihilate elements of Sym(m, r), and therefore disappear
from summation (2.14.8). QED
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For example, for n = 5,m = 2, writing 2 3 ··
1 ·· for (∂2∂3 . . . )(∂1 . . . ), one has

Y666(xω,y) 2 3 4
1 2 3 = 2 3 4

1 2 3 Y666 − 2 3 4
1 2 Y6605 + 2 3

1 2 Y66004

+ 2 3 4
1 Y6055 − 2 3

1 Y60504 − 2 3 4 Y0555 + 2
1 Y60044

+ 2 3 Y05504 − 2 Y05044 + Y00444 .

Formula 2.14.4 :∑
σ∈Sn

(−1)`(σ)πσ G(σ)(x,y) = Xω(y,xω)πωx−ρ

can be rewritten∑
σ∈Sn

(−1)`(σ)πσ

(
G(ω)(x,y)πωσ

)
= (−1)`(ω)xρωG(ω)(xω,y)πωx−ρ ,

and implies that, for any function g(xn), one has

∑
σ∈Sn

(−1)`(ωσ)πσ

(
g(xn)πωσ

)
= xρωg(xωn) πωx−ρ = g(xωn) π̂ω . (2.14.10)

Using, thanks to (2.6.4), that πσ = (−1)`(σ)xρω π̂ωσω ωx
−ρ, putting ζ = ωσω,

h = (xρg)ω, this last equation can be transformed into

∑
σ∈Sn

(−1)`(ωσ)π̂σ

(
h(xn)π̂ωσ

)
= h(xωn) π̂ω . (2.14.11)

Taking g(xn) = xλ = h(xn), with λ dominant, one obtains key polynomials by
commutation :

Theorem 2.14.3. Given an integer n and a partition λ ∈ Nn, then one has∑
σ∈Sn

(−1)`(σ)πωσ
(
Kλπσ

)
=

(
xρ+λ

)ω
πωx

−ρ (2.14.12)∑
σ∈Sn, σ min

(−1)`(σ)π̂ωσ K̂λσ = xλω π̂ω , (2.14.13)

the sum being limited, in the second expression, to the permutations minimum in
their coset modulo the stabilizer of λ.

For example, for λ = [3, 1, 0], one has

π2π1π2K310 − π1π2K130 − π2π1K301 + π1K103 + π2K031 −K013

= x025 π321/x
210 ,
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and for λ = [1, 0, 0], one has

π̂1π̂2π̂1 K̂100 − π̂1π̂2 K̂010 + π̂1K̂001 = x001 π̂321 .

Using (1.4.8), one rewrites (2.14.13) into the following commutation of πω with
a dominant monomial :

πω x
λ =

∑
σ∈Sn, σ min

K̂λσ(xω)πωσ , (2.14.14)

sum over all permutations σ which are of minimum length in their coset modulo
the stabilizer of λ.

For example,

π1π2π1 x
2
1 = x002π1π2π1 +

(
x020 + x011

)
π1π2 +

(
x200 + x110 + x101

)
π2

= K̂2(xω)π1π2π1 + K̂02(xω)π1π2 + K̂002(xω)π2 .

Taking in (2.14.10) g(xn) = Gλ(x,y), with λ dominant, one obtains again
Grothendieck polynomials by commutation :

Gλ(xω,y) π̂ω =
∑

σ∈Sn
(−1)`(σ)πσ−1ω

(
Gλ(x,y)πσ

)
. (2.14.15)

For example, for λ = [1, 1, 0], one has(
1− y1x

−1
2

) (
1− y1x

−1
3

)
π̂321 = (π2π1π2 − π1π2)

(
1− y1x

−1
1

) (
1− y1x

−1
2

)
+ (−π2π1 + π1)

(
1− y1x

−1
1

)
+ (π2 − 1)

= (π2π1π2 − π1π2)G110 + (−π2π1 + π1)G100 + (π2 − 1)G000 .

Thanks to the symmetry (1.4.8), one deduces from the preceding formula the
expression of the product of πω with a dominant Grothendieck polynomial in terms
of π̂σ:

πω G(λ(x,y) =
∑

σ∈Sn

(
Gλ(x,y)πσ

)ω
π̂ωσ−1 . (2.14.16)

For example, for n = 3, one has

π321G210(x,y) = G210(xω,y) π̂1π̂2π̂1 +G200(xω,y) π̂2π̂1 +G110(xω,y) π̂1π̂2

+G010(xω,y) π̂1 +G100(xω,y) π̂2 +G000(xω,y) .

The expression of πωGλ(x, y) can be reduced when λ has repeated parts, i.e.
when there exists i such that Gλ(x, y)πi = Gλ(x, y). Thus

π321G110(x,y) = G110(xω,y) π̂1π̂2π̂1 +G100(xω,y) π̂2π̂1 +G110(xω,y) π̂1π̂2

+G000(xω,y) π̂1 +G100(xω,y) π̂2 +G000(xω,y)

can be written, by right multiplication with π1, as

π321G110(x,y) = G110(xω,y) π̂1π̂2π1 +G100(xω,y) π̂2π1 +G000(xω,y) π1 .
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2.15 Cauchy formula for key polynomials
The usual Cauchy formula is the expansion of ∏i,j≤n(1−xiyj)−1 in terms of Schur
functions. We are going to see that “half” the Cauchy kernel ∏i+j≤n+1(1−xiyj)−1

expands in terms of key polynomials.
Notice first that

1
(1− x1y1)(1− x1x2y1y2) · · · (1− x1 · · ·xny1 · · · yn) =

∑
λ

xλyλ

is the generating function of dominant monomials xλyλ in x and y. Its image
under the product of the two symmetrizers πx

ω π
y
ω transforms this equality into∏

i,j≤n
(1− xiyj)−1 =

∑
λ

Sλ(x)Sλ(y) .

We can use the same starting point, but symmetrize partially in x and y. Let
Ξn := ∑

σ∈Sn π̂
x
σ π

y
σω. Filtering the set of permutations according to the position

of n, one gets the following factorization (we refer to [37] for more details).

Lemma 2.15.1. We have

Ξn = Ξn−1

(
n−1∑
i=0

π̂x[n−1:i] π
y
[n−1:n−1−i]

)
, (2.15.1)

where π[n−1:i] := πn−1 πn−2 · · · πn−i.

For example, the element Ξ4 factorizes as

Ξ4 = Ξ3 (πy3πy2πy1 + π̂x3π
y
3π

y
2 + π̂x3 π̂

x
2π

y
3 + π̂x3 π̂

x
2 π̂

x
1 ) .

From the definition of key polynomials, the image under Ξn of
∑
λ x

λyλ is equal
to a sum of products of Kv(y), K̂u(x). More precisely∑

λ

xλyλ Ξn =
∑
v

Kv(y)K̂vω(x) .

Using no more, but repeatedly, that

f(1− xig)−1πx
i = f(1− xig)−1(1− xi+1g)−1

when f, g belong to Sym(xi, xi+1), one checks that the image of (1− x1y1)−1(1−
x1x2y1y2)−1 · · · under Ξn is equal to ∏i+j≤n+1(1− xiyj)−1 [37, Prop 3]. Hence the
following kernel.

Theorem 2.15.2. For every n one has∏
i+j≤n+1

(1− xiyj)−1 =
∑
v∈Nn

Kv(y)K̂vω(x) .
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For example, for n = 2, one has

1
(1− x1y1)(1− x1x2y1y2)(πy1+π̂x1 ) = 1

(1− x1y1)(1− x1y2)+ y1x2

(1− x1y1)(1− x2y1)

= 1
(1− x1y1)(1− x1y2)(1− x2y1) = 1 +

∑
i≤j

Kij(y)xji +
∑
j>i

yjiK̂ij(x) ,

the key polynomialsKij(y) being Schur functions in y1, y2, while K̂ij(x) = Kij(x)−
xji, when i ≤ j.
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2.16 π and π̂-reproducing kernels
We have shown in (2.9.2) a reproducing property of the operator f → (f , ΘG

n )π.
Let us rewrite it without using the scalar product ( , )π. Let

π̂ΘG
n =

∑
σ∈Sn

π̂σ−1 G(σ)(z,x) (2.16.1)

πΘG
n =

∑
σ∈Sn

πσ−1 Ĝ(σ)(z,xω) (2.16.2)

For example, for n = 3, one has

π̂ΘG
3 = 1 + π̂1

(
1− x1

z1

)
+ π̂2

(
1− x1x2

z1z2

)
+ π̂1π̂2

(
1− x1

z1

)(
1− x2

z1

)
+ π̂2π̂1

(
1− x1

z1

)(
1− x1

z2

)
+ π̂1π̂2π̂1

(
1− x1

z1

)(
1− x2

z1

)(
1− x1

z2

)
.

With the alphabets z,xω,y instead of x,y, z, Formula 2.9.4 reads

ΘG
n =

∑
v≤ρ

Gv(y,xω)Ĝρ−v(z,xω) .

Indexing by permutations, using the symmetry G(σ)(x, y∨)♣ = G(σ−1)(y,xω) given
in (2.2.4), and the conjugation ♣πi♣ = πn−i, one rewrites this last formula as

ΘG
n (z,y) =

∑
v≤ρ

ΘG
n (x,y)πσ−1 Ĝ(σ)(z,xω) (2.16.3)

= ΘG
n (x,y) πΘG

n , (2.16.4)

In other words, for any v : [0, . . . , 0] ≤ v ≤ [0, . . . , n−1] = ρω, one has the
reproducing property xv πΘG

n = zv. Equivalently, (2.16.4) rewrites as

Ĝρ(x,y) πΘG
n = Ĝρ(z,y) . (2.16.5)

A similar computation shows that for 0 ≤ v ≤ ρ, one has x−v π̂ΘG
n = z−v, or,

equivalently,
Gρ(x,y) π̂ΘG

n = Gρ(z,y) . (2.16.6)

These two sets of monomials are bases of Pol(xn) as a free Sym(xn)-module,
and therefore the reproducing property extends to the full space, after identifying
Sym(xn) and Sym(zn). In final, one has

Proposition 2.16.1. For any f ∈ Pol(xn) one has

f(xn)πΘG
n ≡ f(zn) ≡ f(xn)π̂ΘG

n , (2.16.7)

modulo Sym(xn) = Sym(zn).
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Notice that the two operators πΘG
n and π̂ΘG

n are not equal. Thus

x2
π̂ΘG

2 = x2

(
1 + π̂1(1− x1

z1
)
)

= x1x2z
−1
1 ,

x2
πΘG

2 = x2

(
z2

x2
+ π1(1− z2

x2
)
)

= z2 ,

evaluating modulo Sym(x2) = Sym(z2) being necessary to insure equality.
Notice also that the two formulas xv πΘG

n = zv for 0 ≤ v ≤ ρω and x−v π̂ΘG
n =

z−v for 0 ≤ v ≤ ρ show that both operators πΘG
n and π̂ΘG

n take values inSym(xn)⊗
Pol(zn).

In the case n = 2, one can rewrite π̂ΘG
2 = π1 − ∂1

x1x2
z1

, πΘG
2 = π1 − ∂1z2. This

prompts us to define, for any i,

θ̂i = πi − ∂i
xixi+1

zi
& θi = πi − ∂izi+1 .

These operators do not satisfy the braid relations if the parameters zi are not all
equal. Let us show however, that one can use them to factorize π̂ΘG

n and πΘG
n .

The action of θ2θ1θ2 on Ĝ210(x,y) is such that each step is of the type (1 −
xi+1y

−1
j )fθi = (1 − zi+1y

−1
j )f , with f symmetrical in xi, xi+1. Therefore one has

Ĝ210(x,y)θ2θ1θ2 = Ĝ210(z,y), and, more generally,

Ĝρ(x,y) (θn−1)(θn−2θn−1) . . . (θ1 . . . θn−1) = Ĝρ(z,y) .

One checks similarly that

Gρ(x,y) (θ̂1)(θ̂2θ̂1) . . . (θ̂n−1 . . . θ̂1) = Gρ(z,y) .

Hence, these two products of operators have the same action on Pol(xn) than πΘG
n

and π̂ΘG
n respectively, and one has the following proposition.

Proposition 2.16.2. Given n, one has the factorizations

πΘG
n = (θn−1)(θn−2θn−1) . . . (θ1 . . . θn−1) (2.16.8)

π̂ΘG
n = (θ̂1)(θ̂2θ̂1) . . . (θ̂n−1 . . . θ̂1) . (2.16.9)
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2.17 Decompositions in the affine Hecke algebra
The elementary constituents of all the operators that we have used so far in type A
are divided differences, together with “multiplication by elements of Rat(x)”, the
ring of rational functions in x. One could as well take permutations and elements of
Rat(x). Indeed, the algebras generated by {∂i, i = 1 . . . n−}∪Rat(xn) , or {si, i =
1 . . . n−}∪Rat(xn) , or {πi, i = 1 . . . n−}∪Rat(xn), or {Ti, i = 1 . . . n−}∪Rat(xn)
all coincide. With M.P. Schützenberger, we call it algebra of divided differences,
Bourbaki prefers produit croisé de l’algèbre du groupe symétrique et de Rat(x),
Kostant and Kumar use the expression smash product, and finally, the terminology
affine Hecke algebra for type A puts the emphasis on the elements Ti.

Every element of this algebra is uniquely written as a sum ∑
σ∈Sn ∂σ R

∂
σ,∑

σ∈Sn σ R
s
σ,
∑
σ∈Sn πσR

π
σ,
∑
σ∈Sn π̂σR

π̂
σ, or

∑
σ∈Sn TσR

T
σ respectively, choosing to

put the coefficients on the right. Symmetry properties like (1.4.8) allow to pass
from the right module structure to the left one.

We show in (3.3.1), as a consequence of the multivariate Newton interpolation
formula, how to pass from divided differences to permutations using Schubert
polynomials, or conversely in (3.3.3). In fact, this type of expansions uses only
the obvious fact that the kernel ΘY (x,y) vanish for all specializations y = xζ ,
except when ζ is the identity. Instead of ΘY (x,y), one could as well use as a
kernel Yρ(x,y), Gρ(x,y), or Ĝρ(x,y), the non vanishing being obtained for the
identity or for the maximal permutation according to the choice of the kernel.

More generally, given any f(xn) ∈ Pol(xn), let Θf (x,y) = f(xn)ΘY
n . Then for

any element ∇ = ∑
σ σR

s
σ, one has Θf (x,y)∇ = ∑

σ Θf (xσ,y)Rs
σ, and therefore

the coefficients are such that

Rs
σ = Θf (x,y)σ−1∇

∣∣∣∣
y=x

1
f(xn)∆(xn) .

Similar expressions hold for the other coefficients R∂
σ, R

π
σ, R

π̂
σ.

As a matter of fact, some of the formulas in preceding sections may be inter-
preted as identities in the affine Hecke algebra. For example, taking z = xζ in
(2.16.7), one obtains the expansion of any permutation in the basis {πσ} or {π̂σ}.

Let us summarize the main expansions, that will be needed later, of any ele-
ment ∇ of the affine Hecke algebra.

∇ =
∑
σ∈Sn

∂σ

(
Xσ−1(x,y)∇

∣∣∣∣
y=x

)
(2.17.1)

=
∑
σ∈Sn

σ

 ∏
1≤i<≤j≤n

(xi−yj)σ
−1∇

∣∣∣∣
y=x

 (2.17.2)

=
∑
σ∈Sn

πσ

(
Ĝ(σ−1)(x,yω)∇

∣∣∣∣
y=x

)
(2.17.3)

=
∑
σ∈Sn

π̂σ

(
G(σ−1)(x,y)∇

∣∣∣∣
y=x

)
. (2.17.4)
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For example,

s1s2 =
∑
σ∈S3

π̂σ−1 Gσ(xs1s2 ,y)
∣∣∣
y=x

= 1 + π̂2
(x3x1 − y1y2)

x3x1
+ π̂1

(
1− y1

x3

)

+ π̂2π̂1

(
1− y1

x1

)(
1− y1

x3

)
+ π̂1π̂2

(
1− y1

x3

)(
1− y2

x3

)
+ π̂1π̂2π̂1

(
1− y1

x3

)(
1− y2

x3

)(
1− y1

x1

)∣∣∣∣
y=x

= 1 + π̂2

(
1− x2

x3

)
+ π̂1

(
1− x1

x3

)
+ π̂1π̂2

(
1− x1

x3

)(
1− x2

x3

)
.

Specific cases of the above expansions appear in the literature. Kostant and
Kumar [71] consider the transition matrices {σ} ↔ {∂σ}. Berline and Vergne
[6], Arabia [1], Kostant and Kumar [72] consider the transition matrices {σ} ↔
{πσ}. Kumar shows in [77] how to relate the entries of these last matrices (which
are specializations of Grothendieck polynomials) to the singularities of Schubert
varieties.

Notice that the above expansions are obtained by specializing polynomials in
x,y. These polynomials are not unique. For example, instead of (2.17.3), one
could use as well

∇ =
∑
σ∈Sn

πσ

(
G(ω)(x,y)π̂ωσ−1∇

∣∣∣∣
y=x

)
.

Let us mention in final the interest of expressing the basis of the usual Hecke
algebra (with normalization (Ti−t1)(Ti−t2) = 0) in terms of the basis {π̂σ}. For
example, for n = 3, one has

T1 = π̂1
(x2t1 + x1t2)

x2
+ t1 & T2 = π̂2

(x3t1 + x2t2)
x3

+ t1

T1T2 = π̂1π̂2
(x3t1+x2t2)(x1t2+x3t1)

x32 + π̂2
(x3t1+x2t2)t1

x3
+ π̂1

(−x1t22+x3t12)
x3

+ t1
2

T2T1 = π̂2π̂1
(x2t1+x1t2)(x1t2+x3t1)

x3x2
+ π̂2

(−x1t22+x3t12)
x3

+ π̂1
t1(x2t1+x1t2)

x2
+ t1

2

T1T2T1 = π̂1π̂2π̂1
(x3t1 + x2t2) (x1t2 + x3t1) (x2t1 + x1t2)

x2x32

+ π̂1π̂2
(x3t1 + x2t2) t1 (x1t2 + x3t1)

x32 + π̂2π̂1
(x2t1 + x1t2) (x1t2 + x3t1) t1

x3x2

+ π̂2
(−x1t2

2 + x3t1
2) t1

x3
+ π̂1

(−x1t2
2 + x3t1

2) t1
x3

+ t31 .

and these expansions specialize to the expression of permutations in the basis {π̂σ}
for t1 = 1, t2 = −1, the coefficients being then specializations of Grothendieck
polynomials.
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Chapter 3
Properties of Schubert polynomials

3.1 Schubert by vanishing properties
To have linear bases, we could have considered only the special case where y = 0
in the case of Schubert polynomials, and y = 1 in the case of Grothendieck poly-
nomials. But doing so, we would lose many interesting specialization properties
that these polynomials possess, and that can be used to characterize them easily,
as we are going to see in this section for Schubert polynomials.

Given a permutation σ (considered as an element of S∞, whose code is v), let
〈v〉 = yσ = [yσ1 , . . . , yσn ].

We call 〈v〉 a spectral vector1 and write f
(
〈v〉
)
for the specialisation of f ∈

Pol(xn,y) in x1 = yσ1 , . . . , xn = yσn .

Theorem 3.1.1. Given v ∈ Nn, and σ such that v = (̧σ), then the Schubert
polynomial Yv(x,y) is the only polynomial in the space of degree ≤ |v| in xn such
that

Yv(〈u〉,y) = 0 , u 6= v, |u| ≤ |v| (3.1.1)
Yv
(
〈v〉,y

)
= e(v) :=

∏
i<j, σi>σj

(yσi − yσj) (3.1.2)

The specialization e(v) is called the inversion polynomial of σ. We shall also
denote it e(σ) when no ambiguity is to be feared.
Proof. First, it is straightforward that the dominant Schubert polynomials, which
are products of linear factors, satisfy both (3.1.1, 3.1.2).

1 We use the same term as for the Yang-Baxter equation, because these two uses are related
in several ways. Notice that xs1 = [x2, x1, x3, . . .], xs1s2 = [x2, x3, x1, . . .] = [xσ1 , xσ2 , xσ3 ],
with σ = s1s2 = [2, 3, 1]. We are acting on the components of the vector [x1, x2, . . .]. On the
other hand, the action on the right on exponents of monomials: xσ1 = x[100]s1s2 = x001 = x3,
xσ2 = x[010]s1s2 = x100 = x1, xσ3 = x[001]s1s2 = x010 = x2 involves the inverse permutation
[3, 1, 2].

91



92 Chapter 3 — Properties of Schubert polynomials

Therefore, we have just to check the behaviour of these conditions with respect
to divided differences.

Lemma 3.1.2. Let v ∈ Nn, σ = 〈v〉, i be such that vi > vi+1. Suppose that Yv
satisfies (3.1.1, 3.1.2). Then Yv ∂i also satisfies (3.1.1, 3.1.2) for the index
v′ = [v1, . . . , vi−1, vi+1, vi−1, vi+2, . . . , vn], which is the code of σsi.

Proof. Write Yv = f(xi, xi+1) − xi+1g(xi, xi+1), with f, g ∈ Sym(xi, xi+1). Let us
check that g is the polynomial defined by (3.1.1, 3.1.2) for the index index v′.

If Yv vanishes in [xi, xi+1] = [a, b] and [xi, xi+1] = [b, a], with a 6= b, then g
inherits these vanishings: g(a, b) = g(b, a) = 0. On the other hand, in the points
〈v〉 and 〈v′〉, one has

Yv
(
〈v〉,y

)
= e(v) = f(yσi , yσi+1)− yσi+1g(yσi , yσi+1)

Yv
(
〈v′〉,y

)
= 0 = f(yσi , yσi+1)− yσig(yσi , yσi+1) .

Therefore g(yσi+1 , yσi) = e(v)
(
yσi − yσi+1

)−1
is the inversion polynomial of σsi,

and g satisfies the conditions (3.1.1, 3.1.2). This proves the lemma. But Yv∂i =
−xi+1g∂i = g, and therefore g is the Schubert polynomial of index v′. This proves
the theorem. QED

For example,

Y2010(x,y) = (x1 − y1)(x1 − y2)(x2 + x3 − y1 − y2)

is characterized, among all polynomials in x1, x2, x3, x4 of degree no more than 3,
by the vanishing in all x4 = yζ , ζ ∈ S4, `(ζ) ≤ 3, ζ 6= σ = [3, 1, 4, 2], and by the
normalization

Y2010(yσ,y) = (y3 − y1)(y3 − y2)(y1 + y4 − y1 − y2) = e([2, 0, 1, 0]) .

A consequence of the theorem is the following vanishing property (which evi-
dent only for dominant polynomials), corresponding to 〈0〉 = [y1, y2, . . . , yn].

Corollary 3.1.3. For any v 6= [0, . . . , 0], one has Yv(y,y) = 0.

3.2 Multivariate interpolation
We have already used several times the vanishing in x = y = 〈0〉, this property is
better understood as a special case of (3.1.1).

Notice that the polynomials Yk = (x1 − y1) · · · (x1 − yk) are the interpolation
polynomials that Newton used in his famous interpolation formula. The next the-
orem states that the Schubert polynomials are precisely the universal coefficients
in the generalization of Newton’s formula to several variables (this theorem could
be deduced from the Cauchy formula that we gave in Th. 2.10.2.
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Given v ∈ Nn, let ∂v be any product of divided differences2 such that Yv∂v =
Y0...0. It is easy to see that for any u 6= v, then Yu∂

v is either 0 or a Schubert
polynomial of index 6= [0, . . . , 0].

Theorem 3.2.1 (MultivariateNewton). For any f ∈ Pol(x,y), one has the ex-
pansion

f(x) =
∑
v∈Nn

f(x)∂v
∣∣∣
x=y

Yv(x,y) . (3.2.1)

Proof. Test the statement on the Schubert basis. In that case, f(x)∂v is either 0 or
a Schubert polynomial, whose specialization in x = y (i.e. in the point 〈0 . . . 0〉)
is 6= 0 (and equal to 1) iff f(x) = Yv. QED

The preceding theorem gives the expansion of any polynomial in the Schubert
basis, the coefficients being all the non-zero images under divided differences. In
particular, one can take the key polynomials, or the Grothendieck polynomials3.
For example, the polynomial K021 has only 6 non-zero images under divided dif-
ferences, the images under 1, ∂2, ∂3, ∂2∂3, ∂3∂2, ∂3∂2∂2. Writing the coefficients in
y as key polynomials, one has

K021(x) = K0(y)Y0,2,1 +K0,1(y)Y0,2 +K0,1,1(y)Y0,1

+K0,0,1(y)Y0,1,1 +K0,2(y)Y0,0,1 +K0,2,1(y)Y0 .

In the case where f is a polynomial in x1 (and y) only, the only non-zero
divided differences are f∂1, f∂1∂2, f∂1∂2∂3, . . ., and the theorem is the original
theorem of Newton, apart from notations :

f(x1) = f(y1) + f∂1 Y1 + f∂1∂2 Y2 + f∂1∂2∂3 Y3 + · · · (3.2.2)
= f(y1) + f∂1(x1 − y1) + f∂1∂2(x1 − y1)(x1 − y2) + · · ·

The interpolation of functions f(x1, x2) of two variables reads

f(x1, x2) = f(y1, y2)Y00 + f∂2Y01 + f∂1Y10 + f∂2∂3Y02 + f∂2∂1Y11

+ f∂1∂2Y20 + f∂2∂3∂4Y03 + f∂2∂3∂1Y12 + f∂2∂1∂2Y21 + f∂1∂2∂3Y30 + . . .

In the case that f(x1, x2) is symmetrical, then f∂1 = 0, and only the terms
Yi,j, i ≤ j, which are those symmetrical in x1, x2, survive in the preceding formula:

f(x1, x2) = f(y1, y2)Y00 + f∂2Y01 + f∂2∂3Y02 + f∂2∂1Y11 + f∂2∂3∂4Y03

+ f∂2∂3∂1Y12 + f∂2∂3∂4∂5Y04 + f∂2∂3∂4∂1Y13 + f∂2∂3∂1∂2Y22 + . . .

2Take any reduced decomposition sisj · · · sk of σ, with σ of code v. Then ∂k · · · ∂j∂i is such
product.

3after some change of variables, like xi → 1/xi or xi → 1/(1−xi), to transform Grothendieck
polynomials into polynomials in x, and not in x−1

1 , x−1
2 , . . . .
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Interpolation methods can also be used in the theory of symmetric polynomials.
If f(xn) belongs to Sym(xn), then only anti-dominant indices occur in the RHS
of (3.2.1). In other words, Newton’s interpolation give an expansion of symmetric
polynomials in terms of Graßmannian Schubert polynomials.

For example, the Schur function s32(x3), which is equal to Y023(x,0), has the
following expansion in terms of Graßmannian Schubert polynomials (writing YuYv
for Yu(y,0)Yv(x,y)) :

s32(x3) = Y023(x,0) = Y000Y023 − Y00001Y022 − Y001Y013 + Y00101Y012

+ Y011Y003 − Y01101Y002 − Y00201Y011 + Y01201Y001 − Y02201Y000 .

Such expansions have been considered by Chen and Louck [17] and by Olshan-
ski and Okounkov [137], in the case where y = {0, 1, 2, . . .} or y = {q0, q1, q2, . . .}
(in which case the polynomials are called factorial Schur functions).

Newton interpolation is compatible with symmetry by blocks. Indeed, let
f(x) ∈ Sym(m,n, p, . . . ), i.e. f(x) is a function which is symmetrical in x1, . . . , xm,
symmetrical in xm+1, . . . , xm+n, &c. Then f(x) = ∑

cvYv(x,y), the set of indices
v being restricted to those such that v1 ≤ · · · ≤ vm, vm+1 ≤ · · · ≤ vm+n, &c.,
i.e. to those v for which Yv(x,y) belongs to Sym(m,n, p, . . . ). Otherwise, there
would exist a divided difference ∂i annihilating f(x) and not∑ cvYv. For example,
if f ∈ Sym(3, 4, 2), then the interpolation

f(x) =
∑

f(x)∂v
∣∣∣
x=y

Yv(x,y)

involves only the v ∈ N9 such that v1 ≤ v2 ≤ v3, v4 ≤ v5 ≤ v6 ≤ v7, v8 ≤ v9.

3.3 Permutations versus divided differences
Fashion has changed since Newton, and it may seem of little interest to interpolate
functions by polynomials. In fact, classical interpolation theory may be thought as
a way of producing algebraic identities involving polynomials or rational functions
in several variables. In this interpretation, it still begs the right to exist, even to
expand. Moreover, one can disguise interpolation under a more sophisticated
terminology.

For example, consider the problem of expressing a permutation σ ∈ Sn, con-
sidered as an operator on Pol(xn), in terms of divided differences. The image of
(3.2.1) under σ is

f(xσ) =
∑
v∈Nn

f(x)∂v
∣∣∣
x=y

Yv(xσ,y) .

Putting y = x gives the following property obtained by Kostant and Kumar [71]
in the more general context of Kac-Moody groups (they call the algebra of divided
differences the nil Hecke ring).
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Proposition 3.3.1. Any permutation σ ∈ Sn expands, in terms of divided dif-
ferences, as

σ =
∑
v≤ρ

∂v Yv(xσ,x) . (3.3.1)

For example,

s2s1 = 1 + ∂2(x3 − x1) + ∂1(x2 − x1) + ∂2∂1(x3 − x1)(x2 − x1) ,

s2s1s3 = 1 + ∂1(x2 − x1) + ∂2(x4 − x1) + ∂3(x4 − x3) + ∂2∂3(x4 − x3)(x4 − x1)
+∂1∂3(x2−x1)(x4−x3)+∂2∂1(x2−x1)(x4−x1)+∂2∂1∂3(x2−x1)(x4−x1)(x4−x3) .

Conversely, one may express divided differences in terms of permutations, and
more generally, any linear combination with rational coefficients in x.
Lemma 3.3.2. Let n be an integer, ΘY (x,y) := ∏

1≤i<j≤n(yi− xj) as before, and
~ = ∑

σ∈Sn σ hσ be a sum with rational coefficients hσ in x. Then

ΘY (x,y) ~
∣∣∣
y=xσ

= (−1)`(σ) hσ
∏

1≤i<j≤n
(xi − xj) . (3.3.2)

Proof. We have already used that ΘY (x,xζ) vanishes for all permutations ζ dif-
ferent from the identity. Therefore ΘY (yσ,yζ) vanishes except for ζ = σ, and the
sum ΘY (x,y) ~ = ∑ΘY (xσ,y)hσ reduces to a single term when specializing y to
a permutation of x. QED

We can take now ~ = ∂τ . Then

ΘY (x,y)∂τ = Xω(xω,y)∂τ = Xω(x,y)ω∂τω ω
= (−1)`(τ)Xω(x,y) ∂ωτ−1ωω = (−1)`(τ)Xτ−1ω(xω,y) .

In final, one has the following expression of ∂τ [94, Prop. 10.2.5] :
Proposition 3.3.3. Let τ ∈ Sn. Let ∂τ = ∑

ζ cτζ be the expression of ∂τ in terms
of permutations. Then

(−1)`(ζ) cτζ = (−1)`(ωτ) Xτ−1ω(xωζ ,x) 1
∆(x) = Xωτ (x,xωζ)

1
∆(x) . (3.3.3)

Notice that, apart from signs and the factor ∆(x), the entries of the transition
matrix from permutations to divided differences, and its inverse, are the same.

Here are the two transition matrices for n = 3, to be read by rows, coding
x1 − x2 = 12, x1 − x3 = 13, x2 − x3 = 23 :

1 ∂2 ∂1 ∂1∂2 ∂2∂1 ∂1∂2∂1

1 1 0 0 0 0 0
s2 1 23 0 0 0 0
s1 1 0 12 0 0 0
s2s1 1 23 13 0 23 · 13 0
s1s2 1 13 12 13 · 12 0 0
s1s2s1 1 13 13 12 · 13 13 · 23 12 · 13 · 23
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1 s2 s1 s1s2 s2s1 s1s2s1

∆ 12 · 13 · 23 0 0 0 0 0
∂2∆ −12 · 13 12 · 13 0 0 0 0
∂1∆ −13 · 23 0 13 · 23 0 0 0
∂2∂1∆ 13 −13 −23 0 23 0
∂1∂2∆ 13 −12 −13 12 0 0
∂1∂2∂3∆ −1 1 1 −1 −1 1

Pairs of permutations τ, σ such that the specialisationXτ (xσ,x) is not a divisor
of the Vandermonde correspond singularities of Schubert varieties. There are only
two singularities when n = 4. One of them occurs in the expansion of ∂2∂3∂1∂2,
which involves the specializations of X2143 = (x1−x2)(x1 +x2 + y3− y1− y2− y3),
among which one finds (x1 − x4)2.

The full expansion of ∂2∂3∂1∂2 is

(1− s2)
(

x1 − x4

(x3 − x4)(x2 − x4)(x2 − x3)(−x3 + x1)(x1 − x2)

−s1
1

(x3−x4)(x2−x3)(−x3 + x1)(x1−x2)
−s3

1
(x3−x4)(x2−x4)(x2−x3)(x1−x2)

+ s3s2
1

(x3−x4)(x2−x4)(x2−x3)(x1−x3) + s1s2
1

(x2−x4)(x2−x3)(x1−x3)(x1−x2)

+ s1s3
1

(x3−x4)(x2−x3)(x1−x4)(x1−x2)
−s1s3s2

1
(x2−x4)(x2−x3)(x1−x4)(−x3 + x1)

)

The other singularity, when n = 4, occurs for ∂3∂2∂1∂2∂3, which requires spe-
cializing X1324 = x1 + x2 − y1 − y2 :

∂3∂2∂1∂2∂3 ∆ = (1− s1)(1− s3)
(

(x1 +x2−x3−x4)− s2(x1−x4) + s2s3(x1−x3)

+ s2s1(x2 − x4)− s2s1s3(x2 − x3)
)
.

On could obtain the expansion of a reduced product ∂i · · · ∂j by writing it
as (1 − si)(xi − xi+1)−1 · · · (1 − sj)(xj − xj+1)−1 and enumerating all subwords
of si · · · sj. This is the method followed by Kostant and Kumar [71]. We prefer
relating the coefficients to Schubert polynomials, in particular because the number
of subwords of a reduced decomposition of a permutation σ is far greater than the
number of permutations in the interval [1, σ].

Since the coefficients cτζ in (3.3.3) must vanish when ζ does not belong to the
interval [1, τ ], one obtains the following characterization of the Ehresmann-Bruhat
by vanishing properties of Schubert polynomials, which generalizes (3.1.1).

Proposition 3.3.4. Given n and two permutations σ, ζ ∈ Sn, then Xσ(xζ ,x) 6= 0
if and only if σ ≤ ζ with respect to the Ehresmann-Bruhat order.
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Graßmannian Schubert polynomials Yv : v ∈ Nn, v = v ↑ are symmetrical in
x1, . . . , xn. One does not need to specialize them in all permutations of y1, y2, . . .,
but, by symmetry, only in 〈u〉 = [yσ1 , . . . , yσn ] with σ of code u0 . . . 0 such that
u = u↑. In that case, the last proposition becomes :

Corollary 3.3.5. Let u, v ∈ Nn be anti-dominant. Then Yv(〈u〉,y) 6= 0 if and
only if v ≤ u (componentwise).

This property is given by Okounkov [133] in the case where y = {0, 1, 2, . . .}.

3.4 Wronskian of symmetric functions
Given a positive integer r, and r functions fi of a single variable, the determinant
|fi(xj| is divisible by the Vandermonde in x1, x2, . . . , and the quotient may be
thought as a discrete analogue of the Wronskian [94, Prop. 9.3.1].

Writing fi(xj) = fi(x1)s1 . . . sj−1, and using (3.3.1), one sees that∣∣∣fi(xj)∣∣∣
i,j=1,...,r

∏
r≥j>i≥1

(xj − xi)−1 =
∣∣∣fix1 ∂1 . . . ∂j−1

∣∣∣
i,j=1,...,r

.

The same formula (3.3.1) may be applied to symmetric functions, replacing
the integer r by a partition. Let λ ∈ Nn be a partition. To a family of symmetric
functions f1(xn), f2(xn), . . . of cardinality the number of partitions contained in
λ, we shall associate a Wronskian Wλ(fi).

For each µ ⊆ λ, let σµ be the Graßmannian permutation of code µ↑. Thanks
to (3.3.1), every symmetric function f(xn) satisfies

f
(
xσµ1 , . . . , xσ

µ
n

)
= f(xn) + · · ·+ f∂µ↑ e (σµ) .

Therefore, a determinant
∣∣∣fi (xσµn )∣∣∣ may be transformed, by multiplication by a

unitriangular matrix, into the determinant
∣∣∣fi(xn)∂

µ↑ e (σµ)
∣∣∣.

Definition 3.4.1. Given a partition λ ∈ Nn, and a family of symmetric func-
tions fi(xn) of cardinality the number N of partitions contained in λ, then the
Wronskian is

Wλ(fi(xn)) =
∣∣∣fi∂µ↑∣∣∣i=1...N

µ⊆λ
.

The preceding analysis has shown that the Wronskian is equal to∣∣∣fi (xσµn )∣∣∣ 1∏
µ⊆λ e(σµ) .

For example, let n = 4, λ = [3, 1, 0, 0]. Then the family {µ ↑}, as well as the
inversion polynomials e(σµ), are displayed on the next figure (writing ji instead
of xj−xi). The family {∂µ↑} is the set of paths from the origin.
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0000 ∅

0001 54

0011 43,53 0002 64,65

0012 43,63,65 0003 74,75,76

0013 43,73,75,76

∂4

∂3 ∂5

∂6∂3∂5

∂6 ∂3

In the case where the family {fi(xn)} is the set of Schur functions {sµ(xn) :
µ ⊆ λ}, the Wronskian is unitriangular, and thus its determinant is equal to 1.

In the case of a rectangular partition λ ⊆ rn, the sets {σµ(xn)} are all the
subsets of cardinality n of {x1, . . . , xn+r}. Given any f ∈ Sym(xn), and i :
1 ≤ i ≤ n+r−1, then the set {fµ↑} is such that, either fµ↑ and fµ↑∂i occur
simultaneously, or fµ↑∂i = 0. Thanks to the Leibnitz formula, this forces the
Wronskian Wrn(f1, f2, . . . ) to be annihilated by all ∂i, i = 1, . . . , n+r−1. In other
words, the Wronskian is a symmetric function when λ is a rectangular partition.
Moreover, any inversion (j, i), n+r ≥ j > i ≥ 1, occurs

(
n+r−2
n−1

)
times in the set of

Graßmannian permutations {σµ}.
In summary, one has the following lemma.

Lemma 3.4.2. Let n, r be two positive integers, let f1, . . . , fN , with N =
(
n+r
n

)
,

belong to Sym(xn+r). Then

1∏
n+r≥j>i≥1(xj−xi)(

n+r−2
n−1 )

∣∣∣∣fi(X)
∣∣∣∣ i=1...N
X⊂{x1,...,xn+r}

= Wrn(f1, . . . , fN)

is a symmetric function of x1, . . . , xn+r.
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For example, for n = r = 2, the Wronskian

W22
(
Y0(x,0), Y01(x,0), Y11(x,0), Y03(x,0), Y23(x,0), Y34(x,0)

)

=

1 ∂2 ∂2∂1 ∂2∂3 ∂2∂3∂1 ∂2∂3∂1∂2

Y0 Y0 0 0 0 0 0
Y01 Y01 Y0 0 0 0 0
Y11 Y11 Y1 Y0 0 0 0
Y03 Y03 Y002 0 Y0001 0 0
Y23 Y23 Y202 Y012 Y2001 Y0101 Y0001

Y35 Y35 Y304 Y024 Y3003 Y0203 Y0013

is equal to
Y0001

(
Y0101Y0013 − Y0203Y0001

)
= Y 2

0001Y0113 .
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3.5 Yang-Baxter and Schubert
One can degenerate Yang-Baxter bases of Hecke algebras into bases of the algebra
of divided differences. However, instead of taking products of factors of the type
∂i+1/c, let us take factors 1+c∂i. Accordingly, given a spectral vector [y1, . . . , yn],
one defines recursively a Yang-Baxter basis f∂

σ, starting from 1 for the identity
permutation, by

f∂
σsi

= f∂
σ

(
1 + ∂i (yσi+1 − yσi)

)
for σi < σi+1 . (3.5.1)

For example,

f∂
321 = (1 + ∂1(y2−y1))(1 + ∂2(y3−y1))(1 + ∂1(y3−y2))

= 1 + ∂1(y3−y1) + ∂2(y3−y1) + ∂1∂2(y2−y1)(y3−y1)
+ ∂2∂1(y3−y2)(y3−y1) + ∂1∂2∂2(y2−y1)(y3−y1)(y3−y2)

One remarks that the coefficients are the same as in the expression of σ =
[3, 2, 1] in terms of divided differences.

The following proposition shows that this property is true in general, and that
the coefficients are still specialisations of Schubert polynomials.

Theorem 3.5.1. The matrix of change of basis between {f∂
σ} and {∂σ∆(y)}, and

its inverse, have entries which are specializations of Schubert polynomials :

f∂
σ =

∑
ν≤σ

∂ν Xν(yσ,y) , (3.5.2)

∂ν ∆(y) =
∑

f∂
σXων(y,yωσ) . (3.5.3)

Proof. Let σ and i be such that `(σ) < `(σsi). Suppose known the expansion

f∂
σ =

∑
ν

∂ν Xν(yσ,y) + ∂νsi Xνsi(yσ,y) ,

with ν : `(ν) < `(νsi). Then its product by 1+(yσi+1−yσi)∂i is∑
ν

∂ν Xν(yσ,y) + ∂νsi
(
Xνsi(yσ,y) +Xν(yσ,y)(yσi+1−yσi)

)
,

and the identities

Xν(yσsi ,y) & Xνsi(yσsi ,y) = Xνsi(yσ,y) +Xν(yσ,y)(yσi+1−yσi)

give a similar expansion for Yσsi . QED
Notice that to expand products of factors 1 + ∂i(xi+1 − xi), one has used the

Leibnitz relations while in the present case the coefficients (in y) commute with
the operators acting on x.

The analogy between Yang-Baxter elements and permutations can be materi-
alised by acting on a proper element, as shows the following proposition.
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Proposition 3.5.2. For any σ ∈ Sn, one has

Xω(x,yω)f∂
σ = Xω(x,yσω) (3.5.4)

Proof. In the step by step action of the factorised element f∂
σ, each step is of the

type, f(xi − yk)(1 + ∂i(yk − yj) = f(xi − yj), f ∈ Sym(xi, xi+1). QED
For example, for σ = [3, 4, 1, 2], writing the non-symmetric factor in a box, one

has f∂
3412 =

(
1 + ∂2(y3 − y2)

)(
1 + ∂1(y3 − y1)

)(
1 + ∂3(y4 − y2)

)(
1 + ∂2(y4 − y1)

)
and

x1−y2

x1−y3 x2−y3

x1−y4 x2−y4 x3−y4

1+∂2(y3−y2)−−−−−−→
x1−y2

x1−y3 x2−y2

x1−y4 x2−y4 x3−y4

1+∂1(y3−y1)−−−−−−→
x1−y2
x1−y1 x2−y2

x1−y4 x2−y4 x3−y4

1+∂3(y4−y2)−−−−−−→
x1−y2
x1−y1 x2−y2

x1−y4 x2−y4 x3−y2

1+∂2(y4−y1)−−−−−−→
x1−y2
x1−y1 x2−y2
x1−y4 x2−y1 x3−y2

= X4321(x,x2143) .

The general properties of Yang-Baxter bases induce properties of specialisa-
tions of Schubert polynomials.

The symmetry (1.8.4) entails

(−1)`(ν)Xν(yσ,y) = Xωνω(yωσω,yω) . (3.5.5)

Each of the equations (1.8.9) and (1.8.10) gives in turn∑
ν

(−1)`(ν)Xν(yσ,y)Xνω(yζ ,y) = ∆(y) δσ,ζω , (3.5.6)

but this is a special case of Cauchy formula
∑
ν

(−1)`(ν)Xν(yσ,y)Xνω(yζ ,y) =
∑
ν

Xν−1(y,yσ)Xνω(yζ ,y) = Xω(yζ ,yσ) .

The quadratic form ( , )H defined in (1.8.5) degenerates into the form

(f , g)H00 = f g∨ ∩ ∂ω , (3.5.7)

still denoting f → f∨ be the anti-automorphism of the algebra of divided differ-
ences induced by (∂σ)∨ = ∂σ−1 .

Property (1.9.4) becomes

Proposition 3.5.3. The Yang-Baxter bases associated to the spectral vectors
[y1, . . . , yn] and [yn, . . . , y1] satisfy the relations

(
f∂,y
σ , f∂,yω

ζ

)H00
= δσ,ωζ ∆(yσ) . (3.5.8)
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For example, for σ = ζ = [2, 3, 1], one has to take the product of

f∂,y
231 = 1 + ∂1(y2 − y1) + ∂2(y3 − y1) + ∂1∂2(y2 − y1)(y3 − y1)

and (
f∂,yω

231

)∨
= 1 + ∂1(y2 − y3) + ∂2(y1 − y3) + ∂2∂1(y2 − y3)(y1 − y3) .

The coefficient of ∂321 in this product is equal to (y2−y1)(y3−y1)(y2−y3)+(y2−y1)(y2−y3)(y1−y3) =

0, and this proves that
(
f∂,y

231 , f
∂,yω
231

)H00
= 0.
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3.6 Distance 1 and multiplication
The ringSym(x) has a linear basis consisting of Schur functions. Its multiplicative
structure is determined by the Pieri formulas, i.e. by the products of Schur func-
tions by the elementary (or complete) symmetric functions. In the non-symmetric
case, the requirement to recover the ring structure is easier. Polynomials being
sums of monomials, and monomials being products of variables, we need only
describe the images of the different bases under multiplication by x1, x2, . . ..

Our bases being obtained by the use of ∂i’s or πi’s, we could use the commu-
tation properties of these operators with multiplication by a single variable.

In the case of Schubert polynomials, let us rather use interpolation methods.
This time, it will be more convenient to index polynomials by permutations, pass-
ing from the notation Yv to the notation Xσ, where v is the code c(σ) of σ.

Definition 3.6.1. v ∈ Nn is a successor of u if |v| = |u| + 1 & Yu(〈v〉,y) 6= 0.
Given two permutations ζ, σ, then ζ is a successor of σ iff this is so for their
codes.

Theorem 3.6.2. A permutation ζ, of code v, is a successor of σ iff ζσ−1 is a
transposition (a, b), and `(ζ) = `(σ) + 1. In that case,

Xσ(〈v〉,y) = e(v) (yζb − yζa)−1 .

Proof. If u = c(σ) is dominant, then it is immediate to write the specializations of
Yu and check the proposition in that case. Let us therefore suppose that there ex-
ists i such that ui < ui+1, and let η be such that c(η) = [u1, . . . , ui−1, ui+1+1, ui, ui+2, . . . , un].
Since for any permutation ζ of code v, one has(

Xη(〈v〉,y)− (Xη(〈v〉),y)si
)

(yζi − yζi+1)−1 = Xσ(〈v〉,y) ,

ζ can be a successor of σ only if ζ = η, or if ζsi is a successor of η. In the first
case,

Xσ(〈v〉,y) = Xη(〈v〉,y)(yηi − yηi+1)−1 = e(v)) ,

while in the second,

−Xη(〈v〉si ,y)
yζi − yζi+1

= e(c(ζsi))
(yζi+1 − yζi)(yζb − yζa)

= e(c(ζ))
yζb − yζa

,

and this proves the proposition. QED

Corollary 3.6.3 (Monk formula [69]). Given v ∈ Nn, σ = 〈v〉, k ∈ {1, . . . , n},
then

(xk − yσk)Xσ(x,y) =
∑
j>k

Xστk,j(x,y)−
∑
j<k

Xστk,j(x,y) , (3.6.1)

summed over all transpositions τk,j such that `(στk,j) = `(σ) + 1.
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Proof. The polynomial (xk−yσk)Xσ(x,y) belongs to the linear span of Yw : |w| =
|v|+ 1, because it is of degree |v|+ 1 and vanishes in all y〈w〉 : |w| ≤ |v|. Writing
it ∑ cζXζ(x,y), and testing all the specializations yζ , one finds that the permu-
tations appearing in the sum are exactly the successors of σ such that yζk 6= yσk .
QED

Instead of multiplying by xk, on can equivalently multiply by x1 + · · · + xk
at once, obtaining the following Pieri formula generalizing the product of a Schur
function by the elementary symmetric function of degree 1.

Corollary 3.6.4 (Degree 1 Pieri formula). Given n, k : k ≤ n, v ∈ Nn, σ = 〈v〉,
i ∈ {1, . . . , n}, then

(x1+ · · · +xk − yσ1− · · · −yσk)Xσ(x,y) =
∑

1≤i≤k<j
Xστi,j(x,y) , (3.6.2)

summed over transpositions τi,j such that `(στi,j) = `(σ) + 1.

One can iterate Monk formula. Let us call k-path of length r a sequence of
permutations σ0, σ1, . . . , σr such that `(σi+1) = `(σi) + 1 and (σi+1)−1σi) is a
transposition (k, j).

A k-path can be denoted by the sequence [ar, . . . , a0] of values permuted, with

a0 = (σ0)k, a1 = (σ1)k, . . . , ar = (σr)k .

For i = 1, . . . , r, each permutation σi(σ0)−1 is a cycle (ai . . . a1a0). The following
proposition shows that the multiplication by a power of xk can be described in
terms of k-paths, the coefficients being complete functions Sj( ) of the variables
yi indexed by the values permuted.

Proposition 3.6.5. Let σ ∈ Sn, k ≤ n, m ∈ N. Then, modulo Sym(xn) =
Sym(yn), one has

xmk Xσ(x,y) =
∑

ε Sm−1−r(ya0 , . . . , yar)Xτar,ar−1 ...τa1a0σ
(x,y) , (3.6.3)

sum over the k-paths of length ≤ m, the sign being given by the number of times
τai,ai−1 transposes a value at position smaller than k.

Proof. Multiplying by xmk , using (3.6.1), involves enumerating paths with possi-
ble loops σi = σi+1 having weight yj, with j = (σi)k. The proposition results
from grouping all the paths differing only by their loops, this explaining that the
coefficient be a complete function. Each application of Monk formula possibly
involves increasing the size of the symmetric group. One avoids that by using the
ideal generated by the identification of symmetric functions in xn with the same
symmetric functions in yn. QED

The following tree describes the product x3
2X31425(x,y), writing each permu-

tation ζ above the coefficient of Xζ(x,y).
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3 1 425
y3

1

ttt
ttt KKKKKK

3 2 415
S2(y1, y2)

3 4 125
S2(y1, y4)

MMMMMMM

3 4 215
y1 + y2 + y3

JJJ
JJJ

4 3 125
−y1 − y3 − y4

3 5 124
y1 + y4 + y5

4 3 215
−1

3 5 214
1

4 5 123
−1

5 3 124
−1

or, for the readers who prefer one-dimensional formulas,

x3
2X31425 = y3

1X3142+(y2
1+y2

4+y1y4)X3412+(y2
1+y1y2+y2

2)X3241+(y1+y5+y4)X35124

−(y3+y1+y4)X4312+(y4+y1+y2)X3421−X45123+X361245−X53124+X35214−X4321 .
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3.7 Pieri formula for Schubert polynomials
The Italian geometer Pieri described the intersection of a Schubert cycle by a
“special” one in the cohomology ring of the Grassmannian. In modern terms, he
described the product of a Schur function by an elementary or complete function,
the remarkable property being that there is no multiplicity in his formula.

Let us generalize Pieri’s result to Schubert polynomials, the presence of extra
variables y allowing to interpret the intersection numbers 1 as complete functions
of degree 0.

Our starting point will be the following case.

Lemma 3.7.1. Let n, k, r ∈ N, ρ = [n−1, . . . , 0], m = max(n−k, 0) and y♥ =
{ym+1, ym+2, ym+3, . . . }. Then

Yρ(x,y)Y0k−1r(x, z) = Yρ(x,y)Y0k−1r(y♥, z)

+
k∑
i=1

r∑
j=1

Yρ+[0i−1j0n−k](x,y)Y0k−1+jr−j(y♥, z) . (3.7.1)

Proof. One uses Newton’s interpolation (3.2.1) on the product fg, with f =
Yρ(x,y), g = Y0k−1r(x, z), using Leibnitz’ formula (1.4.2). The images of f un-
der products of divided differences are 0 or Schubert polynomials that one has
to specialize in x = y. Only Y0...0 subsists. Let us first suppose that n ≤ k.
In a sum ∑

εi,...εh∈{0,1}

(
f∂εii ∂

εj
j · · · ∂

εh
h

)(
gsεii ∂

1−εi
i s

εj
j ∂

1−εj
j · · · sεhh ∂

1−εh
h

)
there remains

only divided differences ∂i, i < n acting on f , si preserving g, and products
∂k∂k+1 · · · ∂k+j−1 acting on g and sending it to Y0k−1+jr−j(x, z).

In final, for n = 3 = k for example, the only non-zero contributions in Newton’s
formula are for ∂2∂1∂2(∂3∂4 · · · ), ∂2(∂3∂4 · · · )∂1∂2 and (∂3∂4 · · · )∂2∂1∂2, and this
corresponds indeed to the RHS of (3.7.1).

In the case where n > k, writing y♥ = {yn−k, yk+1, . . .}, one factors Yρ(x, y) =
Y(n−k)k,n−k−1,...,0(x,y)Yk−1,...,0(x,y♥), and write the interpolation for the product
Yk−1,...,0(x,y♥)Y0k−1r(x, z). QED

For example, for n = 5, k = 3, r = 2, one has y♥ = {y3, y4, . . .} and

Y43210(x,y)Y002(x, z) = Y43210(x,y)Y002(y♥, z) +
(
Y53210(x,y) + Y44210(x,y)

+ Y43310(x,y)
)
× Y0001(y♥, z) +

(
Y63210(x,y) + Y45210(x,y) + Y43410(x,y)

)
.

To describe the general Pieri formula, it is convenient to index Schubert poly-
nomials by permutations, and generalize consecutivity in the Bruhat order.

Given an integer k, a pair of permutations σ, η : σ ≤ η is called a k-soulèvement
of degree `(η)−`(σ) if each cycle ζi in the cycle-decomposition ησ−1 = ζ1 · · · ζm is of
the type ζi = (α, δ, γ, . . . , β) with δ > γ > · · · > β > α, {δ, . . . , α}∩{σ1, . . . , σk} =
{α} and `(η) = `(σ) + (#ζ1 − 1) + · · · + (#ζm − 1). Denote furthermore yσ,η =
{yσ1 , . . . , yσk} ∪ {yi : i ∈ {ζ1} ∪ · · · ∪ {ζm}}.
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For example the pair σ = [5, 2, 7, 4, 1, 6, 8, 3, 9], η = [6, 2, 9, 4, 3, 5, 7, 1, 8]) is a
5-soulèvement of degree 1+1+2 = `(η)−`(σ), because ησ−1 = (1, 3)(5, 6)(7, 9, 8),
and yσ,η = {y5, y2, y7, y4, y1} ∪ {y1, y3} ∪ {y5, y6} ∪ {y7, y9, y8}
= {y5, y2, y7, y4, y1, y6, y8, y9}.

Theorem 3.7.2. Let n, k, r ∈ N, σ ∈ Sn. Then

Xσ(x,y)Y0k−1r(x, z) =
∑
η

Xη(x,y)Y0k−1+jr−j(yσ,η, z) , (3.7.2)

sum over all k-soulèvements (σ, η) of degree j = 0, . . . , r.

Proof. The divided differences in y send Xn...1(x,y) onto any Xσ(x,y), up to sign.
Thus, the theorem can be proved by decreasing induction on `(σ), checking the
evolution of the RHS of (3.7.2) under a simple divided difference in y, starting
from (3.7.1). QED

For example of the recursion, the term X3471256(x,y)Y052(y3, y1, y5, y4, y7, y6)
occur in the expansion of X31542(x,y)Y005(x, z), and the permutation
[3, 4, 7, 1, 2, 5, 6][3, 1, 5, 4, 2]−1 is equal to the product of cycles (1, 4)(5, 7, 6). Under
−∂y2 , this term gives, in the expansion of X21543(x,y)Y005(x, z) the two terms
X3471256(x,y)Y061(y2, y1, y5, y4, y3, y7, y6) and
X2471356(x,y)Y052(y2, y1, y5, y4, y7, y6), in accordance with

[3, 4, 7, 1, 2, 5, 6][2, 1, 5, 4, 3]−1 = (1, 4)(2, 3)(5, 7, 6) ,
[2, 4, 7, 1, 3, 5, 6][3, 1, 5, 4, 2]−1 = (1, 4)(5, 7, 6) .
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3.8 Transition for Schubert polynomials
The right-hand side of Monk formula (3.6.1) involves two sets W+,W− of permu-
tations:

(xk − yσk)Xσ(x,y) =
∑
ζ∈W+

Xζ(x,y)−
∑
ν∈W−

Xν(x,y) ,

Let us call transition the case where W+ is a singleton, rewriting the equation

Xζ(x,y) = (xk − yσk)Xσ(x,y) +
∑
ν∈W−

Xν(x,y) , (3.8.1)

the setW− depending on the pair (k, ζ), or equivalently, the pair (k, σ) as described
in (3.6.1).

For example,

X52186347(x,y) = (x2−y1)X51286347(x,y)
= (x4−y7)X5217634(x,y) +X5271634(x,y)

+X5712634(x,y) +X7215634(x,y)
= (x5−y4)X52184367(x,y) +X52481367(x,y) +X54182367(x,y)

Transitions are compatible with Young subgroups. Indeed, let ζ belong to
Sr|n−r. Then ζ = ζ ′ζ ′′, where ζ ′ fixes r+1, . . . , n and ζ ′′ fixes 1, . . . , r. Any
transition for ζ ′ induces a transition for ζ. A transition

Xζ′(x,y) = (xk − yσk)Xσ(x,y) +
∑
ν∈W−

Xν(x,y) ,

all the permutations ν fix r+1, . . . , n, and therefore one has the transition

Xζ(x,y) = (xk − yσk)Xσζ′′(x,y) +
∑
ν∈W−

Xνζ′′(x,y) . (3.8.2)

By recurrence on the length of ζ ′, one obtains the following factorisation property
of Schubert polynomials.

Corollary 3.8.1. Let ζ belong to a Young subgroup, and ζ = ζ ′ζ ′′ its corresponding
factorisation. Then

Xζ(x,y) = Xζ′(x,y)Xζ′′(x,y) . (3.8.3)

Transitions may be used recursively to decompose Schubert polynomials into
sums of "shifted monomials" ∏(xi − yj), stopping the process when arriving at
dominant polynomials.

Among all transitions for a given ζ, let us choose the one for which k is max-
imum, and call it maximal transition. For this transition, let us rather index
polynomials by codes instead of permutations. Let v ∈ Nn be the code of ζ, and
k be such that that vk > 0, vk+1 = 0 = · · · = vn. Let v′ = v − [0k−110n−k]
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and σ = 〈v′〉. In other words, xv = xv
′
xk, with k maximal. Then the maximal

transition rewrites as

Yv(x,y) = (xk − yσk)Yv′(x,y) +
∑

u
Yu(x,y) , (3.8.4)

summed over all u such that |u| = |v| and 〈u〉σ−1 is a transposition τik with i < k.
For example, starting with v = [2, 0, 3], 〈v′〉 = σ = [3, 1, 5, 2, 4], one has the

following sequence of transitions :

Y203(x,y) = (x3 − y5)Y202(x,y) + Y230(x,y) + Y401(x,y) ,
Y230(x,y) = (x2 − y4)Y220(x,y) + Y320(x,y) ,
Y401(x,y) = (x3 − y2)Y400(x,y) + Y410(x,y) ,

· · · · · ·

that one terminates when attaining dominant indices. Finally, writing each shifted
monomial as a diagram of black squares in the Cartesian plane

(
a square in column

i, row j corresponds to a factor (xi−yj)
)
, the polynomial Y203(x,y) reads

· · �
· · �
· · ·
� · �
� · ·

+
· · �
· · �
· · ·
� · ·
� � ·

+
· · �
· · ·
· · ·
� � ·
� � ·

+
· · ·
· � ·
· · ·
� � ·
� � ·

+
· · ·
� · ·
� · ·
� · �
� · ·

+
· · �
· · ·
� · ·
� · �
� · ·

+
· · ·
· · ·
� · ·
� � ·
� � ·

+
· · �
· · ·
� · ·
� · ·
� � ·

+
· · ·
� · ·
� · ·
� · ·
� � ·

the first diagram, for example, coding the product

· · �
· · �
· · ·
� · �
� · ·

⇒

· · (x3−y5)
· · (x3−y4)
· · ·

(x1−y2) · (x3−y2)
(x1−y1· ·

.

We shall give in the sequel a different combinatorial description of Schubert
polynomials in terms of tableaux.

Fomin and Kirillov [32] give configurations from which one reads a different
decomposition of Schubert polynomials into shifted monomials.

3.9 Branching rules
Let us ignore the term (xk−yσk)Yv′(x,y) in the maximal transition formula (3.8.4)
and write

Yv →
∑
u

or Xσ →
∑
ζ

Xζ , (3.9.1)

where the u’s or ζ’s are described in (3.8.4).
However, if v is dominant, then Yv = (xk − yσk)Yv′ and it would not be very

informative to write Yv → 0. Let us introduce the equivalence v ∼ [0, v], allowing
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the concatanation of 0′s on the left, which corresponds to identify Sn and its
image S1 ×Sn in Sn+1.

We can now iterate (3.9.1), producing an infinite graph.
Let us examine more closely the case where a permutation σ has only one

successor. Write this permutation σ = A 2B 4C 3D, with 2 < 3 < 4, A,B,C,D
being factors4 such that C 3D is increasing, D > 4 and B ∩ [2, . . . , 3] = ∅. The
successors of σ are all the permutations obtained by exchanging 3 in A 2B 3C 4D
with a letter on its left such that length increases by 1 only. The permutation
ζ = A 3B 2C 4D fulfills this requirement, and if B does not contain any letter
smaller than 2, then it is the unique successor of σ.

This indicates that permutations avoiding the pattern 2143 play a special role.
Let us say that σ is vexillary5 if there does not exist i, j, k, l : σj < σi < σl < σk.
A vexillary code is the code of a vexillary permutation.

We have just seen that if σ is vexillary, then it has only one successor in
a transition. In terms of codes, transition for vexillary codes reads as follows
(eventually transforming v into [0, v]).

Lemma 3.9.1. Let v = [AbD c] ∈ Nn be a vexillary code, with c 6= 0, the letter
b being the rightmost occurence of the maximal value in {AbD} ∩ {0, 1, . . . , c−1}.
Let v′ = [AbD c−1], u = [AcD b], σ = 〈v′〉, k = σn. Then v′ and u are vexillary
codes, and

Yv(x,y) = (xn − yk)Yv′(x,y) + Yu(x,y) . (3.9.2)

With this rule, here is the graph originating from the vexillary code [0, 1, 2, 8, 2, 7, 6, 4] :

[0, 1, 2, 8, 2, 7, 6, 4]→ [0, 1, 2, 8, 4, 7, 6, 2]→ [0, 2, 2, 8, 4, 7, 6, 1]
→ [1, 2, 2, 8, 4, 7, 6]→ [1, 2, 2, 8, 6, 7, 4]→ [1, 2, 4, 8, 6, 7, 2]

→ [2, 2, 4, 8, 6, 7, 1] ∼ [0, 2, 2, 4, 8, 6, 7, 1]
→ [1, 2, 2, 4, 8, 6, 7]→ [1, 2, 2, 4, 8, 7, 6]→ [1, 2, 2, 6, 8, 7, 4]

→ [1, 2, 4, 6, 8, 7, 2]→ [2, 2, 4, 6, 8, 7, 1]→ . . .

Since a vexillary code has only one successor, one can truncate any transition
graph, stopping at each vexillary code. For example, for v = [0, 3, 1, 2, 0, 2], the
transition graph is :

4σ is considered as a word, and the letters 2, 3, 4 are not necessarily consecutive in the
alphabet. One requires only that 2 < 3 < 4.

5 There are a lot of flags in a flag variety, but M.P. Schützenberger and I needed still more,
to describe the properties of certain permutations. This is why we introduced the latin root
“vexillum”, which survived a first period of drought and flourished afterwards.
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Y031202

sss
sss LLLLLL

Y03122 Y031301

ssssss
JJJ

JJJ

Y03131 Y0323

ttt
ttt

Y1313

sss
sss LLLLLL

Y0332 Y0422

Y1331 Y1412

Garsia [43] studies in detail this transition tree.
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3.10 Vexillary Schubert polynomials
To a permutation σ, with code v ∈ Nn, one associates two partitions µ, λ ∈ Nn

as follows. Let w ∈ Nn be such that wi = max(j : j ≥ i, vj ≥ vi). Then µ, is the
decreasing reordering of w and λ be the minimum dominant weight such that Yv
is the image of Yλ under a product of divided differences.

The next property shows that vexillary Schubert polynomials can be expressed
as a multi-Schur function.

Proposition 3.10.1. Let v be a vexillary code, µ and λ be the associated partitions
defined just above. Then

Yv(x,y) = Sv↑(xµ1 − yλn , . . . ,xµn − yλ1) . (3.10.1)

Proof. Normalize v by suppressing terminal 0’s, so that one may suppose r = vn 6=
0. Then the transition formula (3.9.2) states that

Yv(x,y) = (xn − yk)Yv′(x,y) + Yu(x,y)

Suppose the proposition to be true for v′, by induction on weight, and u. The two
Schur functions differ in only one column the sum being

(xn − yk)S•,r−1,•(•,xn − yk−1, •) + S•,r,•(•,xn−1 − yk−1, •) .

Since for any j, any A (here, A = xn−1 − yk−1), one has

(xn − yk)Sj−1(A+ xn) + Sj(A) = Sj(A+ xn − yk)

this sum is equal to the expected multiSchur function S•,r,•(•,xn − yk, •). One
initiates the proposition by the Grasmannian case, where the determinant is ob-
tained as the image of Yλ(x,y) under ∂ω. QED

For example, for v = [0, 2, 7, 2, 4, 5, 5, 4] one has

Y02724554

= S02244557(x8−y0,x8−y3,x8−y3, x8−y7 ,x8−y7,x7−y9,x7−y9,x7−y9)
= (x8−y7)Y027245530000 + Y027445520000

= (x8−y7)S02234557(x8−y0,x8−y3,x8−y3, x8−y6 ,x8−y7,x7−y9,x7−y9,x7−y9)
+ S02244557(x8−y0,x8−y3,x8−y3, x7−y6 ,x8−y7,x7−y9,x7−y9,x7−y9) .
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3.11 Stable part of Schubert polynomials
In the theory of symmetric functions, one usually prefers to eliminate variables by
taking the projective limit Sym(x∞) of the ring Sym(x1, . . . , xn), which amounts
to using infinite alphabets.

In terms of Schubert polynomials, the embedding Sym(xn) ↪→ Sym(xn+1)
translates into the transformation Yv(x,0) → Y0v(x,0) for v antidominant. This
leads to define the stable part St(Yv) of a Schubert polynomial Yv(x,y), as

St(Yv) = Y0N v(x,y)
∣∣∣
xj=0=yj , j>N

,

with N big enough, and consider it as an element of Sym(x∞)⊗Sym(y∞).
We first need to analyze the transformation Yv(x,y) → Y0v(x,y) to compare

Y0N v(x,y) and Y0N+1 v(x,y) and precise what “N big enough” means.

Lemma 3.11.1. Let v ∈ Nn, v ≤ [n, . . . , 1]. Then

Yv(x,0)πxn . . . πx1 = Y0v(x,0) (3.11.1)
Yv(x,y)πxn . . . πx1πyn . . . π

y
1 = Y0v(x,y) . (3.11.2)

Proof. By trivial commutation, one writes πxn . . . πx1 = xn . . . x1∂
x
n . . . ∂

x
1 , and one

uses that Yv(x,0)xn . . . x1 = Yv+1n(x,0) when v ∈ Nn. This proves the first
statement. Writing Yv(x,y) as a sum ∑

cu,u′Yu(x,0)Yu′(y,0), one obtains that
Yv(x,y)πxn . . . π

y
1 is equal to ∑ cu,u′Y0u(x,0)Y0u′(y,0), that is, to Y0v(x,y). QED

Lemma 3.11.2. Let f ∈ Pol(xn) ⊗ Pol(ym), ωn = [n, . . . , 1], ωm = [m, . . . , 1],
πn×n = (πn . . . π2n−1) . . . (π1 . . . πn). Then

f πxωnπ
y
ωm = f πxn×nπ

y
m×m

∣∣∣∣
xi=0,i>n, yj=0,j>m

. (3.11.3)

Proof. Any monomial xv, v ∈ Nn, can be written xv = Svω(xn,xn−1, . . . ,x1),
and its image under πn . . . π2n−1 is equal to Svω(x2n,xn−1, . . . ,x1), which is sent
to Svω(x2n,x2n−1,xn−2, . . . ) under πn−1 . . . π2n−2. In final, xvπn×n is equal to
Svω(x2n,x2n−1, . . . ,xn+1), and this function restricts to Svω(xn) = xvπωn . QED

For v ≤ [n, . . . , 1], the stable part of Yv(x,y) is obtained by computing Y0nv(x,y),
which is the image of Yv(x,y) under (πxn . . . πx1 ) . . . (πx2n−1 . . . π

x
1 ) (πyn . . . π

y
1) . . . (πy2n−1 . . . π

y
1)

according to (3.11.2). But the product of divided differences can be rewritten
πx1,...,n,2n,...,n+1π

y
1,...,n,2n,...,n+1π

x
n×nπ

y
n×n. The first two factors preserve functions of

xn and yn. Therefore,

Y0nv(x,y) = Yv(x,y) πxn×nπ
y
n×n .

Using (3.11.3), one sees that

St(Yv(x,y)) = Yv(x,y) πxn×nπ
y
n×n . (3.11.4)
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A transition

Yv(x,y) = (xk−yj)Yv′(x,y) +
∑
u∈U

Yu(x,y)

entails a transition

Y0nv(x,y) = (xk+n−yj+n)Y0nv′(x,y) +
∑
u∈U

Y0nu(x,y) .

Therefore transitions may be used to compute stable parts :

St(Yv(x,y)) = St(Y0nv(x,y)) =
∑
u∈U
St(Yu(x,y)) . (3.11.5)

The determinantal expression of a vexillary polynomial, for v ≤ [n, . . . , 1],
shows that its stable part is equal to

St(Y0nv(x,y)) = Sv↑(xn − yn) .

One can in fact relax the condition on v. If Yλ(x,y) is a dominant ancestor of
Yv(x,y), with v ∈ Nn and m = λ1, then Yv(x,y) is a polynomial in x1, . . . , xn and
y1, . . . ym. Using (3.11.2) and (3.11.3), one sees6 that

Yv(x,y) πxωnπ
y
ωm = Sv↑(xn − ym) . (3.11.6)

In summary, one has the following three ways of determining the stable part
of a Schubert polynomial.

Theorem 3.11.3. Let v ∈ Nn, Yλ be a dominant ancestor of Yv, m = λ1. Let
Y0v(x,y) = (xk−yj)Y0v′(x,y) +∑

u∈U Yu(x,y) be a transition. Then

St(Yv(x,y)) = Yv(x,y)πxωnπ
y
ωm (3.11.7)

= Y0n+mv(x,y)
∣∣∣∣
xi=0,i>n, yj=0,j>m

(3.11.8)

=
∑
u∈U
St(Yu(x,y)) . (3.11.9)

For example, the transition graph for v = [0, 3, 1, 2, 0, 2] given above has five
terminal vertices: Y03122, Y1331, Y1412, Y0332, Y0422, and this implies that

St(Y031202(x,y)) = s3221(x∞−y∞) + s3311(x∞−y∞) + s4211(x∞−y∞)
+ s332(x∞−y∞) + s422(x∞−y∞) .

6 The action of πxωn
on the determinant of complete functions of xk − yj expressing Yv(x,y)

consists in replacing all xk by xn. The action of πyωm
is much more delicate, one has to use that

some determinants of complete functions in xk −yj can be written as determinants of complete
functions in yj − xk (cf. [81]). For example, the equality Xσ(x,y) = (−1)`(σ)Xσ−1(y,x) gives
such a transformation of determinants in the vexllary case. We have bypassed this transformation
by using Yv(x,y)→ Y0Nv(x,y).
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We shall see later that

Y031202(x,0) = K31202 +K31301 +K41201 +K323 +K422 .

Since evidently the image under πω of a key polynomial is a Schur function, the de-
composition of a Schubert polynomial (specialized in y = 0) into key polynomials
is still another way of computing its stable part.

A special case of the determination of the stable part of a vexillary Schubert
polynomial is the Sergeev-Pragacz formula showing that a Schur function of a
difference of alphabets xn−ym can be obtained by symmetrization of a product of
differences xi−yj. Indeed, let λ ∈ Nn be dominant, m ≥ λ1. Then

Yλ(x,y)πxωnπ
y
ωm = Sλ↑(xn,ym) . (3.11.10)

For example, writing the explicit expression of πω a a sum over the symmetric
group, one has

S024(x3 − y4) = Y420 π
x
321π

y
4321

= 1
∆(x1, x2, x3)∆(y1, y2, y3, y4)

∑
σ∈Sx3 ,ζ∈S

y
4

(−1)`(σ)+`(ζ)
(
x210y3210 Yλ

)σζ
.
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3.12 Schubert and the Littlewood-Richardson rule
When a permutation σ ∈ Sn belongs to a Young subgroupSn′×Sn′′ , the Schubert
polynomial Xσ(x,y) = Yv′,v′′(x,y) factorizes. This factorization is compatible
with the restriction7 of Y0N ,v′,v′′(x,y) to xN ,yN , and therefore in that case

St(Yv(x,y)) = St(Yv′(x,y))St(Yv′′(x,y)) .

In particular, when the Schubert polynomial factorizes into two vexillary Schu-
bert polynomials, then its stable part is the product of two Schur functions. Since
the stable part can be computed by transition, this observation furnishes many
ways, different from the usual Littlewood-Richardson rule, of computing the prod-
uct of Schur functions.

For example, to compute the square of s21, one can start with any v =
v′v′′, with v′, v′′ ∈ {[2, 1, 0], [2, 0, 1, 0], [1, 2, 0, 0]}. Here are two possible transi-
tion graphs, starting with [2, 1, 0, 2, 1, 0] or [2, 1, 0, 1, 2, 0, 0], which are the codes
of the permutations [3, 2, 1, 6, 5, 4] ∈ S3×S3 and [3, 2, 1, 5, 7, 4, 6] ∈ S3×S4, and
stopping at vexillary codes.

Y21021

lllllllllll

QQQQQQQQQQ

Y2112 Y2202 Y3102

SSSSSSSSSSSSS

Y02121 Y222 + Y2301 Y312 + Y33 Y4101

Y1212 Y411 + Y42

Y1221 + Y1311

Y120021

ooooooo
NNNNNNN

Y12012 Y13002

PPPPPPPP

Y12021

lllllllllll
Y1302 Y14001

Y1212 Y2202 Y132 + Y33 Y1401

Y1221 + Y1311 Y222 + Y2301 Y141 + Y24

7using symmetization is more delicate, since symmetrization does not commute vith product
in general.
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Both graphs imply that

s21s21 = s42 + s411 + s33 + 2s321 + s3111 + s222 + s2211 .
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Chapter 4
Products and transitions for
Grothendieck and Keys

4.1 Monk formula for type A key polynomials
Instead of considering the multiplication by each xi in the key basis, let us describe
the multiplication by

ξ = ξAn = y1x1 + · · ·+ ynxn .

This element is invariant under the symmetric group acting on xi and yi simulta-
neously, and therefore, for any permutation σ, one has (ξ)σx = (ξ)(σy)−1 .

Since key polynomials are obtained by applying on dominant monomials the
operators πσ, σ ∈ Sn, we essentially need to describe the products πσξ, that we
shall write

πσξ = x1ϕ
1
σ + · · ·+ xnϕ

n
σ .

The commutation relations πixi = xi+1πi+xi, πixi+1 = xiπi−xi = xiπ̂i, π1 . . . πixi+1 =
x1π̂1 . . . π̂i imply

π1 . . . πk−1ξ = π1 . . . πk−2 (ξ)s
y
k−1πk−1 + π1 . . . πk−2xk−1(yk−1 − yk)

= π1 . . . πk−3 (ξ)s
y
k−2s

y
k−1πk−2πk−1

+ π1 . . . πk−3xk−2πk−1(yk−2 − yk) + x1π̂1 . . . π̂k−3(yk−1 − yk) .

Iterating and grouping the coefficients of yk, one obtains

π1 . . . πk−1ξ = (ξ)s
y
1 ...s

y
k−1π1 . . . πk−1 + x1

(
π̂1 . . . π̂k−1yk + π̂1 . . . π̂k−2yk−1

+ π̂1 . . . π̂k−3yk−2πk−1 + π̂1 . . . π̂k−4yk−3πk−2πk−1 + · · ·+ y1π2 . . . πk

)
. (4.1.1)

Given a permutation σ ∈ Sn, let us write it σ = ζs1 . . . sk−1, with ζ ∈ S1×n−1.
Relation 4.1.1 entails

ϕiσ =
(
ϕiζ
)sy1 ...syk−1 π1 . . . πk−1 , i ≥ 2

119
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ϕ1
σ = πζ

(
y1π2 . . . πk + · · ·+ π̂1 . . . π̂k−1yk

)
,

while ϕ1
ζ = πζy1.

These recursions furnish an induction on n for the products Kvξ.

Proposition 4.1.1. Let v ∈ Nn, λ = v ↓, σ ∈ Sn, ζ ∈ S1×n−1 be such that
Kvπσ = xλπζπ1 . . . πk−1. Then

Kvξ =
(
xλπζξ

∣∣∣∣
y1=0

)sy1 ...syk−1

+

xλx1πζ

(
y1π2 . . . πk + π̂1y2π3 . . . πk + · · ·+ π̂1 . . . π̂k−1yk

)
. (4.1.2)

For example, when v = [1, 3, 5, 7], one has λ = [7, 5, 3, 1], σ = [4, 3, 2, 1],
ζ = [1, 4, 3, 2]. Supposing known that

K7135 ξ − y1K8135 =
(
y4K7136 + (y3 − y4)K7163 + (y2 − y3)K7613

)
+
(
y3K7145 + (y2 − y3)K7415

)
+ y2K7235 ,

one obtains

x7531
(
x2ϕ

2
4321 + x3ϕ

3
4321 + x4ϕ

4
4321

)
=
(
y3K1367 + (y2 − y3)K1637

+ (y1 − y2)K6137
)

+
(
y2K1457 + (y1 − y2)K4157

)
+ y1K2357 ,

while

x7531x1ϕ
1
4321 = K7135x1

(
y1π2π3 + π̂1y2π3 + π̂1π̂2y3 + π̂1π̂2π̂3y4

)
= y4K1358 + (y3 − y4)K1385 + (y2 − y3)K1835 + (y1 − y2)K8135 ,

the sum of these two terms being equal to K1357ξ.
A fully explicit Monk formula would require finding combinatorial objects com-

patible with the above recursion, as well as a justification of the fact that the
coefficients seem to be of the type yi or (yi − yj) only. For example,

K20424 ξ = y5K20425 + (y3 − y5)K20524 + (y2 − y3)K25024 + (y1 − y3)K50224

+ (y4 − y2)K32404 + (y3 − y2)K52024 + y4K20434 + y2K21424

+ (y1 − y4)K30424 + (y4 − y5)K20452 + (y5 − y4)K20542 + (y2 − y4)K23404 .

4.2 Product Gv x1 . . . xk

We first need to extend the Ehresmann-Bruhat order to weights. Let u, v ∈ Nn

be permuted of each other. Then u ≥ v if and only if for k = 1, . . . , n one has
[u1, . . . , uk] ↑≥ [v1, . . . , vk] ↑ componentwise.
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Given v ∈ Nn, k ≤ n, let

C(v, k) = {u : u ≥ v &
(
∀i 6= k, usi ≥ v implies usi ≥ u

)
} .

In other words, C(v, k) is the set of weights above v which are minimum in the
intersection of their coset modulo Sk×n−k with the interval [v, [n . . . 1]].

Using these sets, we define two operations ~,}. Given v ∈ Nn, k ≤ n, z ∈ Nk,
let u ∈ C(v, k) be such that [u1, . . . , uk] ↑= [z1, . . . , zk] ↑ if it exists. In that case,
define

v } z = u & v ~ z = u+ [1k0n−k] .

Otherwise put v } z = ∅ = v ~ z.
For example, for v = [3, 5, 1, 6, 2, 4], z = [6, 3, 2], one has

v } z = [3, 6, 2, 5, 1, 4] & v ~ z = [4, 7, 3, 5, 1, 4] .

We have given in Lemma 1.4.2 the normal reordering of products of the
type πσx1 · · ·xk. These reorderings provide the decomposition of Gvx1 · · · xk and
Kvx1 · · ·xk in the Grothendieck or key basis respectively, in terms of punched
diagrams.

Let us index Grothendieck polynomials by permutations, putting G∅ = 0, and
let us introduce the ideal Sym(xn = yn) generated by ei(xn)− ei(yn), i = 1 . . . n.

Theorem 4.2.1. Let σ ∈ Sn, k ≤ n. Then, modulo the ideal Sym(xn = yn), one
has

G(σ)x1 · · ·xk ≡
∑

τ∈C(σ,k)
yτ1 · · · yτk G(τ) =

∑
z∈Nk:n≥z1>···zk

yz1 · · · yzk G(σ}z) . (4.2.1)

Proof. Let ζ be the maximal permutation in the coset σSk×(n−k). Then

G(σ)x1 · · ·xk = G(ω)π(ωζ)π(ζ−1ωσ) x1 · · ·xk = G(ω)π(ωζ) x1 · · ·xk π(ζ−1ωσ) .

Thanks to (1.4.7), the product π(ωζ)x1 · · ·xk is equal to a sum ∑
xUπU over some

punched diagrams. However, for any i, one has1∏i
j=1

∏n−i
h=1(xi−yj) ≡ 0, henceG(ω)(1−yn+1−ix

−1
i ) ≡ 0, that is, G(ω)xi ≡ G(ω)yn+1−i.

Therefore G(σ)x1 · · ·xk is congruent to a sum ∑
τ cτG(τ), with cτ a monomial in yn

of degree k. It remains, but we shall not do it, to check the equivalence between
enumerating punched diagrams and permutations in C(σ, k). QED

1 For every i ≤ n, one has
∏i
j=1

∏n−i
h=1(xi − yj) = S(n+1−i))i(xi − yn−i) = S(n+1−i))i

(
(yn −

yn+1−i)− (xn − xi) + (xn − yn)
)
≡ S(n+1−i))i

(
(yn − yn+1−i)− (xn − xi)

)
. his last function is

null because the cardinality of yn − yn+1−i is < i and the cardinality of xn − xi is < n+1−i.
For example, for n = 5, i = 2, S44(x2 − y4) ≡ S44

(
y5 − (x3 + x4 + x5)

)
= 0.
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For example, for σ = [4, 2, 1, 5, 3], and k = 3, thenG(42153) = G(54321)π1π3π2π4π3
and one has to enumerate the punched 122-diagrams to describe the product
G(42153) x1x2x3 = G31010 x1x2x3 =

x2x4x5
3 4

1 2 3
→ y4y2y1G(42153)

+
x1x4x5

3 4
• 2 3

→ y5y2y1G(52143)


+
x2x3x5

• 4
1 2 3

→ y4y3y1G(43142)

+
x1x2x5

3 4
1 • 3

→ y5y4y1G(45123)


+
x2x3x4

3 •
1 2 3

→ y4y3y2G(42351)

+
x1x2x4

3 4
1 2 •

→ y5y4y2G(42513)


+
x1x3x5

• 4
• 2 3

→ y5y3y1G(53142)

+
x1x3x4

3 •
• 2 3

→ y5y3y2G(52341)


+
x1x2x3

• 4
1 2 •

→ y5y4y3G(43512)

 .

One obtains the products G(η) x1x2x3, for any η in the coset σS3×2, by taking
the image of the preceding expansion under products of πi’s, i 6= 3. For example,
G(24153) x1x2x3 = G(42153) x1x2x3π1 results from sorting each permutation τ in the
preceding sum into [[τ1, τ2] ↑, τ3, τ4, τ5].

The number of terms in (4.2.1) is equal to the number of strict partitions
z ∈ Nk between u and [n, . . . , n+1−k], where u = [σ1, . . . , σk] ↓, or, equivalently,
the number of partitions containing [u1−n, . . . , un−1] and contained in [(n−k)k].

The original Schubert calculus involved Graßmannians, and, in our terms,
Schubert and Grothendieck polynomials indexed by Graßmannian permutations.
For any Graßmannian permutation σ, corresponding to the partition µ = [σk−k, . . . , σ1−1],
any r, the number of terms in the expansion of G(σ) (x1 · · · xk)r is the dimension
of some space of sections, and is called a postulation number. From what pre-
cedes, it is equal to the number of increasing chains of partitions µ0 = µ ≤ µ1 ≤
· · · ≤ µk ≤ µk+1 = [(n−k)k]. This number has a determinantal formula proved by
Hodge, with some help from Littlewood.

For example, the product G(145236)(x1x2x3)2 involves 46 chains of strict parti-



§ 4.3 — Product Kv x1 . . . xk 123

tions [541] ≤ µ1 ≤ µ2 ≤ [654] (represented as two-columns Young tableaux) :

 5 5
4 4
1 1

G(145236) +
 6 6

4 4
1 1

+
5 6
4 4
1 1

G(146235) +
 6 6

4 5
1 1

+
6 6
5 5
1 1

+
5 6
4 5
1 1

G(156234)

+
 5 5

4 4
1 2

+
5 5
4 4
2 2

G(245136) +
 5 5

4 4
3 3

+
5 5
4 4
1 3

+
5 5
4 4
2 3

G(345126)

+
 6 6

4 4
1 2

+
6 6
4 4
2 2

+
5 6
4 4
1 2

+
5 6
4 4
2 2

G(246135)

+
 6 6

4 5
1 2

+
6 6
5 5
2 2

+
6 6
5 5
1 2

+
6 6
4 5
2 2

+
5 6
4 5
1 2

+
5 6
4 5
2 2

G(256134)

+
 6 6

4 4
1 3

+
5 6
4 4
3 3

+
6 6
4 4
2 3

+
6 6
4 4
3 3

+
5 6
4 4
1 3

+
5 6
4 4
2 3

G(346125)

+
 6 6

4 5
1 3

+
6 6
5 5
3 3

+
6 6
5 5
2 3

+
5 6
4 5
3 3

+
6 6
4 5
2 3

+
6 6
5 5
1 3

+
5 6
4 5
1 3

+
6 6
4 5
3 3

+
5 6
4 5
2 3

G(356124)

+
 6 6

4 5
1 4

+
5 6
4 5
2 4

+
6 6
5 5
3 4

+
6 6
5 5
2 4

+
5 6
4 5
3 4

+
6 6
4 5
2 4

+
6 6
5 5
1 4

+
5 6
4 5
1 4

+
6 6
4 5
3 4

+
6 6
5 5
4 4

G(456123)

4.3 Product Kv x1 . . . xk

The computations of Kv x1 · · ·xk and Gv x1 · · ·xk are similar, and use the same
equivalence, detailed in the appendix, between enumerating punched diagrams and
describing sets C(v, k). It translates into the following theorem for what concerns
key polynomials.

Theorem 4.3.1. Let v ∈ Nn, k ≤ n. Then

Kv x1 · · · xk =
∑

u∈C(v,k)
Ku+[1k,0n−k] =

∑
z

Kv~z , (4.3.1)

sum over all z ∈ Nk, z = z ↑, z subword of v ↑.

For example, for v=[2132], k = 2, we frame the elements of C([2132]) inside
the interval [2132, 3221], and figure the intersection of this interval with cosets
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modulo S2×2.

[3221]
rrr

r LLL
L

[2321]
JJJ

[3212]
ttt

[2231] [2312] [3122]

[2132]

On the other side, the subwords of length 2 of v ↑= [1223] are 12, 13, 22, 23 and
one has v~12 = [2132] + [1100], v~22 = [2231] + [1100], v~13 = [3122] + [1100],
v ~ 23 = [2312] + [1100], so that

K2132 x1x2 = K2132+1100 +K2231+1100 +K3122+1100 +K2312+1100

= K3232 +K3331 +K4222 +K3412 .

Notice that

K2132x1x2 = K3221π1π3π2 x1x2 = x3221x2x4 3
1 2 + x3221x1x3 3

1 •

+ x3221x1x2
•

1 2 + x3221x1x4 3
• 2 + x3221x1x3

•
• 2 ,

but that the term x3221x1x3
•

• 2 = x4231π2 = 0 disappears.

Dominant monomials can be written as products of fundamental weights x1 · · · xk.
Iterating (4.2.1) and (4.3.1), one obtains the product of a Grothendieck or a key
polynomial by any dominant monomial. The rule will however take (later) a more
satisfactory formulation when stated in terms of the plactic monoid.

4.4 Relating the two products
Let us show how to relate the products G(σ)x

λ and Kux
λ.

Proposition 4.4.1. Let σ ∈ Sn, λ ∈ Nn be a partition, r ≥ λ1, and u =
[rσ1, . . . , rσn]. Then Kux

λ = ∑
wKw is a sum without multiplicities and G(σ)x

λ is
a sum over the same weights :

G(σ)x
λ =

∑
w

y〈w〉Gζ(w) ,

with ζ(w) =
[
bw1/rc, . . . , bwn/rc

]
, z = w ↑, 〈w〉 = [z1−r, . . . , zn−r].
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Proof. The product by xλ is a chain of λ1 multiplications by monomials of the
type x1 · · ·xk. From the preceding theorems, it can be written in terms of the
operators xtπη, with t ≤ [λ1, . . . , λ1]. The hypothesis on u is such that each u↓ +t
is dominant, and therefore, gives the key polynomial indexed by [u↓ +t] η. On
the other hand, the same operator xtπη contributes to a Grothendieck polynomial
multiplied by the monomial in y of exponent [tn . . . , t1]. QED

The following table describes the product G3142x
2200 as the same time, taking

r = 3, as the product K9,3,12,6x
2200.

G4321 y0112 K14,10,7,3
G3142 y2020 K11,5,12,6
G3421 y0121 K11,13,7,3
G4312 y1012 K14,10,4,6
G3241 y1120 + y0220 K11,8,12,3 +K11,7,12,4
G4132 y2011 + y2002 K14,5,9,6 +K13,5,10,6
G3412 y1021 + y0022 K11,14,3,6 +K11,13,4,6
G4231 y0211+y0202+y1102+y1111 K13,8,10,3 +K14,8,9,3 +K14,7,9,4 +K13,7,10,4

Of special importance is the case of multiplication by xk...1. Let us show in the
next lemma a case where it is of interest to mix bases.

Lemma 4.4.2. Let k ≤ n, u ∈ Nn be such that u1 ≥ · · · ≥ uk, uk+1 ≥ · · · ≥ un.
Then

K̂u x
k
1 · · ·x2

k−1xk = Yu+[k,...,1,0n−k](x,0) .

Proof. The hypothesis on u implies that, with λ = u ↓, there exists a strictly
increasing v ∈ Nk such that

K̂u = K̂λ (π̂v1 · · · π̂1)(π̂v2 · · · π̂2) · · · (π̂vk · · · π̂k)
= K̂λ (∂v1 · · · ∂1x2 · · ·xv1+1)(∂v2 · · · ∂2x3 · · · xv1+1) · · · (∂vk · · · ∂kxk+1 · · ·xvk+1)

Using repeatedly that (∂j · · · ∂ixi+1 · · · xj+1)x1 · · · xi = x1 · · ·xj+1_j · · · ∂i, one can
transfer all monomials to the left and obtain

K̂u x
k
1 · · · xk = xλ(x1 · · ·xv1+1) · · · (x1 · · ·xvk+1) (∂v1 · · · ∂1) · · · (∂vk · · · ∂k) .

This is the image of a dominant monomial under a product of divided differences,
hence the lemma after identifying the index of the Schubert polynomial. QED

4.5 Product with (x1 . . . xk)−1

The original formulas of Pieri involved intersection of Schubert varieties with spe-
cial Schubert varieties corresponding to elementary symmetric functions. At the
level of Grothendieck polynomials, one has to consider products of Grothendieck
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polynomials with some special ones, for example withG0k−1,1 = 1−y1 · · · ykx−1
1 · · ·x−1

k .
This is not what we have done in (4.2.1), having taken x1 · · ·xk intead of its in-
verse. Let us repair this in the next theorem, which can be found in [85, Th 6.4].

Theorem 4.5.1. Let σ ∈ Sn, k ≤ n. Let ζ ∈ Sn be such that [ζ1, . . . , ζk] =
[σ1, . . . , σk] ↓, [ζk+1, . . . , ζn] = [σk+1, . . . , σn] ↓, and ω = [n, . . . , 1]. Then, modulo
the ideal Sym(xn = yn), one has

G(σ)
yσ1 · · · yσk
x1 · · ·xk

≡ G(ω) π̂ωζ πζ−1σ . (4.5.1)

Proof. The hypothesis on ζ implies that, with V the diagram of v = [n−ζ1, . . . , n−
k + 1 − ζk], one has πωζ = πV . Thanks to (1.4.4), one has πV (x1 · · ·xk)−1 =
(xv1+1 · · · xvk+k)−1 π̂V . Since the factor (x1 · · ·xk)−1 commutes with πζ−1ωσ because
ζ−1σ belongs to Sk×n−k, the theorem follows. QED

For example, for k = 3, σ = [4, 3, 6, 7, 8, 2, 1, 5], one has ζ = [6, 4, 3, 8, 7, 5, 2, 1],

v = [8, 7, 6] − [6, 4, 3] = [2, 3, 3], V =
4 5

2 3 4
1 2 3

, and ζ−1σ = [2, 3, 1, 5, 4, 7, 8, 6] has

reduced decomposition s1s2s4s6s7. Altogether,

G(σ)
y4y3y6

x1x2x3
≡ G(ω)

(
π̂2π̂1 π̂4π̂3π̂2 π̂5π̂4π̂3

) (
π1π2π4π6π7

)
= G(4,3,6,7,8,2,1,5) −G(4,3,7,6,8,2,1,5) −G(5,3,6,7,8,2,1,4) +G(5,3,7,6,8,2,1,4)

−G(4,5,6,7,8,2,1,3)G(5,4,6,7,8,2,1,3) +G(4,5,7,6,8,2,1,3) −G(5,4,7,6,8,2,1,3) .

V. Pons [140] shows that the expansion of the right hand side of (4.5.1) in the
Grothendieck basis is a signed interval. Lenart and Postnikov [120] give a more
general equivariant K-Chevalley formula valid for any Weyl group.

The preceding theorem involves products of πi’s and π̂j’s, that one can study
using key polynomials rather than Grothendieck polynomials. Let ∇ be an ar-
bitrary product of πi’s and π̂j’s, i, j < n. If G(ω)∇ = ∑

cσG(σ), then Kω∇ =∑
cσKσ, with the same coefficients, since every πi acts in the same manner on the

indices of both families of polynomials. This will allow us to reformulate (4.5.1)
in the next statement.

Proposition 4.5.2. Let k ≤ n, v ∈ Nk be antidominant, V be the v-diagram and
σ be a permutation in Sk×n−k. Then

Kω π̂
V πσ =

∑
K̂τ , (4.5.2)

sum over all weights τ in the interval [η, ησ], with η ∈ Nn permutation of ω =
[n, . . . , 1] such that η1 = vk+k, . . . , ηk = v1+1, ηk+1 > · · · , ηn.
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Proof. The weight η is such that Kω π̂
V = K̂η. The operator πσ is equal to a

sum ∑
ν≤σ π̂ν , where all ν belong to Sk×n−k. Hence products are reduced and

Kω π̂
V πσ = ∑

n uK̂ην . QED
For example, let k = 3, v = [1, 2, 2], σ = [3, 1, 2, 5, 4]. Then η = [4, 2, 1, 5, 3]

and

K̂54321 π̂
V πσ = K̂54321 (π̂1π̂3π̂2π̂4π̂3) (π2π1π4) = K̂42153 (1 + π̂2)(1 + π̂1)(1 + π̂4)

= K̂42153 +
(
K̂41253 + K̂24153 + K̂42135

)
+
(
K̂14253 + K̂41235 + K̂24135

)
+ K̂14235 .

This is also equal to K14235 −K15234 −K14325 +K15324, in accordance with

G(14235)
y1y2y4

x1x2x3
= G(14235) −G(15234) −G(14325) +G(15324) .

4.6 More keys: KG polynomials
Stability properties of Schubert polynomials can be analyzed by using the isobaric
divided differences πi. Let us show that the operators

Di = (1− x−1
i )πi = (xi − 1)∂i (4.6.1)

play a similar role for what concerns the Grothendieck polynomials.
These operators satisfy the braid relations, being the images of the πi under

the transformation xi → xi−1. As an operator commuting with multiplication by
elements of Sym(xi, xi+1), Di is characterized by

1Di = 1 & xi+1Di = 1 .

More generally, Dω = (x1−1)n−1 . . . (xn−1−1)∂ω = Gρ(x,1) πω is characterized by
the fact that it commutes with multiplication by elements of Sym(xn) and sends
any xv : 0 ≤ v ≤ [0, . . . , n−1] to 1. Indeed, xvDω may be written (xv, Gρ(x,1))π,
and Formula 2.9.5 tells that (xv, Gρ(x,y)) = yvω.

Taking the same starting points as for Gv(x,1), one defines recursively KG
v

polynomials by

KG
λ = Gλ(x,1) when λ dominant & KG

vsi
= KG

v Di when vi ≥ vi+1 . (4.6.2)

The operators Di, combined with multiplication by G1k(x,1), can be used to
generate recursively the Grothendieck polynomials Gv(x,1).
Proposition 4.6.1. Given v ∈ Nn. If 0 6∈ v, then

Gv(x,1) = (1−x−1
1 ) . . . (1−x−1

n )Gv−1n(x,1) .

Otherwise, let k be such that vk = 0 and vi > 0 for i < k, let
u = [v1−1, . . . , vk−1−1, vk+1, . . . , vn]. Then

Gv(x,1) = Gu(x,1) (1−x−1
k−1) · · · (1−x−1

1 )Dn−1 · · ·Dk

= Gu(x,1)Dn−1 · · ·Dk (1−x−1
k−1) · · · (1−x−1

1 ) . (4.6.3)
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Proof. By trivial commutation, one can transform Dn−1 · · ·Dk

= (1−x−1
n−1)πn−1 . . . (1−x−1

k )πk into (1−x−1
n−1) . . . (1−x−1

k )πn−1 . . . πk. Therefore

Gu(x,1) (1−x−1
n−1) . . . (1−x−1

k ) πn−1 . . . πk (1−x−1
k−1) · · · (1−x−1

1 )
= Gu(x,1) (1−x−1

n−1) . . . (1−x−1
1 ) πn−1 . . . πk

= Gu+1n−1(x,1)πn−1 . . . πk = Gv(x,1) ,

as claimed. QED
With the same notations than in (??), if v is vexillary, then u is also vexillary,

as well as u′ = u+ [1k−1, 0n−k]. Suppose that Gu′(x,1) = KG
u′ . Then

Gv(x,1) = Gu+1n−1(x,1)πn−1 . . . πk

= Gu′(x,1)(1−x−1
n−1) . . . (1−x−1

k )πn−1 . . . πk

= Gu′(x,1)Dn−1 . . . Dk = KG
u′Dn−1 . . . Dk = KG

v .

By recursion on n this proves

Corollary 4.6.2. If v is vexillary code, then Gv(x,1) = KG
v .

Notice that the shift of indices Gv(x,1) → G0v(x,1) may be obtained with
the Di. Indeed, if v ∈ Nn, then

Gv(x,1)Dn . . . D1 = Gv(x,1)(1−x−1
n ) . . . (1−x−1

1 )πn . . . π1

= Gv+1n(x,1)πn . . . π1 = G0v(x,1) .
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4.7 Transitions for Grothendieck polynomials
We have seen that multiplication by xi, in the case of Schubert polynomials, can
be used to provide a recursive definition of these polynomials. We are going to
show that one still has a transition formula for Grothendieck and key polynomials
(and later also Macdonald polynomials).

The case of Grothendieck polynomials is an extension of the case of Schubert
polynomials, and is described in [90, Prop. 3]. Since it is proved by a straighfor-
ward recursion, let us state the property without proof (caution: in reference [90],
one uses the variables 1− 1/xi instead of xi).

It is more convenient to use indexing by permutations and write G(σ) instead
of Gv, if v is the code of σ. In terms of permutations, the maximal transition
formula for Schubert polynomials (3.8.4) reads as follows.

Given ζ and its code v, let k be such that vi = 0 for i > k and vk > 0. Let σ
be the permutation whose code is v − [0k−110n−k]. Then

Xζ = (xk − yj)Xσ +
∑
i

Xτjiσ , (4.7.1)

sum over all transpositions τji such that σ = [. . . i . . . j . . . ], τjiσ = [. . . j . . . i . . . ]
and `(τjiσ) = `(τ) + 1.

Order decreasingly the integers i occuring in (4.7.1): im > · · · > i1, and write
(1− τji) ? G(σ) for G(σ) −G(τjiσ). With these conventions, one has

Theorem 4.7.1. With the conventions of (4.7.1), one has the following transition
formula (

G(σ) −G(ζ)
) xk
yj

= (1− τjim) ? · · · (1− τji1) ? G(σ) . (4.7.2)

For example, for ζ = [5, 7, 3, 4, 1, 8, 2, 6], one has σ = [5, 7, 3, 4, 1, 6, 2, 8], k = 6,
j = 6, and(

G(57341628) −G(57341826)
) x6

y6
= (1− τ65) ? (1− τ64) ? (1− τ61) ? G(57341628)

is equal to the alternating sum of Grothendieck polynomials displayed below (with
both indexings) :

57341628
45220100

nnnnnnn

WWWWWWWWWWW

67341528
55220100

57361428
45230100

nnnnnnn

57346128
45222000

nnnnnnn

67351428
55230100

67345128
55222000

57364128
45232000

nnnnnnn

67354128
55232000
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Relation (2.6.5) allows to transform transition for G-polynomials to transition
for Ĝ-polynomials.

Corollary 4.7.2. With the conventions of (4.7.1), writing i′ for n+1−i, i =
1, . . . , n, one has the following transition formula(

Ĝ(ωσω) + Ĝ(ωζω)
) xk′
yj

=
(
1 + τj′i′m

)
? · · ·

(
1 + τj′i′1

)
? Ĝ(ωσω) . (4.7.3)

For example, the transition for Ĝ(ωζω) = Ĝ[37185624) is the image of the transition
for G(ζ) given above :(

Ĝ(17385624) + Ĝ(37185624)
) x3

y6
= (1 + τ34) ? (1 + τ35) ? (1 + τ38) ? Ĝ(17385624) ,

and can be displayed as

17385624
05142200

nnnnnnn

WWWWWWWWWWW

17485623
05242200

17583624
05341200

nnnnnnn

17835624
05512200

nnnnnnn

17584623
05342200

17845623
05522200

17853624
05531200

nnnnnnn

17854623
05532200

One could in fact extend all transitions of Schubert polynomials, and not only
maximal transitions, to transitions of Grothendieck polynomials. This is useful in
the case of a permutation ζ = ζ ′ζ ′′ belonging to a Young subgroup as in (3.8.3).
One has the same property as in (3.8.2). A transition(

G(σ) −G(ζ′)
) xk
yj

= (1− τjim) ? · · · (1− τji1) ? G(σ)

entails the relation(
G(σζ′′) −G(ζ)

) xk
yj

= (1− τjim) ? · · · (1− τji1) ? G(σζ′′) . (4.7.4)

As a consequence, Grothendieck polynomials satisfy the following factorization
property (shown in [85, Prop. 6.7] for the polynomials G(ζ)(x,1)).

Corollary 4.7.3. Let ζ belong to a Young subgroup, and ζ = ζ ′ζ ′′ its corresponding
factorisation. Then

G(ζ)(x,y) = G(ζ′)(x,y)G(ζ′′)(x,y) . (4.7.5)
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Using the recursive definition of Grothendieck polynomials to prove factoriza-
tion would be delicate. For example, G0120(x,y) is a sum of 12 monomials which
does not factorize2. Its image under π3 is equal to

G0101(x,y) = G01(x,y)G0001(x,y) =
(

1− y1y2

x1x2

)(
1− y1y2y3y4

x1x2x3x4

)
.

2We shall see in (??) that it is equal to S222(x3,x3 − y2,x3 − y4)/x222.
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4.8 Branching and stable G-polynomials
As in the case of Schubert polynomials, one can use the transition formula (4.7.2)
to obtain a transition graph with root a Grothendieck polynomial (indexed by a
permutation), vertices being ± a Grothendieck polynomial, stopping at vexillary
permutations.

For example, for σ = [3, 1, 6, 2, 7, 4, 5], one has

G(3162745)

llllllll
RRRRRRRR

G(5162347) G(3165247)

llllllll
RRRRRRRR
−G(5163247)

G(4163257) G(3461257) −G(4361257)

llllllll
RRRRRRRR

G(4261357)

RRRRRRRR

YYYYYYYYYYYYYYYYYYYYYYYYYY −G(5341267) −G(4531267) G(5431267)

G(5241367) G(4523167) −G(5421367)

The corresponding tree for X3162745 is

X3162745

mmmmmmm

X5162347 X3165247

mmmmmmm

X4163257 X3461257

X4261357

QQQQQQQ

X5241367 X4523167

If v ∈ Nn is antidominant, then KG
v is symmetrical in x1, . . . , xn, and one

has the stability property KG
0v

∣∣∣∣
xn+1=1

= KG
v . As for Schubert polynomials, this

leads to define the stable part of a Grothendieck polynomial3, for v ∈ Nn and
ω = [n, . . . , 1].

St(Gv) = Gv(x,1)Dω = G0nv(x,1)
∣∣∣∣
xn+1=1=···=x2n

. (4.8.1)

3Contrary to the Schubert case, we eliminate for simplicity the alphabet y.
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A transition

G0nv(x,1) = (1− x−1
k )G0nv′(x,1) + x−1

k

∑
G0nu(x,1)

induces the equality
St(Gv) =

∑
St(Gu) ,

and therefore, the transition graph is a convenient way of obtaining the stable
part of a Grothendieck polynomial.

For example, the above graph shows that the stable part of G(3162745) is equal
to

St(G(5162347)) + St(G(5241367)) + St(G(4521367))− St(G(5421367)) + St(G(3461257))
− St(G(5341267))− St(G(4531267)) + St(G(5431267))− St(G(5163247))

= KG
0000124 +KG

0000234 +KG
0000034 − 2KG

0000134

+KG
0000223 −KG

0000224 +KG
0000133 −KG

0000233 .

The terms St(G(5421367)) and St(G(5163247)) are both equal to KG
0000134, hence a

multiplicity 2.



134 Chapter 4 — Products and transitions for Grothendieck and Keys

4.9 Transitions for Key polynomials
Key polynomials satisfy a similar transition formula, exhibiting a boolean lattice,
except that now one uses weights instead of permutations. The following consid-
erations are drawn from an unpublished manuscript with Lin Hui and Arthur L.B.
Yang.

Let v ∈ Nn, let k be such that vi = 0 for i > k and vk > 0. The leading term xv

of Kv is equal to xuxk, and we want to describe the difference Kv−xkKu as a sum
of key polynomials. We can suppose that v1 ≥ · · · ≥ vk−1, because π1, . . . , πk−2
commute with multiplication by xk.

Let us compute an example :

x6K543103 = K543104

ooooooo

WWWWWWWWWW

−K544103 −K543401

ooooooo
−K543140

ooooooo

K544301 K544130 K543410

ooooooo

−K544310

Using the same notation as above for operations on indices, one may rewrite
the preceding identity into

x6K543103 = (1− τ43) ? (1− τ41) ? (1− τ40) ? K543104 .

We have used transpositions of values τ4i, ignoring the leftmost 4. However,
this example is not generic enough. What to do when values i are repeated?

Let us take a bigger example, which, this time, will pass the test of genericity.
Let v = [5, 4, 3, 3, 1, 1, 1, 0, 5]. We have to compute

K5,4,3,3,1,1,1,0,4 x9 = K5,4,4,3,3,1,1,1,0 π3 . . . π8 x9 .

Noticing, by the Leibnitz’ commutations (1.4.3), that

π3 . . . π8 x9 = x3∂3x4∂4x5∂5x6∂6x7∂7x8∂8 x9 = x3 π̂3π̂4π̂5π̂6π̂7π̂8 ,

one obtains that K5,4,3,3,1,1,1,0,4 x9 = K̂5,4,3,3,1,1,1,0,4. The general case is similar and
given in the following statement.

Lemma 4.9.1. Let v ∈ Nn be such that v1 ≥ · · · ≥ vn−1, vn 6= 0, and let
u = [. . . , vn−1, vn−1]. Then

Ku xn = K̂v . (4.9.1)
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Expanding K̂v in terms of Ku (which means taking the Ehresmann-Bruhat
interval), one obtains the transition for key polynomials in that case. Let us show
the evolution of the transition under successive applications of πi, i 6= n−1.

We begin with the transition for K4,3,2,2,5 :

K4,3,2,2,5 −K4,3,2,2,4 x5 = K4,3,2,2,5 − K̂4,3,2,2,5

=
(
K5,3,2,2,4+K4,5,2,2,3+K4,3,2,5,2

)
−
(
K5,4,2,2,3+K5,3,2,4,2+K4,5,2,3,2

)
+
(
K5,4,2,3,2

)
,

that we display as a boolean lattice (forgetting signs), writing the starting element
as the bottom element

[5, 4, 2, 3, 2]

ooooooo
OOOOOOO

[5, 3, 2, 4, 2] [4, 5, 2, 3, 2]

ppppppp
NNNNNNNN
[5, 4, 2, 2, 3]

ppppppp

[4, 3, 2, 5, 2] [5, 3, 2, 2, 4] [4, 5, 2, 2, 3]

ppppppp

[4, 3, 2, 2, 5]

Applying π2, then π1, then again π2, one obtains the transitions for K2,4,3,2,5
and K2,3,4,2,5 :

[5, 2, 4, 3, 2]

ooooooo
OOOOOOO

[5, 2, 3, 4, 2] [4, 2, 5, 3, 2]

ppppppp
NNNNNNNN
[5, 2, 4, 2, 3]

ppppppp

[4, 2, 3, 5, 2] [5, 2, 3, 2, 4] [4, 2, 5, 2, 3]

ppppppp

[4, 2, 3, 2, 5]

[2, 5, 4, 3, 2]

ooooooo
OOOOOOO

[2, 5, 3, 4, 2] [2, 4, 5, 3, 2]

ppppppp
NNNNNNN
[2, 5, 4, 2, 3]

ppppppp

[2, 4, 3, 5, 2] [2, 5, 3, 2, 4] [2, 4, 5, 2, 3]

ppppppp

[2, 4, 3, 2, 5]

[2, 3, 5, 4, 2]

[2, 3, 4, 5, 2] [2, 3, 5, 2, 4]

[2, 3, 4, 2, 5]
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The terms which are not underlined cancel two by two at the last stage, because
(K•ji•• −K•ji••)π2 = 0.

To write the general transition, we need to introduce, for each pair of integers
i, j, an operator τi,j on linear combinations of Ku, defined4 by

K...ui...uj ... ? τi,j = K...uj ...ui... .

Then, one has the following transition formula, similar to the one for Grothendieck
polynomials.

Theorem 4.9.2. Let v ∈ Nn, such that vn > 0, and u = [v1, . . . , vn−1, vn−1]. Let
i1 < · · · < ir < n be the places i such that vi is strictly maximal among the values
{vj : i ≤ j < n, vj < vn}. Then

Ku xn = Kv ? (1− τi1n) · · · (1− τirn) . (4.9.2)

Proof. When v1 ≥ · · · ≥ vn−1, the statement comes from rewriting the expansion
of K̂v in (4.9.1) in terms of the operators τin.

Given any k such that vk > vk+1, one has Ku xn πk = Kusk xn. On the other
hand, the product of the RHS of (4.9.2) is obtained by replacing v by vsk and
exchanging k and k+1 in the indices of the operators τi,n, except one has the
double factor (1− τk,n)(1− τk+1,n). In that case the factor (1− τk,n) disappears,
and this corresponds to the pairs Kw −Kwsk which vanish under πk. QED

The four examples above must be rewritten

K43224 x5 = K43225 ? (1− τ15)(1− τ25)(1− τ45)
K42324 x5 = K43224 x5 π2 = K42325 ? (1− τ15)(1− τ35)(1− τ45)
K24324 x5 = K42324 x5 π1 = K24325 ? (1− τ25)(1− τ35)(1− τ45)
K23424 x5 = K42324 x5 π2 = K23425 ? (1− τ35)(1− τ45) .

If v ∈ Nn is a vexillary code such that vn 6= 0 and there exists i : vi < vn, then
Yv(x,0) and Kv satisfy the same transition :

Yv(x,0) = xkYv′(x,0) + Yu(x,0) & Kv = xkKv′ +Ku ,

with v′ and u vexillary (cf. [105, Lemma 3.10]). Therefore, one has the following
property, which is a special case of the expansion of a Schubert polynomial in
terms of keys given in (7.3.2).

Lemma 4.9.3. If v is a vexillary code, then

Yv(x,0) = Kv . (4.9.3)

For example, there are 23 Schubert polynomials Yv(x,0), v ≤ [3, 2, 1, 0], which
coincide with the key polynomial of the same index, while Y1010(x,0) = x1(x1+x2+x3)
is different from K1010 = x1(x2+x3).

4If needed, u is transformed into u, 0, 0, . . .
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4.10 Vexillary polynomials
We have already stated that vexillary Schubert and key polynomials have a deter-
minantal expression. This property is also satisfied by Grothendieck polynomials,
and we collect together these three families in the next theorem.

First, dominant polynomials can be written as multi-Schur functions. Let v
be dominant, u = vω, k = v1. Then

Yv = Su(xn − yvn , . . . ,x1 − yv1)
Gv = (x1 · · ·xn)−kSkn(xn − yvn , . . . ,x1 − yv1)
Kv = Su(xn, . . . , x1)

For example, for v = [6, 3, 1], one has

Y631 = S136(x3−y1,x2−y3,x1−y6) =

∣∣∣∣∣∣∣
S1(x3 − y1) S4(x2 − y3) S8(x1 − y6)
S0(x3 − y1) S3(x2 − y3) S7(x1 − y6)

0 S2(x2 − y3) S6(x1 − y6)

∣∣∣∣∣∣∣ ,
G631 = (x1x2x3)−6S666(x3 − y1,x2 − y3,x1 − y6) ,

K631 = S136(x3,x2,x1) .
As we already saw, the action of ∂i or πi on a determinant of complete functions

Sk(xp−yq) is straightforward if only one column or one row is not invariant under
the transposition of xi, xi+1. In that case, one has to transform this row or column,
following the rules Sk(xi − y)∂i = Sk−1(xi+1 − y), Sk(xi − y)πi = Sk(xi+1 − y).

For example,

Y631
∂2−−→Y612 = S126(x3 − y1,x3 − y3,x1 − y6) ∂1−−→Y152

= S125(x3 − y1,x3 − y3,x2 − y6) ∂2−−→Y124 = S124(x3 − y1,x3 − y3,x3 − y6) ,

G631(x1x2x3)6 π2−−→ = S666(x3 − y1,x3 − y3,x1 − y6) π1−−→
= S666(x3 − y1,x3 − y3,x2 − y6) π2−−→ = S666(x3 − y1,x3 − y3,x3 − y6) .

On the other hand, Y631∂1 = S135(x3 − y1,x2 − y3,x2 − y6) and we cannot
proceed so easily with ∂2, since two columns involve x2 and not x3.

When v is vexillary, we have already used the property that there exists at
least one sequence of operators ∂i or πi respectively, starting from a dominant
case, such that at each step, only one column is transformed by the operator

To describe the missing determinants in the Grothendieck case, we have to
follow the same recursion than for Schubert, but with different flags. To any
v ∈ Nn, let us associate the two following flags of alphabets. Let w be the
sequence wi := max(j : j ≥ i, vj ≥ vi. Then vx is the decreasing reordering of w.
Let now u be the element of Nn obtained by decreasingly reordering v according
to the rule [. . . i, j . . .] → [. . . j+1, i . . .] whenever i < j. Then vy is set to be the
increasing reordering of u.
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Theorem 4.10.1. Let v ∈ Nn be vexillary, vx, vy be the two vectors defined above,
k = max(vy). Then

Yv = Sv↑(xvx1 − yvy1 , . . . ,xvxn − yvyn) , (4.10.1)
Gv = Skn(xvx1 − yvy1 , . . . ,xvxn − yvyn) (x1 · · ·xn)−k , (4.10.2)
Kv = Sv↑(xvx1 , . . . ,xvxn) . (4.10.3)

In particular, when v is vexillary, then Kv = Yv(x,0).

For example, for v = [3, 5, 4, 0, 2], one has w = [3, 2, 3, 5, 5], which reorders into
vx = [5, 5, 3, 3, 2]. On the other hand, the chain v = [3, 5, 4, 0, 2]→ [6, 3, 4, 0, 2]→
[6, 5, 3, 0, 2]→ [6, 5, 3, 3, 0] gives the second flag vy = [0, 3, 3, 5, 6]. Hence, one has

Y35402 = S02345(x5−y0,x5−y3,x3−y3,x3−y5,x2−y6)
G35402 = S66666(x5−y0,x5−y3,x3−y3,x3−y5,x2−y6)(x1 . . . x5)−6

K35402 = S02345(x5,x5,x3,x3,x2) .

Property (2.6.5) allows to write from (4.10.2) a determinantal formula for Ĝv

polynomials such that v♣ be vexillary. This condition is in fact equivalent to
requiring that v be vexillary, since if a permutation σ avoids the pattern 2143,
then ωσω also avoids this pattern, and conversely.
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4.11 Grothendieck and Yang-Baxter
One can degenerate Yang-Baxter bases of Hecke algebras into bases of the 0-
Hecke algebra, i.e. the algebra generated by π̂1, π̂2, . . . . But as in the case of
divided differences, instead of taking products of factors of the type π̂i+1/c, let us
take factors 1 + cπ̂i. Accordingly, given a spectral vector [y1, . . . , yn], one defines
recursively a Yang-Baxter basis fπ̂

σ, starting from 1 for the identity permutation,
by

fπ̂
σsi

= fπ̂
σ

(
1 +

(
1− yσi

yσi+1

)
π̂i

)
for σi < σi+1 . (4.11.1)

For example,

fπ̂
321 =

(
1 +

(
1− y1

y2

)
π̂1

)(
1 +

(
1− y1

y3

)
π̂2

)(
1 +

(
1− y2

y3

)
π̂1

)

= 1 +
(

1− y1

y3

)
π̂1 +

(
1− y1

y3

)
π̂2 +

(
1− y1

y2

)(
1− y1

y3

)
π̂1π̂2

+
(

1− y2

y3

)(
1− y1

y3

)
π̂2π̂1 +

(
1− y1

y2

)(
1− y1

y3

)(
1− y2

y3

)
π̂1π̂2π̂1 .

s As in the case of divided differences, the Yang-Baxter coefficients are speciali-
sations of known polynomials. The proof of the next properties is similar to the
proof of Theorem 3.5.1, and we can avoid repeating it.

Theorem 4.11.1. The matrix of change of basis between {fπ̂
σ} and {π̂σ}, and its

inverse, have entries which are specializations of Grothendieck polynomials :

fπ̂
σ =

∑
ν≤σ

π̂ν G(ν)(yσ,y) , (4.11.2)

π̂ν
∏
i<j

(
1− yi

yj

)
=

∑
σ≤ν

(−1)`(σ)−`(ν)fπ̂
σ G(ν−1ω)(yω,yσ) . (4.11.3)

For example, for ν = [2, 3, 1], one has ν−1ω = [2, 1, 3], and the coefficients of
the expansion of π̂231 are specialisations of the polynomial G(213 = 1−y1x

−1
1 . One

has

π̂231
∏

i<j≤3
(1− yiy−1

j ) = fπ̂
123G(213(y321,y)− fπ̂

213G(213(y321,y213)

− fπ̂
132G(213(y321,y132) + fπ̂

231G(213(y321,y231)

=
(

1− y1

y3

)
fπ̂

123 −
(

1− y2

y3

)
fπ̂

213 −
(

1− y1

y3

)
fπ̂

132 +
(

1− y2

y3

)
fπ̂

231 .

The general properties of Yang-Baxter bases induce properties of specializa-
tions of Grothendieck polynomials.
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The symmetry (1.8.4) entails
(
G(ν)(yσ,y)

)♣
= G(ωνω)(yωσω,yω) , (4.11.4)

using the involution ♣ : yi → y−1
n+1−i, i = 1, . . . , n introduced in (2.6.4).

Each of the equations (1.8.9) and (1.8.10) gives, after some rewriting,

∑
ν

(−1)`(ν)+`(σ)G(ν)(yσ,y)G(νω)(yζ ,y) = δσ,ζω
∏
i<j

(
1− yi

yj

)
, (4.11.5)

which is a special instance of formula (2.9.4).
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braid relations, 7

Calogero-Sutherland Hamiltonian, 49
canonical reduced decomposition, 9
Cauchy formula
∼for Grothendieck, 75
∼for Schubert, 73
∼for key, 84

code, 9
column, 10
Coxeter relations, 7

Demazure characters, 57
diagram, 14
∼punched, 15

discrete Wronskian, 20
divided difference
∼Newton, 12
∼as scalar product, 76
∼as sum of permutations, 77
∼generalized, 21
∼isobaric, 12
∼maximal, 19

dominant
∼Grothendieck polynomial, 57
∼Schubert polynomial, 57
∼key polynomial, 57
∼weight, 11

factorization

∼Grothendieck polynomial, 131
flag
∼Schur function, 62
∼elementary function, 61
∼symmetric function, 61

Graßmannian
∼Grothendieck polynomial, 61
∼Schubert polynomial, 61

Grothendieck
[simand Yang-Baxter, 139
∼adjoint polynomials, 67
∼polynomial, 58
∼polynomial:factorization, 131

Hecke
0-Hecke algebra, 31
00-Hecke algebra, 31
∼affine algebra, 14
∼algebra, 30
∼relations, 13, 30

inversion polynomial, 91
inversion weight, 53

Jack polynomials, 49

key polynomial
∼adjoint, 70
∼type A, 58

Leibnitz relation, 13
Littlewood-Richardson rule, 116
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Macdonald
∼Poincaré polynomial, 53

maximal divided difference
∼type A, 19
∼type D, 43
∼types B,C, 42

Monk formula
∼ for key, type A, 120
∼for Schubert, 103

multivariate interpolation, 92

Newton divided difference, 12
NilCoxeter algebra, 31

partition, 11
Pieri formula
∼for Grothendieck, 121, 126
∼for Schubert, 106
∼for key, 123

plethysm, 23
Poincaré polynomial, 9

reduced decomposition, 8
reproducing kernel , 72

scalar product
∼ ( , ), 64
∼ ( , )∂, 65
∼ ( , )π, 65
∼ ( , )H , 33
∼for type A, 64

Schubert
∼adjoint polynomials, 67
∼polynomial, 58

Schur function, 20
q-factorial∼, 20
factorial∼, 20

Sekiguchi operator, 46
Sergeev-Pragacz formula, 115
soulèvement, 106
Specht representation, 32
spectral vector, 26, 91
stable
∼Schubert polynomial, 113

transition
∼for Grothendieck, 129
∼for Schubert, 108
∼for key, 136
∼maximal, 108

Vandermonde determinant, 19
vexillary
∼Grothendieck polynomial, 137
∼Schubert polynomial, 112, 137
∼code, 110
∼determinantal expression, 138
∼key polynomial, 137
∼permutation, 110

Weyl character formula, 51
Wronskian, 97

Yang-Baxter
∼and Grothendieck, 139
∼basis, 31
∼equation, 26
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