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Foreword

These notes are the fruit of the author’s attempts to understand and develop from scratch the
elegant theory of Schubert polynomials created by A. Lascoux and M.P. Schiitzenberger in recent
years. Most of the results expounded here occur somewhere in the publications of these authors,
though not always accompanied by proof, and I have not attempted to give chapter and verse at
each point. Brief indizations to the literature will be found in the notes and references at the end.

Topics not covered in these notes include (i) the interpretation of Schubert polynomials as
traces of functors (from filtered vector spaces Lo vector spaces) for which we refer to [KP); and (ii}
the non-commutative theory, for which we refer to {LS8].

Most of this material was presented in a course of lectures at the University of California, San
Diego in the winter quarter of 1990, and [ would like to take this opportunity to thank the audience,

especially Adriano Garsia and Jeff Remmel, for their support.

San Diego, 1991 [.G. Macdonald
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Chapter I

Permutations

For each integer n > 1, let 5, denote the symmetric group of degree n, that is to say the group
of all permutations of the set [1,n) = {1,2,...,n}. Each w € 5, is a mapping of (I, n] onto itself,
As is customary, we write all mappings on the left of their arguments, so that the image of i € [1, n]
under w is w(i). We shall sometimes denote w by the sequence (w(1), w(2),...,w(n)). Thus for
example (53214) is the element of S5 that sends 1 t05,2t03,3t02, 410 1 and 5 to 4.

Fori=1,2,...,1—1let 5; denote the transposition that interchanges i and i + 1, and fixes all

other elements of [1, n]. We have
si=1,

(L) §i8; = ;5 ifli-j]>1,
Si8ip15 = 8i415iSiq1 (I €i<n~2).

Also, for each w € S, let
Hw)={(j):1<i<j<nand wi)>w(f)}.

We regard [(w} as a subset of the square I, = 1, n] x [1,n], and we shall adopt the convention
of matrices, that in I, the first coordinate increases from north to south, and the second coordinate
from west to east. The group S, x S5, acts on E, : (u x v)(i,7) = (u(i), v(§)). In particular, S, acts

diagonally: w(i, j) = (w x w)(i, j) = (w(i}, w(s)).

Let w € S,, 1 €r < n— 1. Then ws, is the permutation
(w(l),....,w(r +1),w(r),...,w(n))

and it is elear that

= sl {wyu{(r,r+ 1)} ifw(r) < wir+1),
(1.2 (LI {s..I(w) C{r+ 1) Tl > wirs 1)
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Let é(w) = Card I{(w). Then from (1.2) we have

o P fuy+ 1 af wlr) < wir+1),
(1.3) fGese e {F(n-) =1 ifw{r) > wir+1)
{(1.4) $1,....80_1 generale the group S..
Proof: We shall show by induction on f(w) that cach w € S, is a product of s's. If {(w) = 0, then
w = | and there is nothing to prove. If &w) > 0 then w(r) > w(r + 1) for some r, and hence

f(ws,) = {{w)—=1by (1.3). Hence ws, = 5,, .54, 537, and thetefore (as 57 = 1) w = sa, .. 50,5 |l

For each w € S,. the length of w is the minimal length of a sequence (ay, .. ..ap) such that
W= Sy, .. Sa,
(1.5) The length of w € S 15 equal lo f(w) = Card [(w).

Proof: Let ¢(w) temporarily denote the length of w. The proof of (1.4) shows that w can be written
as a word of length £(w) in the s;, so that f(w) <€ fw). Conversely, let w = 5,5, ...5,, be any

expression of w as a product of s,. To show that £(w) € €(w) it is enough to show that fw) < p.

Let w' = 54, .. .5a,_, from (1.3) we have {{u) £ #(u’) + 1 and hence
fuw)sp=1=Hw) <p

Hence the proof is completed by induction on p.j|

(1.6) Let w€ Sn. Then

(i} &uw)=0ifandonlyifw=1

(i) fw)y=tifendonlysf w=s. (1<r<n-1)

(iii) &w=1) = Yw).

(iv) Let wo=(n,n=-1,....2,1}€ Sp. Then

E(wow) = L(wwo) = n(n = 1) = Hw).

Proof: (i), (ii) require no comment. Also (iii} is clear, since w = 5q, ... 54, if and only if w-! =
Sa, . Say-
(iv) The set (wo) consists of all (i,j) € En such that i < j, so that fwo) = in(n-1). Next, we
have

wwe = (win),win~1},..., w(l))

so that I(wwp) is the complement of I(w) in (wo), and therefore

Hwwy) = %n(n - 1) = f(w).
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Finally, since w3 = [ we have, by virtue of (iii) above,
wow) = {(w™"wy)
= %n(n— 1) = ffw™h)
= gntn— 1) ~ () |
The element wy is called the longest element of S,.

For each w € S, let R{w) denote the set of all sequences (ay,...,a,) of length p = &{w) such

that w = 54, ...8a,. Such sequences are called reduced words for w. Clearly,
(a1,....ap) € R(w) < (ap,...,a;) € R(w™").
(1.7} Let {a),....a;) € R{w). Then
1) = {8, - -5a,p(trsar + 1) 1< 7 < p).
Proof: Let w' = ws,, = 5,, -..5a,.,- Then ¢(w’) = p — 1 and hence by (1.2) and (1.3) we have
Hw) = sq, I{w')V ({5, ap + 1}}

from which (1.7) follows by induction on p.||
(1.8) (Exchange Lemma). Let (ey,...,ap),(by,...,0,) € R(w). Then

(br,01,...,8i,...,ap) € R{w) f;rsomc i=12...,p
Proof: By (1.7), applied to w™!, we have (§;,6, + 1) € Hw=') and hence

(blibl + ‘l) = sda "'sﬂ‘_|(aioa|’+ I)

for somei=1,...,p. It follows that

84, = Sa, .- Sa,_,5a,{5a, - --8a,_, )"\,
5o that sy, 50, .. .84, , = 5q, ...54, and therefore

Sy, 8a, «--5g +8g, = 89, -..8q :w,"

(1.9) Letw =3, -5, where r> €(w). Then

w=5¢."‘§n,"'5-u ..

« " Sa
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for some pair (p,q)such that 1 <p<g<r.

Proof: Since £(34,} = | and £(3¢, ---84,) < r there exists ¢ > 2 such that
Z(sda e '%,-.) Ll 1, e(sm e '36,) <q.

Let v = 84, -~ 84,.,, 50 that £(v) = ¢ — 1 and fvsa, } S ¢ -1, whence by (1.3} we have {vs,,} =
g¢—2. Let (by,...,by_2) be a reduced word for vs,,, then (by,...,bg-2,a4) and (a;,...,aq-1) are
reduced words for v. By (1.8) (applied to v=') it follows that v = 84,34, - Sa,, [or some

p=1,2,...,9—1, and hence
WS VSa, 86, = 8oy Say By Sa |

If i < j, let t;; denote the transposition that interchanges i and j and fixes each k # i, ;. For
each permutation w, Jet e;;(w) denote the number of k such that i < k < j and w(k) lies between

w(i) and w(j). Consideration of I(w) and [{wi;;) shows that

o O (e e
In particular, #(wt;;) = £(w) £ 1 if and only il &;; = 0.
(1.11) Let v,w be permulations and lel (a1,...,ap) be a reduced word for w. Then the followng
condilsons are equivelent :

(i) £(v) < &{w) and v~'w 15 a transposition,

{ii)v=24, $a, 8, forsome r=12,....p.
Proof: (i) = (ii). Suppose that v='w = &;j, so that v = wt;;. Then (1.10) shows that w(i) > w(j),
so that (i,j) € I{w). Hence by (1.7) we have (i,j) = $a, - - -S4, 4, (ar. 8r41) for somer = 1,2,....p,

and therefore

=1
Lij = (84, - *Sa,41)5a, (50, * - Sa,41)

(1) = 8a, " *Sa,415a, 50,4 " Fa,-

Consequently
v=wl; = (54, "'3¢,)(3a, Y "'Sa,)

= Sa, " **Sa, ** " Sg,-

(ii) = (i). Clearly £(v) < £(w), and the calculation above shows that v~ 'w is the transposition (1).]|

Permutattons 5

The Bruhat order
Let v, w be permutations such that
(a) f{w) =Lv)+ 1,
{(b) w = tv where { is a transposition.
Since tv = vt’ with #' = v='tv also a transposition, we can replace (b) by
(¥") w= vt’ where I’ 15 also a transposition.
If (a) and (b) (or (¥')) are satisfied we shall say that w covers v and write v — w.
(1.12) Let v,w € S, and let wq be the longest element of S,. Then the following conditions are
equrvalent:
(a)v — w; (Bv~! = w™); (clwwy = vwp; (dlwow — wov.

This follows from the definition and (1.6)(ii1),(iv). ||

{1.13) Let(a1,...,ap) be a reduced word for w. Then v — w sf and only tf v =5, - -5,

._qa'
Jorsome i=1,2,...,psuch that (a,...,8;,...,a,) s reduced.

This follows from (1.11).

(1.14) Let w be a permutation and lel i > 1. Then esther w — s;w or s,w — w. Moreover we
have siyw — w if and only +f there 13 ¢ reduced word‘for w slarting with i,

Proof: The first statement follows from (1.3) and (1.6)(iii). If 3,0 — w, let (ay,...,a,) be a reduced

word for s;w; then w = s5;3,, - - *$a, is o reduced expression for w, Conversely if w = 5{8q, ' ' 5, 18

reduced, it is clear that #(s;w} = #{w) — 1, and hence s;w — w.||

(1.15) Let v,w be permulations and lel i > | be such that
v—s5ivFEuw

Then v— w if and only if both w = s;w ond s;v — s;w.

Proof; Assume that v — w, and let (ay,...,a;) be a reduced word for w. Suppose that ay = i.
By (1.13) we have v = s,, - - -4,, +++8q, for some r. If r = 1 then s;v = s5,v = w, and if r > 1
then s5,v = 84, -3,, - -+ 50, has length < p = 1 = £(v), so that s;v — v by (1.14). Since both these
possibilities are excluded by our hypothesis, we can conclude that @y # i. Hence (1.14) shows that
w — s;w. It follows that s;sg, - - 54, is a reduced expression for s;w, and s;s,, -+ -4, « -+ Sa, is ONE
for s;v. Hence (1.13) shows that s;v — s;w.

Conversely, assume that w — s;w and s;v — s;w. As before, let w = 5q, -+ *Sa, be a reduced

expression. Then s,w = s5iss, -5, is reduced, and since s;v # w it follows from (1.13) that
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SiV = 8i8,, * '+ 34, -+ 8o, fOr SOMeE r = 1,2,...,p. Hence v = 54, dq, "8, and s0 v — w by

(1.13) again.||

]

The Bruhat order , denoted by <, is the partial order on Sy, that is the transitive closure of the
relation —. In other words, if v and w ate permutations, v < w means that there exists r > 0 and
Yo, 1, ..., U in S, such that

V=g =t — =Y =W
(which implies that &{w) = é(v) +r).
(1.16) Letv,w € Sp and i3> 1 be such that siv — v and s;w — w. Then the followtng conditions
are equivalent :

(i) v € w, (i) siv < w, (iii) siv £ siw.

Proof: (i) = (ii). We have siv < v € w, hence s;v < w.

(it} = (i). By definition there exist vo,v1,....Vm, where m > 1, such that
S U= vg = U — o0 — Uy = W.

We have vg — 5;vp and $;tm = Um. Hence there exists & = 1,2,....m such that v; — s;v; for
0<j<k-=1,and sive — vi.
Suppose 1 € j € k— 1. Then vjoy — sivio) and vj_, - vj; also v # sivj-1, otherwise we

should have s;v; = v;_; and hence s;v; — v;. Hence by (1.15) we have
(1) Sivjo1 F Sivy (1<j<k-1)

Next, we have vp_y — Sjvp—y and veoy — vi. Il v # sty we should by (1.15} have

vg — 8ivk, contradicling the definition of k. Hence
(2) U = §iVe-1-
From (1) and (2) it follows that
V= 5iUp = 8] = — SV = U — - —Up =W

and hence v < w.
This shows that (i) and (iii) are equivalent. To show that (ii) and (iii) are equivalent, assume
that v, w € S, for some n > 1, let wy be the longest element of S.., and replace v, w respectively by

siwwg and s;vwy. Then we have

Permutations T

v S 5w <= sjwwg < sivwy (by (1.12))
= wwy < sivwy {by (i) & (ii))
= sr<uw {by (1.12} again)

and the proof is complete.||

(1.17)  Letv,w be permutations and let a = (ay,...,a;) be a reduced word for w. Then the following

conditions are equivalent:

(i) v<uw;
(ii) there exists a subsequence b=(by1,...,b,) of @ such thatv =5y, --- 5 ;
gt
(iii) there exits a reduced subsequence b= (by,...,b,) of a such thet v = Sy S, .

Proof: 1t follows from (1.13) that (i) = (iii), and from (1.9) that (ii) and (iii) are equivalent. Thus
it remains to prove that (iii) = (i).

We proceed by induction on r = p+ ¢ = #(v) + é(w). If r = 0, we have v = w = 1, s0 assume
that r > 1. We distinguish two cases :

(8) v — 35, v. In this case we have b; # ay, hence (b,,...,b,) is a subsequence of (az,....ap)},
which is a reduced word [or 54, w. By the inductive hypothesis we have v < 5a,w < w, hence v < w.

(6)3a,v — v. In this case f{s,,v) + €w) = p=-1+g =r -1, and Sa\ VU = Sa 5y, 8y, If
ay = by we have s,,v = 53, - -+ 5p, and if @ # by then (a;,by,...,b,) i3 2 non-reduced subsequence

of (a),...,ap). Hence the inductive hypothesis implies that 55, v < w. But also s, w — w, hence

v < w by (L.16). |
(1.18) Let w € 5, and let t be a transpesition. Then

fHwt) < f{w) = wt < w.
This follows from (1.11) and (1.17).|)

To recognize when two permutations are comparable for the Bruhat order, the following rule may
be used. For ecach w € S, let K'(w) denote the column-strict tablean (of shape 6 = (n—-1,n-2,...,1))
whose juh column, for 1 € j € n—1, consists of the numbers w(l), ..., w(n—~Jj) arranged in increasing

order {tom north to south.

(1.19) Letv,w € Sn. then v < w if and only of K(v} < K(w) (1.c., each entry in I(v) 1s less than

or equal {o the corresponding enlry mn K(w) ).

Proof: If v — w it is easily seen that K(v) < K'(w), and hence v < w implies K(v) € K(w).
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Conversely, suppose that K(v) < K{w) and let j = j{v,w) be the smallest integer > 1 such
that v(j) # w(j). (If v = w we define j{v,w) = n.) We proceed by descending induction on j(v, w).
If j{v, w) = n we have v = w, 50 assume j(v, w} = j < n. Then w(j) is not equal to any v(1}), ..., v()
and hence is equal to v(k) for some k > j. For each i < j the (n—i)un columns of K(v) and I(w) are
identical, and since K(v) € K(w) it follows that v(j) < w(j), i.e. v(j) < v(k). Let v’ = vijy, then
by (1.10) we have £(v) < &(v') and hence v < v' by (1.18). Also v'(i) = v(i) = w(d) for i < j, and
v'(j) = v(k) = w(j) so that j(v',w) > j. Hence v’ < w by the inductive hypothesis, and therefore

v < wl

The diagram of a permutation

We may regard I(w) as a “diagram” of w € Sp. However, for many purposes it is more convenient

to define the diagram of w to be

D(w) = (1 x wl{w).
Thus we have (i, j) € D(w) if and only if (i,w™'j) € I(w}; that is
(1.20) (i, j) € D(w) <= i <w'jand j < wi.

Hence the points (4, j) in the square £, = [1,n]? not in D(w) are those for which cither i 2> wj
or j 2 wi.

The graph G(w) of w is the set of points (i, w(i)} (1 £ i < n), or equivalently (w™'j, ) (1 £ j £
n). The complement of D(w) in E, therefore consists of all the lattice points due south or due east
of some point of G(w), hence is the union of the hooks with corners at the points of G(w). For
example, if w = (365142) and n = 6, the diagram D(w) consists of the points circled in the picture

below:
1t 2 3 4 5 6

1
2
3
4
]
6

+~__

If m > n, we shall identify S, with the subgroup of permutations w € Sy, that fix n+1, n+2,

...,m. We may then form the group
Snn = U Sn
>l

consisting of all permutations of the set of posilive integers that fix all but a finite number of them.

Permutations 9

The diagram D{w) of w € S, is unchanged by this identification of §, with the subgroup of

Se fixing all m > n, and hence is well-defined lor all w € S,. Also, it is clear from the definitions

and {1.7) that

(1.21) (i) D(w™')is the transpose of D(w) (i.c., we have (i,7) € D(w™") 1f and only if
(3,4) € D(w)).
(ii) Card D(w) = f(w).

(iii) If (a1,...,8,) € R(w), then D(w) consists of the lattice points

(30, - 50,4, (8¢ ), 80, ... 50,_,(ar))
Jorr=12,....pl

In particular, it follows from (iii) above that
(1.22) (i) ¥f f(ws,) > {w), then D ws,) = (s, x 1)D{w) U {{r, wr)}.
(i) If {(sew) > &(w), then Df(ws,) = (1 x 5.} D(w) U {(w™ r,r)}.|

The code of a permutation

Let w € S,, and for each i > | let
ei(w) = Card{j : j > i and w(j) < w(i}}.

Thus c,(w) is the number of points in the i*® row of I(w), ot equivalently the number of points in

the i*" row of D(w). The vector

c(w) = {ar(w),...,ca{w)) € N”

is cailed the code of w. As with partitions, we may disregard any string of zeros at the right-hand
end of c(w), and with this convention the code c(w) (like the diagram D{w)} is unchanged by the
embedding of S, in S, where m > n and is well-defined for all w € Sy .

The permutation w may be reconstructed from its code c(w) = (¢, ¢a,. . ) as follows :- for each
i > 1, w(i) is the (c; + 1)*® element, in increasing order, of the sequence of positive integers {rom
which w(1), w(2),..., w(i = 1) have been deleted. The sum [c] = ¢; +¢3 + - - is equal to f{w). Each
sequence ¢ = (c1, ¢z, .. ) of non-negative integers such that Jc| < oo accurs as the code of a unique
permulation w € See.

The length of c(w) is the largest r such that e, (w) # 0. From the definition, r is the last descent

of the permutation w, that is to say w(r) > w(r+ Dand w(r+ ) < w(r+2)<....
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(1.23) () If &ws,) > t(w) (e, of w(r) <w(r+1)) then
c(ws,) = sec(w) + €,

where ¢ i3 the sequence with 1 in the r' place and @ elsewhere.

(i) If (a1,...ap) € R(w) then

P
c(w)= Zsa' oo Sau{€a,)-

Proof: (i) follows from {1.21)( i), and (ii) follows from (i) by induction on el

{1.24) Leti> 1. Then

ci(w) > eip{w) <> w(i) > w(i+1).

Proof: Suppose that w(f) > w(i +1). Then the (i + 1)t row of I(w) is strictly contained in the ith
row, whence ci(w) > ¢;4y(w). Counversely, if w(i) < w(i+ 1}, then the i*" row of [{w) is contained

in the (i +'1)*" row, so that ¢;{w) < cip1(w).||

To compute the code of w™! in terms of the code {¢,c2,...) of w, we introduce the following

notation. If u = {uy, up,...) is any sequence and r is an integer 2 0, let
Cr“ = (u‘l B2,.0.., uroot Urgpl s Urg2, - ')

so that the operation ¢, introduces a zero after the r*b place. Then we have

(1.25) (w™ty =3 Gy e (1)

izl
where (1) is the sequence consisting of ¢ U's.

Proof: By induction on the length of ¢(w) it is enough to show that if w is the permutation whose

code is (ez,¢3,...) then
(1) c(w™!) =(l“)+C¢‘c(w1'l)_

Now the diagram of w, is obtained from that of w by deleting the first row (ol length ¢;) and then
moving each column after the ¢} one space to the left. On reading the dingrams of w and w, by

columns, we obtain (1).|

Permulations 11

The shape A{w) of a permutation w is the partition whose parts are the non-zero ¢;(w), arranged

in weakly decreasing order. We have
[AMw)] = Card D{w) = ¢(w).

Next, recall that for lwo partitions A = (Ay,)3,...) and g = (g5, g3, ..} the relation A > p
means that |A] = |u| and Ay +---+ X 2 g+ -+ g for all i > 1 [M, Ch.I). With this understood,
the shapes of w and w™! are related by
{1.26) Mw) 2 Mw™").

Proof: Let A = Mw), s = Mw™"). Define a matrix M = (m;;) as follows: my; = Lif (i, j) € D(w),
and m;; = 0 otherwise. Then A is a {0,1) matrix with row-sums Ay, Ay, ... in some order, and

column-sums gy, 52, . .. in some order. Hence (see e.g. [M, Ch.l, §6]) we have X' > u.||

Vexillary permutations

Special interest attaches to those permutalions w € S, for which A(w)’ = Aw™"). They may
be characterized in various ways:
(1.27)  The following condittons on a permutation w € Sw are equivelent:

(i) the set of rows of D{w) 1s totally ordered by inclusion;

(i) the set of rows of I{w) 15 totally ordered by nclusion;

(it) the set of columns of D(w) 1s totally ordered by inclusion;

(i)' the set of columns of I{w) 1s totally ordered by inclusion;

(i) there do not exist a,b,c,d such that 1 <a<b<ec<dand wb) < w(a) < w(d)< w(e);

(iv) there ezist u,v € So, such .H'ml (u x v)D{w) 13 the diagram D()) of a partstion A;

() Mw) = Mw=1).
Proof: Since D(w) = (1 x wH(w) it is clear that (i}=(i) and (i) (ii) . Morever (i) & (ii), for either
is false if and only if there exist a,/,¢,6 € [1,n] such that 2 < ¢, § < § and (a,8), (¢, 8) belong to
D(w), whilst (a, §) and (c,5) do not. Let b = w=1(f) and d = w~(6); then wehavea < b < c < d
and w(b) < w(a) < w(d) < w(e). Thus (i), (ii) and (iii) are all equivalent.

Next, it is clear that the eonjunction of (i) and (ii) is equivalent to (iv}). Thus it remains to show
that (iv) and (v) are equivalent. If (iv) is satisfied, then Mw) = A and Aw™!) = X, whence (v)
is satisfied. Conversely, if A(w) = X and A{w™'} = X', then D(w) can be brought into coincidence

with D{A) by suitable permutations of the rows and of the columns, whence (iv) is satisfied. ||

An element w € S, is said to be vexillary if it satisfies the equivalent conditions of (1.27). By

(1.27) (iii), the first non-vexillary permutation is (2143) in S,.
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For each w € S, let
W = wowurg
where as before wg = (n,n = 1,...,2,1) is the longest element of Sn. Then
(1.28) (i) &©) = f(w).
(i) 1(m) is the reflection of I(w) n the “antidiagonal” i+j=n+1.
(iii) M(T) = Mw)".
Proof: {i) follows from (1.6) (or from (ii) below).

(i) If i < j then
(i,J) € I(T) < wowwo(i) > wowwo(j)

= win+1l-i§)i<win+1-j)
= (n+l=jn+l-i}e Hw)
(iii) now follows from (ii). ||
From (1.27) and (1.28) it follows that

(1.29) wis venillary == w™! is vezillary <= W1 versllary.

Dominant permutations
We consider next two particular types of vexillary permutations.

(1.30) Let w € Seo. Then the following conditions are equivalent:

(i) the code of w is a partition;

(i) the code of w™! is a pariition;

(iii) D{w) is the diagram of a partation.
Proof: Clearly (iii) implies (i) and (ii).
Conversely, suppose that ¢(w) is a partition A = (Ay,...,2m), where ) 2 -+ 2 A 2 0. We shall
show by induction on i that

(i,)) € D(w) < 1<j< A

This is true for i = 1, so assume that 1 < i < m and that the statement is true for i — 1. Then we
have w(k) € Ai-y for 1 € k < i-1,and w(k) = Ai_, for some k < i— 1. Since A € Aoy it follows
that the i*" row of D(w) consists of the points (i,7), | € j < Ai, as required. Hence (i) implies (iii),
and the same argument applied to w™! shows that if the code of w~! is a partition, then D(w™'} is

the diagram of a partition. Hence so is D{w), by (1.21) (i), and the proof is complete. ||

A permutation is said to be dominant if it satisfies the equivalent conditions of (1.30). Dominant

permutations are clearly vexillary, and w is dominant if and only if w™! is dominant.

Permulations 13

Grassmannian permutations
(1.31) Let w € So. Then the following conditions are equivalent:
(i) a(w) £... € cr(w) and ¢;(w) =0 for i > r;
(i) w(¥) < w(i + 1) unless i=r.
Proof: (i) = (ii). By (1.15) we have w(l) < ... < w(r) and w(r + 1) < ... < w(n).
(ii) = (i). We have
clw) = (w(l) = 1,...,w(r)=r}
If w satisfies the equivalent conditions of (1.31), w is called a Grassmannian permutation. By

(1.27)(iii), Grassmannian permutations are vexillary, and w € S, is Grassmannian if and only if

W = wowwy is Grassmannian.

Enumeration of vexillary permutations

Let w be a permutation, ¢ = ¢{w) = (¢1,¢2,...) its code. Consider the following two conditions

on the sequence c:

(V1) If i< jand ¢ >cj, then
Card {k:£<k<jandc;<c.;]5c;—ci;

(V2) Ifi<jand ¢ Scj, then ¢ > c; whenever i<k < j.

(1.32) A permutation w is vezillary sf and only if its code c(w) satisfies (V1) and {V2).
Proof: Foreach i > 1, let

pi = {j:(i.j) € D(w)}
be the i*P row of D(w).

Suppose first that w is vexillaty with code ¢ = (e1,cz,...). Let i < k < j be such that
¢ 2 ¢ > ce. Then p; D p; O pr (where D denotes sirict containment), hence there exisls
t € pj.t ¢ pe. Let s = wik), then s < ¢ and (since ¢ € p;) we have s € p; and s g pj. Hence for
fixed (i, j) such that i < j and ¢; > ¢;, the number of k betwees i and J such that ¢; > ¢; is at most
Card(p;: — p;)} = ¢i ~ ¢;, so that (V1) is satisfied.

Next let w be vexillary, § < k < j and ¢; < ¢;, 50 that g; C pi- Let s € p;. If s ¢ py then
wik) < 5 < w(f), so that w(k) lies in p; but not in pj, which is impossible. Hence s € p, and
therefore p; C pi. So we have ¢; € e, and (V2) is satisfied.

Conversely, suppose that the code ¢ of w satisfies (V1) and (V2). Then so does the sequence

(c2,¢3,...) and we may therefore assume that the set {p2.p3,...} is totally ordered by inclusion.
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Let j > 1 and suppose first that ¢; > ¢;. Il gy 2 p;, there exists 5 € p; such that s € g, so
that w(1) < 5 < w(j). There are at least ¢; — ¢; + 1 elements ¢ € p; such that ¢ ¢ p;, and since
each such ¢ satisfies ¢ < w(1) < w(j), it is of the form t = w(k) for some k between | and j. Since
w(k) = t < w(l) < s, it follows that s & pe. Since either p C pj or p; C e, We conclude that
pr C p; (strict inclusion) and hence that ¢; < ¢;. Hence there are at least ¢; —c; + 1 values of &
between 1 and j for which ¢; < ¢;, contradicting (V1}. Henee py 2 pj.

Finally, let j > 1 and ¢; < ¢, so that w(l) < w(j). Il p1 € p; there exists s € py such that
s ¢ pj; we have s = w(k) for some k between 1 and j, and since w(k) < w(l) we have cx < 1,

contradicting (V2). Hence py C p; in this case, and the proof is complete.||

Remark. It is stated in [LS4, prop. 2.4] that w is vexillary if and only if ¢(w) satisfies (V1) and
(V3) If ci > cigr for some i2> 1, then ¢ >¢; forall j>i

Since (V3) is implied by (V2), it follows from (1.32) that every vexillary code satisfies (V1} and
(V3). However, the conjuction of (V1) and (V3) is not sufficient for vexillarity: for example, the
permutation w = (2571634) is not vexillary (since e.g. it contains the subword 2163} but its code is

¢ = (13402), which satisfies (V1) and (V3) (but not (v2)).

Let w be a permulation with code c(w) = (e1,¢2,.. ). For each i > 1 such that ¢; # 0, let
e; =maz{j:j>1iand¢; > i}
Arrange the numbers ¢; in increasing order of magnitude, say ¢1 < ... € ¢m. The sequence
d(w) = (¢1,.. -1 ém)

is called the fag of w. It is a sequence of length equal to £(A), where ) is the shape of w.

Remark. There is another definition of the flag of a permutation w, due to M.Wachs[W]. For each
£ > 1 such that ¢; £ 0, let

d; = min{j: j > i and w(j) < w(i)}.

Arrange the numbers d; — 1 in increasing order of magnitude, say ¢} < ... < ¢;,, and let
8' ()= (41,....6m)

These two notions are not equivalent. In fact
(1.33) (J. Alfano) We have ¢(w) = ¢"(w) if and only if the permutation w salisfies (V2).
Proof: If ¢; # 0 we have w(j) > w(i) for i < j < di, and hence ¢; 2 ¢; for these values of j. Hence

d; — 1 £ ¢; in all cases, and we shall have $(w) = ¢*(w) if and only if d; = 1 = ¢; for each i. But
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this condition means that, for each 1 2 1, the set of j > i such that ¢; > ¢; is an interval; and this

is just a restatement of the condition {(V2).||

We shall show that a vexillary permutation is uniquely determined by its shape A(w) and its
flag ${w).

Let us write A = Mw) in the form
(1.34) A=)
wherepy >p3>...>p>0andeachm, > 1. For L <r < klet
Jr = maz(j:c; 2 pr)

so that fy <... < fi. If ¢ =(cy,¢2,...) is the code of w, each nonzero ¢; is equal to p, for some r,

and
es=maz(j:j2iandc; 2 p.}=f..

It follows that (whether w is vexillary or not)

(1.35) 8(w) = (7 7, I,
Moreover we must have

(1.36) fr2m+-+me (1<r<k)

since in the sequence (cy,e2,...) there are my - -- -+ m, terms > p,, and they must all occur in the

first f. places of the sequence.

(1.37) Suppose w is a vexuilary permutation with shape A and flag ¢ given by (1.34) and (1.35).
Then the f, must salisfy the inequalities

0 fr=frmt Smp 4 poy — pr.

Proof: If f._) = f, there is nothing Lo prove, so assume that f._; < f, and therefore ¢s, = pr. Let
s=maz{i:¢; = pra1) € fro.

Since ¢, = pray > pr = ¢4, and w is vexillary, we have by (V1)

(1) Card {k:s <k < f, and ¢ < pr} € Pray = pr.
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Also
(2) Card {(k:s< k<[ and cx = pr} S e,

since exactly m, terms of the sequence ¢ are equal to p,.

Finally we have
(3) Card (k:s<k< frandey >pe} = froi =8

because ; < pr for all k> fr_y, and cx 2 pr-y for all k such that s < & < fo_1, by virtue of (V2).

From (1), (2), and (3) we deduce that

fr‘sspf-l-Pr+mF+fr-l—*

which proves (1.37).||

{1.38) For each sequence (fi,.... Je) sotisfysng  (1.36) and (1.37) there 1s o umque venllary
permulation w with shape A and flag ¢ = (... fi*). The code c of was construcied as follows:
first the my entrics equal lo py are inserted al the right-hand end of the mterval [1, fi];then the
my enlriea in ¢ equal to py are imserled i the rightmost available spaces n the interval (1, f2},
and so on: for each r > 1, when all the lerms > p, n the sequence ¢ have been inserted, the my

entries equal 1o p, are inseried in the rightmost available speces of the wmterval (1, f).

Proof: Suppose first that w is vexillary. If 1 < i € fr and ¢; = pe, then by (V2) we have ¢; > pr
for all j such that § < j < f,. Hence the entries equal to p. in the sequence ¢ must be inserted as
described above.

Conversely, if the sequence ¢ is constructed as above, we claim that ¢ satisfies (V1) and (V2),
and hence w is vexillary by (1.32). Suppose first thal i < j and e; > c;: say & = pr,Cj = Ps, T £ 5.
Then the number of k such that i < k < j and ¢, < p, is equal to the number of blank spaces in

the interval [fr, f,] after all the entries p;, r+ 1 < i < s have been inserted, hence is at most
Lo~ fe=(mepr +--+my)

which by (1.37) is € p, — p.. lHlence the sequence ¢ satisfies (V1). Suppose next that i < j and
i < ¢ 8ay € = p,,¢; = pr With r < 5. Then we have j < fr € f,. From the definition of the
sequence ¢, it follows that for each k such that i < &k < f, we have c; > p,, and hence ¢ 2 &

whenever i < k < j. Consequently the condition (V2) is satisified, and the proof is complete. ||
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If v is a permutation and r 2 0, we denote by 1. x w the permutation
Lxw=(1L2,...,r,r+w{l),r+w(2),...).

Let us say that two permutations w, w' are diagonally equivalent if either v’ = I, xworw= 1, x w'
for some r 2> 0. Graphically, this means that the diagram of w' can be brought into coincidence with
that of w by a translation along the diagenal i = j, and w’ is vexillary if and only if w is vexillary.
The equivalence classes of vexillary permutations of a given shape A are then determined by the

differences fr = fro) (2 £ r < k), and hence it follows from (1.37) and (1.38) that

(1.39) The number of diagonal equivalence classes of vezillary permutations of shape
A=(p . ..pp) s
k
H(Pr-l -pPr+m, + l)
r=2
We may remark that this number is the product of the hook lengths at the re-entrant nodes of the

border of the diagram of A (i.e., the nodes with coordinates (m, +- - +m,_,,p,),2<r < k).

Ezample. If A = (32%1) the flag ¢ = (f1, /2, f3) must satisfy 0 < fo = /1, € 3,0< fr— f2 < 2.
Hence there are (3 + 1){(2 + 1) = 12 vexillary classes, and the representatives of these classes for

which w(1) # 1 (or equivalently ¢, (w) # 0) are as follows:

(w) c(w) w
4444 1223 2457136
J444 1232 246513
2444 1322 254613
1444 3122 425613

1334 2231 346215
2334 2321 35421
1334 3221 43521

1445 30221 415632
3335 22301 346152
2335 23201 354162
1335 32201 435162
1446 302201 4156273
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% O gf = g —07
1223 2231 22301
Bans ? e
1232 2321 23201
1322 3221 32201

777

B |

3122 302211 302201
Let A= (p,...,p0") as before and let

ik

N=(qe3% . akt)
be the conjugate partition, where g, > g2 > ... > g& > 0 and each n; > 1. We have

r = +--+n,,
(1.40) A

Ge=my+--+m,,

where s = k+1—r {1 < r < k). The border of the diagram of A is a staircase with risers of heights
my, ma, ..., Mg (starting from the top) and treads of lengths »y, nz, ..., ny (starting at the bottom).

Recall (1.27) that if w is vexillary of shape A, then w™! is vexillary of shape A",

(1.41) Let w be o verillary permutation of shape A end flag H{w) = (S, . .. Jet). Then the flag

of w=l is
d(w™!) = (97*... .. 02")
where
(*) %+ 0 = fegr-i +Pes1-i (L Si<k)
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Proof: We proceed by induction on &(w) = jA]. Let ¢ = (¢;,¢c2,...) be the code of w, and let v’ be
the permutation with code ¢/ = (¢2,¢a,...). We may assume that ¢; # 0. Then ¢, = pr for some r,

and we have
Me=1

Mu')y= (... or ™M)

é(w’) = ((fl - l)mll L 'o(fl' - l)m'-ly- . -,(ft - l)m'. ).
Since w is vexillary, its code ¢ satisfies the conditions (V1} and (V2). Hence ¢ also satisfies these

conditions, and therefore w' is vexillary. It follows that A{w'=!) = A(w')’, so that
M=) = (@ =™ = D™t gl

where s = £+ 1 — r. We have {{w') = #(w) — c1, so that the inductive hypothesis applies to w'.

Hence if gy, ..., gx are defined by the formula (+), we have
(1) M) = (ot gl (G = 1™ (g = 1)™).
But if w'~! has code ¢(w'~!) = (d,da,...) then by (1.25) we have
(2) cw ) =(di+1,...,dy, +1,0,dp,41,dp,43,...).
From (1} and (2) and (1.40) it follows that

d(w™') = (g7, . gl gt gl

as required.||

If w € S, let W, = wowwy, where wy is the longest element in S,. If w is vexillary, of shape A,

then W, is vexillary of shape A, by (1.27) and (1.28). Let

—ry

$(@) =R T
be the flag of @,. Then we have
(1.42) Ti=n—figo (1 <i<k)

For once we shall leave the proof to the reader.

Let N, denote the number of non-vexillary w € S,, and let

Pr = N,/n!
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be the probability that an element of S, is non-vexillary. ‘The first few values of N, and Py are

n Nn P,

1 0 0

2 0 0

3 ] 0

4 1 042
5 17 142
6 207 .288
7 2279 452

If we divide up the sequence (w(1),...,w(n)) into consecutive blocks of length 4, and observe that
the probability that such a block satisfies the vexillarity condition {1.27)(iii) is 23/24 (because Sy
contains only one non-vexillary permutation), we see that the probability that w € S, is vexillary
is at most (23/24)["’ 4, hence decreases exponentially to zero. (A. Lascoux.) Thus the vexillary

permutations in S, become sparser and sparser as n increases.

Instead of counting non-vexillary permutations, we may attempl to count vexillary permuta-
tions. Let us say that a permutation w € S, is primitive if w(1) # 1 and w(n) # n. Foreach n 2 1,
let V,, (resp. U,) denote the number of vexillary (resp. primilive vexillary) permutations w € Sa.
Since each primitive vexillary w € S,, gives rise to r + 1 imprimitive vexillary permutations in Sne,

namely 1, x w x 1, where p,q > 0 and p+ ¢ =, it follows that
=14 Up +20noy + a2+

Hence the generating (unctions

vty =) vat"

n2l
Ugy=y Unt®
nxl

are related by

(1.43) Vi) = T +

For each pattition A # 0, let U, » denote the number of primitive vexillary permutations of shape A

in S,, and let

Uity = Z Unat™,

n2l

* N was computed by A. Garsia. I would guess that Ng is of the order of 24000.
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so that
(1.44) HOESPIAOY
A0

Each Uy(t) is a polynomial, and we shall now show how to compute it. Write A in the form
A= p? o pE")

as before, where py > p3 > ... > pi > 0. By (1.37) a vexillary permutation w of shape X is uniquely
determined by its flag $(w) = (S, ..., [i™*), where (/1,..., fi} is any veclor of positive integers
satislying the inequalities (1.36),(1.37):

frzm+- 4+ m, (12r<k),

O<fr=frcr EMe+pro1 = pr (2<rgk)

Moreover we shall have w(1) # 1 if and only if the first element of the code of w is not zero, and

this will be the case if and only if
(1) fe=mi+...+m, for somer=1,... k.

In general, if ¢ = (1, ¢3,...) is the code of a permutation w, then w € 5, if and onlyifn 2 ¢c;+ifor
1 £ i < r, where r is the length of c. In other words, the least n for which w € S, is n = maz{c, +i:
1 £i<r}. In the case of a vexillary permutation w as above, with flag (f™,... fi**), the numbers

ci + i will increase strictly as i runs through each non-empty interval [fo_y + 1, £] (r = 1,...,%)

1

and hence w will be primitive in S, if and only if w satisfies (1) above and
(2) n=maz{p. +fr:1<r<k}
Let #e =my+ - 4+ m, for 1 <r <k and put
ue = fr—m
80 that u, > 0 for each r. From (1.36) we have
(3) Tty STrtuz<.. . <M+

and
Me Py =pe 2 fr = foo

= (Uf -+ xr) - (ur-l + ﬂ'r-l)

=M + Uy = Upy
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so that
(1) htuy2prtur2...2petu.

It now follows that
(1.45) Us(t) = zlmaz{p--'-h-'-u, tgrgk)
u

summed over the integer vectors u = (uy,...,m) € N* having at least one zero component, and
satisfying the inequalities (3), (1) above. We have
E
Ux(1) = H(mr +Pr-t—pr 1)
r=2
and

Ua(t) = U ()

(since w € S, is primitive vexillary of shape A il and only if w™! is primitive vexillary of shape A’).

Added in proof

Julian West, a student of R. Stanley, has recently shown that

(1) o= 3 ()
[PYELY
tA)<€3

where f* is the degree of the irreducible representation of the symmetric group S, indexed by the
partition A. From this and results of A. Regev (Advances in Math. 41 (1981) 115-136) it follows

that
(2) V, ~ c9®n~!

as n — oo, where ¢ is a constant that Regev determines explicitly.

The formula (1) gives that Ng = 24553.
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Chapter 1T

Divided differences

If f is a function of = and y (and possibly other variables), let

_ 1@y - f(5.2)

=y

By

(“divided difference"). Equivalently

Ieyf=(z~ y)-l(l ~ Szy)

where s;, interchanges z and y. The operator d;, takes polynomials to pelynomials, and has
degree —1 (i.e., if f is homogeneous of degree d, then Je, f is homogeneous of degree d—1). Explicitly,

if f =z y" we have

e | x
Bzry)= XY
(2.1) S z-y

=o(r - s)Z:’y’
where the sum is uver (p, q) such that p+ ¢ = r + 5 ~ 1 and maz(p, g} < maz(r,s), and o(r ~ s) is
+1,0 or ~1 according as r — s is positive, zefo or negative.

On a product fg, 8z, acts according to the rule

(2-2) azv(fg) = (33"'!)9 + (sryf)(azyg)'

In particular we have

(22') a:y(fg) S fa:yg
if f{z,y) = f(y,2).
(23) (i) OsySsy = =0y, SeyOey = Ory,

(ii) 33, =0,

(iii) 3,,3,;3;, = a,.,a;,a,;-
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Proof: (i} and (ii) are immediate from the definitions, and (iii) is verified by direct calculation: each
side is equal to

(z-9"'z-" - Y dww,

weSy

where the symmetric group Sy permutes z,y and », and e(w) is the sign of the permutation w.||

Let 2y,22,...,24,... be independent variables, and let
P!‘I = Z[Il-z‘.’.v “Ix“]

for each n > 1, and
Py = Zfzy,29,.. )

[--]
=UP,..

n=1
For each i > 1 let

ai = 6:.,:..“-
Each &; is a linear operator on P (and on P, for n > i) of degree —1. From (2.3) we have (compare

with (1.1))

a2 =90,
(2.4) 9,0; = 8,0 ifi=jl>1L
8i0i410; = 3i418:0i11

For any sequence a = (ay,...,ap) of positive integers, we define
3. = 3.-,, o .83'.

Recall that if w is any permutation, R{w) denotes the set of reduced words for w, i.e. sequences
(a1,...,ap) such that w = 3,, ...8,, and p = £(w).

(2.5) If a,b€ R(w) then 35 = ).

Proof; We proceed by induction on p = #w). Let us write @ = b Lo mean that 8, = 8. The

inductive hypothesis then implies that
(*) a = b il either @y = b or ap = by
By the exchange lemma (1.8) we have

[ =(bl,a|,...,&.-,...,a,.)e R(w)
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for somei = 1,...,p. Ifi# pthen b = ¢; = a by virtue of (+), so that a = b. If i = p and

|4 — @] > 1 then by (2.4) and (1.1)
c;» = (Ol,b[,tl:, s |ap-l) € R(w)

and @ = ¢, = ¢p = b, s0 that again a = b.
Finally, if i = p and |b — a;| = 1, we apply the exchange lemma again, this time to ¢p and a;
this shows that

d.‘= (allbllall‘"I&i9"‘lap-l)e R(w)

for some i=2,...,p~ 1. But then by (2.4) and (1.1) we have
& = (b, a1, b1,82,...,8,...,8p_1) € R(w)

and a = d; = d; = b. Hence a = b in all cases.||

Remark. For any permutation w, let GR(w) denote the graph whose vertices are the reduced words
for w, and in which a reduced word a is joined by an edge to each of the words obtained from a by
either interchanging two consecutive terms i, j such that [i—j| > 1, or by replacing three consecutive
terms i, J, i such that |i — j| = | by j,{,j. Then the proof of (2.5) shows that

(2.5') The graph GR(w) 1s connecled. ||

From (2.5) it follows that we may define
3.., = a¢

unambiguously, where a is any reduced word for w. By (2.2'), the operators 9, for w € Sq are A,
linear, where

Ap=2fz,..., 205 C P,
is the ring of symmetric polynomials in =, ..., z,.
A sequence @ = (ay,...,a,) will be said to be reduced if a € R(w) for some permutation w.
(2.6) If a=(ay....,ap) is nof reduced, then 8, = 0.

Proof: By induction on p. If o' = (a1,...,8p-1) is not reduced, then 8, = 0 and hence 9, =
3«-0a, = 0. So we may assume that a' is reduced. Let v = 84y - -Sapys W = So, .. .5a,. We have
€v) = p— 1 and €(w) < p— 1, hence by (1.3) &(w) = p — 2, so that 8v) = Hws,,) = fw) + 1.
Consequently 8, = 8,,8,, and therefore 8, = 848a, = 0,07 = 01|
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(2.7) Let u,v be permutations. Then

8,0, = {Qov ¥ luv) = Lu) + L),

otheruwise .

Proof: (2.5}, (2.6).]|

(2.8) Let w be a permutation, i> 1. Then

5i0, =0, <= {(siw)={(w)- 1.

Proof: We have 5,0, = 8y <= 8;0s = 0, hence the result follows from (2.7).|)

As before let wo = (n,n =1,...,2,1) be the longest element of S,. One element of R{wy) is

the sequence

(2.9) (L2,...,n=-112,...,n=2,...,1,2,3,1,2,1).

(2.10) We have
Buo = a5t Z e(ww

wES,

where a5 =[] cicjcnl®i — 23 ) and e{w) = %1 15 the sign of w.

Proof: From the definition it follows that ., is of the form

(1) e = Z Co
wES,
with coefficients ¢c,, rational functions of z,...,z,. By (2.8) we have 50y, = Gu, forl €i<n=1,

so that vy, = 8y, for all v € S, and therefore

(2) Buy = Z v{cy Jrw.

wESa

Comparison of (1) and (2) shows that
(3) cyw = v(cw) (v, w € 5n).

Hence all the coefficients ¢, are determined by one of them, say cw,. From the sequence (2.9) for

wyp it is easily checked that the coefficient of wq in dy is
-1
Cup = €(wolay .

Hence from (3) we have

¢y = wwp(cy,) = c(w)a,"
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which proves (2.10).||

From (2.10) it follows that, for any a = (@,...,a,) € N",
(2.11) Buez® = s0-4(21,. .., Z0)

where 27 means 27" -~ 23~ §=(n—1,n=2,...,1,0) and s,; is the Schur function indexed by
a — &. Thus dy, is a A,-linear mapping of P, onto A,.

For w € 5,, let ¥ = woww,. Then
(2.12) Iz = ¢(w)wedy, wa.
Proof: From the definition of 8; we have
wod;we = =0y_;
from which (2.12) follows casily, since wi = 1))

If f and g are polynomials in z),z5,..., the expression of ,(fg) as a sum of polynomials
Oy f - Oug (i.e. the “Leibnitz formula” for 8,,) is in general rather complicated. However, there is one

case in which it is reasonably simple, namely when one of the factors f, ¢ is linear:

(213) If f=Y aiz; then

du(f9) = w()8ug + Y (i - a;)ur,,9

summed over all pairs i < j such that f(wli;) = fw) — 1, where ;s the transposition that
wlerchanges i and j.
Proof: Let (ay, ..., a;) be a reduced word for w. Since f is linear it follows from (2.2) that

aw(fg) =8, - ‘an,(fg)

P
=80 30,(/)a, 0a, 9+ S0, B, $0,([)0a, - -Da, - a,g.

r=1
Now 8y, -+ 8,, - -+8a, = 0 unless (ay,...,8,,...,a,) is reduced, and then by (1.11} it i1s equal to

Ois, where wt = Sa, "84, "+ 3a, haslengthp—1 = fw)~1,and t = Sg, " 8a, '

o

55, = bi; where

(ij)= Sgq, 00 sa..'.g(an Gr41), so that

Say - ’sdr-naarsn....; s sa,(f) =05~ 0,'.”

We also introduce the operators m(i > 1) defined by

mf = 3z f).
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In place of (2.4) we have
7=,
(2.14) W = W if lt'—j! > 1,
WiMig1 Wi = Tip 1 FiTip1.
If we define 7q to be T, +-+ T, for any sequence 4 = (a1,....ap) of positive integers, then cocre-
sponding to (2.5) we have

(2.15) Ifa,bE R{w) then #g = 7.

The proof is the same as that of (2.5), and rests only on the second and third of the relations

(2.14). From (2.15) it follows that we may define
Tw = Ma

unambiguously, where @ is any reduced word for w.
In place of (2.10) we have
(2.16) Forany f € P,

o = a7t 3 dw)u(z*f) = Quelz* ).

wESa

In particular, if a € N",

(2.16") Two® = SalZry- - zn)-

Proof: We have

mf =a(nf)

mywaf = 0(z102(z2f)) = i02(z1z2f)
and generally

N N YR AT )

for each r > 1. From this and (2.10) it follows casily that Tuof = Bue(z* 1)1l
Let (ay,...,ap) be a reduced word for w. Then
8y =84, 0o,
= (2o, = Zay41) {1 = 50 )(Faa ~ Zag41) " (1 = 5a5)

which shows on expansion that 8, is of the form

3.,, = z fvw“

vEw
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where f,. ate rational functions of 1, 22,..., and in particular (by (1.7))

fow=(=1 JI (m-zp7

(eHw"t)
and thus is # 0. 1t follows that the 8, are linearly independent over the field of rational functions
Qm = Q(II!:'-" 0B ')‘

Now from (2.2) we have

Ba(f9) = (8af)g + (30 ) 0a9)

or equivalently, il p: Peo @ Poo — Py is the multiplication map,
Daop=po(d®1+3s,0dh)
From this it follows that

0,,,op=po(0,l®l+s¢|@6,.)0--~o(8,,'®l+s¢'®0,,,)

On expansion this is a sum over subsequences bofa={ay,... ap), 53y
(1 Buop=poy 90,0k

bCa
where

é(a,b) = ¢s(a,b)o - o dp(a b)

and

[ sa ifai€b,
"‘(“"')-{0,, if a; & b.

Since dy = 0 if b is not reduced (2.6), the sum is over reduced subsequences b of a, and by (1.17)
we can wrile
(2) 3‘,,0}1:;10:03.,/‘,@5.,

vSw

where for v < w

(3) Bype =" qu(a, b)

summed over subsequences b C a such that b is a reduced word for v.

So for each pair of permutations w, v such that w > v we have a well-defined operator 8y, on
P, defined by (3). Since the 8, are linearly independent, the definition (3) is independent of the
reduced word a € R(w).
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(2.17)  For each pair w,v € Seo such that w > v there s a linear operator dyj o8 Poo such that
Bulfg) =3 v(dup])  Bog.
vl

Dy o has degree —E(w) + £{v).
Examples.

1. Let v = w, then

Bupe = wte(a,a) = wlsy,  --5q, = L.

2. Let v=1, then
6..,“ = (b(ﬂ,@) = 3a| ha '313, = aun

3. Suppose that v — w, so that v = sq, <34, "+ +5q, fOr an unique r & [L.p]. Then b =

(ay,...,@,...,ap) and
8w[u = v-l¢(a- b)

—_ =1
=v"tsq, - Sa,_, 0,50, " Fa,

= %a, 's¢r+1a¢-sﬂ-+l o 8ay

Now w = vf where ¢ is the transposition

.rse, (1<)

t=1;=235," S

so that (i,j) = 4, - * - 85,4, (ar, ar + 1} and therefore

aw]u = 8g, " 'ad,..'.l(za, - 3a,+l)_l(1 = 5a,)8a,4. """ 30,
= (z; — z;)" (1 - &ij)

is the divided difference operator O;, ¢,

The product formula for 8,/ is

(2.18) Bupulf9) = Y 67'0(Buse)Busus.

uSvSw

Proof: We have
Bu(fgh) =Y udusu(f9)Buh (1)

ulw

Divided differences

and on the other hand

Bulfgh) = 3 v3usu()d(gh)

v<w

= Z vy o (f) - uBysu(g) - Buh.

usriw
Comparison of (1) and (2) gives

udyu(fg) = E vaw[u(f)'“an)‘u‘.:l']'

ulrsw

which gives the result.||

When u = 1, this reduces to (2.17).

31

(2)
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Chapter III

Multi-Schur functions

For the time being we shall work in an arbitrary A-ring R, but we shall use the notation of
symmetric functions [M] rather than that of A—rings. Thus for X € R we shall write e-(X) in
place of A7(X) for the r*® exterior power, and A, (.X) in place of o (X )= (~1)"A"(=X})) for the rtb
symmetric power of X. We have e5{.\') = ho(X) = L;¢;(X) = 4,(X) = X; and er(X)=h(X)=0
ifr<0.

Recall that if A, g are partitions and X € R, the skew Schur function 557,(X) is defined by the
formula

SapulX) =det(ha _y,wivs(X)igijgn
where n > maz(€(}), é(p)). 1t is zero unless » O u.
We generalize this definition as follows : let Xy,...,X, € R and let A,z be partitions of

length < n; then the multi-Schur function sy;,(X), ..., X,) is defined by
(3.1) Safu(Xny-- . Xa) = det(ha, - )~ 45 {(Xi)i1gijga -
We also define

(3.1 $e(X1y. .., Xn) = det(ha,-isi(Xidigiygn

for any sequence a = (ay,...,a,) of integers of length n.
Remark. In the definition (3.1) the argument X; is constant in each row of the determinant. We
might therefore also define

Sau(Xnye o Xo) = det(ha,—p, wini(X)igij<n
with arguments constant in each column. However, we get nothing essentially new: if we define
Partitions }, i by

A= N-dapimiy =N —fBap1-i  (1£i<gn)
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where N > maz(A, 1) (so that Aand ji are the respective complements of A and g in the rectangle
(N"™) ), then we have
SelXn o Xa) = 55,5(Ka, 0 X))
as one sees by replacing (i,7) by (n + 1 = j,n 4 1 — i) in the determinant (3.1},

(3.2) We have
SA,,,(,YI, o Xa)=0

unless A D p.

Proof: IT A 2 g then A, < p, for some r < n, and hence
Ai—ﬂj-ii'jSz\r—ﬂr(O

whenever i > r and j < r. It follows that the matrix {x,—p,-i+;(.Xi)) has an (n — r 41} x r block

of zeros in the south-west corner, and hence its determinant vanishes. |{

(3.3) If ADpand £X)=r <n then
LIV 0. CTND O N . SR 63|

Proof: We have A\, = y, = 0 for r+ 1 < 5 < n. Hence for each 5 > r the s row of the matrix

(Axr,-u,-i+5(Xi)) has zeros in the first s — 1 places, and L in the s*" place.||

An element X € R is said to have finite rank if e,(.N') = 0 for all sufficiently large n. We then
define the rank rk(X) of X to be the largest r such that e.(X) # 0. I X,Y both have finite rank,

the formula

X +Y)= Y ep(X)eg(Y)

pHe=r

shows that X + Y has finite rank, and that
rk{X 4+ Y) < rk(X) + rk(Y).

(34) Let Xi,..s KniYi. . Ya € R with rk(Y;) < j—1(1 < j < n) (s0 that Yy = 0). Then for
alla € Z",
salX1,-.0 ) Xa) = detlha,—igj(Xi = Vi)

Prool: We have ~
J
hay=isi{Xi = ¥;) = Y harcisr{Xidhjos(=Y;),

k=1
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since A (=Y;) = (=1)7e.(¥;) = 0 if r > j. llence the matrix

(ha,—i+i(Xi = ¥i)igij<n
is the product of the matrix
{ha,—ii{Xidgign
and the matrix
(hi-j(=Yi)hgijgn
which is unitriangular, Now take determinants.||

So far the X; have been arbitrary clements of the A-ring R. But it seems that Sal X1, .., Xa)
is mainly of interest when X),...,.X, is an increasing sequence in R, in the sense that rhk(Nig1 -
X)) <« wforl1<i<n~-1.

(3.5) Let zi,yi (i 2 1) be elements of R, cach of rank < 1, and let
Ni=oi+- e, YVi=zp+ 4y

Jor each i> 0. Then for all a € N™ we have

n o,

3a(X1 = Yoy, Xo = Yo ) = [T [ (2 - w).

i=lj=1

In particular, if A 13 a partstion of length < n,

s (X - Ya....Xn=-Ya)= H {z; —yj)_
(.1}

Proof: From (3.4) we have

(+) sa(X1 = Yo,,.... Xa = Yo ) = det(ha,-is;(Xi = Ya, = XjotDigij<n -

If j >4, then
ha‘_.'.g.j(;\'.' =Yy, - X,’_l) = :i:cn,-.'.”'(ya_ +X,'_| -Xi)

which is 0 because

rk(Yo, + o1 = X)) Sou+(j-1)—i<aj—i+j.
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Hence the determinant at () is triangular, with diagonal elements

ha (Xi = Yo, = Nic1) = ho (20 - ¥a,)
3 he(=Ya Ya,—e(25)

r20

=Y (=1 er(Ya )"
r20

= [Ttz - w).
j=1

The formula (3.5) now follows.||

In particular, when all the y; ate zero we have

(3.5) 5a(XtronXa) = [[ 21 = 2°

=)

for all &« € N™. Also, when all the z; are zero (and a is a partition A} we have
(=Y, o=N) =0 I v
[E8 3121

= (—l)“lyr.

If we replace the y's by 2’s, and A by A, this becomes
(3.5") o = (= )Psp(=Xar,. =X )

(3.6) Let A =(A,Az,...) be a partstion of length < n, and X),..., X, elements of ¢ A-ring R.

Suppose that i < j are such that A, = A1 =--=A; and
rh(X; - Xy)<ji-k fori<k<j.
Then
SAlu(len o0 .,.\’n) = SAIM(JYK' oo ...\.‘_1,,\',’,. 504 .\’,. "’.H-l- 5 .‘..\’n),

that ts lo say we can replace each X (i < k < j) by X; without changing the value of the

mulli-Schur funciton.

Proof: Let Y = X; — X;, so that rk(Y) < j— 1. For all m > 0 we have
hm(-Yl') = hm(xj =Y

=1
=3 (=D¥ealY )hmar(X;).
k=0

Multi-Schur funciions a7

It follows that il we replace the i*® row of the determinant sy(Xn e Xic, Xy X5 X

..y Xn) by
J=t
Z(—l)*eg(}’)row.-“
k=0

we shall obtain

sl/#(“’ll‘ SEERAT Y -\-l'v‘\:fp- v 4\’j‘t\'j+|r ‘e :4\'n)
with j — i arguments equal to .X;. The proof is now completed by induction on J—=ill

Duality

Let (Xn)nez be a sequence in the A-ring R such that
rh(Xo = Xa-1) €1
for alln € Z.
{3.7) Letl be any interval in Z. Then the snverse of the matriz
H=(hiei(-X))ijer
s H7V = (hicj(Xja1))ijer.
Proof: Let K denote the matrix (#;_;{.¥;41)). The (i, k) element of H K is then
Z.'.,-_,-(—,n)h,-_g(xm) = hic k(=X + Xig).
i
If i < k this is zero; if i = k it is equal to 1; and if i > & it is equal to
(—1)"*eiu(Xi = Xig)

which is zero because rk(X; -~ Xpp1) <i—(k+1) <i— E
(3.8) (Duality Thearem, 1% version} Let A O # be partitions of length < n, such that £(X') < m.
Then
Sau(=Xamtieo =Xaaan) = ()P sy (Xaiar, o Ximoas ).

Proof: Let

5l‘="l._£| "h'=l-li—i (lsfsn)r

& =X =}, w=ua;-j (1<j<n),
Then the integers £ (1 < i < n) and =& — 1 (1 £ j £ m) fill up the interval [-m, n — 1], and so do
the n; and the -7 - L.
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The (£1,---,€n; M, .-+, §n) minor of the matrix H is
de!(hfu—'h('_x&)) = s,l[p(“-\-f, T —.\75-).

The complementary cofactor of (H™'Y = (Aj—i(Xis1))=mgij<n-1 has row indices —§ — 1

(1 € i £ m) and column indices —p; = 1 (1 £ j < m). Hence it is
(=DM syrpu(=Xg = X )-

Since each minor of H is equal to the complementary cofactor of (H~')' (because det H = ) the

result follows. ||

Remark. Observe that
k(X =i = Xapr—ict) S =) = (A =i=1) == A + 1

Hence (3.8) gives a duality theorem for the multi-Schur function s5;,(Y1,...,Ys) provided that
rk(Yig - Y )€ hi—-dp+lforl€i<n—-1.

At first sight the formula (3.8) is disconcerting, becuase the arguments — X, _, on the left are
not in general the negatives of the arguments X;_, on the right. However, we can use (3.6) to

rewrite (3.8), as follows. As in Chapter I, let us write the partition A in the form
A= (o7 P77 0l)
where py > pa > ... > pe > 0 and each m; > 1. Then in
Sajul=Xa,=1, i =Xap2n)

the first m; argumenta are

SV .

which by (3.6) may all be replaced by —X.,, where ¢; = p; — m). The next m; arguments are
—Xps-mi=t1o oy —Xpammy-my

which by (3.6) may all be replaced by ~X.,, where ¢2 = pz — m; — ma2. In general, for each
i = 1,2,...,k the M group of m; arguments may all be replaced by —X.,, where ¢; = p; — (m +
<o+ 4 m;). Now if

N=(97 9% at)
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is the conjugate partition, we have my + -+ 4+ m; = g4y, and ¢; = Pi = Gi41-4 i3 the content of
the square 5; = (qu41-i,p;) in the diagram of A. The squares sy,...,8; are the “salients” of the
border of A, read in sequence from north-east to south-west. Hence the duality theorem (3.8) now

takes the form

(3.8") (Duality Theorem, 2°¢ version). With the above notation, we have
sa/ul(=Xa )™ (=X )™)Y = (1P (X )™, (X )™)

Finally, if we set Z; = <X, (1 €i< k) we have

(3.8") S ulZT 20 = (s (=20 L (= 20)™)

provided

rh(Zist = Zi) Smipi e (1Si<k=1)

Let now zy,z3,... be independent indeterminates over Z. We may regard Z{z,,z4,..] as a

A-ring by requiring that each z; has rank I. Let X; = r, + .- + z; for each i > 1. Then we have
Fihe (X3) = bey (Xigy),
(3.9) Be(Xi) = erar(Xio1),

Tk (X3) = b (Xig).

Proof: Consider the generating functions: 8 h.(X;) is the coefficient of £ in
8i(Y_ k(X)) = 6 JT(1 - 5007
i=1

r20 .
=Tla-=0 a(=),

=i | =zt

and

3~( 1 ) i ( 1 1

i = -

| R 1) T — Tip \ 1~ =t l—:.-.H!)
i
Tl =zit)(1 = zig1t)

80 that

i+l

&Q_h(xr) =t [T~ 20" = Y h(Xepa ) #
r i= F]

in which the coefficient of " is A, (Xi41).

The other two relations are proved similarly.||
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(3.10) Let a€ Z" and el ry,...,rq > 0. If i 13 such that r; £ r; for all j# i then
Brisa(Xeyr v Xen) = SaceeXryse s Xeoptyenny Xeo),
e, 8a(=Xp o oo =Xe ) = =80 (= Xrys oo =X o= X )4
Te Sal(Xryr oo Xrn) =80 Xr s o Ke1heo 0 Xe 1
where ¢; has fth coordinele equal to 1, and all other coordinates zerv.

Proof: By definition, we have s, = det(hqg,—i4;(X,,)) and &, acts only on the i*® row of the
determinant, the entries in the other rows being symmetrical in 2, and 2.4 (because of the
condition r; # r; il j # i). Hence the first of the relations {3.10) follows [rom the first of the

relations (3.9), and the other two are proved similarly.||
Remark. We can use the relations (3.10) to give another proof of duality (3.8) in the form

{3.8™) Lel A be a partition such thai A € m and X| € n. Then
(*) M Xmt=rys---s Xmpn-rn) = (_I)IAIS%‘(-th\I S TEREN -‘\-A‘nn)'

Let (4, ) be a corner square of the diagram of A, so that j = A; and i = A]. Let u be the partition
obtained from A by removing the square (i, j). By operating on cither side of (+) with dmy.-; we
obtain the same relation with g replacing A. Hence it is enough to show that (=) is true when

A = (m"), but in that case both sides are equal to (X, --- X»)", by (3.9’), (3.5”) and (3.6).]|

(3.11) Let wy be the longest elemeni of S,. Then for any o € Z" we have
Ouobal X1+ 2Z1,..., X0+ 2Zn) = 50-4(Xn + 21,..., Xn+ Zn),
Tugbal(X1+ Z1,.... Xn + Zn) = 54(Xn+ 2Z1,.... Xn + Za)s

where Xi=2z1+ -+ 2; (1 <i < n)and the Z; are independent of z,...,Z4.

Proof: The sequence
mn-1,n-2n-1,...,2,3,...,n-1,1,2,3,...,.n-1)
is a reduced word for w,, so that
Ty = Fnot{Ta_amaot) - (mema o mp Jmy 7222 w0my)
and likewise for 8,,. By (3.10), mym2...7,_; applied to sa(X| + Z21,..., Xn + Z,) will produce

8,(}(2 + 21, Xs+22,.... Xa+ 2n-1,Xn -I-Zn).
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We have next to operate on this with wyms- .- m, ., which will produce
8a(Xa+ 21, Xa4+ 22, ., X + Zn2, Xa + Zncy, Xa + 2,).

By repeating this process we shall obtain the formula for x,,s,. That for Buqosq is proved similarly.||
Remark. Let « € N" and 2, = .- = Z, = 0 in (3.11). Then by (3.5') we have

Bue(2?) = Bygsal(X1,.. ., Xn) = 84-5(Xn),

TuolE®) = Tuosal(X1, ..., Xa) = 5a(Xn).

Thus we have independent proofs of (2.11) and (2.16’) and hence (by linearity) of (2.10) and {2.16).

Sergeev’s formula

Let zy,...,Zm, ¥, ..., yn be independent variables and let
Xiso+ o tz, Yi=sp+-+u

for ail i > 1, with the understanding that z; = 0 if j > m and yi=0ilj>n,

(3.12) (Sergeev) For all partitions A we have

a(Xm=Ya)= Y w(fi(z,9)/D(z)D(y))

wES x5,

where

INERVEN | OB

(iJ)€A

Diy= JI (-2'z), D= [[ (1-u'w).

1<icigm 1€i<ign
Proof: Let w,(,"') {resp. wg")) be the longest element of Sy, (resp. S,) and let 7 (resp. 7y) denote

¥,(m) acting on the z’s (resp. L acting on the y’s). From (3.5) we have, if r = £(A),
(1) M) =a(X, -V, X, =¥

and in view of (2.16) Sergeev's formula may be restated in the form

(3.129 A (Xon = Yo} = myme fa(z,y).

From (3.11) and (1) above we have

@ TNz, y) = 5a(Km = Yoy, . X = Vi)
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It A= (7", ...,pr*) (2) can be rewritten in the form
(3) e falz. y) = a(2™,.... 2]")
where Z; = X;n = Y),. Since
rh(Zig1 = Z5) = rk(Yp, = V3. 0,) = 9 — Py,
the duality theorem (3.8”) applies, and gives

(2P, L 20 = (=DM s (= Z0)™, . (= 20)™)
= (=DM sr (Vs = X )™ os (Yo, = X )™)

(4) =(—l)|‘\|8,\-(Y1 =X, Y2 = Xin,....Ys — Xin)

where 5 = ny + - -+ 4 np = €(A’). We can now apply (3.11) again and obtain from (3) and (4)
mrcfo = (DM apsa (Y = Xy oo Ve = Xn)
= (=DM (Yn = Xm)

= sx(Xm = Vo)l

Chapterf IV

Schubert Polynomials (1)

Let =6 =(n-1,n-2,...,1,0), so that

2 =200z

For each permutation w € S, the Schubert polynomial &, is defined to be
(4.1) Sy = Oy-14,(z)

where as usual wy is the longest element of S,.
(4.2) lLet v,weS5,. Then
Suv-t il €{wv™1) = &w) — {(v),
6y =

0 olherwise.

In particular,
Sus, I w(i) > w(i+1),
8j6w =

0 il w(f) < w(i+ 1)
Proof: From (2.7) we have
Buw-ruw, il v) + E(w wo) = Hvw1uy),

B By-1ye = {

0 otherwise.

Now
&) + {w™ wo) = &(v) + {(wo) — {w)
and

tvw™wg) = (1) — fwo™")

43

by (1.6). Hence 8,8, = 8,8,-14,2* is equal to Ouw-tuo2® = Gy if f(w) - €(v), and is zero

otherwise.||
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(43) (6, =2%, 6 =1
(ii) For cack we S,, G, isa non-zero homogeneous polynomial in zy,... 20y of degree
£(w), of the form
S, = Zc,z"
@

summed over a € N*~! such that o C 6 (ie., o; S n—i for each i) end |a| = é{w).
(iit) S is symmetrical in z;,z:4) if and only if w(i) < w(i+1).
(iv} If r is the last descent of w € S, (i.c., if w(r)> wir+1) and

wir+1) < w(r+2) < .- < w(n)), then S, € P. =2[z,....z,), and S, ¢ Pr_,.

Proof: (i) That S, = 2’ is clear from the definition {4.1). Also by (2.11) we have
S = 0,2 =553 =1L

(ii) The operator 8,14, lowers degrees by {(w="wo) = €(wp) — f(w=") = in(n—1) = &uw). Hence
Sw = Jy-14,2° is homogeneous of degree &(w). 1f now a € N"~! is such that o C §, then by (2.1)

8-z is a linear combination of monomials z? such that g; = a; ifi#r,r+1, and
maz(f;, Biy1) € maz{ai,aip) -1 <n—i—1,

so that § C 6. Hence the linear span H, of the monomials £, a C § is mapped into itself by each
8 (1 £r < n-1)and hence by each 8,,, w € S,. Hence Sy € H,, for each w € S,,.

(iii} Sy is symmetrical in z; and ziyt if and only if 5,6, = &,, that is to say if and only if
86 =0, which by (4.2) is equivalent to w(i) < w(i+ 1).

{(iv) 8, is symmetrical in ZTets. .. T by (iii} above, but does not contain z,, hence does not

contain any of Tr41,...,z,.|
Remark. We shall show later (4.17) that the coefficients in (4-3)(ii) are always non-negative integers.

(44) For i=1,2,...,n—1 we have
PRI~ R RERE T8

Proof: By (4.3), S,, isa homogeneous symmetric polynomial of degree £(s;} = lin zy,..., x;, hence
is equal to ¢(xy + - + ;) for some integer ¢. But 8;6,, = 6, = 1 by (4.2) and (4.3)(i), hence
c= 1]

(4.5) (Stability) Let m > n and let i:S, — S, be the embedding. Then '_z/

sw = si(w)
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forall weS,.

Proof: We may assume that m = n + 1. Let wh be the longest element of Sa+1, then w) =

WoSndn—1 - - 81, where wy is the longest element of S,, and hence
Sifuy = 3u,_|w;(:'|'.’c;'-l e By)

= 8y-14y0nBny - By(2P2 L - 2y

= Qe (27712572 20 )
(because &y (2 237" -+ 2,) = Pt pp-! 237 -+ zn, hence 8 9 (27 3"z =

A=1_n-2_n=2_n-3
Ty "I

E *++Zq, and so on.) ||

From (4.5) it follows that &, is a well-defined polynomial for each permutation w & Soo =
Un S" .

Ifu €8, and v € S, we denote by # x v the permutation
HxXv= (u(l),...,u(m),v(l)+m,....v(n)+m)
i Smin. We have then
{1.6) Suxv =Gy G104

where 1., is the identity element of Sis

Proof: We shall make use of the following fact: if fisa polynomialin £, s, ..., and 8 f = 0 for all
121, then f is a constant, For f ¢ P, = Zzy,...,z,) for some n, and is symmetricin 2y,..., 2,44

because & f =... = 8,f = 0.
Te prove (4.6) we proceed by induction on &u) + £(v). If &(u} = ¢(v) = 0 then u = lm, v = 1,
and both sides of (4.6) are equal to 1. Let

Flu,v) = Suxo — 646 xo.

By the remark above, it is enough to show that &;F(u, v) = 0 for each i.

Suppose first that i < m. Then
OiF(u, v) = Fi(Guxy) - 8i(6) - 61, xy

becauge 3:(S1..xv) = 0 by (4.2). Hence we have OiF(1,v) = 0.if fus;) > €(u); and if &(us;) < &(u)
then

9 F(u,v) = F(us;,v)
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which is zero by the inductive hypothesis.
Likewise, if i > m we have
F(u,vs} if &(vs;) < £(v),
8iF(u,v) =
0 otherwise,
and so again 8; F(u, v) = 0 by the inductive hypothesis.

Finally, il i = m we have £{{u x v)3,4) > #{u x v}, because
(u x v)(m) = u(m) < m + (1) = (u x v)(m +1),

and therefore O, kills &, xy and &), xu; moreover, 9m S, = 0, because S, € Z[zry,..., &m-1). Hence
Om F(1,v) = 0, and the proof is complete. ||

For certain classes of premutations there are explicit formulas for S,,. We consider first the
case where w is dominant, of shape A (so that the diagram of w coincides with the diagram of ).

{4.7) If w 1s dominant of shape A, then

S, =z,

Proof: We use descending induction on &(w), where w € S,. The result is true for w = wy by
(4.3)(i), since wy is dominant of shape §.

Suppose w € S, w # wp and w is dominant of shape A. Then A C 6 and A £ 8. Let r > 0 be
the largest integer such that A{ =n—ifor1 i< r andleta= A, +1<n=r—1 Then ws, is
dominant of length £(w) + 1, and Mws,) = A + ¢4, where ¢, is the vector whose a'® component. is 1

and all other components zero. Hence we have
Sy = 3560,, = Olz.2”) = 2%,

because A, = Agqr .|

Conversely, every monomial z* {where ) is a partition) occurs as a Schubert polynomial, namely

as S, where w is the permutation with code c(w) = A.

Suppose next thal w is Grassmannian, with descent at ».
(4.8) If w is Grassmannian of shape A, then S, is the Schur function s\(X,), where r is the
uniqee descent of w,and X, =2, 4+ 4 z,.

Proof: We may assume that w # 1 (by (4.3)(i), &) = 1). Then r > 1 and the code of w is

——

(w(l)= L w(2)-2,...,w(r)-r)
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sothat A = (w(r) ~r,...,w(2) - 2,w(l) =~ 1). Let u = w{” be the longest element of S,. Then
wu = (w(r),..., w(l), w(r+ 1 u(r+2)..)
is dominant of shape A + 6,, where be=(r—1,r=2,...,1,0), and €(wu) = Hw) + f(u). Hence
Su = 0uBuu = Bu (M) = 55 (X,)
by (4.2), (4.7) and (2.11).)

Conversely, every Schur function 8(X;) (where A is a partition of length £ r} occurs as a

Schubert polynomial, namely as G,, where w is the permutation with code ¢(w) = (Ar. Moziey; M)
Mote generally, let w be vexillary with shape A = (M. Am) (where m = (X)) and flag
= (d1,...,6m) (Chapter I}. Then S, is a multi-Schur function (Chapter 111), namely

(4‘9) 6.., = 3*(“"1 Benay 4Y¢,_)

where Xi =2y +.. 4 2, for cach i> L
Proof: The idea is to convert w systematically into a dominant permutation. Recall ({1.23), (1.24))
that if c(w) = (cy,e2,...) and ¢ < ¢iyy for some i > 1, then Hws;) = £(w) + 1 and
(*) c(ws:) = (er,. .. cimy, 0000 + L, ciya.ciga,.. ).
As in Chapter I let
Mw) = (p™, ..., p0")

where pr > ... > pi > 0 ( and each m; > 1), and let

dwy= (/... /™)
where fi ... < f;.

Consider first the terms equal to py in the sequence c(w). They occupy the positions fy — m; + |

ooy fi. We shall use (*) to move them all to the left until they occupy the first my positions, by
multiplying w on the right by

U1 = (8, om, 5251 )(8g ~mp e - "8352) - (84,1~ “ Smy+15m, )-

Let w) = wuy. In the code of wy, the first m; entries will be equal to py + f; — my; the shape of w,

M= 2w) = (o + o = mi)y™ s, o,
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and it follows from the description (1.38) of vexillary codes that the terms equal to p; in the sequence
¢(w) will occupy the positions fo —ma <+ 1,..., f2. The next step is lo move those to the left untii

they occupy the positions m; 4+ 1,...,my + mz by multiplying w, on the right by
Uz = (sfa-mg r8my$28my+1 )(sf:-ma'i'l a2 '8m|+2) r (s.h—ﬁ . '5m.+m:)-

Let wy = wyua; the code of wy starts off with m, entries to py + fi — m, then m;y entries equal to

P2+ f2 = my — my; the shape of wy is
AR = Mu)=({p 4+ h=m)™ (p1+ f2a=my —m)™ pT L pE" ),

and the terms equal to p3 in the sequence ¢(w;) will occupy the positions fa—ms +1,..., fa—ma3.

We continue in this way; at the r*" stage we define w, = w,_,u,, where
Ur = (S, om, " Smy 4 amecy 1) (Bpm1 - Smy Fme s
and w, has shape
A = Awe) = ((pr + @)™ . (0e + 0™ T )
where a; = f; = (m; 4+ --- +m;) > 0 by (1.36). Notice also that
(Picr+aic)) = (pi+a;) = (M +picr —pi) = (fi = fic1) 20

by (1.37).

Finally we reach wy = wuy - - - u;, which is dominant with shape (and code)

=2 = (o4 a)™ (e ar)™).

We have
fw) = I\ =) mipi,
fwe) = DY =D milp; + a2),
and
Hu)=am, (1Sr<k)
so that N
Hw) = Ew)+ ) 4u,)
=1

and therefore, since w = wy(u; ... ug)~",

G = au. T 'aunewa
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by {4.2). Now by (4.6) and (3.5') we have
Su, =2 = 8,(X1,..., Xm)
where m = my +--- 4 my = £()). Hence by repeated use of (3.10) we obtain
Gwi-l = a‘u Gwh
- 3A(A-I)(4Y| sy .Ym'.p +Mgay “’h-ml'l'l' sy ‘Yh_| i .'fn}

= 8,\(;-1)(1\’;, . '-Xm|+' gy !(Xh )m.)

by virtue of (3.6). If we now operate with 8,,_, we shall obtain in the same way

6“5-] = au;-. 6&:.-. = $ym-n(X1,.. ., 4Ym1+ +my_ys (Xh-l )ﬂ"-' ' ('Y!t )m.)

and so finally
Suw = ax((Xp )™, (Xn)™ )

Remarks. 1. As in Chapter I, let
M=(g ™)
be the conjugate partition, so that

M-+ M= @S (1Si<E)

and therefore
Pitai=pi+ fi —qeyr-i

= Jk4l=d
by (1.41), where (g7*,...,g7*) is the flag of w='. Thus

(4.10) p=AE) = (gr g2 L g™,

2. The result (4.9) admits a converse. If A = (P, ....pr*) as above, every non-zero multi-Schur

function sx((X;,)™, ..., (X}, )™ ) that satisfies the conditions of the duality theorem (3.8"), namely
(1) 0sfinn—fi<mipi+mga (1€i<k-1),

is the Schubert polynomial of a vexillary permutation, namely the permutation with shape A and
flag ¢ = (f7™,.. - fi™*). This follows from (1.38) and (4.9), since the conditions (1) on the flag ¢
coincide with those of (1.37). (The conditions (1.36), namely

fizm+--4+m; (1<i<¥k)
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ensure that the multi-Schur function does not vanish indentically.)
Let H, denote the additive subgroup of P, = Z[z,,...,za) spanned by the monomials %, & C
by=(rn=-1,n=2,...10)
(4.11) The Schubert polynomials Sy, w € S, form a Z-basis of H,.

Proof: By (4.3) each &, lies in Ha. I
3 a6u=0 (0 €Z)

is a linear dependence relation, then by homogeneity we have
(1) z Sy =0

f{w)=p
for each p > 0, and by operating on (1) with 8, we see that @, = 0. Hence the &, are lincarly
independent and hence form a Q-basis of H, ® Q. It follows that each monomial 2%, & C 6,, can
be expressed in the form
(2) = Y b8,

fHw)=lal

with rational coeflicients b,,; by operating on (2) with 8,, we have &, = 8,,z%, and hence the b, are

integers.|)
From (4.11) it follows that

(4.12) The Sy, w € Sen, form ¢ Z-basis of Poo = Z[z),z1,.. ).
Proof: Let z° be a monomial in Pe. Then a C 6, for sufficiently large n, hence £ is a linear
combination of the &, .||

For each n 2 1, let S denote the set of all permutations w such that w(n+1) < w(r+2) < -+ -,
or equivalently such that the code of w has length < n.
(4.13) The Sy,we 5™, form ¢ Z-basis of P..
Proof: By (4.3)(iii) we have

Sy €EPy, = OmSy=0forallm>n
= wes",

Let £, C P, be the Z-span of the S, w € §("}. If P}, # P,, choose f € P, — P.; by (4.12) we can

write f a8 a linear combination of Schubert polynomials, say

(1) /=3 66
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where there is at least one term with a, # 0 and w g S"). Hence for some m > n we have
InGy = 6,,,, and since Jnf = 0 we obtain from (1) a nontrivial linear dependence relation

among the Schubert polynomials, contradicting (4.12). Hence P, = P,,, which proves (4.13))

Let n: P, — Z be the homomorphism defined by n{2;) = 0 (1 £ i < n). In other words, 1 f)
is the constant term of f, for each polynomial J € Pa. The expression of f in terms of Schubert

polynomials is then

(4.14) f= 3 20.))6..

we S

Proof: By (4.13) and linearity, it is only necessary to verify this formula when f is a Schubert
polynomial &,,v € 5, and then it follows from (4.2) and (4.3)(ii} that p(8.6,) is equal to 1

when w = v and is zero otherwise.||

(4.15) Let [f=75 oiz; be ¢ homogeneous linear polynomial, and let w be o permutation. Then
[6. =) (ai - aj)8us,,,

where t; is the transposition that inlerchanges i and j, and the sum 1s over all pairs i < j such

that wt;;) = f(w)+ 1.
Proof: The polynomial /8., is homogeneous of degree £(w) + 1, and hence by (4.14) we have

[60 =3 8,(f6u) &,

summed over v of length #(w) + 1. Now by (2.13)

8 (f6u) = v(NB6u + ) (ai — a;)d0s,, 6,

summed over i < j such that fvt;;) = £(v) ~ 1 = &w). It follows that 3,(JSu) = ai—oj if

w = vly;, and is zero otherwise.|)

In particular:

{4.15" 2By = 3 o(t)Sus

summed over transpositions { = ;, such that E(wt) = £(w) + 1, where a(t) = —1 or +1 according
8 i<ror i>rl

(4.15") (Monk’s formula) 6, 6, =T S, summed over transpositions ¢ = t;; such that i < r < j
and f(wt) = Lw) + 1. |
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Remark. As pointed out by A. Lascoux, Monk's formula (4.15") (which is the counterpart of Pieri's

formula in the theory of Schur functions) characterizes the algebra of Schubert polynomials.

We shall apply (4.15') in the following situation. Suppose that r is the last descent of w, so
that w(r) > w(r+1) and w(r+1) < w(r+2) < ---. Choose the largest s > r such that w(r} > w(s)

and let v = wt,,. Then from (4.15’) applied to v we have
(l) 2,6, = G, — Z Sy
w!

summed over all permutations w' = vl where § < r and Hu') = fv) + 1 = €(w). Hence

w'(g) = v(r) > v(g) = wlq), and w'(j} = w(j) for j < q.
Let us arrange the permutations of a given length p in reverse lexicographical ordering, so that

il {(w) = &(w') = p then w' precedes w if and only if for some { > | we have
w'(j) = w(j) for j < i, and w'(i) > w(i).

For this ordering there is a first element, namely the permutation {p+1,1,2,...,p).

We have proved
(4.16) For each permutation w # 1 the Schubert polynomial S, can be expressed in the form

Su =1,6, + )_ Gy

where r is the last descent of w, £(v) = £(v) — | and each w' in the sum precedes w in the reverse
lexicographical ordering.||
From (4.16) we deduce immediately Lhat

(4.17) For each permulation w, S, is a polynomial in zy,za,... with posilive inlegral coefficients.
For we may assume, as inductive hypothesis, that {4.17) is true for all permutations v such that
either £(v) — &(w), or £{v) = £&(w) and v precedes w in the reverse lexicographical ordering; and then
(4.16) shows that the result is true for w. (The permutation (p +1,1,2,...,p) has code (p), hence
is dominant with Schubert polynomial z§ by (4.7).)||
Now fix integers m, n such that 1 < m < n, and let w € $"), so that &, € P,. By (4.12) we

can express G, uniquely in the form

(4.18) Su(Z1. o tn) = Zd:',,s,,(x., e Zm)Bu(Zmets - - 1 Tn)

summed over u € §™) and v € Si"-™),
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(4.19) The coefficients dy, 1 (4.18) are non-negative integers.

Proof: We proceed by induction on £(v). Suppose first that dy, # 0 and that £(v) > 0, so that
v # 1. Then there exists j > m such that 96u(zm41,....2n) # 0. From {4.18) we conclude that
;6w # 0, hence is equal to S, ,, and therefore we have 43y = duth,_ . and £(vs;) = &(v) - |. By
the inductive hypothesis, we conclude that dy, 20ifv# 1.

It remains to consider the case v = 1. Let Pm i Pa — Pm be the homomorphism for which

plzi)=z;ili<m, and p(z;}) = 0if i > m. From {4.18) we have
(2) Pmsm = Zd:_lsu.
L7

Let r be the last descent of w. If r < m then &, € P. and hence PmBu = 6, so that 4% is equal

to | if u = w, and is zero otherwise. If r > m we deduce from (4.16) that

(3) Sy = meswa.

¥

Assume that the coefficients .t ate > 0 whenever w’ precedes w in the reverse lexicographical
ordering, Then it follows from (2) and (3) that each dy, 2 0. (As remarked before (4.16), the first
element in this ordering (if é(w) = p) is the permutation (p+1,1,2,...,p), for which the Jast descent

r is equal lo L}

Kohnert’s algorithm

Let D be a “diagram”, which for Present purposes means any finite non empty set of lattice
points (4, j) in the positive quadrant (21,7 > 1). Choose a point p = (i, 7} € D which is rightmost
in its row, and suppose that not all the points (1, j},...,(i - 1,3) directly above p belong to D. If
h is the largest integer less than i such that (h.§) € D, let Dy denote the diagram obtained from D
by replacing p = (i, §) by {(h,7). We can then repeat the process on Dy, by choosing the rightmost
element in some row, and obtain a diagram Dy, and so on. Let K(D) denote the set of all diagrams
(including D itself) obtainable from D by a sequence of such moves.

Next, we associate with each diagram D a monomial

D _ a,
T = .ZHI I'-

where a; is the number of elements of D in the i*h row, i.e., the number of j such that (i,j} e D

With this notation established, Kohnert’s algorithm states that
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(1.20)  For cach permutation w we have

S, = Z P

DeXR(IMw))

where I(w) s the diagram (1.20) of w.
Frample. Il w = (1432), K (D{w)) consists of the diageuns

and &, = rira+ 290y + 5yrd 4 2lra + 2ira
A proofl of a related algorithin by N. Bergeron w given in the Appendix to this chapter. The

present status of (4.20) iy that it is tene for w o vexillary {K], but open o general,

The shift operator

Let f € P, and let m > n. Thea

rf = Tmf =il (5 J'mf)
(a.21)
= m ’rm(f)

is independent of m, because x f = ff [ is symmetrical m ro and 240, and i pacticalar if f

does nol conlain rm, Tuyy.

The operator 7 Py — Pryy is called the shift operator. For example, we have
™ = f"|(-l'.f) =r 4+ rs
and for § > 2, .
T, = ()| .. v(’).-(:. e -I;_“’.‘.’)
=z ozio(ec+ zia))
= Ligyh iy ( 2y 20y)
=T

so that by (4.4)
S, z2rn o tn)=n4 i =6,

Mote generally,
(4.22) For all permutations w,

1'6.., = Glxw
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where | x w 13 the permutation (Lw()+Lw@)+1,..).

Proof: For each r > 1 let w{" be the longest clement of S,, and let §, = {r=1,r=2,...,1). Then

il w € S, we have
6w = 8- Bnfz, - ':..aw-.w;.,:*-}

=48 -- ’6"3:»-!..,‘(,-1(2',"').
Now s -5, is the cycle 1 —2—...—a+41—1, and hence
$1 --'s,,w"wf)"’ =(1x w}"w((]"*’”
so that
Usy - spw™ 'yl = €(sy---50) + [(w-lwl(]ﬂ))

and therefore by (2.7) we have

60 = 01 x w) luwg™ Nzt = 5, |
(423) Let a € N" and 0<p <. & Pn. Then

T5a(Xpy, 0 Xp) = SalNpierv -, Xpop1 )

Proof: Since r = w7, - *7p.. this follows from (3 10)]]
(4.24) We have

&it" =0
Jor 1<i<r

Proof: By (4.12) it is enough to show that 47" S, = 0 for all permutations w, and this fotlows from

(4.22} and (4.2).|

Foreachn> llet p, - P, — Fi be the homomorphism defined by

I, lrlsﬂ.

PlE) = 0" isn

{4.25) Let w[,") be the longest element of S,. Then

upol) = par™(f)
forall fep,.

Proof: By linearity we may assume that J = 2% where o € N™. Since 2 = sa{X1,...,X0n) by

(3.5°), we have

™(127) = 54(Xnyy, . v Xan)

R
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by (4.23), and hence

Pt (2g) = sa{Xn,.... Xn)
which is equal to 7_m(2) by (2.16').Jj

Transitions

A transition is an equation of the form
T(w,r) 8. =26, + )6,

vEd

where r > 1, w and u are permutations and & is a set of permutations. It exists only for certain
values of r, depending on w. An example is (4.16), in which r is the last descent of w.

By (4.15’) we have

2,6y = ) o(t)Bus

t
summed over transpositions ¢ = t;, such that &(ut) = é(u)+ 1, where o(t) is the sign of { — r. So for

T(w,r) to hold there must be exactly one j > r such that

(1) fut,;) = &)+ 1,

(2) w = ul;.

Consider the graphs G(w) and G(u) of w and u. They differ only in rows r and j :

A B A B
J i XK
c D C D
G(w) G(u)

By (1.10} the relation (1) above is equivalent to AN G(u) = @, where A is the open region indicated
in the diagram. Moreover, j is the only integer > r such that u(j) > u(r) and ANG(u) = 8, and this
will be the case if and only if (AUBUC)NG(u) is empty. Since (AUBUCING(u) = (AVBUCING (w),
it follows that

(4.26) There 15 a transition T(w,r) 1f and only sf

(AUBUC)NG(w) = 0.
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From (4.26) it follows that if T(w, r) exists we must have w(r} = w(r+ 1), ie., r must be a
descent of w. Hence

dyfw) <rg di{w)

where do(w} (resp. d)(1w)) is the first (resp. last) descent of w. (In terms of the code e(w), dof{w) is

the first descent of the sequence e(w), and dy{w) is the largest i such that ci(w) # 0.) In general,

not all descents of w will give rise to transitions, but the last descent always does, by (4.16).
Consider next the set & = $(w, r) of permutations that feature in T(w,r). Each v € ® is of

the form v = ut;, with i < r and £(v) = &(u) + 1 (= f{w)). Again by (1.10), this means that

D (o
P

i x Y i 4T_\

G(w) G(u) G(v)

AN G(w) is empty, where A’ is the open region indicated in the diagram above,
The element v = ut;, of @ for which i is maximal is called the leader of ®. Thus v € ® is the

leader if and only if
(4.27) (AU BYING(w) = 0.

Remark (4.28). The set € will be empty il and only if there is no i < r such that w(i) < w(j). We
can always avoid this possibility by replacing w by | x w. If d(w, r) is not empty, then v 1 x u
15 a bijection of ®(w, r) onto P{1 x w,r + 1)

The condition (4.26) is stable under reflection in the main diagonal, which interchanges Gw)
and G{w™"), Hence
(4.29)  The transition T{w,r) enists if and only of T(w=",s) ezists, where s = w(j). Moreover we

have

S(w™!,s) = d(w, r)=!

so that T(w=',s) is the relation

Su-r = 2,641 + Y 6,1
vEd
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We may notice directly one corollary of (1.29). Let
Su(l) = Su(l,1,...)

be the number of monomials in &, each counted with its multiplicity. (By (1.17), S, is a positive

sum of monomials.) If T{w, r}) is a transition, we have

Su{1) = Su(l)+ Y Bu(1)

ved

and also, by (1.29)

Bu-r{1} = Sumr () + D Symr(1).
ved

From these two relations it follows, by induction on #(w) and on the integer &, (1}, that
(4.30) 6u(1) = 6,-:(1)

or in other words that &,, and &,,-1 each contain the same number of monomials. So if Kohnert's

algorithm (4.20) is true, we should have
Card K(D{w)) = Card K{D(w™1)).

Doubtless the combinatorialists will seek a “bijective” proof of this fact.

Let T{w, r) be a transition and let v € ®(w, r). Consider again the graphs of w and v :

i ; 4 i X

+

G(w) G(v)
Let m,n,p denote respectively the number of points of G(w) (or equivalenily G{v)) in the open
regions of M, N, P. (The regions marked with a zero contain no graph points.) Then we have
(4.31) ci(w)=m+ n, clwy=n+p+1,
cifv)=m+n+p+1l, cfv)=n,

and cp(v) = ce(w) of k #i,r. In particular, c.(w) > (v} for all v e d(w,r).
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Proof: ¢;(w} is the number of positive integers & > i such that w(k) < w(i), hence is equal to m+n.
Similarly for the other assertions.)|
Suppose first that m = 0, i.c (by (4.27)} that v is the leader of P, Then from (4.31) we have
&i{w) = er(v) and ¢, (w) = ¢;(v}. Hence in this case e{v) = tirc(w) and therefore A(v) = Mw).
If on the other hand m > 0, there are two possibilites :
either

a(v) > elw) > o (w) > ¢ (v),

of

ci(v) > er(w) > oi(w) > oo {v).

In both cases it follows that A(v) is of the form R*Mw), where R is a raising operator and a > |,

llence A(v) > A(w) (for the dominance partial ordering on partitions), and we have proved

(4.32) If T(w,r) ts a transilion, we have A(v) 2> Mw) for all v & B(w,r), with equalily 1f and
only if v s the leader of &

Recall (1.26) that for any permutation w we have
AMw) > M)
Hence for v € ®(w, r) we have
« 1°) ' i+)
(4.33) Mw) 2 M) 2 Me™!) > Mu™h)

by (4.29) and (4.32). Moreover, at least one of the inequalities (=) is strict unless v is the leader of
®(w,r) and v™! is the leader of $(w™!, $) (in the notation of (4.29)). In the notation of the diagram

preceding (4.27) this means that
(AuBUCYNGlw) =0

and hence, as in the proof of (4.26), that Card ¢ <1
(4.34) If T(w,r) 15 a transition with w vezillary, then ®(w,r) 1s esther emply or consists of one

venillary permutation,

Proof: Suppose that ¢ is not empty, and let v € ¢. By {1.27) we have Mw) = Aw™"), and hence
all the inequalities in (4.33) are equalities. Thus v is vexillary, and by the remarks above it is the

only member of .||

Y
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(4.35) Let T(w,r) be a transition with r > do{w). Then
da(v) = do(w)

for all v € ®(w,r).

Proof: As before, let v = ut;, with i < r, and let d,{w) = d. We have to show Lhat
(+) afv) £ -+ g elv).

We distinguish three cases:
{(a) i > d, so that d < i =1 and therefore ei{v) = ex(w) for 1 £k < d.

{b) i = d. In this case we have c(v) = cp{w)for 1 Sk < d -1, and
ed-1(v) = cg-1(w) £ ca(w) < calv}

by (4.31), so that ca—1(v) < ca(v).

(¢) i > d. Since d < r we have i + 1 < r and ¢&;(w) < cipa(w), hence w(i + 1) > w(i). The
diagram on p. 58 shows that w(i+1) > w(j}, or equivalently v(i + 1) > v(i), so that ¢;(v) < e,41{v).
Hence

ci-1{v) = cica(w) € ei(w) < a(v) < cisalv)

and therefore
ci-1{v) < €i(v) £ cialv).
Since the sequences {cy(v),...,cq(v)) and (e1(w),...,cq(w)) differ only in the #*8 place, we have
e1(v) € -+ € cq(v) as required. ||
The maximal transition for w is T{w,d (w)). Let us temporarily write w — v to mean that
v € &(w, dy(w)).

(4.36) Suppose that

W= Wy =y — - = Wy

is @ chein of mezimal transitions i which none of the w; 1s Grassmannian, Then
p < (di{w} - do(w))é(w).

Proof: For any permutation v, let e(v) = dj{v) = do(v)} > 0. Also let f(v) denote the last nonzere
term in the sequence c(v), i.e. f(v)} = ¢4,(y(v). Recall that v is Grassmannian if and only if it has

only one descent, that is to say if and only if e{v) = 0.
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From (4.33) we have
do(wi) 2 do{wg...y)

for 1 < k£ < p, and from (4.31) we have

(1) er{we) < er{wp_y)

where r = di{un.,). Hence di(wi) € dy(we-,) and therefore
e(we) < e(wiot).

Moreover, il e(w,) = e(wr_1) we must have dy{ws) = dy(ws_,) and hence by (1)
f(w) < flwen).

It follows that the p + | points (z4, 1) = {e{wr), f(we)) are all distinct. Since they all satisfy
1Sz Se(w) and | € e < (w), we have p+ 1 € e(w)t(w), as required.|)
The rooted tree of a permutation

In what follows we shall when necessary replace a permutation w by 1 x w, in order to ensure
that at each stage the set ®(w,r) is not empty (4.28). Observe that this replacement does not
change the bound (d\(w) — do(w))#{w) in (4.36).

The rooted tree T,, of a permutation w defined as follows

(i) il wis vexillary, then T, = {w};

(ii) if w is not vexillary, take the maximal transition for w:

(‘) Sw =z,6, +ZG.,
vEP

where r = dy(w). (If ¢ is empty, replace w by 1 x w as explained above.) To obtain T, join w by
an edge to each v € ¢, and attach to each v € @ its tree T,.

By (4.36), T,, is a finite tree, and by construction all its endpoints are vexillary permutations of
fength &(w). It follows from (4.28) that v — 1 x v is a bijection of T,, onto Tyxy. Thus T depends
(up to isomorphism) only on the diagonal equivalence class {Chapter I) of the permutation w.

Recall that pm @ Pey — Po, is the homomorphism defined by pm{zi) = 2, if 1 < i < m, and
Pm(z:) =0ifi > m.

(4.37) Let V be the set of endpoints of T,. Then if m < do(w) we have
Prm(6u) = Y sage)(Xm).

veV
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Proof: Il w is vexillary we have pm{Bu) = sitw){Xm) by (4.1), since d\{w) = do(w) 2 m. T wis

not vexillary, it follows from the maximal transition («) above that

P(60) = Y pm(Si)

ved

since r = dy(w} > do{w) > m. The result now follows by induction on Card(T.. ).||
Multiplication of Schur functions
Let u,v be partitions and let u € S,, 4’ € 5, be Grassmannian permutations of shapes j,v
respectively. Let w = u x u’ € Sq4p, 50 that by {4.6) and (4.8)
Sy =Gy 'Gt.xu'
= 5,( X2 )5, (X))

where r = do(u) and 3 = n + do{v'). Hence if m < r we have

pm(Su) = 54(Xm)s(Xem)

and so by (4.37)
su(Xm)su(Xm) = 3 sa0)(Xem)

gV
where V is the set of endpoints of Lhe tree T,,. Here the integer m can be aribtrarily large, because

we can replace w by 1 x w for any positive integer k. Consequently we have

(4.38) SuSy = E Sa(v)
vEV

where V is the sef of endpotnts of the tree Ty, and u (resp. u' ) s Grassmannian of shape u
(resp. v )|

The same argument evidently applics to the product of any number of Schur functions. If
s u®) are partitions, let u; € S,, be a Grassmannian permutation of shape p), for cach

i=1,...,k (so that m; > €(p) + £(u)}) and let w = u; x -+ x ux. Then

(4.38") 00 Sy = Z Safe)
veV

where V 1s the sel of cadpoints of the tree T, ||

In particular, suppose that each u'*) is onc-part partition, say a"! = (1}, so that the left-hand
side of (4.38') becomes h,, h,, - -- = h,. Correspondingly, each w, is a cycle of length p; ++ 1, namely

= (pi+1,1,2,...,). Now [M, Ch.I, §6] the coefficient of a Schur lunction s, in hy, is the Kostka
number ,. Hence we have

(4.39) K., is the number of endpoints of shape A wn the tree of w=uy xugx ... ||

Schubert polynomaals (1)

Schubert polynomials for 5,

w
124
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
J241
3412
J421
123
1132
4213
4231
4312
1321

S,

1

Tyt Iyt xn

I+ 2y

124 I\ 23+ 223
ri4 zyzy + 23
tiry + 2iea + 2323 + 212022 + 2y
I

1? + 1292+ 213
Xy

IiTaZg

xizg + 223

Tiraza + 212323
2

1

.r'f,:z + ::'fzg

I?Iz

]
{23
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Appendix

A Combinatorial Construction
of the Schubert Polynomials

by Nantel Bergeron

In this appendix, we shall give a cembinatorial rule based on diagrams for the construction of
the Schubert polynomials. A different algorithm had been conjectured (and proved in the case of
vexillary permutations) by A. Kohnert. We shall give, at the end of this appendix, a sketch of how
one can show the equivalence of the twe rules. I wish to acknowledge my indebtedness to Mark

Shimozono for the stimulating exchanges regarding this work.
Combinatorial construction

Here a “diagram™ will be any finite non empty set of lattice points (£, §) in the positive quadrant
(i21,j>1). For example the diagram D{w} of a permutation w is a diagram in the above sense.
Let D be any diagram. We denote by Dirs41) the diagram D restricted to the row r and r + |,
Let j(r, D}y = (4, ja, . -+2j&) be the columns of D in which there 15 exactly one element of D 1)
per column. Choose a column J € j(r.D). Assume first that (r+1.5)¢e D, reny- Hi=tkor
if (r, jiy1) € Direy1), let Dy be the diagram obtained from D by replacing the element {(r+ L)
by (r.j;). Now suppose instead that (r, j;} & Disryty. We say that the potnt (r, j;) is r-fixed with
tespect o D(w) if the number of elements of D in the column j; and in the rows v > r is equal to
the number of elements of D{w) in the same area. Now if i = | {and if thete is no r-fixed element
with respect to D(w) in Dyoril(r+1,j;_1) e Dieryrye let Dy be the diagram cbtained from D by
replacing the element (r.7i) by {r+ 1, 4i). In both cases we say that the diagram D, is obtajned from

D by a “B-move” {with tespect to D{w)). For example let D be such that Dy, r+1; i8 the following;



66 Notes on Schubert Polynomials

For this case j(r, D) = (2,5,8,9). We can perform on this diagram a B-move in column 2, 5 or 9

and obtain, respectively, the following diagrams:

R gET) ORTI3eT) CRTriaTT.

The element in column 8 is not allowed to move since (r+ 1,5) € Di,.r41). Let Q(w) denote the sct
of all diagrams (including D(w)) obtainable from D(w) by any sequence of B-moves.

Next for D € S2{w) let 2 denote the monomial 5" 237 x3* - - - where g; is the number of elements
of D in the i row. For any permutation w we shall have the following theorem:

(B.1) .= » =

Defi{w)
To prove this we will proceed by reverse induction on éw). If w = wyg (the longest element of 5,)

then (B.1) holds since Q{wy} contains only the element D{wo) and Ptwo) = 28 On the other hand

from (4.3), Gy, = z°. Now il w # wp then let 7 = min{i - w(i) < w(i+ 1)}. From (4.2) we have
(B.2) Sy = 0-6us, .

Let v = ws,. By the induction hypothesis equation {B.1) holds for &,. The induction step will be
to “apply” the operator 3, to the diagrams in (v). To this end we need more tools.
For the moment let us fix D € Qv). Let @ = a.(D) and b = e,y (D) be respectively the

number of elements of D in the rih and r + Isc rows. We have

a=b=1 —p=1b4r -

bog coexETtTlzile ifa> b,
(B.3) ap:D=3,.--~:,‘.'z£+l---: 0 fa=b,

—Yhoest o patrebirl . ifac<h

This suggests we define the operator 9, directly on the diagram D. Tor this we need only to
concentrate our atiention on the rows r and v+ 1 of D. Let j(r.D) = (j1,J2...-.Jp). Notice
that in ali columns j < w(r) of D r41) there are exactly two elements and in column wir) =
of Diy.r41) there is exactly one clement in position (r, j1). We shall now reduce the sequence of
indices j(r, D) according to the following rule. Let Juy = (j2,Ja,...,Jp). Remove from Jigy all
pairs ji,jeqq for which (r.ji) € D and (r + 1, jes1) € D. Let us denote the resulting sequence
by J()- Repeat recursively this process on Ji;) until no such pair can be found. Let us denote by
J(r, DY = (fi, fa, ..., ) the final sequence. From construction, the sequence f(r, D) is such that if

{r, fi) € D then (r, fi41) € D. Let up(r, D) be the minimal k such that (v, fi} € D. IW(r+1.f,)e D
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then set up(r, D) = q + 1. We are now in a position to define the operation of 8, on the diagram
D. To this end let us first assume that a > b. This means that we have a — b more elements in row
r then in row r+ |, Hence g — up(r, D)+ 1> a—b— 1 for ¢ the length of f(r, D). The equality
holds if and only if up(r, D) = 1. In the case a > & the operator 8, on the diagram D is defined by

the map
(B.4a} 8,0 —{Do,D1,Dy,...,Dy_41}

where Dy is identical to D except that we remove the element in position {r, w(r)) and for k =
1,2,..,a=b=1 we successively set Dy to be identical to D¢, except that the element (r, Jup(r.Dy+k<1)
is replaced by (r + 1, fup(r.0)+£-1). Now if a < b we have up(r, D} = 1 > b—a 4 | (with equality iff
up(r, D} = ¢+ 1). So up(r, D) =1 > b— a. In this case the operator 8, on the diagram D is defined
by the map

(B.4b) a"D-‘{DUIDIIDQI--nD&-a—I,}

where Dy is identical to D except that we remove the element in position {r, w,) and the element
(r + 1, fup(r,0)-1) is replaced by (v, fupir.py-1). For k = 1,2, .b=a— 1 we successively set D 1o
be identical to Dy_j except that the element (r + 1, fupir.Dy-k-1} 18 replaced by (r, fup(rD)=k-1).

Finally if a = b then
(B.4c) 8.0 —{}.
With this definition of 8, we have that
(B.5) &P=x Y O
D,€8. D
with the positive sign in case (B.4a) and the negative sign in case (B.4b). For (B.4c) the result of
(B.5) is zero.
We shall now show that
(B.6) - maps v} into Y w).
Proof: The reader will notice that in D(v) the rectangle defined by the rows 1,2, .. ..r + | and the
columns 1,2,...,w(r) = I is filled with elements. None of these clements can B-move. Hence these
clements are fixed in any diagram D € Q(v). The same applies to all elements in column w(r); they

are packed in the smallest rows and there are no elements in the rows strictly greater than r. Now

let D be a diagram in Q(v) and assume that 8,0 = {Do, Dy, ..., Dm} is non-empty. The remark

| |
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above implies that the clement in position (r, w(r)) does not affect the sequence of B-moves fromn
D(v) to D. Hence we can apply the same sequence of B-moves to D(v) - {(r, w(r))} and obtain Do.
Morcover D(v)—{(r, w(r)}} is obtainable from D(w) by a simple sequence of B-moves in rows 7, r+ i,
for this one successively B-moves all the elements in row r + 1 and columns given by j{r, D(w)).
This gives that Dy is obtainable from D(w) by a sequence of B-moves, that is Dy € Q(w). Now

from the construction of 8, D, Dy (k > 0) is obtained from Dy, by exactly one B-move. Hence

9D C Yw). ||

It is apptopriate at this point to give an example. Let w = (6.3.9.5,1,2,11,8,4,7,10). Hence
r=2and v=(693512118,4,710). We have depicted below the diagrams D(w) and D(v).

In our example the fixed elements described above are colored in grey and the element in position

(r,w(r)) is colored black.

4 6 7 ¢ 1w n 4 6 T 8 9 10N

Baun

T

!
1
B
)

R T T I

T T U

D(w) D{(v)

Now let D be the following diagram of {Q(v).

ses
<

—Q— —(E

Here, a.(D) = 7, ar41 (D) = 4 and j(r, D} = (3,5,7,8,10). The reduced sequence f(r, D) is (8, 10)
and up(r, D) = 1. Hence 8,D = { Do, D1, D} where
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_P"ﬁ:&- ',T‘?

"

e
+_

ry
o

10
—C)
\)——Cr

-DO Dl D'n

To prove (B.1) the first step is to find a subset of 2(v} such that when we operate with 3, we

obtain ${w). To this end let
Qo(v) = (D € Qv) : 6:(D) > arp { D} and up(r, D) = 1}.
We have

(B.7) Qu)= |J 80 (disjoint union).
DERolv)

Proof: It is clear from construction that the subsets 9, D are disjoint when D € Qy(v). From (B.G)
we only have to prove that for any D' € (w) there is a D € Q(v) such that D’ € 8.D. To see
that, reduce the sequence j(r, D) = (j,,. .. . Jp} by removing recursively all pairs ji, jr 4+, for which
(r.je) € D" and (r 4+ 1, ji41) € D'. Denote the final sequence by f'(r, D'). Let D be the bubble
diagram obtained from D' by adding an element in position (r, w(r)) and successively B-moving all
elements in positions (r + 1, f;) € D'. We have that D € {)(v). To see this one applies to D(v) the
sequence of B-moves from Dfw) to D —{(r, w(r))}. Of course one should ignore any B-move in rows
#,r+1 performed on the originallelements of D{v} in row r. But by the choice of r, the other B-moves
apply almost directly and the resultimg dfagram is precisely D. Moreover since f(r, Dy = [f'{r, D)
and up(r, D} = | we have D € Qo(v) and D' € 8, D. i

We shall now investigate the effect of 8, on @(v) = Q(v) — Q{v). More precisely we have

(B.8) Y azP=0

Deny(v)
Proof: There are two classes of diagrams in ,{v). The first class contains the diagrams D for
which a,(D) = a,4 (D). In this case it is trivial that 8,22 = 0. The other class is formed by

the diagrams D such that a,(D) # ¢,4,(D) and up(r, D} > 1. In this case we shall construct
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an involution, D — D, such that 8,27 + 8,20 = 0. Let f(r,D) = (1. fo,. ... J), @ = ar(D)
and b = a,41(D). We first define the involution for the case @ > b. Since up(r, D) > 1 we must
have g — up(r, D) + 1 > a — b. So let D' be identical to D except that the elements in positions
(ry fuptr.02)s (72 fupir.0yi1 )y -0 (1 Jupir.D1+a-b-1) ate B-moved 1o the positions (r + L, Jupir i)
(r+ 1, fuptr.0y1)s o (r 4 L fupee Disab=1). It is clear that D' € Q(v). But f(r, D) = fir, D)
and up(r, D') > up(r, D) > 1, hence D' € Qi(v). Moreover we have a-(D) = band a,1(D) = a,

hence 9.z2 + 8,2P" = 0. The case a < b is similar to the previous one, I

A proof of (B.1) is now completed combining (B.2), (B.5), (B.7) and (B 8). More precisely

using the induction hypothesis, we have

S, = 0,6, (B.2)
= Z 8P
De{v)
= Z 3.z2 (B.8)
Deflg(v)
= P {B.5)

DeNo(v) D, €D

S 2 (B.7)

D ef(w)

Kohnert's construction

Let D be any diagram. Choose (i,7) € D such that (i,5") ¢ D for all §* > j. Let us suppose
that there is a point (i, j} € D with i < i. Then let & < i be the largest integer such that (h,j) € D
and let D denote the diagram obtained from D by replacing (¢, 7} by (h.j). We say that D is
obtained from D by a “K-move”. Now let K(D(w)) denote the set of all diagrams (including D
itself) obtainable rom D by any sequence of K-moves. Kohnert’s conjecture states that for any
permutation w we have
(B.9) .= . 1%

DeK{D(w))
A. Kohnert has proved (B.9} for the case where w is a vexillary permutation but the general case
was still open. For the interested reader here is a sketch of how one may prove (B.9).

We have noticed by computer that Q(w) = K'(D(w)). The idea then is to show both inclusions

by induction. The inclusion K{D(t0)) C Qw) is the casiest one. We only have to show that any K-

move of an element (3, j) to (h, j) can be simulated using B-moves. For this we proceed by induction

Appendiz : Combinatorial construction 71

oni=Ah lfli=Hh = S
n i Ifi=4 =1 then the K-move is simply one B-move. Now if i — h > 1, we first perform the

sequence of B-moves in row A,k + 1 necessary to B-move the element (h+1,) to (A, j). Then using
the induction hypothesis we can K-move (i,4) to (h + 1, j}. Finally we reverse the first sequence of
B-moves in rows A, h + 1. That shows K(D{w)) C Q(w).

The other inclusion needs a lot more work. For D € K(D{w)) and i any row of D let B;(D)
denote the set of all diagrams (including D) obtainable from D by any sequence of B-moves in the
rows i,i 4 1 only. It is clear that il i is big enough then B;(D) C K(D(w)}). We may then proceed
by reverse induction on i. Now for a fixed ¢, notice that Bi(D(w)) is obtainable from D(w) using
only K-moves, Let 5 denote the set of all diagrams obtainable from B;(D(w)} by any sequence
of K-moves for which no elements crosses the border between the rows i+ 1andi+2 Asimple
inductive algorithm may be used here to show that for any D € Q5 we have By(D) C Q. Next
let Q¢ denote the set of all diagrams of K'(D(w)} which have £ more clements than D(w) in the
rows 1,2,...,i+ L. For almost all the cases it is fairly easy to show (using induction on k and the
induction hypothesis on i) that for D € §; we have B.(D) C $). But some of the cases are really

hard to formalize! Now this completed would show that w) C K(D(w)) since K(D(w)) = Uiy,
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T3

Chapter V

Orthogonality

Recall that
Pn = z'[:lw '-v:ﬂ]u
A =Zfzy,. .., £q]5
where ry,...,z, are independent indeterminates.

(5.1} Pnis a free An-module of rank n! with basis
Bn={z":0<aigi-1, 1gi<n)

Proof: by induction on n. The result is trivally true when n = 1, so assume that n > 1 and that
Pr_y is a free A,._;-module with basis Bn.y. Since P, = Pn-i1[zn), it follows that P, is a free

An-1lzn]-module with basis 8,_,. Now
An-l[xnl = AH[:HL
because the identities
e(zy,...,z0) = Z(-x")'e,_,(:l,. )
=0

show that An_; C An[2n), and on the other hand it is clear that An C An-([24]. Hence P, is a free
An[2q]-module with basis B,,_,.

To complete the prool it remains to show that Anfza] is a free  A,-module with basis

n
Lza,...,23~1. Since [[(2n = £;) = 0, we have
i=
Ta=eazn — et 4 (=)L,

from which it follws that the T (1<i<n) generate Aa[2,] as a A,-module. On the other hand,
if we have a relation of linear dependence

i fizp ' =0

i=]
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with coefficients f; € An, then we have also

IIEREL

=l

for j=1,2,...,n,and since
dct(::;-"") = H(:i -z5;)#0,
iy
it follows that fi = --- = fa =0/
As before, let § = (=1, —2,--+,1,0). By reversing the order of 24, ..., Tq in (5.1) it follows

that
(5.1') The monomuals z°,a C §(re, 0€Sa;gn—iforl <i<n) Jorm a Ap-basis of Pr.l|

We define a scalar product on A, with values i A, by the rule
(5.2) < fog >=8u(f9) (f,9 € Pu}
where wy is the longest element of Sq. Since 8y, is A, -linear, so is the scalar product.

(5.3) Let w€ S, and f,g € Pn. Then

() < Bufig>=<[0p10>

(i) < wf,g >= e(w) < fiw™lg >,
where c(w) = (=1)4%) is the sign of w.
Proof: (i) It is enough to show that < 3;f,9 >=< [, dg>lorigi<n=1 Wehave

< 8:£,9 > = Buol(8:))9) = Bues, i(3iN)9)
= Buos, ((Bi f N Big))

because 3; f is symmetrical in z; and £,4). The last expression is symmetrical in f and g, hence
< 8if,g >=< Big, f >=< f,dig > as required.
(ii) Again it is enough to show that < sif,g >= = < [ 59 >. We have

< sif g >= Oua((sif)g) = Ouos Dis(f(si0))

and since 8;s; = —& this is equal to
_awn:.ai(f(sl'g)) = _awo(f(sig)) =-< fv 89 > “

(5.4) Let u,v € S, be such that &u)+€(v) = (3). Then

b if v=wou,
< Gu,Gu >=

0 otherunse.
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Proof: We have
< 6y,8, > =< 8.,-.,,,0:‘,6., >

=< :6i awnusu >
by (5.3). Also &(wou) = é(wn) - (u) = £(v), hence

1 if v = wou,
awnuen = { ’
0 otherwise.
It follows that
0 .
6.6, oe { if v # wou,
<z 152 Bpy(2¥) =1 il v = wou.lj

(5.5) Le! u,v€ S,. Then

< woSy, Suu, >= ¢(v)byy.

Proof: We have
< wOth GV\ﬂo > =< woﬁ‘,,&ww-lwx" >

=< awouwn(wusu )v -ta >

= ¢(v) < wd,6,,2% >
by (5.3) and (2.12). By (4.2) the scalar product is therefore zero unless &(u) — £(v) = f(uv~!), and
then it i i |
en it is equal to ¢{v) < woS,,-1, 2! >. Now &,,- is a lincar combination of monomials £ such

that o C 6 and |a| = #(u) — £(v). Hence wo(Sy,-1)z% is a sum of monomials 22 where
B=zwyo + 4§ Cweb+bé=(n~1,... 1~ 1).

New §,,2° =
o T 0 unless all the components 3; of 3 are distinct; since 0 € ; < n — 1 for each i, it

follows that 9,27 = 0 unless § = wé for some w & Sy, and in that case
wa=F=-6=wh-§
must h i ibili
st have all its components > 0. So the only possibility that gives a nonzero scalar product is
w=l,a=0,u=uv, and in that case
<woBu, Goue > = ev) < 1,2¢ >
= €(0)0ug (%) = €(v).j|

{6.6) The Schubert polynomals S, we S,, Jorm o Ap-basis of P
.

Proof: Let u,v € S,, and let

(0 woGy = z Gugz”,
all
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(2) ‘(V)Guwo = Zbuﬂ:ﬂ|
dcé

with coefficients aya,bvs € An. Let cap =< 29,22 >. Then from (5.5) we have

Zauocugb.,p = byv,
a.f

or in matrix terms
(3) ACB' =]

where A = (8ya), B = (byg) and C = (cag) are square matrices of size n!, with coeflicients in A,,.
From (3) it follows that ecach of 4, B, C has determinant 31; hence the equations (2) can be solved
for 29,8 C 6, as A,-linear combinations of the Schubert polynomials &, w € S,. Since by (5.1}

the z? from a An-basis of P,, so also do the &,.||

We have

(5.7) <fi9>= Y (w)du(wof)deuol9)
wESa

forall flge P,.
Proof: Let ®(f, g) denote the right-hand side of (5.7). We claim first that

(1) ®(/.9) € An.

For this it is enough Lo show that i@ =0for 1l <i<n-1. Let
A; = {w € S, : &(siw) > w)),

then S, is the disjoint union of A and 5,4, and 5,4 = Awy. Hence

o(f.9) = Z c(w){t?m(wof)&(a-.wog) = 80 (wo s 0we9) )

wEA,

Since for all ¢, € P,, we have
di(90;¢0 — (Bip)) = (8:8) (Bt} — (i) Bivr) =0,

it follows that 9,%{f, g) = 0 for all { as required.

Next, since each operator 3, is A,-linear, it follows that ®{f, g} is A,-linear in each argument.
By (5.6) it is therefore enough to verily (5.7) when f = wo®, and ¢ = Sy, whete u,v € 5,. We
have then

P(woSe, Suvu,) = z W)y -1 (Su )10y (Suwe)
WwES.
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which by (4.2) is equal to

(2) Zf(w)euwsuw

r

surnmed over w € S, such that

fuw) = €(u) — w™") = fu) - {(w)

and

f(vw) = fvwg) — t(w™ wo) = &(w) - {(v).

Hence the polynomial (2) is (i) symmetric in 4, ..., 2z, (by (1) above), (ii) independent of z,,, (iii)
homogeneous of degree #(u) - £(v). Hence it vanishes uniess f(u) = &(v) and u = w™" = v, in which

case it is equal to ¢(w) = ¢(v). Hence

PwoS,, Sowy) = (v)yy =< woS,,, Sowe >

by (5.5). This completes the proof of (5.7)0)

Nowlet z = (z),...2,) and y = (%1, ..., yn) be two sequences of independent variables, and Jet
(5.8) A=Ay = [] (2i-w)
1+1%n

{the “semiresultant™). We have

0 ir
(5.9) Alwz, z) = { o

e(wolasg({z) if w= 1w,

For

Al{wr,r) = H (Twie) — z;)
i+ign
1s non-zero if and only if w(i) # j whenever i+ j < n, that is to say if and only if w # wy; and
A(wez,z) = H (Tns1-i — z;)

i+j<n

= H(:g -I)= ((wo)aa(-f)—"

i<k

The polynomial A(z,y) is a linear combination of the monomials *, o C §, with coefficients in

Zy,.. -+ ¥n] = Pa(y), hence by (4.11) can be written uniquely in the form

A, g) = ) Gu(2)Tuly)

WES,

e
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with T, (y) € Pa(y). By (5.5) we have
Tuly) =< Az, 1), WSy (1) >=
where the suffix £ means that the scalar product is taken in the £ variables, Hence

Tw(y) = 6wn(A(5- y)wU(SWWn(_‘r)))
(N = as(z)7! Z V)A(vz, Plotrg (S —1))

vESa

by (2.10}, where v € S, acts by permuting the z;.
Now this expression (1)} must be independent of zy,...,2,. llence we may set z; = y, (I <
i < n). But then (5.9) shows that the only non-zero term in the sum (1) is that corresponding to

v = wy, and we obtain

Tuly) = Suw,(=y).

Hence we have proved
(5.10) (“Cauchy lormula™)
Az,y) = D Gul()Buue(~y)
wES,
Remark. Let n = r 4+ s where r,s > 1, and regard S, x 5, as a subgroup of 5,,, with 5, permuting

1,2,...,rand S, permuting r+ 1, ., r+s. Let wl”, wl’? be the longest elements of S,, S, respec-

tively, and let u = w{” x Wl If w € S, we have 8,6, = 6y, i H{wu) = &w) = &(u), that is to
say if wu is Grassmannian (with its only descent at r}, and 8,6, = 0 otherwise. Hence by applying
0y to the z-variables in (5.10) we obtain
BuA(z,¥) = Y 6u(2)Suuuo( =)
vEG,,
where G,, C S, is the set of Grassmannian permutations v with descent at r (i.e. v(i) < v{i + i)l
i # 7). On the other hand, it is easily verified that
roe
dutr(z. ) = [T [Ttz - wi)

i=lj=l

and that v/ = vuwg is the permutation
(v(r +1),....v(r+s),v(1),...,v(r))

hence is also Grassmannian, with descent at s.
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The shape of v is

A=,\(u)=(v(r)-r,...,v(?)—2.v(l)—l)

and the shape of v" is say

# =) =(v(r+s)—s,...,v(r+2)=2v(r+ 1y~ 1)

The relation between these two partitions is

mi=s=Xyi (1gigr)

that is to say A is the complement, say fi, of p in the rectangle (s") with r rows and s columns

tience, replacing each yi by —y;, we obtain from (5.10) by operating with 8, on both sides and
using (4.8)

(5.11) I+ =3 sa(z)su(n
==l

summed over all 4 C (s"), where ji is the complement of 4 in (s"). This is one version of the usual

Cauchy identity [M, Chapter | (4.3)].

Let (6% }yes, be the A,-basis of Fn dual 10 the basis (S,,) relative to the scalar product (5.2).
By (5.3) and (5.5} we have

< By, woS,u, >= ¢(vuyg)by,
or equivalently
< 6"(1)! wﬁsvwn(_r) >= 6uv

which shows that

(5.12) 6“(2) = WoByuy(~2)

for all w € S,. From (5.10) it follows that

Az, y)= 3 Su(x)woS¥(y)

wES,

or equivalently

(5.13) [ @-u)=3 suae=w).

1€i<j<n wES,
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Let (xp)pes be the basis dual to (2%)qcs. If

S, = Z auaza|

&' = vaatn‘

then by taking scalar products we have
z ayabyp = by,
a

and therefore also
Z awnbwﬁ = 60.0.
w

so that

Y Su(3)8%(w) = 3 (Y auwabup)sy

WESa ald w
— z :“y.,.
o

From (5.13) it follows that y, is the coeflicient of £ in [],.;(zi — y;). and hence we find

n=t{
(5.14) za = (=W T] eozinr, ... 20)

=1
where § = & - a|

Let
C(z,y) = e(wolA{woz, y) = H(yi - ).

(24)

Il f(z) € Hy (4.11), let f{y) denote the polynomial in y, ..., y» obtained by replacing each z; by

yi. Then we have
(5.15) < f(2), Clz,y) >== fly),

where as before the suffix 2 means that the scalar product is taken in the z variables. In other

words, C(z,y) is a “reproducing kernel” for the scalar product.

Proof: From (5.13) we have

Clz,yy= Y elwn)Su(woz)Suwe(~)-

WES,

H by (5.5
cnce by ( ) < C(z.y),swwu(z) >r= ((wwlj)swwo(_y)

= Gwmn(y)'
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Hence (5.15) is true for all Schubert polynomials §,,u € 5,,. Since the scalar product is Ap-linear

it follows from (5.6) that (5.15) is Lrue for all fe . |

Let 8, be the homomorphism that replaces each y; by z;. Then (5.15) can be restated in the

form
(5.15) bye < f(2).C(2,9) >.= f(z)
forall f € H,..

Now let = = [zy,..., 2] be a third set of variables and consider
(1) < Clz,9), 9,07 C(z,2) >;

for u,v € S, where 8, and v=! act on the z variables, By (5.3) this is equal to
(2) €(v) < Clz,2),v8,-1C(z,y) >
and by (5.15') we have

(3) Opr < Cl2,9),8,0v™'C(2,2) >, = Bur~1C(z, 2),

(4) 0"; < C(:t:)lv 0"C(tl y) >8 = "au"c(:v y)

Since 8, and 8, commute, it follows from (1)-(4) that
By208,-1C(z, y) = €(v)0,.8,v"'C(z, z)

= C(U)ay; auv_ IC(zv y)

Hence we have
(5.16) #(v8,-1wol) = (v)B(, v~ woA)

for all u,v € S,,, where A = Az, y) and 6 = 8,,.

Let E, denote the algebra of aperators ¢ of the form

$= Z duw,
wESa
with coefficients ¢, € Qn = Q(z,,. .. 1Zn). For such a ¢ we have

(5.17) w = e(wo)ay ' (¢(w™ " wod))

for all w € S,,, whete ¢ and wlwg act on the = variables in A.
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Afuwlwgz, z) is

For 8(¢(w™ 'wod)) = ¥ yes. dud(uw™'woA), and by (5.8) H{uw™! wod)

zero if u # w, and is equal to ¢{wg)a; if v = w.

]

34, -+ 0a,. Since

Let u € Sn, and let {ay,...,a;) be a reduced word for u, so that d, .

3o = (2a = Tasp1)” (1 = 5,) for each a > 1, it follows that we may write

(5.18) 8y = clwo)a; ' Y age,
v€u
where v < u means that v is of the form sy, ..., where (b),...,b;) is a subword of (ai,....ap).

The coefficients erqy in (5.18) are polynomials, for it follows from (5.16) and (5.17) that

aus = 0(3u{v™ ' wod))

(5.19) = €(v)P(v0, - wpd).

(5.20) For all f € Py we have
wof if u=wy,

8(8.(AN)) = {

0 otherwise,

Proof: From {5.18) we have
0(3.(AN) = a;' Y auv(N)B(vA).
vlu

By (5.9) this is zero il u # wo, and if u = wq then by (2.10)

0BualBfN = a7 Y d(wu(NB(wA)

WES.
= aj ' e{wo)wol f)e{wa)as = wo(f)

by (5.9) again.||

The matrix of coefficients (@ry,) in {5.18) is triangular with respect to the ordering <, and one
sees casily that the diagonal entries o, are non-zero (they are products in which each factor is of
the form z; - ;). Hence we may invert the equations (5.18), say
(5.21) = Zﬂuuau

v€u

and thus we can express any ¢ € E, as a linear combination of the operators . Explicitly, we
have

(5.22) $= D Hé(0u-1008))0.

wESa
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Proof: By linearity we may assume that ¢ = f3, with f € Qn. Then
0(¢(aw”‘wnA)) = fa(auaw"woa)-

Now by (4.2) 8.0, -14, i3 either zero or equal to 3, -14,, and by (5.20) H(Byy-1u,A) is zero if
w # u, and is equal to | il w = u. Hence the right-hand side of (5.22) is equal 10 f3, = ¢, as

required.||

In particulas, it follows from (5.22) and (5.21) that
(523) ﬂuv = ﬂ(ua,,—xmoﬁ),

hence is a polynomial.
The coefficients ay,, Byy in (5.18) and (5.23) satisfy the following relations:
(5.24) (i) Puv = {vv)Oywo,uwo,
(i) ay-1p=1 = v™}{au),
{iil) a5z = d(uwo)wo(ay,),

Jorall u,v€ S, where T = wouwy, ¥ = wyvwy.

Proof: (i) By (5.23) and (2.12) we have
e = (v wo )P uwed,, -1 woA)
= e(v™  woe{urwg)0{Byu, ot~ wpA) by (5.16)
= c(uv)0vwe,uwe- by (5.19).

(ii) From (5.18) we have

8(v8y-1 wph) = c{wo)v(a;') Y vlay-1 o-1)0(vw ™ wpA)
= e(v)v{ay-1 1) by (5.9),

and likewise
0(Buv'woA) = ‘(aia") ; auuf{wu wed)

= Gyy

again by (5.9). Hence (i) follows from (5.16).
(iii) Since 83 = ¢(u)wod, wo (2.12) we have

Z aggt = ((uwu)wo(z Qoo V) Wo
= ¢(uwp) z wolayy )V

#—h—v—— ,
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i | Chapter VI
and hence agp = e{vwo)wa(aue) || _
|

- 1
(5.25) Lei E) be the subalgebra of opcralors ¢ € E, such that &(F,) C P.. Then EJ 13 a free
Foemodule st fuss (@decss: | Double Schubert Polynomials
Proof: lf ¢ =3, ¢5, $uwdy € E,, then by (5.22)

du = 9(¢(aw"woA)) € P
On the other hand, the 3, are a Q,-basis of E,, and hence are linearly independent over P, ||
I Let z = (z1,..., 20}y = (¥1,---,9n) be two sequences of independent indeterminates, and

recall (5.8) that
A,y = [ i-w).

i+jgn
For each w € S, we define the double Schubert polynomial Su(z,y) to be

(6.1) Sw(t,y) =6w“wnA(zvy)

where 8,-1,,, acts on the r variables.

‘ Since A(z,0) = % we have
(6.2) Sy(z.0) = B, (z),

the (single) Schubert polynomial indexed by w.

From the Cauchy formula (5.10) we have

sw(xny) = Z 5w-1w,6w0(r)6u(-y)
vES,

and by (4.2)
| aw-lwoswm(z) = va(-’)

if £(vw) = f(vwg) — twtw), ie. if fvw) = f(w) = {(v), and
3w-‘wusvw|:(") =0

otherwise. Hence

(6.3) Su(z.4) =) Su(z)S,(~y)
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summed over all u,v € S, such that w=v™"u and f{w) = {u) + £(v).
From (6.3) it follows that &, (r,y) is a homogencous polynomialof degree #{w) in =z1,...,Zn-1,

Yy ¥n=t- We have

(64) (i) Suwo(z.y) = A(z,y),
(i) Gi(z,y) =1,
(i) Sy-1 (2, ¥) = Sul{-y, -2} = (wW)Su(y. ) for all we 5,
(iv) Su(z,z) =0 forall we S, except w=1.

Proof: (i) is immediate from the definition (6.1).
(ii) and (iii) follow from (6.3).
(iv) follows from (5.20), since Syu(z,z) = #(Fy-1,,A)=0ilw £ 1|

(6.5) (Stability) If m > n and i s the embedding of S, in Sp, then
Gigw)(z.¥) = Bu(z.y)
forall wesS,.

Proof: This again follows from (6.3) and the stability of the single Schubert polynomials (4.5).||

From (6.5) it follows that the double Schubert polynomials &, (z,y) are well defined for all

permutations w € S

For any commutalive ring K, let K(Sx) denote the K-module of all lunctions on So with

values in K. We define a multiplication in K (S« ) as follows: for f,7 € K(Sx),
(foYw) = 5~ f(u)g(v)

summed over all u, v € S, such that uvv = w and £(u)+€(v) = &(w). For this multiplication, K (S )
is an associative (but not commutative) ring, with identity element 1, the characteristic function of

the identity permutation 1. It carries an involution f — f*, defined by
I(w)= flw™t)

which satisfies
{(fe) =9 f
forall f,9 € K(5)

(6.6) Let f,g € K(Sx).

Double Schubert polynomials a7

(i) Iffg =7 and f(1) 1s not e zero dwisor in K, then g=1

(i) Iffg=1, then gf = L

(iii) f is a unit (re. invertible) in K{Sy) if and only f f(1) 13 a unat in K.
Proof: (i) We have f(1) = f{1)g(1) and hence g(1) = 1. We shall show by induction on {{w)
that g(w) = 0 for all w # 1. So let r > 0 and assume that g(v) = 0 for all v € Seo such that

L < #v} £ r—1. Let w be a permutation of length +. We have
(1) J(w) = (fg)(w) = fw)g(1) + f()g(w) + Y f(u)g(v)

where the sum on the right is over u,v € Se such that u # 1,v # 1, uv = w and Hu) + v} = {w),
so that 1 £ £(v) <€ r — 1 and therefore g(v) = 0. Hence (1) reduces to J{1)g(w) = 0 and therefore
g(w) = 0 as required.
(it) We have f{1)g(1) = 1 so that f{1) is a unit in K. Also T(af) = (f9)f = f, whence gf = 1 by (i)
above.
(iii) Suppose f is a unit in K (S}, with inverse g. Since J9 = 1 we have f(1)g(1} = 1, whence S
is an unit in K.

Conversely, if f(1) is an unit in K we construct an inverse g of f as follows. We define #{1) =

f(1)~! and proceed to define g{w} by induction on £(w). Assume that g(v) has been defined for all

v such that £(v) < &(w) and set
g(w) = =f(1)7' 3~ f(u)g(v)

summed over u, v such that uv = w, v # w and &u) 4 €(v) = &(w). This definition gives (fg)(w) =0

as required.||

Now let &(z) (resp. 6(z,y)) be the function on S, whose value at a permutation w is G, (z)
(tesp. Su(z,y)). (The coefficient ring &' is now the ring Z[z, y) of polynomials in the z's and y's.)

Since §,(z) = Sy(z,y) = 1, it follows from (6.6)iii) that &(z) and S(z, y) are vnits in K(Sx).

67) (i) &(z,0)=&(z),
(i) &(z,z) =,
(iil) &(z,y)" = S(-y, -z),
(iv} &(z)=! = &(0, z),
(V) 8(z) = S(~2)"!,
(i) 8(z,y) = 6(y)"'6(z) = S(y,2)"".
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Proof: (i)-(iii) follow directly from (6.2) and {6.4).
From {6.3) and (6.4) we have

Sul(z,¥) = D" Gy (-6, (2) = 3 6,(0, 1), (2)
v v
summed over u,v € So such that uv = w and £(u) + £(v) = f(w). In other words,
(1) &(z.v) = 6(0,1)6(z).
In particular, when y = £ we obtain &(0, 2)6(z) = S(z,z) =1 by (ii) above, and hence &(0,z) =

&(z)~!. This establishes (iv); part{v) now follows from (iv) and (iii}, and (vi) from (iv) and (1)

above. |}

From (6.7) (vi) we have

S(z) = &(y)B(z,y)

or explicitly
Su(z) =) Gu(¥)Su(z,y)
u.v
summed over u, v such that uv = w and {(u) + &(v) = {(w), so that = wr™! and &, = 3,5, by
(1.2). Hence
Sulz) = ) 64(z,1)0, Suly)
{where the operators d, act on the y variables). The sum here may be taken over all permutations

v, since 8,8, =0 unless {(wv™") = {(w) — £(v). By linecarity and {4.13) it follows that
(6.8) (Interpolation Formula) Forall f€ P, = Z[xy,...,zn] we have

1) =) Sulz, 1)duf(y)

summed over permulations w € 5 |

(The reason for the restriction to S in the summation is that if w ¢ S we shall have
w{m) > w(m + 1) for some m > n, and hence 3, = 3y0m where v = wsm; but d,f = 0 for all
[ € Py, since m > n, and therefore 3, f = 0.)
Remarks. 1. By setting each i = 0 in (6.8) we regain {4.14).
2. When n = 1, the sum is over S\!), which consists of the permutations Wy = Spsp—y ...5 (p > 0);
wpy is dominant, of shape (p), so that (see (6.15) below) Su,(z,¥) = (z=y1) - (z —yp). Hence the

case n = | of (6.8) is Newton's inlerpolation formula

@)=Y -u) =5, o)

P20

\

Double Schubert polynomials a9

where f, = 8,9,_, .. B f, or explicitly

5l = S(w)
Yisyero, = ( i
p(n Yp+1) § Moats <3)

For any integer r, let Su(z,7) denote the polynomial obtained from Su(z,y) by setting ) =

yr=-=r. Since
A=
Suolz,r) = Az, r) = H(z; -
=]
= Gyel{z—7r)
where £ = r means (zi—-rz2=r,.. -, it follows from the defihitions (6.1) and (4.1) that
Sy(z,r)= Sulz-7r)
for all permutations w. Hence, by (6.7)(vi),
S(z - r) = &(r)~' ()
and in particular, for al] integers ¢,
&g~ r)=&(r)"'6(g)
fromn which it follows that
{(6.9) S(r) = 5(1)"

forallreZ.

Since &, () is a sum of monomials with positive integral coefficients (4.17), 6,(1) is the number

of monomials in Su(z) (each monomial counted the number of times it occurs). By homogeneity,

we have
{6.10) Su(r} = rvIg, ).
From (6.7)(v) and (6.9) we obtain
(1) = 6(-1)"' = &(1)

50 that we have another proof of the fact (1.30) that &,(1) = Sy - (1).

Now consider the function F = 6(1) ~ 1, whose value at w ¢ S is
number of monomials in Guw, fw#l,
F(w) =

0, fw=1.
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For each positive integer p we have
F? = (8(1) = L)
P
= - {Plsay
> () ()
P
1) =317 (?)em

r=0

by {6.9). The value of (1) at a permutation w of length p is by {6.10) equal to

(Zi:(—n' (f)r”) Su(l)

which is equal to p!S,, (1) (consider the coeflicient of #* in (¢* — [} ). On the other hand, FP{w) is

by definition equal to
(2) 3. Flw)-- Fuy)

summed over all sequences (wy, . ... wp) of permutations such that wy .. w, = w, &{w )+ - -+{up) =
fw)=p, and w; # L for 1 €< p. It follows that each w; has length 1, hence wy = s,, say, and

that (a),...,ap) is a reduced word for w. Since
Sy, =1+ 4z,

by (4.4), we have F(w;) = &,, (1) = a;, and hence the sum {2) is equal to §_ a,62 - -ay summed

over all {ay,...,qp) € R{w).

We have therefore proved that

(6.11) The number of monomials in &, s
1
Gm(l) = }; Zdlag c@p

summed over all (ay,...,ap) € R(w), where p= &w).||

Remarks. 1. The reduced words for 1, x w(m 2 1) ate (m +ay,....,m + ap) where (ay,...,q5) €

R(w). Hence from (6.11) and homogeneity we have
1 1 [5] f.‘!_p
Stmxw (;) =EZ(1+;)~-(I+ m)
summed over f{w) as before. Letting m — oo, we deduce that

1
(6.12) Card R(w) = p! lim &;,xu (;) .

Double Schubert polynomials o1
2. If wis dominant of length p, then &, is a monomial by (4.7), and hence in this case
Z ay. ..ap=pl
R(w)

3. Suppose that w is vexillary of length p. Then by (4.9) we have
6", = 5‘\(.\.¢l Nocon .\’*v)
where A is the shape of w and ¢ = {d1,....¢.) the Aag of w. Hence

Glnxw = S,\(a\.a,q,m. var ,,\.o’_'_',n)

for cach m > 1. If we now set each £; = < and then let m — oo, we shall obtain in the limit the
Schur function sx for the series e* ([M], Ch. 1, §3, Ex. 5), which is equal to A(A)~", where h(}) is
the product of the hook-lengths of A, Hence it follows from (6.12) that if w is vexillary of length -3
then
(6.13) Card R(w) = _p'_

")
where A is the shape of w. In other words, the number of reduced words for a vexillary permutation
of length p and shape A - pis equal to the degree of the irreducible representation of 5, indexed by

A

4. It seems likely that there is a ¢-analogue of (6.1}}). Some experimental evidence suggests the

following conjecture:

6.11? w(l,0,0%.. )= S go@=a®) (1 -g%)
(6-11,7) Sul(l,q.¢% .. )= ¢ =5 =)

summed as in (6.11) over all reduced words a = (ay, ... vap) for w, where

¢(0) = Z{l Ty < ﬂ.‘+|}.

When w is vexillary the double Schubert polynomial S, (x, y) can be expressed as a multi-Schur
function, just as in the case of (single) Schubert polynomials {(Chap. V). We consider first the case

of a dominant permutation:
(6.14) If w 1s domsnant of shape A, then

Su(z.p) = [ (zi-w)
(ij)EA
=54 (N1 =Vioo s Xm =Yoo )

%
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where m=é(A) and Xi=zy 4+ +zi,Vizwm+ - +yforalli> L

Proof: As in (4.6) we proceed by descending induction on £(w),w € S,. The result is true for

w = wp, since wy is dominant of shape & and

Gual(z. ) = Alz.y) = [] (= -w)
(ig)ed

Suppose w # wy is dominant of shape X\. Then A C & (and A # §). Let r > 0 be the largest
integer such that A{ =n—ifor 1 <i<r,andleta= A, +1 < n—r—1 Then ws, is dominant,
Hwsg) = &(w) + 1, and A(ws,) = Mw) + ¢q, and therefore

Su(z.¥) = 86w, (2. 9)

= 8a((Za = ye+1) [] (x =)

1.)EA

by the inductive hypothesis; since Ay = Agyy it follows that

Gu(z,y) = [ (zi-)

(+.2)€A

which is equal to sa{X) = Ya,,..., Xm = ¥2,) by (3.5).]]

(6.15) ff w s Grassmannian of shape A then
Sw(t.y) = s:\(A'm - YA1+m-lv O P YA,.. }

Proof: This follows lrom (6.14) just as (4.8) follows from (4.7).|
Finally, let w be vexillary with shape
Mw)= (", ....PE")

and flag
Slwy={. )

as in Chapter IV. Then w™! is also vexillary, with shape
Mw™' )= Mw) = (" 0t)
the conjugate of A{w), and flag
$(w™!) = (g7, ... gk")

where by (1.41)

i+ ¢i=fesiitPesr-i (1ZiZFk)

Double Schubert polynomials W

With this notation recalled, we have
(6.16) Sulz.¥) = sal(Xn = Vo)™, (Xy, = Y, )™)

Proof: The proof is essentially the same as that of (4.9) (which is the case y = 0). By (.10} the

dominant permuiation w; constructed from w in the proof of {4.9) has shape
=00 o)
and therefore by (6.13) we have
Su(2.4) = 5u(X]. . X0)

where m = mty + - + me = €(A) and the sequence (.X},...,.\[,) is obtained by subtracting the
sequence (Yo, )™, ....(¥g )™ ) term by term from the sequence {(X1,...,Xm). Hence the same

argument as in (4.9) establishes (6.17).(]

Remark. From (6.16) and (6.4)(iii) we obtain
s (2,20 = ()P su((-20)™, . (= Z2)™)

where Z; = Xy, = Yy,,._, so that (il rk (2;) = rk (1) = L foreach i 2 1)
rh(Zip1 — Z) = firr = fi H egii — G-
=My = Bekglai
by (1.41). Hence (6.4)(iii) reduces to the duality theorm (3.8”) (with 4 = 0) when w is vexillary.

Let ; (resp. 7,) be the shift operator (4.21) acting on the z {resp. y) variables. Then we have
(6.17) r;r;Gw(z,yj =61, xwl(z,¥)

for all r > 1 and all permutations w,
Proof: By (6.3) and {4.21) we have
T Su(z, ) = Y d0)81,xu(2)61,xu(v)
u,v

summed over u, v such that v='u = w and &(u) + #(v) = &(w). By (6.3} again, the right-hand side

is equal to S, xw(z. 1) ||

.
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In particular, suppose that w is vexillary. With the notation of (6.1G), the flag of 1, x w {resp
1, x w™') is obtained from that of w (resp. w=!) by replacing each fi by fi + r (resp, ecach g; by

g +r). Hence by (6.16) we have

Sroxwlz ) = sall g 4r = YVouur )™M (N dr = Ve )™)
and hence
(6.18) PEAIG, xu (2, y) = 83(Xr = V)

for all r > 1, where pf-’) (resp. p(r”) is the homomorphism p, of (4.25) acting on the z (resp. y}

variables.

(6.19) Let mo (resp. my) denote L acting on the x (resp. y) vanables. Then if w 1s venillary of

shape X, we have

TR Oulr, ¥} = sa( X = Y7 )

Proof: By (4.24) we have 7, = p}-’)f; and m, = pi,"r;. Hence (6.19) follows from (6.17) and (6.18).])

In particular, suppose that w is dominant of shape A, so that by {6.14)

Su(z.y) = [] (= - %)= filz.y) say.
(§)€A

In this case (6.19) gives
memy foa(z, ¥) = sa(Xe = V5)

for all r > 1, which is Sergeev’s formula (3.12").

05

Chapter VII

Schubert Polynomials (2)

Recall the decomposition (4.17) of a Schubert polynomial &,,:
sw (:l s L2, ‘) = Z d:fnsu(xl LEREY :m)eu (3m+l T2y )
U,

Our first aim in this Chapter will be to give a method for caleulating the coefficients d¥,. We shall
then apply our results to the calculation of Card {R(w)), the number of reduced decompositions
W= Sg, 8o, (where p = {(w)) of a permutation w.

For this purpose, we introduce the operators 87, ¢ > 1, defined by

S0 WM f(sw) < {w),
(7.1) 86, = {

0 otherwise.

Remarks, I. Il w is the (linear) involution defined by w{Sy) = ©,-1 for each permutation w, it
follows from (4.2) that 8 = w;w. Hence we may define 8, = wd,w for any pertnutation w, and we
have 3, = 3;, -- -8;, whenever (ay,...,a,) is a reduced word for w.

2 Ifwe& S, we have /6, =0 for all i > n, because 87 &S, = wd; S, -1, which is zero because

wl(i) < wo(i + 1),

(1.2) 87 commutes with 8 forall i j>1,

Proof: We have
3,'6.“, =6, If fsiws;) = f{w) - 2,
96,8, =
0 otherwise.
Likewise
36,0 = 6,,u,, if(siws;) = t(w) -2,
2,0;6, =

0 otherwise,

Hence 3;9; - 8;0; vanishes on each Schubert polynomial Su, and therefore vanishes identically.||

T
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(7.3) Let wog= w,(,") be the longest element of S,. Then for r=1,2,....,n=1 we have
(1480, AL+ 43, )Bue = (L 1) - (L +18,)6,,

as polynomials in L, 1y, 29,..

Proof: The coeflicient of t? (1 < p < r) on the left-hand side is

(1) Y8505 6w,

summed over all reduced sequences (ay, . .., a,) satisfying
n-r<a; £...€q,<n~1,

Let by = n —apyq-i forall 1 < i < p, so that

(2) 1€ <. .. <h<r

Let w = 5,4, - 54,, 50 that wowwg = 53, -+ - 53,. Then
0;. o 'a;,slvo = Gyt = Qunpwwe S,
=0, 8, Su,-

Hence (1) is equal to
>, - 8,60,

summed over all reduced sequences (by,...,b,) satislying (2), which is the coefficient of t* on the

right hand side of (7.2).||

Next, we have
(7.4) Sixwol{t.Tta- v Tnot) = {1+ LAY {1 +1801)8uo(21,. ..\ Ln-1).
Proof: By (4.22) we have to show that
(1£49)) (L +tBncy)ss{ X1, ..., Xaz1) = ss{t + Xy, 0+ Xy)
where Xi =z, +---+ z; for each i > |, and § = §,,. For this it is enough to show that
(1) (T+td)se( Xy, Xit+ Xigr, o b+ Xao)) = 88Xy, KXo 0+ Xyt + Xaly)

fori=1,2,...,n—-1.

Sehubert polynomals (2) a7

Both sides of (1) are determinants with n — | rows and columns which agree in all rows except

the i*" row. On the left-hand side, the elements of the i*M row are by (3.10)
hg(;\’.‘) + fhg_l(.\'.'.'.l)

and on the right-hand side they are he(t + X)), where & runs formn — 2§+ 1 to 9n — 2i — | in each

case.

Now we have
Ae(Xi) + thet(Nigt) = he{t + ) = thaoy (¢ + Xi) + thy_ (E+ ) 1) = Chesaft + Xiy))
= he(t + X;) - it - i Moot + Xis1)

Hence if we add ¢(t - z4,) times the (i+1)' row to the i*" row in the determinant on the left-hand

side, we shall obtain the right-hand side of (1).h

For each r > 1, let

Pr(t) = 7(1+ 37, )1 +18] ) ---

For cach permutation w, we have (1 + 187)8, = &, for all sufficiently large j by (7.1), so that

®(t)Sy is a polynomial in t (and z,,z,, .. -J. With this notation, we have
(7.5) D82 Onrgr(2723 - 2a) = Proi(21)8 (22, 23,.. )

Proof: Let s=n—r+1 and

re=2_r=3

723z, b=DlTd c=(za-- Al
(R 142%343 "y =z ‘1'5-0-1)

a= :2
so that abe = z3~'25=%...z,. Hence

b2 -Oa(z}zy™" - zp) = 27" ety ey (zzdTt oz,

=z;-lbcelxwg'l(rh'“urs) by (4.2[)

217 (1 + 2,82) - (1 + 2,8,)a by (7.4)

77N+ 2082} -+ (1 + 2,8, )abe

= .l:’l"l(l 4+ ) - (1 + zla,}ng..,(zl. 5%, Tn)

= :'l'“(l + 1'13:) ol 316,',_l)6w3..,(z2, ....%n) by (73)”
Let w be any permutation. If w(l) = r, then s, ~+sp—qw{l) =1, so that we may write

Sy Spayw = | X uy
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where w is defined by

w(i+1) ifw(ii+1)<r,
wi (i) =
wlii+)—=1 fwi+l)>r

If the code of wis {¢1,¢s,...) (so that ¢y = » = 1), the code of w; is (¢z,€3,...). With this notation

we have

(7.6) Gulzy, z2,.. ) = ¥t {21)Su, (22,23,.. )

Proof: Suppose that w € Spy1. Then
wgn-i-l)w = w!)"+1)3r-1 sl X wy)
= snoraz o swl (U uf ) x uf )

=Sn~rel o 851{1 x u"l(‘)ﬂ'u"l)

since wi" (1 x wi™) = spsnoy - os1. Hence

Sulz1,....z0) = (‘)w_.ws,“)(l?:;-l ]
= 61):;.,‘-'“,;-13: v Gnargr (ZT - Ta)
= a|xw.""’.‘,"‘b,-|(£|)6w‘:’-)(zz.z;;....,z,‘) by (7.3)
= @eo1(21)8), o1 S (T2, T3,y 20) by (7.2)

= (b,--l(I] )GwJ'rz-rﬂ: v ')'II

Remark. The right-hand side of (7.6) is a sum of terms of the form ¥S,(x2.23,...). By applying
{7.6) to each &, and so on, we can decompose &, into a sum of monomials, and thus we have

another proof of the fact (4.17) that &, is a polynomialin z,,z2, . . . with positive integer coefficients.

Next, let m > 1 and assume that the permutation w statisfies
w(l) > w(2)> .- > w(m).
Define a partition p = p(w, m) of length < m by
m=wl-(m+1-9) (1<i<m)

If w € Smyn we have gy < n, hence g C (™).
Also let

Culzy, . itm) = tu.(zm) - By, (22) Py, (71)

Schubert polynomials (2 99

and let wm be the permutation whose code is (Cm41, Cmpas . - )y where (eq,¢4,.. ) is the code of w

With this notation established, we have
(7.7) Su(z) =2, (z),... 2, )60 (Tmit, Emaz,...).

Proof: We proceed by induction on m: the case m = 1 is (7.6). From (7.6) we have
Su(z) = ¢n|+m-l(1l)ew.(‘-’2-33- )

- + -1
—2&‘:" m+p Guw'(tg,-l's,. )
u

summed over all u = Sa, ' 8q,, where
c{wl+l=m +m<aq <o ap
and (uw)) = £(w,) = p. The code of uw, statisfies c;(uuny ) = ¢;{w,) for 1 <i<m-—1,and hence

(v} = Sayem+i " Sa,—mi1tWm.

It follows that

+mip=1i
Zz‘lh e s(um)n._:(zmi-l.fm-ﬂ----)=31 "'b,,,(x,)s.,,m(:,,,,,,,zmﬂ,...)
u

and therefore, by the inductive hypothesis,

= +m+p=1,m-
Gu(z) =) zjrtmir-igm T T 1 (Zm) - (2208 s (Zma s T )
u

_— T | 2

=Pyt "'Im-lq’n...(l'fn)"'¢n.(zl)6wn(=m+lal‘m+2--- Ml

Finaily, for any permutation w, let v be the unique element of S, such that we(l) > ... >

wu(m), and let 4 = p(wv, m). We have {(wv) = {(w) + £(v) and (wr)y, = W, so that by (7.7)
Guulz) = :6...4,”(:1, e Zm )Gy, (1'm+l--rm+2- )

Hence

Su(z) = 8,6,.(z)

(7 8) = au(zﬁnq’u(zl- . -vzm))sw,.(:m-i-hxmi-?. o om)-

Now by (4.14), for any polynomial f € P,,, we have

f= Z 73u f}Su

GES(m)
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where 5(™) consists of the permutations whose codes have length < m, and n{d, f} is the constant (7.15)  The coefficients am(A,v) in (7.13) are 2 0.
term of the polynomial 3, f. Applying this to (7.8), we obtain our final result: Since ®o(z1,...,2m,0) = ®o(z1,...,2m) and 21 2mi0) = r(zr,... em) I 60 < .

(79) GW(I): Zeu(:l!vovv:m)n(auu(zé'.@p(zl,..-uzm)))swn(3m+|,lh+;,. 9 .':I it follows from (7‘13) "hat

summed over all u € 5™} such that £(uv) = &u) + £(v).]| (7.18) am41(X, ¥) = am(A, v) = a(A, v) say

For each such u, the constant term 5(d., (2!~®(z,,...,zm))) is a polynomial in the (non- for all partitions X such that &(1) < m.

commuting)}operators 87 with integer coeflicients. Hence (7.9) gives a decompesition of the Schubert
We may also caleulate the operator ®o{z1,...,2m) as follows. For cach integer p > 1 and each

| ial G, f the [
polynomial &, (z) of the form bt D ot (1o 1)
(7.10) Sulz) = ) diGu(1)Bu(2),
u. QD,p(tl....,:m)r,zzu....;-"

where ¥ = (21,....2m) and 2 = (Zma1, Zmez,.. ). M w € S(PH) 50 that S, (2) € Pngn. then

summed over all sequences (u,,...,u,) such that 1 < i
€ 57 and v € S i this sum, From (1.18) me know thot the couficients d&, in (7.10) ace 3 0 q (1 p) at 1 Su; £-- < up € mand ¥ < w4y whenever

- i € D. Then @pp(xy,...,z.m) is a homogeneous polynomial of degree p, and is zeto if m < Card( D).
In particular, if we apply (7.7) Lo a permutation of the form wy™’ x w, we shall obtain -
P pply (7.7) p o Now let a = (at,...,a,) be a reduced word, so that U(sa, -+ -54,) = p. The descent set of a is

(l) Gw("” xw(z) = xs"‘bn(l'l- a0 wrm)sw(:m-{-l v Em2y - )
’ D(a) = {i: 0 > aiyy).

On the other hand, by (4.6) we have
We now define, for each permutation w,

(2) wa,""xw cie Gw,(,"]ei"‘x'"
r' Fw(fl.----xm)= z QD(¢)_¢(.,,)(21,...,1',“),

and comparison of (1) and (2) gives a€R(w}

a homogeneous polynomial of d .
(7.12) S1axw(2) = Po(z1, - .. Zm)GulZmar, Eme2r-- ). s s LA 0

With these definitions we have
By (4.3), 6, xw is symmetrical in z,,...,zn. Hence so is the operator ®o(zy,...,zm), and we
may therefore write g in the form (7.17) Solz1,... 2m) = Z Fulzy,. ... zm)8,.
w
(7-13) Po(zy, ... Tm) = Zﬂm('\.")h(rh coorm )8 Proof: Let @ = (a,,...,a;) be a reduced word. Since
Av |
summed over partitions A of length < m and permutations v, with integral coefficients am (A, v). Bo(z:) = (1 + 28, )1 + 1:83)
) = 0 03) -

From (7.12) and (7.13) we have

it is clear from the definitions that the coefficient of 9 =az, - -8;. in o(z1,...,20) = 12, @olxi)

. = A, feaiy mbls Tty oo .
(7.14) Stxw AZﬂ:am( Vsa(z1, - Zm)Bvu(Zmet s Emaz - ) is just Qp(e)p(1.. .., Zm). Hence
summed over A of length < m and v such that £{vw} = {{w) — £(v). The Schur functions occuring . Bolz: Zm) = ZQD( ol 2m)3s
s dm) = a),p 1oy Im )y
a4

hete are precisely the Schubert polynomials S, where u is Grassmannian with descent at m. Hence,

=Y Fulzii... z;m)E.
by (4.18), ; (z10-. v zm)d I

|
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Comparison of (7.17) and (7.13) now shows that F.(z,,...,rn) is a symmetric polynomial in
Ii,...,Tm, and that
(7.18) FolZin. . zm) = ) am(A w)sa(zr, ... Zm)
A

= pm (S o xw-1)-
The sum in (7.18} is over partitions A such that £(A}) < m and |A| = é(w). By (7.16) we have
Folzy,. v 2m,0) = Ful2,...,zm)

and therefore we have a well defined symmetric function Fy, € A, such that pr(Fy) = Fulzi, . .., Tm)
for all m > 0: namely
(7.19) Fo =3 a(dw)s
2
where the sum is over partitions X of £(w), and a{), w) = an,(A, w) for any m > £(X).

Since the coeflicient of 2y -+ -2, in Qp p(zy,....2m) is 1 if m > p, it {ollows that the coefficient
of ).z, (where p = &{w)) in Fu(zy,...,zm) is equal to Card(R(w)) whenever m > &w). On
the other hand, the coefficient of z; - - - 2, in a Schur function s, where [A| = p, is equal to f*, the
number of standacd tableaux of shape A, or equivalently the degree of the irreducible representation

x* of S, indexed by the partition A ({M], Ch.I, §7). It follows therefore from (7.19) that

(7.20) Card R(wy= Y a(Aw)f*||

|Al=t{w)
Remark. Since the coefficients a(A, w) are > 0 by (7.15), the number of reduced words for w is

always equal to the degree of an (in general reducible) representation of the symmetric group Syu)-
It is therefore natural to ask whether there is a “natural” action of this symmetric group on the
Z-span (or perhaps Q-span) of the set R(w), with character );,a(.\, wix*.

We shall conclude with some properties of the symmetric functions F,, and the coefficients
a(h w).
(7.21) Let u€ Sn,v€ 5. Then

Fuxu(z) = Fu(z)Fy(z).
Proof: By (7.18), we have for any N,
Fuxe(Zu,-- 0 28) = (St xu=txu=1)
= PN (S wxu=t Sy xv=1) by (4.6)
= PN (S xu=1 )N (Pma 8 (S)myn xv-1))

= Fu(zl-'vnzN)Fv(zl""r:N)’"
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(722) Let we S, and let W = wowtwg, where wq is the longest clement of S,. Then
Fy-r = Fg=uwF,
where w is the involulion that interchanges 5, and sy, In other words
a(A, w™') = a(}, B) = a(N, w)

for all partitions A,
For the proof of (7.22) we require a lemma. If ¢ is a standard tableau of shape A, the descent

set D(t) of t is the set of i such that i + | lies in a lower row than i in the tableau ¢. We have

(7.23) 8= Qo
1

where the sum 1s over the standard lablesuz of shape A, and =i

Proof: In the notation of [M, Ch. I, §5], s is the sum of monomials T where T runs through
the (column-strict) tableaux of shape A. Each such tableau T determines a standard tableau ¢, as
follows. If a square in the j*' column of the diagram of A is occupied by the number i, replace i
by the pair (i, ). Since T is column-strict the pairs (i, 7) so obtained are all distinct. If we now
order them lexiographically, (so that (i, j) precedes A(#,5) if and only if either i < &, or i = # and
J < j') and relabel them as 1,2,...,p, we have a standard tableau ¢ : say T — L. Ii follows easily

that 3 zT = Qpyyy,p, which proves the lemma.|j
Tt

If D is any subset of {1,2,...,p = 1]}, let T denote the complementary subset, and let D° =

{p—i:i€ D). From the definition of Qp, we have

(l) QD.p(zm.xm-h----rl)=QD‘ P(tl:--'l:m)~

lfa=(a)....05) € R{w), let @ = (n—ay,....,n—ag,)and a" = (n—ap,....n—ap). Then we
have
(2) @ € R(w), 8" € R(w"},

where w” = (@)™ = wow~'w. Also
(3) D(3@) = D(a), D(a®) = D{a)".
Moreover, it ¢ i3 a standard tableau we have

(4) D(t"y = D(t)
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where ¢’ is the transpose of t, obtained by reflecting ¢ in the main diagonal. For ¢ € D(¢) if and only
il {41 docs net liein a later column than i in the tableau ¢, that is to say if and only if § ¢ D(t").

Since F,, is symmetric, it follows from (1),(2), and (3) that
Fw(rl----s-rm) = Fulzm, .. -u‘:l) = Fw'(fl,---':m)

and hence by (7.16) that £, = F..
From (7.23) and (4) above we have

teSi(A)
for ali partitions X of p, where St(A) is the set of standard tableaux of shape A, and hence it lollows

from (2) and (3) and the definition of F,, that wF, = Fz. Hence
wFy-1=Fue = F,,

which completes the proof of (7.22)|

(7.24) (i) a(p, w)=0 unless Mw™!) < g < Aw).
(i) a(p,wy=1if p=Mw")or p= Aw).
(i1l) w is vezsllary if and only if F, 15 a Schur function,

Proof: (i) Suppose a(p, w) # 0. Then the monomial £* occurs in Fy, and hence there is a reduced

word (ay,...,@p) for w such that
(1) O <K By By € € By gy,
By (1.14) the code of w is

(2) c(w) = i Sa, ***Sa,y,(a,).
=l
MW =5, . *8a,, +1, the sum of the first y; terms of this series is
i ea,, + 80, (€a,, ) 4+ S, Sa3{€a, ),
and since a; < ... < g, this is equal to

3 wm(‘a.. téo, oot ea,) = Wosay,

where ¥} is a (0,1} vector (i.e., a vector with each component 0 or 1) of weight u,. Likewise the sum

of the next block of y; terms of the series (2) is a (0,1) vector V; of weight p3, and so on. Hence

dw)=Vi+...4V,
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where m = {£()), and each V; is a (0.1) vector of weight g1;. Let V be the (0,1) matrix whose ith
towis Vi, fori=1,2,....m. Then V has row sumas p,, ... +#m and column sums a{w)ea(w),. ..
As in the proof of (1.26) it follows that # < A(w). Since a(p, w) = a(y’,w™!) by (7.23), the same
argument applied to ¢’ and w™! gives u’ < Mw='Y ie, Mw=!) < p.

(i) Suppose now that y = A(w)'. Then there is only one (0,1) matrix V with row sums #i and
column sums ¢;. Its first row Vi is 3~ ¢; summed over J such that ¢; # 0, i.e. such that there exists

k> j with w(k) < w(j). From (3) it follows that

4]
wV1 = 2 €a, 41

i=l
and therefore a, + 1,.. +8u, + 1 are the terms of the sequence w that have a smaller element
somewhere Lo the right, in increasing order of magnitude. Hence a; has no smaller elements to the
right of it, and therefore lies to the right of a; + 1, so that €(sg,w) = &(w) — 1. The same argument
shows that £(s,, 5,, w) = £(sa, w}-1and so on. Hence ifw = s,, - 55 wwehave f{w) = Hw)—p,,
and Mw}) = (g2, p3,...). It follows by induction on £(u) that the word (81,...,8;) determined by
the matrix V is reduced, and hence a(p,w)=1lwhenpy = AMw)’. By (7.23) it follows that a(p,w) =1
when g = A(w=1!),
(iit} This follows immediately from (i) and (ii), and the characterization (1.27) of vexillary

permutations.||
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Appendix
Schubert varieties
Let V be a vector space of dimension n over a field K, and let (e, ..., ¢n) be a basis of V, fixed

once and for all. A flag inVisa sequence U = {Uidogicn of subspaces of V such that
b=lUoclic.-.CcU, =V

with strict inclusions at each stage, so that dim U; = i for each 1. In particular, if V; is the subspace
of V spanned by e,,.. .. €, then V= {(Vidogicn is a flag in V', called the standard flag,

The set F = F(V) of flags in V is called the flag manifold of V.

Let G be the group of all automorphisims of the vector space V. Since we have fixed a basis of

V, we may identify G with the general linear group GLa(k): il g € G and

b ]
96 =) _gijer  (1<j<n)
=1

then g is identified with the matrix {(9:5).

The group G acts on F: if U = (Ui) and g € G, then 9U is the flag (¢l%). Let B be the
subgroup of & that fixes the standard flag V. Then g € B if and only if ge; is a linear combination
of er,...,ej, for 1 < J < n, that is to say if and only if g;; = 0 whenever i > J.s0 that B is the
group of upper triangular matrices in GL,.(k).

A basis of a flag U = (U;) is a sequence (u;, . o tn}in V such that u; € U=l for ] <i<n,
of equivalently such that Yr, ..., is a basis of I/; for each i. Given such a basis of U, there is a
unique g € G such that ge; = w, for each {, and we have I7 = V. Hence G acts transitively on the

flag manifold F, and the mapping g Vi gB is a bijection of £ onto the coset space G/B.
For a flag U = (U;), let

E‘;:Eg(U):{j:lSanandU;an FUinV;_y)
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for 0 < i < n. Then (Ey,..., E,) is a ‘flag of sets’, i.e. we have
(A1) ()Card(E)=ifor 0€i<n,

(WE.1CEi for 1€i<n.
Proof: (i} Fix i and let d; = dim (U; N V}). Since

vinb; ___Uiny, (W0V)+Vie o Y
unvio, (UinvnVo, — Via Vi1

it follows that d; = d;_, = 0 or 1. Since dg = 0 and d, = i, there are therefore i jumps in the
sequence (dg,d),...,ds), which proves (i).
(ii) Suppose that j ¢ E;, so that U; nV; = Ui n V.. Intersecting with U;_,, we see that j ¢ E;_.
Hence Eioy C Eil|

From (A.1) it follows that that each U € F determines a permutation w € S, as follows : w({)
is the unique element of E; = E;_y, lor i = 1,2,...,n. Let ¢ : F — S, denote the mapping so

defined.

The symmetric group acts on V' by permuting the basis elements ¢;:
wle) = ewi)

for we€ S, and 1 <1 < n. Hence we may regard S, as a subgroup of G.

{(A2) Let Ue FLweS,. Then (U =wfandonlyif U=buwV for some b€ B.

Proof: Suppose ¢(UN) = w. Then fori =1,...,n we have

n Ui 0V D Ui N Vi
and
(2) Vica NV = Vici 0 V-1

By virtue of (1) we can choose u; € U; of the form

3) u; = ey(qy + lower terms
where by ‘lower terms’ is meant a linear combination of ey,. .., ey(i}-1; and u; & U;_; by virtue of
(2).

By rewriting (3) in the form

Uy-1gjy = ¢j +lower terms (1 <j<n)
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we see that there exists & € B such that Uy -t(jy = be; for all 7, or equivalently
by = 66‘,(,') = bwe,-.

Hence U = bw V as required.

For the converse it is enough to show that (i) #(wV) = w and (i) p(b U} = ¢ lorallbe B
and U € F. As to (i), wV; N V; is spanned by the basis vectors ez} such that k < i and wik) € 7,
and therefore w¥; N V; # wV; NV, if and only if j = w(k) for some & < i. Thus the set Ei(wV)
consists of w(l),..., w(i), which establishes {i). Finally as to (ii), we have bU/; N Vi =WUinv;)if
b€ B, s0 that Ei(bU) = E,(U) and hence (b V) = ¢( 1) as required.||

From (A2) we have immediately

(A3) (Bruhat decomposition) G is the disjoint union of the double cosets BwB, w e Sa |

For each w g S, let
Cu=(BuwB)/BCG/B=F
The subsets C,, are the Schubert cells in the flag manifold F. By (A.3), F is the disjoint union of
the C,.
Let U € F. Then U € C,, if and only if U has a basis (u1....,u5) such that w; & Vuiy= V-1

for each i. We may normalize the u; by taking
# = ey(i) + lower terms.

We can then subtract from u; suitable multiples of the u; for which k < { and wik) < w(i}, so as to

make the coefficient of e, (x) in u; zero for each such k. Then u; is replaced by a vector of the form
€w(i) + Z aije;
§

where the sum is over j < w(i) such that j # w(k) for any £ < 4, i.e., such that j < w(i) and

wl(j) > i, or equivalently (i, j} & D(w}), the diagram of w.

(Ad)  Let UE F. Then U€C, if and only if U has a basis (uy, ..., un) of the form
Ui = eu(i) + Za.-,e,-
i
where the sum 13 over all j in the i*" row of the diagram of w, and the coefficients a,; are arbitrary
elements of the field K. Moreover, the a;; are uniquely delermined by the flag U, and the mapping

Co — KP™) 50 defined is a bijection.
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Proof: Clearly each “matrix” a = (ay;) of shape D(w) determines a basis (u,...,u,) of V as above,
and hence a flag U € Cy. Il a® = (a];) determines (u},..., u,) and the same flag ¥, then each u}

must be expressible as

U =+ S Cijuj,
jci

and [rom the form of u and the u; it follows that u} = u; for each i, and hence a* = a.}|
Since Card D(w) = £(w) it follows from (A.4) that the Schubert cell C,, is isomorphic to affine

space of dimension £(w).

Let U € F and let {uy,...,u,) be any basis of U. Since uy,...,u; is a basis for ¢/, for each
i=1,...,n =1, the flag U determines each of the exterior products u; A---Aw; € A'(V}uptoa

nonzero scalar multiple, and hence U determines the vector
(n HO(MAU® - @A - Au,_)EE

up Lo a nonzero scalar multiple, where E= V@ A2V @ ---@ A"~ !V, If P(E) denotes the projective

space of £ (i.e. the space whose points are the lines in E), we have an injective mapping
7: F e P(E)

(the Plicker embedding) for which x(U) is the line in £ generated by the vector (1).
Assume from now on that the field K is the field of complex numbers. Then the embedding
w realizes the flag manifold F as a complex projective algebraic variety, which is smooth because
F has a transitive group of automorphisms (namely G). Each Schubert cell C,, is a locally closed
subvariety of F, isomorphic Lo affine space of dimension £(w).
For each w € 5, let
X, =C,

be the closure of C,, in F. The X,, are the Schubert varieties in F, and a flag ¥ lies in X, if and
only if U has a basis (u1,...,us) such that u; € V. for each i. Each X, is in fact a union of
Schubert cells C, : if (a1,...,a,) is a reduced word for w, then C, € X, il and only if v is of the
form sy, - - -8y, Where (b1,...,b;) is a subsequence of (ay,...,a,}, that is to say if and only if v < w
in the Bruhat order. In particular, X; = C is the single point V € F. At the other extreme, if wp is
the longest element of S, then Xy, is the whole of F, and the dimension of F is {(wo) = in(n-1).

Let H*(F;Z) be the cohomology ring (with integral coefficients) of the projective variety F.

Each closed subvariety X of F' determines an element [X] € H*(F; Z), and cup-product in H*(F; Z)
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corresponds, roughly speaking, to intersection of subvarieties. In particular, for each w € S,,, we
have a cohomology class [X,,] € H*(F;Z), and it is a consequence of the cell decomposition (A.3)
of F that the [X,] form a Z-basis of H°(F:Z). In particular, {Xu,] is the identity element.

The connection between the classes [X.] and the Schubert polynomials Sulw € S,) is given
by

(A.5) There is a surjective ring homomorphesm
a:Zfxy,....z0) = H'(F;2)

such that
(Sy) = [Xuou]
Jor each we S,.
Proof: Let us temporarily write
Cw = [Xuwow)

for w € Sp. Monk [Mo] proved that forall we S, and r=1,...,n =1

(1) cr.,,'a',,..—.za.,,,

where the sum on the right hand side is over all transpositions t = tijsuchthat i< r < j<nand
{(wi) = Hw)+ 1, as in (4.15").
Define £,...,£n € H*(F;Z) by
=0
§izoi—0i (2<ig<n=1)
fn = ~0n_1

From (1} we deduce the counterpart of (4.16): il r is the last descent of w (so that r < n — 1), then

we have
(2) Oy = 0o, + E Gy
w‘

where v, u’ are asin (4.16). Now iteration of (4.16) will ultimately express S,, as a sum of monomials,
i.e. as a polynomial in £,,...,z,_1; and iteration of (2) will express o, as the same polynomial in
§1,--.1&n=1. Hence if we define a : P, — H"(F,Z) by a(zi) =& (1 < i < n), we have o, = a(S,)
for all w € Sy, and the proof of (A.5) is complete. I
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In fact the kernel of the homomorphism « is generated by the elementary symmetric functions
et,...,eqn of the z's,

We shall draw one consequence of (A.5) that we have not succeeded in deriving directly from the
definition (4.1) of the Schubert polynomials. Since the 6, w € S,, form a Z-basis of H*(F;Z), any
product o,0,(u, v € S,) is uniquely a linear combination of the o,,, and it follows from intersection
theory on F that the coefficient of 7, in 0,0, is a non-negative integer. From this we deduce

{A.6) Let u,v be permutations, and write G,8, as an integral linear combination of the S, say
(D SuSy = ) ¥, 6.
w

Then the coefficients ¢, are non-negative.
We have only to choose n sufficiently large so that u, v and all the permutations w such that

ey, # 0 lie in S,, and then apply the homomorphism a of (A.5).

Remark. The coeflicients ¢, in (A.6) are zero unless
(a) £(w) = &u) + &(v),
(b) u<wand v < w.
For 6,6, is homogeneous of degree &(u) + £(v), which gives condition (a). Also we have
iy = 3u(6.6,)
= Y 0180, (84)0,,(S0)

v sw

by (2.17), and the only possible nonzero term in this sum is that corresponding to vy = v. Hence if

€y ¥ 0 we must have v € w, and by symmetry also u < w.
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Notes and References

Chapter {, The notion of the diagram of a permutation w is ascribed lo J. Riguet in [LS1].
The code of w is the Lehmer code, familiar to computer scientists. Vexillary permutations were
introduced in [LS1] and enumerated in [LS4], though from a somewhat different point of view from
that in the text.

Chapter [1. Divided differences, in the context of an arbitrary root system, were introduced
independently by Bernstein, Gelfand and Gelfand [BGG] and Demazure [D]. Both these papers
establish (2.5), (2.10) and (2.13) in this more general conlext.

Chapler 1. Multi-Schur functions were introduced, and the duality theorm (3.8) proved, by
Lascoux [LI]. The proof of Sergeev's formula (3.12) is also due to Lascoux (private communication).

Chapter IV. Schubert polynomials, like divided differences, are defined in the context of
an arbitrary root system in [BGG] and in [D]. What is special to the root sysiems of type A is
the stability property (4.5), which ensures that the Schubert polynomial &, is well-defined for all
permutations w € S.. Propositions (4.7), (4.8) and (4.9} ate stated without proof in various places
in {LS1]-[LS7] but as far as I am aware the only published prool of (4.9} is that of M. Wachs [W],
which is different from the proof in the text. Proposition (4.15), appropriately modified, is valid for
any root system, and in this more general form will be found in [BGG] and [D}.

Chapler V. The scalar product (5.2) is introduced in [LST]. The symmetry properties (5.23)
of the coefficient matrices (ay,), (Bus) are indicated in [LS6].

Chapter VI. Double Schubert polynomials were introduced in [L2]. For the interpolation
forumla (6.8), see [LS5]. The generalization (6.20) of Sergeev's formula {3.12) is due to Lascoux
{private communication).

Chapter VII. This chapter is mostly an amplification of [L52]. Propositions (7.21)-(7.24)
are due to Stanley [S].
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