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/A ‘‘‘Foreword

These notes are the fruit of the author’s attempts to understand and develop from scratch the

elegant theory of Schubert polynomials created by A. Lascoux and MI’. Schützcnberger In recent

years. Most of the results expounded here occur somewhere in the publications of these authors,

though not always accompanied by proof, and I have not attempted to give chapter and verse at

each point. Brief indications to the literature will be found ir, the notes and references at the end.

Topics not covered in these notes include (i) the interpretation of Schubert polynomials as

traces of functors (from filtered vector spaces to vector spaces) for which we refer to [1(1’]; and (ii)

the non-commutative theory, for which we refer to [LSS].

Most of this material was presented in a course of lectures at the University of California, San

Diego in the winter quarter of 1990, and I would like to take this opportunity to thank the audience,

especially Adriano Garsia and Jeff Remmel, for their support.

San Diego, 1991 1G. Macdonald
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Chapter I

Permutations

1

For each integer a L, let S, denote the symmetric group of degree n, that is to say the group
of all permutations of the set [1,] = {I,2,..., a). Each w E S, is a mapping of [1, a) onto itself.

As is customary, we write all mappings on the left of their arguments, so that the image of i € [1, a]

under to is w(i). We shall sometimes denote w by the sequence (w), w(2) w(n)). Thus for

example (53214) is the element of 5 that sends Ito 5,2 to 3,3 to 2,4 to I and 5 to 4.

For i = 1, 2 a — 1 let s denote the transposition that interchanges i and i + 1, and fixes all

other elements of [1, a]. We have

1(w) = {(i,j) :1<1< j < n and w(i) > w(jfl.

We regard 1(w) as a subset of the square L,. = [1, a] x[l, a], and we shall adopt the convention

of matrices, that in E the first coordinate increases from north to south and the second coordinate
from west to east. The group S, x 5,, acts on (ii x v)(i,j) = (u(i), vU)). In particular, 5,, acts
diagonally: w(i,j) = (to x w)(i,j) = (toO), w(j)).

Let to € 5,,, 1 < r 5 n—I. Then WSr is the permutation

and it is clear that

(w(i),.., w(r + 1), w(r) w(n))

I(wsr) = 1 srI(w) U {(r, r ÷ 1))
15r1(to)_ 4(r+ 1,r))

if w(r) < w(r+ 1),
if w(r) > w(r + 1).

1:

(1.1)

Also, for each to 5,,, let

I=
ssj =s151 if li—il >1,

I sjs+’s = s+isisi÷ (1 515 a —2)

(1.2)

‘1
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Finally, since wg = I we have, by virtue of (iii) above,

t(wow) = 1(w’”wo)

= n(n — I) — 1(w1)

= n(n -1)- 1(w).II

The element wo is called the longest element of Sn.
For each w E S, let R(w) denote the set of all sequenc (at,..., a) of length p = £(w) such

that w = s . . .s,. Such sequences are called reduced words for to. Clearly,

(a a,,) E R(w) (a a1) € R(w’).

(1.7) Let (ai.. a,,) € R(w). Then

I(w)= {sa,...sa,.,i(ar,ar+O: 1 rsp).

Proof: Let w’ = ws0, = 5a1 .s,,,,_. Then l(w’) =p — 1 and hence by (1.2) and (1.3) we have

1(w) = sa,I(w’) U ((a,,,a,, + 1))

r
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Let 1(w) = Card 1(w). Then from (1.1) we have

f’jc )— fI(n)+l
ifu’(r)<ii(r+l).

tir — 11(u)— I ifir(r)>ii’(r+I).

(1.4) st s,,_i grnerotc the group S,.

Proof: We shall show by induct ion on 1(w) that each w C S, is a product of s’s. If 1(w) = 0, then

w = 1 and there is nothing to prove. If 1(w) > 0 then w( r) > u’( r + 1) for sonic r, and hence

1(wsr) = 1(w) — I by ( 1.3). llence us = . . say, and therefore (as s = L) w = ‘a ‘
.

For each it € S.,. the length of iv is the minimal length of a sequence (°i a,,) such that

a’ = S . .

(1.5) The length of wE S., is cqual to 1(w) = Card 1(w).

Proof: Let 1(w) temporarily denote the length of to. The proof of (1.1) shows that w can be written

as a word of length 1(w) in the s, so that f’(w) < 1(w). Conversely, let to = saj . ‘ .5a7 be any

expression of w as a product of s. To show that 1(w) t(w) it is enough to show that 1(w) S p

Let w’ = . . . s,1 from (1.3) we have 1(w) < 1(w) + I and hence

Pennutot,ons 3

1(w’) S p — I £(w) S p
from which (1.7) follows by induction on p.11

Hence the proof is completed by induction on p11

(1.6) Let a’ES.,. Then

(i) 1(w) = 0 if and only if to = 1.

(ii) 1(w)—_Iifandonlyifw—Sr (1rn—l).

(iii) £(w ‘) = 1(w).

(iv) Let w0z(n,n—1,...,2,1)ESn. Then

1(wow) = 1(wwo) = n(n — 1)— 1(w).

ProoL (I), (ii) require no comment. Also (iii) 5 clear, since so = s,,.. s, if and only if w =

S,....Sa’.

(iv) The set 1(wD) consists of all (ii) £ E,, such that i < j, so that 1(zvo) = n(n — 1). Next, we

have

ww = (w(n),w(n —1),..., w(l))

so that I(wwo) is the complement of 1(w) in 1(wo), and therefore

£(wwa) = !n(n - 1)- 1(w).

(1.8) (Exchange Lemma). Let (ai a,,),(b 6,) € R(w). Then

(bini di a,,) C R(w) for some i =

Proof: By (1.7), applied to w’t, we have (b161 + 1) C 1(w) and hence

(b,b + I) = s31. .s01_1(a,a + 1)

for some i = I p. It follows that

= 5a1 ‘ ‘ . Sa_ 15a. (3 . .
. 5a,_1

so that 5618a1 . . . 5a,_, = 5a1 ‘‘‘0, and therefore

5a, ‘..53 = 5a1’. 5a = toll

(1.9) Let to = ‘ ‘ ‘Se, where r > f(w). Then
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for some pair (p,q)such that 1 <p < q Sr.

Proof: Since 1(sai) = 1 and I(s, s) < r there exists q 2 such that

= q —1, qs51 . •s,) < q.

Let v = 5a, 5a_l, so that 1(v) = q—l and I(vsa,) q—l whence by (1.3) we have 1(vsa,) =

q —2. Let (b bq...2) be a reduced word for us,,,, then (6, b_3, a1) and (al a_) are

reduced words for v. By (1.8) (applied to tr1) it follows that v = 5,,,..- . s,,,_ for some

p=1,2 q—1,andhence

W=VSaq a,

If i <j, let denote the transposition that interchanges i and j and fixes each k ii. For

each permutation w, let e,1(w) denote the number of k such that i < It < j and w(k) lies between

w(i) and ioU). Consideration of 1(w) and 1(wt,,) shows that

1 1(w) — 2e,j (w) — I if w(i) > w(j)
(1.10) 1(wt)

= 1.1(w)+2c1s(w)+ I if w(i) <mU)

In particular, £(wt1) = 1(w) ± I if and only if eij = 0.

(1.11) Let ti w be permutations and let (a1 a,) be a reduced word for w. Then the following

conditions are equivalent

(i) 1(v) < l(w) and vw is a transposition,

(ii) V = 5,,, •a, S,, for some r = 1,2 p.

Proof: (I) (ii). Suppose that vtw = tj, so that v = Then (1.10) shows that w(i) > w(j),

so that (i,j) € 1(w). Hence by (1.7) we have (ii) = 5,,,.. .s,, •(a,,a,.,) for some r = 1,2

and therefore

The Bruhat order

Let v, to be permutations such that

(a) 1(w) = 1(u) + 1,

(b) w = tv where t is a transposition.

Since ft = at’ with t’ = ctu also a transposition, we can replace (b) by

(6’) w = vt’ where:’ is also a transposition.

If (a) and (6) (or (6’)) are satisfied we shall say that to covers a and write v — w.

(1.12) Let u, w S,, and let w0 be the longest element of Sn. Then the following conditions are

equivalent:

(a)v — w; (b)ut — I; (c)ww0 — tim0; (d)wow — wov.

This follows from the definition and (1.6)(iii),(iv). 1

(1.13) Let (a, a,) be a reduced word for in. Then u — w if and only

for some i = 1,2 p such that (01 a,) is reduced.

This follows from (1.11).

(1.14) Let to be a permutation and let i 1. Then either w — sw or

have sw — to if and only if there is a reduced word for to starting with i.

Proof: The first statement follows from (1.3) and (1.6)(iii). lfs1w — w, let (a1 a,) be a reduced

word for s1w; then w = ss,,, s,, is a reduced expression for to. Conversely if w = ss,,, 5,, is

reduced, it is clear that £(sw) = 1(w) — 1, and hence sw — toll

(1.15) Let a, to be permutations and let i 1 be such that

if a = .5,,,

s1w — w. Moreover we

= (s,,, . -sa,+jsa(5a. . .

(1) = 5a,

Consequently
v = wtj = (s,, . . s,j(s, •s,,, . s0,)

= 5a1 •a.

(ii) (i). Clearly 1(v) <1(w), and the calculation above shows that uw is the transposition (I).j(

V — sv 0 w.

Then u — to if and only if both w — sw and s1v — sw.

Proof- Assume that a — to, and let (a, a,) be a reduced word for to. Suppose that a1 = i.

By(1.13)wehavevs,,---i,,,...sforsomer. lfr=lthens,u=s,,,u=w,andifr> 1

then sv = 5a, - -
,, - ,, has length < p 1 = 1(v), so that sju — v by (1.14). Since both these

possibilities are excluded by our hypothesis, we can conclude that a1 1. hence (1.11) shows that

w — sw. It follows that - - - 5,,, is a reduced expression for sw, and 515a1 - - - - -
- s,, is one

for st. Hence (1.13) shows that s1u — sw.

Conversely, assume that w — s1w and sv — s-wAs before, let to = s,,, - - s,,, be a reduced

expression. Then s1w = 5s,,, -
s,,, is reduced, and since su to it follows from (1.13) that



- iT
6 Notes on Schubert Polynomials

sv = Li, for some r = 1,2., p. Hence o = Li, and so v — to by

(1.13) again.

The Bruhat order , denoted by <, is the partial order on 5,, that is the transitive closure of the

relation —. In other words, if u and w are permutations, V 5 w means that there exists r 0 and

00,01 fl B,, such that

V = Va — Vt — — Or = W

(which implies that t(w) = t(v) + r).

(1.16) Let v, we S,, and I i &e such that su — v and sw — w. Then the following conditions

are equivalent

(i) U 5 tV, (ii) 810< W, (iii) 510 <51W.

Proof: (I) . (ii). We have sv < v 5 w, hence s1v < w.

(ii) (i), B definition there exist v, v1,.., v,,,, where m I, such that

sly = VU — Vi — - . — iJ = U;.

We have v s1v0 and sv,,, — v,. Hence there exists k = 1,2 m such that v3 — s1v3 for

053< k — 1, and SV — V.

Suppose I 5 j k — 1. Then ui_i — u_i and v_1 — v; also e sVj_i, otherwise we

should have sv = v_ and hence sv — u. hence by (1.15) we have

(1)

and the proof is comphete.IJ

(1.17) Let v, w be pennutations and let a = (a a) be a reduced wordfor w. Then the following
condition, are equivalent:

(i) v<w;

(ii) there exists a subsequence b = (bi bq) of a such that v = s, . .

(iii) there exits a reduced subsequence b = (b bq) of a such that v = so1
. so

Proof It follows from (1.13) that (i) (iii), and from (ID) that (ii) and (iii) are equivalent. Thus
it remains to prove that (iii) . (i).

We proceed by induction on r = p + q ((a) + f(w). If r = 0, we have v = w = I, so assume
that r 1. We distinguish two cases

(a) v — Li,V. In this case we have 61 0 a1, hence (b1 b) is a subsequence of (02,...,
which is a reduced word for 5a1 w. By the inductive hypothesis we have u 5 iv < in, hence v < iv.

(b)sv — o. In this case £(su)+ f(w) = p— I +q = r — I. and Li1e = 55,. II
a1 = b we have s u = so,- s, and if a bi then (01, b b) is a non-reduced subsequence
of (01 ar). hence the inductive hypothesis implies that s a < in. But also 5a1 w w, hence
vS w by (1.16). II

Permutations 7

LU 5 sow sotowo S LVwo

WWa S sovw0

. slu<w

(by (1.12))

(hy (i) (ii))

(by (1.12) again)

s1Vj1 l”f (I<j<k—1).
(1.18) Let wE Sn and let t be a transposition. Then

Next, we have 0k1 — s,va_ and v1_1 — v. If v1 0 s1vo_ we should by (1.15) have

Vt — Loot, contradicting the definition of k. hence

(2) Vt =

From (1) and (2) it follows that

and hence v S w.

This shows that (i) and (Hi) are equivalent. To show that (ii) and (Hi) are equivalent, assume

that v, WE 5,, for some n > I, let w0 be the longest element of 5,,, and replace v, in respectively hy

sww and souwo. Then we have

This follows from (1.11) and (1.17)11

£(wt) < t(w) tnt < w.

To recognize when two permutations are comparab he for the Bruhat order, the following rule may
be used. For each iv € Sn let K(w) denote the column-strict tableau (of shape 6 = (n—i, n—2 1))
whose fis column, for I i n—I, consists of the numbers wO) w(n —j) arranged in increasing
order from north to south.

(1.19) Let v, WE 5,,. then 0< iv tf and only if K(v) 5 K(w) (i.e., each entry in K(v) is less than
or equal to the corresponding entry in K(w) ).
Proof: If v — iv it is easily seen that K(v) S E(w), and hence v S w implies K(v) S K(w)

1:
/



8 Notes on Schubert Polynomials

Conversely, suppose that K(v) K(w) and let j = j(v, ii,) be the smallest integer ? I such

that o(j) w(j). (If v = w we define i(t’, w) = n.) We proceed by descending induction on j(v, w).

If j(v, in) = n we have v = in, so assume J(v, in) = j < n. Then w(j) is not equal to any v(1),..., v(j)

and hence is equal to v(k) for some k > j. For cacti i < j the (ii— i)th columns of K(v) and K(w) are

identical, and since K(v) K(w) it follows that e(j) < w(j), i.e. vU) < v(k). Let v’ = “Ui, the,,

by (1.10) we have 1(v) < £(v’) and hence e < v’ by (1.18). Also v’(z) = e(i) = w(i) for i < j, and

“‘0) = v(k) = w(j) so that j(v’, in) > j. Hence e’ in by the Inductive hypothesis, and therefore

v <

Permutations 9

The diagram D(w) of w € S,, is unchanged by this identification of 9,, with the subgroup of

S fixing all m > n, and hence is well-defined for all inc 5,,,. Also, it is clear from the definitions

and (1.7) that

(in) (i) 0(w)is the transpose of D(w) (i.e., we have (i,j) € D(w) if and only if

(ii) E 0(w)).

(ii) Card D(w) = t(w).

(iii) If (a, a) E 11(w), then D(w) consists of the lattice points

The diagram of a permutation

We may regard 1(w) nsa ‘diagram” 01 WE 5,,. However, for many purposes it is more convenient

to define the diagram of in to be

0(w) = (I x w)1(w).

Thus we have (i,j) C D(w) if and only if (I. Wj) E 1(w): that is

(1.20) (ii) C 0(w) . 1< w’j and j <wi.

hence the points (ii) in the square E,, = [In]2 not in 0(w) are thnse for which either i w’j

or j WI.

The graph G(w) of w is the set of points (i, w(i)) (1 S n) or equivalently (w’j, i) (1 S i S

n). The complement of 0(w) in 2 therefore consists of all the lattice points due south or due east

of some point of G(w), hence is the union of the hooks with corners at the points of G(w). For

example, if in = (385142) and n = 5, the diagram D(w) consists of the points circled in the picture

below

If m > n, we shall identify 5,, with the subgroup of permutations wE Sm that fix n + 1, n + 2,

rn. We may then form the group

So0
= U

for r = 1,2 p4

Cs,,, Sa,.,(ar),s, ...sa._i(ar))

In particular, it follows from (iii) above that

(1.22) (I) If £(Wsr) > l(w), then D(wsr) = (Sr )< t)D(w) U {(r, wr)}.

(ii) If £(srw) > ((in), then D(Wsr) = (1 x Sr)D(w) U {(w’r, r)).II

The code of a permutation

Let wE 5,,, and for each i I let

c,(w) = Card{j j > i and w(j) < w(i)}

Thus c(w) is the number of points in the I’’ row of l(w), or equivalently the number of points in

the i’ row of D(w), The vector

c(w) = (c1(w) c,,(w)) EN”

is called the code of w. As with partitions, we may disregard any string of zeros at the right-hand

end of c(w), and with this convention the code c(w) (like the diagram D(w)) is unchanged by the
embedding of 5,, in 5,,, where m > n and is well-defined for all in C S.

The permutation in may be reconstructed from its code c(w) = (c1,c2, .
. .) as follows:— for each

I 1, w(i) is the (c + i)th element, in increasing order, of the sequence of positive integers from

which w( 1), w(2) ,.., w(,I — I) have been deleted. The sum Id = c1 + c2 + .. is equal to ((in). Each

sequence c = (c1, c2.. .) of non-negative integers such that id < occurs as the code of a unique

permutation WE Sw.

The length of c(w) is the largest r such that cr(w) 00. From the definition, r is the last descent

of the permutation w, that is to say w(r) > w(r + i) and w(r + 1) < w(r + 2) <

I

123456

0>l

consisting of all permutations of the set of positive integers that fix all but a finite number of them.

r

t /

/
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(1.23) (i) If f(ws,.) > 1(w) (i.e., if w(r) < w(r + 0) then
The shape A(w) of a permutation w is the partition whose parts are the non-zero c(w), arranged

in weakly decreasing order. We have

c(ft’sr) = 5, c(w) + Cr,
= Card D(w) =

where r, is the sequence with 1 in the rth place and 0 elsewhere. Next, recall that for two partitions A = (Ai, A,,...) and = (Pi,p2,...) the relation A p

(ii) If (a’,... a,,) E R(w) then means that IAI = II and A1 + . . . + Ae pi + . + p for alL i ? 1 [M. Ch.1]. With this understood.
the shapes of w and w are related by

p

c(w) = . .Sa,,(Ea,). (1.26) A(wY A(w).
i=1 Proof: Let A = A(w),p = A(w). Define a matrix Al = (rn.,) as follows: mt = 1 if(i,j) C

Proof: (i) follows from (l.21)( i), and (ii) follows from (I) by induction on p and mjj = 0 otherwise. Then .11 is a (0,1) matrix with row-sums A1, A,,.., in some order, and

(1.24) Let i 1. Then column-sums fli,/2,. in some order, hence (see e.g. fM Ch.1, 6J) we have A’

ct(w)> c1(w) :. w(i)> w(i+ 1).
Vexillary permutations

Proof: Suppose that w(i) > w(,i + 1). Then the (1 + row of 1(w) is strictly contained in the Ph Special interest attaches to those permutations we S, for which A(w)’ = A(w). They may

row, whence c-(w) > c,÷I(w). Conversely, if w(i) c w(i + 1), then the ith row of 1(w) is contained be characterized in various ways:

in the (i +l)dl row, so that c,(w) c.+i(w).II (1.27) The following conditions on a permutation WE So are equivalent:

(I) the set of rows of 13(w) is totally ordered by inclusion;
To compote the code of w in terms of the code (ci ,c,. . .) of w, we introduce the following

(fl’ the set of rows of 1(w) is totally ordered by inclusion;
notation. Ifs = (lIt, u,,..) is any sequence and r is an integer 0, let

(ii) the set of columns of D(w) is totally ordered by inclusion;

(,u = (u1, U, U,, 0,14+1,14+2,...) (ii)’ the set of columns of 1(w) is totally ordered by inclusion;

(iii) there do not exist a, b, cd such that 1 a < b < cc d and w(b) < w(a) < w(d) < w(c);
so that the operation (, introduces a zero after the r’ place. Then we have (iv) there exist ti v E S such that (u x v)D(w) is the diagram D(A) of a partition A;

(v) Mw)’ = A(w).

(1.25) c(w’) = . .(1(’) Proof: Since D(w) = (1 w)I(w) it is clear that (i)c.(i)’ and (H)c.(ii)’. Morever (i) ‘ (H), for either
,>1 is false if and only if there exist a,fl,c, 6€ fin] such that a c c. Bc 6 and (a,jY), (c, 6) belong to

where (ice) is the sequence consisting of q i’s. D(w), whilst (a,6) and (c,fl) do not. Let b = w(fi) and d = w’(b); then we have a <6 <cc d

Proof: By induction on the length of c(w) it is enough to show that if w1 is the permutation whose and w(b) < w(a) c w(d) < w(c). Thus (i), (ii) and (iii) are all equivalent.

code is (c,, Ca,...) then
Next, it is clear that the cdnjunction of (I) and (ii) is equivalent to (iv). Thus it remains to show

that (iv) and (v) are equivalent, If (iv) is satisfied, then A(w) = A and A(w”) = A’, whence (v)

(1) c(w_t) = (id) + (cc(wc’) is tisfied, Conversely, if A(w) = A and A(w’) = A’, then D(w) can be brought into coincideke
with D(A) by suitable permutations of the rows and of the columns, whence (iv) is satisfied.

Now the diagram of w1 is obtained from that of w hy deleting the first row (of length cj) and then

moving each column after the c1’ one space to the left. On reading the diagrams of w and w1 by An element w E S,0 is said to be vexillar if it satisfies the equivalent conditions of (1.27). By
(1.27) (iii), the first non-vexillary permutation is (2143) in S4.columns, we obtain (1)11

/
L..



as before w0 = (ii, n—i,. . 2,1) is the longest element of S,.. Then

(i) £(ill) =
(ii) I(W7) is the reflection of 1(w) in the uanh:dtagonal_ i+j = n + I.

(iii) A) = A(w)’.

Proof: (i) follows from (1.6) (or from (ii) below).

(ii) If I < j then
(ii) e 1(rn) . w0wwo(i) > wowwoO)

w(n+1—i)<w(n+1—j)

From (1.27) and (1.28) it follows that

(1.29) w is rezillor w is rerillary _ ii is uezillary.

Dominant permutations

Ve consider next two particular types of vexillary permutations.

(1.30) Let WE S. Then the following conditions are equiva/ent:

(i) the code of w is a partition;

(ii) the code of is a partition;

(iii) D(w) is the diagram of a partition.

Proof: Clearly (iii) implies (i) and (ii).

Conversely, suppose that c(w) is a partition A = (A Am), where A1 A,,, 0. We shall

show by induction on i that

(ii) E D(w) .2 1 j <A,.

This is true for I = 1, so assume that I < I < m and that the statement is true for I — 1. Then we

have w(k) A1_1 for 1 < A, I — 1, and w(k) = A1_1 for some k 1— 1. Since A, < A,..4 it follows

that the jth row of D(w) consists of the points (if), I f < A, as required. Hence (i) implies (iii),

and the same argument applied to w shows that if the code of w is a partition, then D(w ‘) is

the diagram of a partition. Hence so is D(w), by (l.21) (i), and the proof is complete.

A permutation is said to be dominant if it satisfies the equivalent conditions of (1.30). Dominant

permutations are clearly vexillary, and w is dominant if and only if w’ is dominant.

Grassmaanian permutations

(1.31) Let WE S. Then the following conditions an equivalent:

(I) c,(w) <... S c,(w) and c1(w) = V tori> r;

(ii) w(i) < w(i + I) unless I = r.

Proof: (i) (ii). By (1.15) we have w(1) < ... < w(r) and w(r + I) c ... < w(n).
(ii) z (i). We have

r(w) = (w( 1)—i w(r) — r).II

If w satisfies the equivalent conditions of (1.31), w is called a Grassmannian permutation. By

(I.27)(iii), Grassmannian permutations are vexihlary, and to fi S, is Grassmannian if and only if
= w0ww0 is Grassmannian

Enumeration of vexiliary permutations

Let to be a permutation, c = c(w) = (c1 c7, .
. -) its code. Consider the following two conditions

on the sequence c:

(Vt) If i<jand q>çj, then

Card {k i < k <j and r <c3) q —

(V2) If I < j and q 5 c3, then ca > c whenever i< A, <j.

(1.32) A permutation to is vertllanj if and only if its code c(w) satisfies (Vi) and (V2).

Proof: For each 1, let

P1 = {f (i,j) C D(w)}

be the row of D(w).

Suppose first that w is vexihlary with code c = (c1,c2, . . .). Let I < A, < j be such that
C, c1 > Then p J P* (where j denotes strict containment), hence there exists

tEPj,tp. Let 8= w(k), then s<tand (sincet Epl) wehavese pi ands p1. Hence for
fixed (if) such that 1< j and c1 q, the number of A, between land f such that c > c is at most
Card(p1 — p) = c1 — c, so that (Vi) is satisfied.

Next let to be vexillary, 1< k <f and c- < cj, so that P1 c p. Let s E p. Ifs p then
w(k) < s < w(i), so that w(k) lies in p but not in Pj, which is impossible. Hence s C pi, and
therefore P ç p. So we have c1 5 c, and (V2) is satisfied.

Conversely, suppose that the code c of to satisfies (Vi) and (V2). Then so does the sequence
(c2,c),...) and we may therefore assume that the set is totally ordered by inclusion.

12

For each to e S,, let

Notes on Schubert Polynomials

where

(1.28)

ii; = w0ww0

Pennutations 13

(Hi) now follows from (ii).

— (n+i—j,n+t—I)EI(w).
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this condition means that, for each i I, the set of j i such that cj q is an interval; and this
Let j > I and suppose first that c1 c1. 11PI p1 there exists € p such that a pi. so

that w(1) < s < w(j). There are at least c1 — c1 + I elements t € p such that t pj, and since is just a restatement of the condition (V2).JI

each such t satisfies < w(1) < w(j), it is of the form = w(k) for some k between 1 and j. Since We shall show that a vexillary permutation is uniquely determined by its shape A(w) and its

w(k) = t < w(1) < s, it follows that s Pt Since either Pt c p OF c p. we conclude that flag #(w).

p. c p, (strict inclusion) and hence that c. < c3. Hence there are at least c1 — c + 1 values of k Let us write A = A(w) in the form

between I and j for which c <c1, contradicting (VI). Hence pj Dp1.
fl mh(1.34) A=(p7”,p2 ,...,p I

Finally, let j > 1 and c1 < c1, so that w(1) < toO). If Pt P1 there exists s € Pi such that

sp3;wehaves=w(k)forsomekbetweenlandj,andsincew(k)<w(1)wehavec. <Cit wherept>m>...>p,>Qandeachm>iForl<r<klet

contradicting (V2). Hence p c p in this case, and the proof is completeji
Jr = max(j c3 Pr)

Remark. it is stated in [LS4, prop. 2.41 that w is vexillary if and only if c(w) satisfies (VI) and

(V3) If c > n.j for some i I, then c > c3 for an j > I. so that ft ... J.. If c = (c3,c2,,,.) is the code of to, each nonzero c is equal to Pr for some r,

Since (V3) is implied by (V2), it follows from (1.32) that every vexillary code satisfies (Vi) and and

(V3). However, the conjuction of (Vi) and (V3) is not sufficient for vexillarity: for example, the e = max{j i i and c1 Pr) = fr.

permutation w = (2571634) is not vexillary (since e.g. it contains the subword 2163) but its code is It follows that (whether to is vexillary or not)

c = (13402), which satisfies (Vi) and (V3) (but not (V2)).

Let to be a permutation with code c(w) = (ci, c2, - .). For each i > I such that c, 0, let (1.35) -

= maz{j j I and c, c1). Moreover we must have

Arrange the numbers q in increasing order of magnitude, say t ... S m- The sequence (1.36) fr>mi+...+ynr (i<r<k)

m) since in the sequence (etc2...) there are m1 + . . + m terms Pr, and they must all occur in the

is called the flag of to. It is a sequence of length equal to 1(A), where A is the shape of to. first J. places of the sequence.

Remark. There is another definition of the flag of a permutation to, due to M.Wachs[W1. For each 0-37) Suppose to is a verillarp permutation with shape A and flag ö given by (1.34) and (1.35).

I 1 such that c 0, let
Then the Jr must satisfy the inequalities

= min{j j > I and w(j) < w(i)}.
0<fr —fr_i mr+prt—pr,

Arrange the numbers d1 — 1 in increasing order of magnitude, say 7 5 ... < , and let
Proof: If Jr—i = Jr there is nothing to prove, so assume that f, <Jr and therefore c1, = Pr- Let

These two notions are not equivalent. in fact
s = maz{i: t1 = Pr—i) S fr_i.

(1.33) (1. Alfano) We have (w) = tw) if and only if the permutation to satisfies (V2). Since c, = Pr—i > Pr = c1 and to is vexillary, we have by (VI)

ProoE if q 0 we have w(j) > w(i) for I < j < d1, and hence c1 c1 for these values of j. Hence

—1 < e in all cases, and we shall have (w) = #(w) if and only if d1 — 1 = q for each i. But (1) Card {k :8< k 5 Jr and c. <Pr) S Pr—i — Pr.

tt
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Al If w isa permutation and r 0, we denote by 1. x w the permutation

(2) Card {k:s<k<fr and c1_pr)mr, Irxw(1,2,..

since exactly mr terms of the sequence c are equal to Pr- Let us say that two permutations to, w’ are diagonally equivalent if either is? = 1,,’ to or w = it X to1

Finally we have for some r 0. Graphically, this means that the diagram of to’ can be brought into coincidence with

(3) Card {k :5< Es fr and c > pr} = fr—I —

that of w by a translation along the diagonal I = j, and to’ is vexillary if and only if to is vexillary.

Tile equivalence classes of vexillary permutations of a given shape A are then determined by the

because Ca S Pr for all k > fr—i, and c Pr—t for all Ic such that s <ES fr_I, by virtue of(V2), differences fr—fr_i (2 5r <Ic), and hence it follows from (137) and (138) that

From (1), (2), and (3) we deduce that
(1.39) The number of diagonal equivalence classes of verilIar-y permutntions of shape

frSSPr—i —pr+mr+f_t—s A=(p7” Pa is
01k)

a

which proves (l.37).jj 1J(Pr—i — Pr + mr + 1).

(1.38) For each sequence (f, fj) satisfying (1.36) and (1.37) there is a unique verillary We may remark that this number is the product of the hook lengths at the re-enLrant nodes of the

permutation to with shape A and flag = (fri , . .
. f’”’). The code c of to is constructed as follows: border of the diagram of A (i.e., the nodes with coordinates (m1 + . . + mr_I Pr), 2 < r < Ic).

first the m1 entries equal to pi are inserted at the right-hand end of the interval [1, f1];then the
Ezample. If A = (3221) the flag = (f1JLf3) must satisfy 0< h—ft 53,0 f— f <2.

m1 entries in c equal to P2 are inserted in the rightmost available spaces in the interval [I, hi.
Hence there are (3 + 1)(2 + 1) = 12 vexillary classes, and the representatives of these classes for

and so on: far each r 1, when all the terms > Pr in the sequence c have been inserted, the mr
which w(1) I (or equivalently c1(w) 0) are as follows:

entries equal to Pr are inserted in the rightmost available spaces of the interval [1, fe].

Proof: Suppose first that to is vexillary. If I S S fr and c = Pr, then by (V2) we have c Pr
(W) c(w) to

for all j such that i S j < fr. Hence the entries equal to Pr in the sequence c must be inserted as
1223 2457136

described above. 3444 1232 246513
Conversely, if the sequence c is constructed as above, we claim that c satisfies (VI) and (V2), 2444 1322 254613

and hence to is vexi]lary by (1.32). Suppose first that i S j and c ? c: say c, = pr,c; = p,,r S s.
1444 3122 425613

Then the number of Ic such that I < Ic < j and c < p. is equal to the number of blank spaces in 3334 2231 346215
the interval (4, f,] after all the entries m r + 1 < I 5 s have been inserted, hence is at most 2334 2321 35421

1334 3221 43521
fsfr(mr+i++m.)

1445 30221 415632

which by (1.37) is 5 Pr — p.. hence the sequence c satisfies (Vi). Suppose next that i < J and 3335 22301 346152

c S C1: say c1 = p.cJ = Pr with r < s. Then we have j S f S f. From the definition of the 2335 23201 354162

sequence c, it follows that for each Ic such that I 5 Ic 5 f, we have c p,, and hence Ca C, 1335 32201 435162

whenever i < Ic Si. Consequently the condition (V2) is satisifled, and the proof is complete. 1 1446 302201 4156273
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Proof: We proceed by induction on £(w) = A. Let c = (c1 c2,..) be the code of w, and let w’ be

______

the permutation with code c’ = (c3,ca, .. .). We may assume that c1 0. Then c1 = Pr for some r,

and we have

____________ __________

A(w’) = (p” p’

= ((fi — (I, — (ft — 1)” ).
Since w is vexillary, its code c satisfies the conditIons (VI) and (V2). Hence c’ also satisfies these

_______ ____________

conditions, and therefore in’ is vexillary. It follows that A(w’) = A(w’)’, so that

A(w’) = ((qi — I” (q, — 1)”,q,04V q’)

where s = k + I — r. We have ((in’) = 4w) — c1 • so that the inductive hypothesis applies to w’.

______

Hence if ga,..., 9k are defined by the formula(s), we have

(I) (w’’) = (g’’ g”, (g,+ — 1)”’ (9k — 1)’).

But if u/ has code c(w’) = (d1d2,. . .) then by (1.25) we have

(2) c(w)=(dt+z

From (1) and (2) and (1.40) it follows that

Let A = (p7”..., p’) as before and let — 0. 0..,‘(w )—(gi,...,g. )

as required.

1223 2231 22301

Atflltft
2321 23201

3221

rR
3022)11

32201

3122 302201

A’ = (q”,q

be the conjugate partition, where q > q > . . . > q > 0 and each n 1. We have

(1.40) Lqr=mi±’’+m,,

where s = k + 1 — r (I r 5 k). The border of the diagram of A is a staircase with risers of heights

m1, m2 mt (starting from the top) and treads of lengths nt n2 lI (starting at the bottom).

Recall (1.27) that if w is vexillary of shape A, then in”’ is vexillary of shape A’.

(1.41) Let w be a verillary permutation of shape A and flag #(w) = (f” fr’). Then the flag

of W1 is

g)

where

(s) gi + q = f&+— + Pk+t—. (1 Si S k).

If WE Sn, let U,, = w0win0, where in0 is the longest element in 5,,. If w is vexillary, of shape A,
then 1V0 is vexillary of shape A’,by (1.27) and (1.28). Let

— 0h
(Wn)=Ui ft )

be the flag of 117,,. Then we have

(1.42) L=n—ft÷i—1 (1 S k).

For once we shall leave the proof to the reader.

Let N0 denote the number of non-vexillary w C S and let

P,, =

I
/
t
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be the probability that an element of S, is non-vexillary. The first few values of N,, and P,, are

TI N,, F,,

1 0 0

2 0 0

3 0 0

4 1 .042

5 17

6 207

7 2279’

If we divide up the sequence (w(1) w(n)) into consecutive blocks of length 4, and observe that

the probability that such a block satisfies the vexillarity condition (1.27)(iii) is 23/24 (because S4

contains only one non-vexillary permutation), we see that the probability that w C Sn is vexillary

is at most (23/24)[”/41, hence decreases exponentially to zero. (A. Lascoux.) Thus the vexillary

permutations in 5,, become sparser and sparser as n Increases.

Instead of counting non-vexillary permutations, we may attempt to count vexillary permuta

tions. Let us say that a permutation in E Sn is primitive if w(1) 0 1 and w(n) it For each n 1,

let V,, (resp. Un) denote the number of vexillary (resp. primitive vexillary) permutations u’ € Sn.

Since each primitive vexillary WE S,, gives rise to r+ 1 imprimitive vexillary permutations in S,,+,,

namely I,, x in x 1, where p,q 0 and p4-q = r, it follows that

U(l) = U(t).
AO

Lath C/ACt) isa polynomial, and we shall now show how to compute it. Write A in the form

as before, where p’ > p> ... > p >0. By (1.37) a vexillary permutation in oishape A is uniquely

determined by its flag ct(w) = (ft” fflb), where (I A) is any vector of positive integers
satisfying the inequalities (l.36),(1.37):

frml++mr (1<r<k),

O<frfr-.l mr+pr_i—pr (2rk).

Moreover we shall have w(1) 1 if and only if the Pint element of the code of in is not zero, and
this will be the case if and only if

fr = m, + . . . + m,

In general, if c = (c1, c2,..) is the code of a permutation in, then in € S,, if and only if n c + i for
1 I < r, where r is the length of c. In other words, the least n for which w C 5,, is n = max { c + I
1 S I r). In the case of a vexillary permutation in as above, with flag (fV” frh), the numbers

c + i will increase strictly as i runs through each non-empty interval FIr_i + 1, fri (r = I

and hence w will he primitive in S,, if and only if w satisfies (1) above and

ii = mnx{p. +fr 1 r < k},

Letwr=mj+...+mr forl<r<kandput

rr
/
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so that

Permutations

(1.44)

.142

.288

.452

(1)

Hence the generating functions

Vn = 1 + U + 2Un..i + 3Un.z +

forsomerl k.

V(t) = V,,t”
1>1

U(t)= E’nt
n>i

(2)

are related by

(1.43) V(t) =
+

For each partition A 0, let U,,,A denote the number of primitive vexillary permutations of shape A

in Sn, and let

(lAO) = U,,,t”,
‘1>1

* N7 was computed by A. Garsia. I would guess that N8 is of the order of 24000.

1% = fr —

so that u ? 0 for each r. From (1.36) we have

(3)

and
Tflr + Pr-i — Pr? Jr — fr-t

= Cur + Wr) — Cur_i + rr—i)
= mr + 14

— Urt
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so that Chapter II
(1) Pi+i1IP2+i13...pk+Uk.

Divided differences
It now follows that

(1.45) UA(t) =
jmar(p+w+u,.lr<k1

U

summed over the integer vectors u = (UI Ut) C Nt having at least one rero component, and

satisfying the inequalities (3), (4) above. We have

UA(1) = fl(mr + Pr—I — Pr + I) 1ff is a function of z and y (and possibly other variables), let
r2

f(x,y)—f(y,x)
and x—y

UA(t) = UA’(t) (“divided difference”). Equivalently

(since we S,, is primitive vexillary of shape A if and only if w’t is primitive vexillary of shape A’).
= (z — y)(l — sry)

Added in proof where s interchanges r and y. The operator 3, takes polynomials to polynomials, and has
Julian West, a student ot R. Stanley, has recently shown that degree — I (i.e., iff is homogeneous of degree d, then Oryf is homogeneous of degree d— 1). Explicitly,

(1) V, = E (fA)2 if f = rrys we have

Dry(r
xry xsvr

(2.1)
U)—

where fA is the degree of the irreducible representation of the symmetric group S,1 indexed by the = tr(r — s) Z iPyl

partition A. From this and results of A. Regev (Advances in Math. 41 (i981) 115—136) it follows where the sum is uver (p,q) such that p + q = r + s — I and mar(p, q) < mar(r,s), and c(r — s) is

that +1,0 or —1 according as r — a is positive, zero or negative.

On a product fg, 8r acts according to the rule
(2) V,, —

(2.2) D(fg) = (D1f)g + (s1f)(O9g).
as n — , where c is a constant that Regev determines explicitly.

In particular we have
The formula (1) gives that P!5 = 24553.

(2.2’) O(fg) = fOg

‘ff(x,y) = f(y,x).
(2.3) (i) Drysry = _Dx,, SryDfl = Dry,

(ii) 2 —ory

(iii) DX8D = dysDryDys.

V

—5&,.’.
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Proof: (I) and (ii) are immediate from the definitions, and (iii) is verified by direct calculation: cacti

side is equal to

(x — y)’(s — z)’(y - z)” Z e(w)w,
WE S,

where the symmetric group 53 permutes r,y and z, and e(wI is the sign of the permutation wit

for each ri 1, and

Divided differences

for some i = 2,..., p—I. But then by (2.4) and (1.1) we have

25

= U P0.
0=

(82=o,
‘ aiaj = ao
I. ôiôi+lOi = 8i+18iO+I

= (b1,a1.b1,a2 a.... ,a,,.i) € 11(w)

84 = 84, . . .

8 = 84

Recall that if w is any permutation, 11(w) denotes the set of reduced words for w, i.e. sequences

(a1 a,,) such that w = . . .s,,, and p = tOn).

(2,5) If a, b € 11(w) then 8. = Ut,.

Proof: We proceed by induction on p = t(w). Let us write a 6 to mean that 8 = 86. The

inductive hypothesis then implies that

a E 6 if either a1 = 61 or ap =

unambiguously, where a is any reduced word for to. By (2.2’), the operators for w € 5,, are A0
linear, where

A0 = Z[z, z,,]’ C P

is the ring of symmetric polynomials ins1 1,,.

A sequence a = (a1 a,,) will be said to be reduced if a C 11(w) for some permutation w.

(2.6) If a = (aj a,,) is not reduced, then 84 = 0.

Proof: By induction on p. If a’ = (ai a,,...1) is not reduced, then 8 = 0 and hence 8 =
3.8% = 0. So we may assume that a’ is reduced. Let o = Li . . .Ss,_,, to = . .s%. We have
((v) = p — 1 and 1(w) p — 1, hence by (1.3) t(w) = p —2, so that 1(v) = l(ws47) = £(w) + 1.
Consequently 8 = 8,,8, and therefore 8 = = Uw8, = Oil

Let sir2,.. i,,, ...be independent variables, and let

P0 = Z(r1,r,. . .

forsomei=1 p. IfiØpthenbc,eabyvirtueof(s),sothata6. lfi=pand

Ibi — all > I then by (2.4) and (1.1)

= (al,bi,a2,. ..,a,,_1) € 11(w)

For each I t let

and a 6, so that again a b.

Finally, if I = p and Ibt — oil = 1, we apply the exchange lemma again, this time to c and a;
this shows that

Each 8 is a linear operator on

with (1.1))

= (at,bt,a1 a1 a,,_j) € 11(w)

8, =

P (and on F’,, for n >1) of degree —L From (2.3) we have (compare

(2.4) if li—il >1,

For any sequence a = (at a,,) of positive integers, we define

and a d E 6. Hence a bin all cuses.Il

Remark. For any permutation w, let GR(w) denote the graph whose vertices are the reduced words
for to, and in which a reduced word a is joined by an edge to each of the words obtained from a by
either interchanging two consecutive terms i,j such that li—il > I, or by replacing three consecutive
terms i,j, i such that I —

= I by j, i,j. Then the proof of (2.5) shows that
(2.5’) The graph GR(w) is connected.

From (2.5) it follows that we may define

(‘0

By the exchange lemma (1.8) we have

= (b1,a1 a,,) C 11(w)
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(2.7) Let is, v be permutations. Then

oo. =
if 1(uv) = 1(u) + 1(v)

I. 0 otherwise

which proves (2.10)11

From (2.10) it follows that, for any a = (a1 a) € N”

27

Proof: (2.5), (2.6).fl

(2.8) Let w ôe a permutation, i 1. Then

—. f(s1w)=1(w)—l
Proof: We have j°w = O, . OO,. = 0, hence the result follows from (2.7)11

(2.9) (1,2 n—1,1,2 n—2 1,2,3,1,2,1).

8w, = e(w)w
was,

where a = fl1<<1<( — ri), and e(w) = ±1 is the sign of w.

Proof: From the definition it follows that O, is of the form

= cw
waS.

with coefficients c,, rational functions of ri x,,. By (2.8) we have sO,,, = for I i <n—i,

so that v0,,0 = O, for all v C S,,, and therefore

WDOIWO =

from which (2.12) follows easily, since wg = 1.11

If f and g are polynomials in x, 2, ., the expression of O(fg) as a sum of polynomials
O,g (i.e. the “Leihnitz formula” for Ow) is in general rather complicated. However, there is one

case in which it is reasonably simple, namely when one of the factors f, g is linear:

(2.13) If f = E a1r then

Ow(fg) = w(f)009 + >(aI — aj)Owi,,g

summed over all pairs i < j such that 1(wt) = 1(w) — 1, where tq is the transposition that
interchanges i and j.
Proof. Let (at a) be a reduced word for ii,. Since is linear it follows from (2.2) that

&(fg) = O... Oa,(fg)

= So s0,(f)01 .. 0a,g+s0, 0a,. s0,(flO,,, Do, - Oa,9.
ri

Now 13, . = 0 unless (a1 Or,..., a) is reduced, and then by (1.11) it is equal to
0w1, where wt = s, . . s has length p—I = £(w) —land I = s0, s . So, = t, where
(Li) = s• .

.
sa,+,(a,. Or+i), so that

s0(f) = a1 —

hence from (3) we have

= wwa(cw,) = e(w)a’

We also introduce the operators w(,i 1) defined by

wf = d(xf).

.* /

VA

As before let too = (n, n — 1,..., 2, 1) be the longest element of S. One element of 11(wo) is

the sequence

(2.10) We have

(2.11) 0s0 = 5a_s(Zi x,,)

where i,0 means 4’.. 4’, 6 = (n — in —2 1,0) and s_ is the Schur function indexed by
a —6. TItus 8w0 is a As-linear mapping of 2’,, onto A.

For wE 5,,, let UI = woww0. Then

(2.12) = c(w)woOwwo.

Proof: From the definition of 8, we have

(1)

(2) = Z v(r)vw.
wCS.

Comparison of (1) and (2) shows that

(3) c,, =u(cw) (owES0).

Hence all the coefficients c,, are determined by one of them, say cw,. From the sequence (2.9) for

w9 it is easily checked that the coefficient of to0 in B is

= e(wo)a11.



r

W,j, = We

oil = jIO (O 0 1 + s 0

From this it follows that

OwoP=PO(8i01+S,0a)o...o
(o00l+sOO)

I
r (1
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In place of (2.4) we have

1 ‘1 =
(2.14) 1TjWj = WjWj if(i—j >1,

1. WjWj.j.1Wj = 7+tWiWi+i.

If we dehne w4 to be x, for any sequence a = (at...., a) of positive integers, then co
rre

sponding to (2.5) we have

(215) If a, bc 21(w) then We = 1b.

The proof is the same as that of (2.5), and res
ts only on the second and third of the relations

(2.14). From (2.75) it follows that we may define

29Divided differences

where f,. are rational functions of r , 13, ..., antI in particular (by (1.7))

f=(—lY fl
(IJ )E i(w —1)

and thus is 0. It follows that the U... are linearly independent over

= Q(x1x,,.

Now from (2.2) we have

D(fg) = (Of)g -I- (sif)(Ug)

or equivalently, up P g P — P is the multiplication map,

I

the field of rational functions

in particular, if a € N”,

(2.16’)

unambiguously, where a is any reduced word for w.

In place of (2.10) we have

(2.16) For any f C On expansion this is a sum over subsequences 6 of a = (a1 ar), say

= o c(w)w(z6f) = 8,(r6f).
wcS

Proof: We have

lrwor° = s,(r x).

and generally

nj =

irin2f 81(x102(z2j)) = 0102(1112f)

for each r 1. From this and (2.10) it follows easily that Wwflf = Owo(r’j).II

Let (a0 a) be a reduced word for w. Then

Ow = Oai

which shows on expansion that is of the form

= (Z.. — Xa,+lIO — s )(r0, — z,+)(1 — sn,)

(I)
bce

where

and
fs ifa€b,

&(a,b)
= iaj &

Since O = U if his not reduced (2.6), the sum is over reduced subsequences 6 of a. and by (1.17)

we can write

(2) 8wop=poEvaw,tØ5
v<w

whtie for ii w

(3) ow/v zzv (a,b)

summed over subsequences 6 C a such that 6 is a reduced word for in

So for each pair of permutations w, v such that to v we have a well-defined operator Ow/v Oil

P, defined by (3). Since the d are linearly independent, the definition (3) is independent of the

reduced word a C 21(w).= > fwu

v<w

r
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Chapter III

Multi-Schur functions

For the time being we shall work in an arbitrary A—ring ft, but we shall use the notation of
symmetric functions EM] rather than that of A—rings. Thus for X 6 ft we shall write e7(X) in
place of Y(X) for the rt exterior power, aiud hr(X) in place of ,r(y)(... (_UrArH.y)) for the rdhi

symmetric power of X. We have eo(X) = ho(X) = 1; ei(X) = h1(X) = X; and er(X) = h(X) = C
if r < 0.

Recall that if A,ji are partitions and X e II, the skew Schur function sA/,(X) is defined by the
formula

SA/0(A) =

where n maz(f(A).t(p)). It is zero unless A D p
We generalize this definition as follows let X1 ,...X,, C ft and let A,p be partitions of

length < n; then the mutt j-Schur Function s(Xi ,...,X,,) is defined by

(3.1) s1(Xj ,...,x0) =
We also define

(3.1’) sa(Xi ,...,X0) =

for any sequence a = (a a) of integers of length n.

Remark. In the definition (3.1) the argument .V, is constant in each row of the determinant. We
might therefore also define

SA/p(Xl ,...x0) =
With arguments constant in each column. ilowever, we get nothing essentially new: if we define
partitions A. fi by

= N—A01_1, = N Pn+t-i (1< i is)
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where N max(Ai ,p) (so that A and fiare the respective complements of A and ji in the rectangle

(N”) ), then we have

5A/p(XI ,...,X) =

and the matrix
unless A j p.

Proof: If A p then A. <Pr for some r < n, and hence

A,
— p1 — i + J — Pr < 0

whenever i rand j r. It follows that the matrix (hA_,_+j(Xj)) has an (a — r+ 1) x r block

of zeros in the south-west corner, and hence its determinant vanishes.II

(3.3) If ADp and £(A)=r<n then

= 5A/(X1 ,...tXr)

which is unitriangular. Now take determinants.II

So far the X have been arbitrary elements of the A-ring ft. But it seems that sa(XL ,...,)ç)
is mainly of interest when X1 ,, is an increasing sequence in ft, in the sense that rk(X1+t —

X1) < color! <in—1.

(3.5) Let r, y (I> 1) be elements of ft. each of rank 1, and let

Proof: We have A, = p, = 0 for r + 1 s a. Hence for each s > r the ,çth row of the matrix

has zeros in the firsts — 1 places, and 1 in the place.II

An element X E ft is said to have finite rank if e(X) = 0 for all sufficiently large n. We then

define the rank rk(X) of X to be the largest r such that er(X) 0. If X, Y both have finite rank,

the formula

er(X + Y) = cp(X)eq(Y)
p+1r

as one sees by replacing (I, j) by (a + I
—
j, n + I —1) in the determinant (3.1).

(3.2) We have

,,) = 0

Multi-Schur functions 35

since h,(—1’) = (1)’erOj) = 0 if r j. hence the matrix

—
)fl1jj<fl

is the product of the matrix

(h8,
—

(.Y1 )) i S’J Sn

shows that X + Y has finite rank, and that

for each i 0. Then for all a 6 N” we have

— Y011...,X — Y0)

In particular, if A is a partition of length Sn.

rk(X + Y) S rk(X) + rk(Y).

= flllrj
1=! j=l

(3.4) Let X ,...,X,,Y, V’. ER with rk(Y,) 5 j—1 (1 5 j < a) (so that Vi = 0). Then for

all a € Zn,

— YA,,...,Xfl — VA)

Proof: We have

Proof: From (3.4) we have

= det(h0_1+(X —

= fl
(I.J )EA

(a)

— Yj) = ha._itk(Xi)hi_H1),

If j > i, then

— ,....,X, — ?_) = det(h0,_+i(X1 — —

Which is 0 because

— — X_i) = ±ea,_i+j(Ya, + X_i — X1)

rkOo.+Xj_i —X,)5o,+(j—fl—i<01—j+j

/
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hence the determinant at is triangular, with diagonal elements

— Y0,
—
Xi_,) = h0•(x1 — Y0,)

= Z hr(Yajha,_r(ri)

(3.5’)

r>O

=

= H’’ =

for all € N”. Also, when all the z, are zero (and a is a partition A) we have

sA(—VA1.., —VA) = (—1) fl Yj
Ii., lEA

=

Mult:-Schur functions 37

It follows that if we replace the ,tli row of the determinant sA/(X, ,...,X,_ i,X ,...,X, X,1,

fl) by

we shall obtain

.V, ,...X, X1, ,...,X)

with j — i arguments equal to X3. The proof is now completed by induction on j — 1W

Duality

Let (X)z be a sequence in the A-ring H such that

rk(X
— X...,) 51

for all n C Z.

(3.7) Let I be any interval in Z. Then the inverse of the maths

H = (—.Vj)1jj

is zero because rk(X — Xk+,) 51— (k + 1) < I — ku
(Duality Theorem, 1” version) Let A j p be partitions of length < n, such that e(A’) S

r 7,
/

= fl(x — yj).

The formula (3.5) now follows.II

In particular, when all the y, are zero we have

is H—’ = (h1_1 (X1+, ))i. ElIf we replace the y’s by i’s, and A by A’, this becomes
Proof Let K denote the matrix (h_1(Xj,)). The (i,k) element of HE is then

(3.5”) 1A = (—1)sA(—XA

(3.6) Let A = (A1, A2,.
- .) be a partition of length S n, and X, ,...,.V,, elements of a A-ring H.

Suppose that 1< j are such that A1 = A÷, = = A and

rk(X1—X1)<j—k foriskj.

Then

= sA/,,(X, V)

that is to say we can replace each Xt (1 k fl by N, without changing the value of the

mult,-Schur function.

Proof- Let Y = X1 — X, so that rk(Y) Si — I. For all m Owe have

hrn(Xi) = hm(X, — 3’)
i—i

Z h._,(—Xj)hj_(Xk+,) = hj_&(—X1 + Xk÷,).

If 1< k this is zero; if I = k it is equal to 1; and if 1> k it is equal to

—

which

(3.8)

Then

k=a

Proof: Let

—X,) = (_flIUlsA/,J(X,_A ,...XmA).

ejzA1_i, qi=p,—i (l<i<n),

e5=A;—j, q=p—j (l<j<n),
Then the integers j (1 515 n) and —E —1(1 iS in) fill up the interval [—mn — 1], and so do= Z(_1)k(flhm_kGi) the and the —r4 — 1.

1/
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The (Ci n;qi q) minor of the matrix H is the conjugate partition, we have m2 + •+ m1 = qk+i—i, and c, = p — q&+ is the content of
the square 3; = (gk÷1—;pl) in the diagram of A. The squares s, si are the ‘saJients” of the

det(he,_,,,(—Xcj) = SA/0H\C —Xci.
border of A, read in sequence from north-east to south-west. Hence the duality theorem (3.8) now

The complementary cofactor of (if_I) = (hj_i(Xi+d)_m<,,j.cn_i has row indices —e — I takes the form

(1 S i S m) and column indices —r — 1(1 5f m). Ilence itis (3.8’) (Duality Theorem, 2’’ version). With the above notation, we have

(— l)siw(—Xe —Xe). sA/—X )ma (—x, )flk) = (1) “‘sA/’((x \fh
i,..,

Since each minor of H is equal to the complementary cofactor of (11’)’ (because det If = I) the finally, ifwe set 2’, = —X (I I k) we have
result follows.

(3.8”) sA,(zr’ Z’) = (_O_alsx,((zt)fh (—Zi)’”)
Remark. Ohserve that

provided
rk(XA,_1 — XA,.,_j_t) S (A —1)— (A11 — I — 1) = A, — A11 + 1.

rk(Z11 — Z1) S m11 + t+i, (1 515 k — 1)11
Hence (3.8) gives a duality theorem for the multi-Schur function sA/(YI ,...,Y) provided that

Let now r2,x,,... be independent indeterminates over Z. We may regard Zfr1,r2... . as ark(Y1 — Y1) 5 A, — A1.,.1 + 1 for 1 5 1< — 1.
A-ring by requiring that each r has rank 1. Let X, = tt + . . . +r1 for each I 1. Then we have

At first sight the formula (3.8) is disconcerting, becuase the arguments —XA,_, on the left are
hr(Xi) = hr_i(X,+i),

not in general the negatives of the arguments Xz_A: on the right. However we can use (3.6) to
(3.9) ôjer(Xj) = cr_i(Xi_i),rewrite (3.8), as follows. As in Chapter 1, let us write the partition A in the form

A —( fl

H — pi,P2,...,
Proof: Consider the generating functions; OiIIr(Xi) is the coefficient of 1r

wherep1 >m> ...>pk>Oandeach m.>1. Then in

fl,(Zhr(Xi)tt) = 8 ho —
r)O j=i

i—I

the first mj arguments are = 11(1 — zt) . ( 1)
1=

which by (3.6) may all be replaced by —Xe,, where ci = Pt — m1. The next m2 arguments are 81 — ut) = — titl
1 \

____

—

______

=

(1— zg(1 — z+it)
SO that

which by (3.6) may all be replaced by —Xe,, where c2 = P2 — — m2. In general, for each i+t

(Z hr(Xdtr) = t fJ(i — xt)’ = Z h,(X1+,)t+’
= 1,2 k the 1t11 group of m1 arguments may all be replaced by —Xe,, where c1 = p — (mi + .

+ m;). Now if in which the coefficient of tr is hr_t(Xi+i).

A, — (qfl qfl Ik)
— 12’’ The other two relations are proved similarly.

N
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(3.10) Let E Z” and let r1 r 0. If its such that r rj for all j i then

8r. a (Xri , ,Xrj = so—c, (Xr,,...,Xr,÷i ,...,Xr, ),
Xr) = —s0_,,(—.V .Vr.—i

rr.sa(Ar,,...,Ar..) s0(Ari,...,Xr,+i ,...,Ar..),

where q has hit coordinate equal to 1, and all other coordinates zero.

Proof: By definition, we have s, = det(ha,_j+j(Xrj) and 0r, acts only on the ith row of the

determinant, the entries in the other tows being symmetrical in r, and r,+1 (because of the

condition r3 0 r if j 0 i) Hence the first of the relations (3.10) follows from the first of the

relations (3.9), and the other two are proved similarly.

Remark. We can use the relations (3.10) to give another proof of duality (3.8) in the form

(3.8”) Let A be a partition such that A, 5 m and A’, 5 it. Then

— Al
SA(Xm+i_A ,,...,Xm+n_A,,) —(—1) SA(Xm+

By repeating this process we shall obtain the formula for That for &..s2 is proved similarly.

Remark. Let a EN° and Z, = = Zn = 0 in (3.11). Then by (3.5’) we have

Uwe(x°) = âwosa(Xt ,...,X0) = Sa_(Xn),

= ,s8(X1 ,,) =
Thus we have independent proofs of (2.11) and (2.16’) and hence (by linearity) of (2.10) and (2.16).

Sergeev’s formula

Let ij im,Y1 y, be independent variables and let

for all i 1, with the understanding that z = 0 if j > in and Lii = 0 if j > a.

Let (ii) be a corner square of the diagram of A, so that j = A and = A. Let p he the partition

obtained from A by removing the square (ii). By operating on either side of (.) with 3m+i—j we

obtain the same relation with p replacing A. Hence it is enough to show that (.) is true when

A = (m°), but in that case both sides are equal to (X, . . .Vj’1, by (3.5’), (3.5”) and (3.6)11

(3.12) (Sergeev) For all partitions A we have

wh e it

sA(X—Y0) Z
WE S.. x S.

w(fA(i, y)/D(z)D(y))

(3.11) Let w0 be the longest element of Sn Then for any a C “ we have

Xn+Zn)s0_s(Xn+Zt Xn+Zn),

where X = z + + x (1< i Sn) and the Z, are independent of z z,.

Proof: The sequence

fA(’,y)= fi
(IncA

D(z)= II (1—r[’x), D(y)= fi (1—yy,).
t<i<j<m li<in

Proof: Let ,4m) (resp. wg”) be the longest element of Sm (resp. Sn) and let r (resp. try) denote
tw(_) acting on the x’s (resp. acting on the y’s). From (3.5) we have, if r = 1(A),

(n—1,n—2,n—1 2,3 n—i,1,2,3 n—i)

,r,0 =,r0_1(,rn_2,rn_1)(r2ra.wn_l)(?r,T27rn_,)

JA(Z,Y)=SA(Xi

and in view of (2.16) Sergeev’s formula may be restated in the form

5A(Xm — Yn) = ‘TrrfA(z,y).

i.
.1,

From (3.11) and (1) above we have

= SA(Xm — Y.1 ,...,Xm — Yj.

a.

40 Multi-Schur functions 41

We have next to operate on this with tr1tr3 . . which will produce

(*)

N

is a reduced word for to0, so that

(1)

and likewise for By (3.10), ,t1s . . . ,r,, applied to s0(X1 + Z1 X,, + Z0) will produce

(3.12’)

(2)

I
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If A = (p7”. p7”), (2) can be rewritten in the form

lrrfA(1,y) = SA(Zr’ , . . .,

where Z = — Yr,. Since

rk(Z1+1 — Z) = rk(Y, — Y,•1) = pi —m+t,

Schubert Polynomials (1)

the duality theorem (3.8”) applies, and gives

and

Let 6 = 6, = (n—i, n —2 1,0), so that

F(v) + 1(w’ too) = f(v) + £(w6) — f(w)

I,

1(vww0) = £(wo) — 1(wv)

by (1.6). Hence O6,, = is equal to
= if () — £(v), and is zero

otherwise (I

if —. 4

(3)

Chapter IV

(4)

43

Z7”) = (_1)IAISA,((_Zk)ThI (—Z1)’”)

= (_1)IMSA((Yph — .V_)’”,.... ( —

= (1)sA’(Yt — X,Y2 — Xn, — Xm)

where s = n + + na = £(A’). We can now apply (3.11) again and obtain from (3) and (4)

w7r1fA = (1)m7YSAI(Yl — Xm 1’, — Xm)

Al
= (—1) SA’(Yfl —

= s1(X
—

2 ..,

—

(4.1)

N

16
=
z71x2 . .

.

For each permutation to € S, the Schubert polynomial S, is defined to be

= ôwiw,(r6)

where as usual to0 is the longest element of S,.

(4.2) Let v,w€S,,. Then

if 1(wv) = 1(w) —

806W =

t 0 otherwise.
In part:culor,

(SW,,
Blew =

I0
Proof: From (2.7) we have

if w(i) > w(i+ 1),

if w(i) < w(i + 1).

Now

f iIt(v) + €(w”w0) = 1(vww0),
8v8w.”wo =

0 otherwise.
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(4.3) (i) S, = r5, S = 1.

(ii) For each w 5,,, S is a non-zero homogeneous polynomial In Ii,..., x,,_ of degree
£(w), of the form

5w =zcnZa

summed over a E such that a C 6 (i.e., a n — i for each i) and al =
(iii) 6,. is symmetncal in r, rj. if and only if w(i) < w(i + 1).
(iv) If r is the last descent of WE 5,, (i.e., if w(r) > w(r + 1) and

w(r+1) < w(r+2) < ..- < w(n)), then Sw C Pr = Z[z1 Zr), and 6 Pr_i.
Proof: (i) That 6,,, = x is clear from the definition (4.1). Also by (2.11) we have

61 = OwZ6 = = 1

(ii) The operator 0,,—i,,, lowers degrees by £(wtwo) = 1(wo) — f(w1) = n(n —1) — £(w). hence
= 8-i0z is homogeneous of degree £(w). [(now a E N1 is such that a C 6, then by (21)

OrZ is a linear combination of monomials , such that , = a, if I r, r + 1, and

maz(fl,$÷i) muz(a1,oI+i) — I n — — I,

so that fi C 6. hence the linear span H0 of the monomials c6 is mapped into itself by each
Or (I r < n—i) and hence by each 0,,,, wE S,,. Hence Sw C H,, for each wE 5,,.
(iii) 6,, is symmetrical in x and if and only if s,S,, = 6,,, that is to say if and only if
8S,, = 0, which by (4.2) is equivalent to w(i) < w(i + 1).
(iv) 5,, is symmetrical in Zr+l r,, by (iii) above, but does not contain x, hence does not
contain any of Zr+i Zn.j

Remark. Weshalishow later (4.17) that the coefficients in (4.3)(ii) are always non-negative integers.
(4.4) For i = 1,2 n—i we have

6,, = 11 + 1 + + r.

Proof: By (4.3), 6,, is a homogeneous symmetric polynomial of degree f(s) = I in z1 r, hence
is equal to c(zi + . .. + r) for some integer c. But OS,, = = 1 by (4.2) and (4.3)(i), hence

(4.5) (Stability) Let m > n and let I Sr ‘‘ Sm be the embedding. Then

Proof: We may assume that m = n + 1. Let u4 be the longest element of then u% =
s’, where too is the longest element of S.,, and hence

= Ow_iwb(44’ .

Ow w(1t—
— I

n—I n—i n—2(because at (r7 ..- x,,) = t 2 3 1,,, hence °28I (z7 r2 ...

n—I n—2 n 2 n 3
1 17 23 14 i,,, asd so on.) II

Proof: We shall make use of the following fact: if f is a polynomial in x , ,a,.., and 81f = 0 for all
i 1, then f is a constant. For f € I’,, = r,,j for some n, and is symmetric in x
because Oif=8nf0.

To prove (4.6) we proceed by induction on £(u) + £(v). If.f(u) = 1(v) = 0 then ii = 1,71, V =
and both sides of (4.6) are equal to 1. Let

F(u,v) = Su —

‘4

44

for all w€5,,.

Schubert polynomials (I) 45

From (4.5) it follows that 5,, is a well-defined polynomial for each permutation to € 5,,, =
Un Sn-

If is €5,,, and v € Sn, we denote by it x v the permutation

in Sm+n. We have then

is x v = (u(1) u(m), v(1) + m 0(n) + m)

(.16)

where I,,, is the identity clement of Sm.

601(0 6,, 5i,,,x,,

e= 1.11

By the remark above, it is enough to show that 81F(u, v) = 0 for each i.
Suppose first that I < in. Then

SW = Si(w)

OF(u,v) = 0(S,,) — 0,(S,,) .

because Oj(6i,,1(,) = 0 by (4.2). Hence we have OF(u, v) = Oil l(us,) > e(u); and if £(us,) < 1(u)
then

01F(u, v) = F(us,, v)

t
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I

which is zero by the inductive hypothesis.

Likewise, if I> m we have

F(u,vs1) if ((vs.) C
O1F(u,u)= ‘

I 0 otherwise,

and so again 81F(u, v) = 0 by the inductive hypothesis.

Finally, if I = in we have iti x v)s01) > £(u x v), because

(ii x v)(m) = u(m) < in + v(1) = (u x u)(m + 1),

and therefore d kills 6uxu and S1..,xv; moreover, à,,G,, = 0, because S € Z(ri r_]. Hence

801F(u, v) = 0, and the proof is complete.II

For certain classes of premutations there are explicit formulas for $, We consider first the

case where w is dominant, of shape A (so that the diagram of in coincides with the diagram of A).

(4.7) If in is dominant of shape A, then

Conversely, every monomial 1A (where A is a partition) occurs as a Schubert polynomial, namely

as S,, where in is the permutation with code c(w) = A.

Suppose next that w is Grassmannian, with descent at r.

(4.8) If in is Grassmannian of shape A, then 6,,, is the Schur function SA(Xr), when r as the

unique descent of in, and 7Cr = r1 + + Zr.

Proof: We may assume that in 1 (by (4.3)(i), 6 = 1). Then r 1 and the code of in is

(w(1)—1,w(2)—2 w(r)—r)

by (4.2), (4.7) and (2.11)11

Conversely, every Schur function SA(Xr) (where A is a partition of length S r) occurs as a
Schubert polynomial, namely as 6, where w is the permutation with code c(w) = (Ar, Ar_i,. , A1).

More generally, let in be vexillary with shape A = (A1,..., Am) (where in = ((A)) and flag
= (ói m) (Chapter 1). Then 6,,, is a muLti-Schur function (Chapter In), namely

where X1=x1+...+1 for each i1.

Proof: The idea is to convert in systematically into a dominant permutation Recall ((1.23), (1.24))
that if c(w) = (ci, CI,...) and c, < c-+i for some i ? I, then ((ins,) = ((in) ± I and

c(ws1) = (ci cj_i,cj+i + l,c,cI+2,ce÷a,.
.

where pi> ‘ > Pk >0( and each m > 1) and let

where fl<<fk

Consider first the terms equal to P1 in the sequence c(w). They occupy the positions f1 —in + 1,
,f. We shall use (.) to move them all to the left until they occupy the first in1 positions, by

multiplying in on the right by

= (si,— . . ‘2SI)(Si,—m.+i ‘..53s2)... (ji ‘ ‘

Let in1 = wu1. In the code of in1, the first in1 entries will be equal to Pi + f1 — in1; the shape of in1is

= A(wj) = (( +ft — in1)” 017 Tn‘P2
‘‘‘ P i

so that A = (w(r) — r w(2) —2, w(1) — 1). Let u = be the longest element of Sr. Then

wu = (w(r),..,, w(1),w(r+ l),w(r+ 2).,,)

is dominant of shape A + 6r, where 6r = (r — 1, r —2 1,0), and ((inn) = ((in) + ((ii). ‘fence

SW = 0u6,,,u = 8,,(r6’) = 5A(Xr)

SW
=

(4.9)

I

N

=

Proof: We use descending induction on f(w), where in € 5,,. The result is true for in = w0 by

(4.3)(i), since Tnn is dominant of shape 6.

Suppose wE S,,, in in0 and in is dominant of shape A. Then Ac 6 and A 6. Let r 0 be

the largest integer such that N = n — i for 1 <iCr, and let a = A.41 +1 < n — r — 1. Then ins, is

dominant of length ((in) + 1, and A(ws,) = A + r, where e, is the vector whose component is 1

and all other components zero. Hence we have

6W = &GWI. = ô,(x,xj =

(].)

because A,, =

As in Chapter 1 let

A(w)—’—pi,...,PL
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and it follows from the description (1.38) of vexillary codes that the terms equal to p in the sequence by (4.2). Now by (4.6) and (3.5’) we have

c(w1) will occupy the positions f — ni2 + I 12. The next step is to move those to the left until
6w x”=s(Xi ,...,Xm)they occupy the positions m1 + 1,..., m1 + m2 by multiplying w1 on the right by

where m = m1 + + m = 1(A). Hence by repeated use of (3.10) we obtain
= (s,—m, . Sm,+35n1+i)(5J,—nl+l ‘Sm,t2) . .

. (sf
=

Let w2 = w1u2; the code of in2 starts off with m1 entries to pi + f — m1 then m2 entries equal to
= SA,.—o(X1 m,+ +m._I Xf_mb+i ,..,Xf,, X1,,)

P2 + 12—mi — Tn2; the shape of in7 is
= SA(Mi) (X1 Xm, ++mI_i (X )

m1 ml ,,mfr= A(w2) = ((Pt + f — in1 “I (pi + 12 — — in2) p3 by virtue of (3.6). If we now operate with we shall obtain in the same way

and the terms equal to p in the sequence c(w2) will occupy the positions f3 — m3 + 1 Ia— Tn3. S = O,_, = SAk_J)(Ai ,...,X.f.. +mh_i, (X V’
. (XjJ”)

— I I

We continue in this way; at the r’1’ stage we define Wr = Wr_iUr, where
and so finally

Ur = (sf,—m. 5m1+ .+m,_.+i)’ (;.—i mi+ +mm),
= 8A((Xf, )fi (X1h) )II

and w has shape Remarks, 1. As in Chapter I, let
,1 nin. nA-I A’ =(q1 ,..., q(Pr+ar) ‘Pr+I’’’Pk

be the conjugate partition, so that
where a = f1 — (in1 + ‘ . . + m) 0 by (1.36). Notice also that

(1 1< k)

and therefore
by (1.37). P1 + ‘Ii = p + f —

Finally we reach wt = wu. ‘Uk, which is dominant with shape (and code)
= gk+t—i

ft fl.\by (1.41), where (g1 ,g is the flag of w. Thusp = A(k)
= ((Pt + °‘i’” (pk + °k)m’)

(4.10) p_A(k)_( in,
— ‘& uWe have

£(w) = Al =
2. The result (4.9) admits a converse. If A = (r p”) as above, every non-zero multi-Schur= = m,(p, + aj,
function sAXf1) (Xj. )) that satisfies the conditions of the duality theorem (3,8”), namely

‘in’

and

1(ur)amm, (lcZrk) (1) Ofj+ifjmj+i+flk+l_j (1<i<k—1),

so that is the Schubert polynomial of a vexillary permutation, namely the permutation with shape A and
1(wk) = ((in) + Z ((Ut) flag = (fr’ f”h). This follows from (1.38) and (4.9), since the conditions (1) on the flag 6r1

and therefore, since in = wk(ul .. . u&)’, coincide with those of (1.37). (The conditions (1.36), namely

fm1+-’-+m1 (1<i<k)

1

/7.
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ensure that the multi-Sehur function does not vanish indentically.)

Let H,, denote the additive subgroup of ft = Z[z1 z,.] spanned by the monomials 0 aC

1,0).

(411) The Schubert polynomials 6,51wE 5,, form a Z-basis of H0.

Proof: By (4.3) each 5,. lies in H,,. If

Zww=° (a,.EZ)

is a linear dependence relation, then by homogeneity we have

z
for each p 0, and by operating on (1) with 8,. we see that a,. = 0. Hence the 6,. are linearly

independent and hence form a Q-basis of H,. 0 Q. It follows that each monomial x°, a C 6,,, can

be expressed in the form

= Z b06,.
t(w)=lr,I

with rational coefficients 6; by operating on (2) with 8,. we have b = O,.x, and hence the b,. are
integers.

From (4.11) it follows that

(4.12) The 6,., wE S,, form a Z-basis of P = Z[ri,x

Proof: Let x° be a monomial in Pr,,. Then a C 6,, for sufficiently large n, hence r° is a linear

combination of the w1j
For each n 1, let () denote the set of all permutations is, such that w(n+1) < w(n+2) <

or equivalently such that the code of w has length < n.

(4.13) The 6,,, WE form a 1-basis of ft.

Proof: By (4.3)(iii) we have

6,. € P,, = 8,,,S,. = 0 for all m > n

wES

LetP,CP,,betheZ-spanoftheS,.,wE5(’O. 1fP,’,øPn,choosefEPn—P,;by(4.12)wecan

write f as a linear combination of Schubert polynomials, say

I =
‘U

where there is at least one term with a, $ 0 and w 0 {ui)• Hence for some m > n we have
8m6,. = 5,.,,,,, and since O,,,f = 0 we obtain from (1) a nontrivial linear dependence relation
among the Schubert polynomials, contradicting (4.12). hence P = F’,,, which proves (4.13)11

Let q ft — I be the homomorphism defined by q(rj) = 0 (1 S i S n). In other words, q(f)
is the constant term off, for each polynomial f E F’,,. The expresson ol f in terms of Schubert
polynomials is then

Z q(O,.f)S,,.

Proof: By (4.13) and linearity, it is only necessary to verify this formula when f is a Schubert
polynomial 6,,v € and then it follows from (4.2) and (4.3)01) that q(ö,.S,) is equal to 1
when a’ = v and is zero otherwise.lI

(4.15) Let I = E a1r1 be a homogeneous linear polynomial, and let w be a permutation. Then

I Sw = —

where tq is the transposition that interchanges i and j, and the sum is over all pairs i < j such
that £(wtq) = e(w) + 1.

Proof: The polynomial fS,. is homogeneous of degree t(w) + 1, and hence by (4.14) we have

f6 =Zov(fS,.).s,

summed over v of length £(w) + 1. Now by (2.13)

O,(f6.4= v(f)O,5,. +E(aj—aj)O,16,.

summed over i < j such that t(vt) = t(v) — 1 = £(w). It follows that 80(fS,.) = a
—
o if

w = utij, and i8 zero otherwise.lI

IrS,. = Eau6w1
summed over transpositions t = t, such that F(wt) = €(w) + 1, where a(t) = —1 or +1 according
as 1< r or I> rh
(4.15”) (Monk’s formula) = E S summed overtmnspositions t = t,2 such that i r < j
and £(wt) = £(w) + 1.

A.J

(1)

(.114)

(2)

wES(’)

.4 - .

4.

...s

(1)

In particular:

(4.15’)

V /7
/
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Remark. As pointed out by A. Lascoux, Monk’s formula (4.15”) (which is the counterpart of Pieri’s

formula in the theory of Schur functions) characterizes the algebra of Schubert polynomials.

We shall apply (4.15’) in the following situation. Suppose that r is the last descent of w, so

that w(r) > w(r+ 1) and w(r+ 1) < w(r+2) < . Choose the largest s > r such that w(r) > w(s)

and let v = Win. Then from (4.15’) applied to v we have

(1) =
— E

WI

summed over all permutations w’ = Vtqr where q < r and ((w’) = 1(v) ± 1 = 1(w). Hence

w’(q) = v(r) > v(q) = w(q), and w’(j) = w(j) for j < q.

Let us arrange the permutations of a given length p in reverse lexicographical ordering, so that

if 1(w) = £(w’) = p then to’ precedes w if and only if for some i I we have

w’(j) = w(j) for j < i, and w’(i) >

(4.19) The coefficients d in (4.15) are non-negative integers.

Proof: We proceed by induction on 1(v). Suppose first that d 0 and that f(v) > 0, so that
o 0 1. Then there exists j > m such that ôS(x+i zn) 00. From (4.18) we conclude that
OS 00, hence is equal to S,,,, and therefore we have d = d,t’,,., and £(vs) = 1(o) —1. By
the inductive hypothesis, we conclude that d 0 if v 1.

It remains to consider the case v = 1. Let p,,, 1’,, — Pm be the homomorphism for which
p(zi) = x1 if i Sm, and p(r) = 0 if 1> in. From (4.18) we have

(2) pmS =Zc1
Let r be the last descent of w. If r 5 m then SW E Pr and hence p,,, S,1. = 5,,, so that d is equal
to I if ii = w, and is zero otherwise, If r > in we deduce from (4.16) that

(3) PmSw = PnSw’

/

SW = rSv +ESW’
WI

For this ordering there is a first element, namely the permutation (p + 1,1,2
Assume that the coefficients d1 are 0 whenever to’ precedes win the reverse lexicographicalWe have proved

ordering. Then it follows from (2) and (3) that each d1 0. (As remarked before (1.16), the first(4.16) For each permutation w $ I the Schubert polynomial SW can be erpressed in the form
element in this ordering (if((w) = p) is the permutation (p+ 1,1,2 p), for which the last descent
r is equal to )II

when r is the last descent of w, 1(v) = f(v) — 1 and each to’ in the sum precedes w in the reverse

lexicographical ordenng.I

From (4.16) we deduce immediately that

(4.17) For each permutation w, SW is a polynomial x2 . .
. with positive integral coeffictejLts.

For we may assume, as inductive hypothesis, that (4.17) is true for all permutations v such that

either 1(v) — 1(w), or 1(v) = 1(w) and v precedes w in the reverse Lexicographical ordering; and then

(4.16) shows that the result is true for w. (The permutation (p + 1, 1,2 p) has code (p), hence

is dominant with Schubert polynomial 4 by (4.7).)(

(4.18)

Now fix integers m,n such that 1 5 in < ii, and let wE S<”), so that 5,,, C Pn. By (4.12) we

can express 6W uniquely in the form

Zn) = xm)Sv(xm+t x)

summed over U C 5(m) and v e 5(n—m)
U

Kohnert’s algorithm

Let D he a IIdiagram which for present purposes means any finite non empty set of lattice
points (i,j) in the positive quadrant (1? 1,j ? 1). Choose a point p = (i,j) C D which is rightmost
in its row, and suppose that not all the points (li) (I — 1,j) directly above p belong to V. If
his the largest integer less than I such that (hi) 0 D, let D1 denote the diagram obtained from V
by replacing p = (i,j) by (h,j). We can then repeat the process on D1, by choosing the rightmost
element in some row, and obtain a diagram D2, and so on. Let K(D) denote the set of all diagrams
(including B itself) obtainable from B by a sequence of such moves.

Next, we associate with each diagram V a monomial

= 111a,
i>I

where a is the number of elements of V in the 1t1I row, i.e., the number of j such that (i,j) C V.
With this notation established, Kohnert’s algorithm states that

t
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and S, = + i1211 ÷ ZZ + sy + 4:2.

A proof of a relat’,l algorithm by N. Ibrgi’rni, Is given in Liii AI’pi’miilix LII his ciia1,ler ‘lb

present status of (1.2(I) is that it is true for is v.xillary (hJ, lint iiii mm glTmlr:Ll

The shift ojwrntor

Schubert polynomial, (I)

where lx was the pennutataon (l,w(1) + I, w(2) + 1,...).
Proof: For each r 1 let ,47) be the longest element of S, and let hr = (r — Jr —2,... 1). Then
if w € S We have

rSW = 8, - . 8(x -
- Zn8w_II..!z)

= 01-•

Nowsi...snisthecyclel_2_..._n÷lldl

= (I x

= 8(1 x w) n-H!Wa (x+) =

(4.23) Let a EN” and Pi S S p,. Then

(-1.21

I,et. f E a°,, and let ‘‘a > it. ‘Thu-u

rf r r,,,f = di ‘.(‘I sf)

= 7’.,.” (f)

is independent of in, because 7,,,f f ill is syi,i,nu-l rir;al iii .1,, and tnH and iti iartiruiltr if J
does not contain

= s,(X5+,

Proof: Since r = 1y
, this follows from (3 10)41

(1.21) We hate

3,rr = a
Tb e operator r P,, — 1,, is cal heal I. In .sli sit. ops’ra or. For ‘‘x ails pie, we Ii ave for 1 5 5 r

and for i 2

r11 =iI,(s)s, +s,

TZ = 3m--. iIj(r, .

.

Proof. fly (412) it is enough to show that U,rrsw = 0 for all permutations w, and this follows from
(4.22) and (42)11

For each n I let p., . P — Pn be the homomorphism defined by

so that by (1.4)

= Ui --3_’(s - z. (s. +s,+m))

=rj+iU,...fl_i(si...z,_,)

= Zi+l

rS, =r(:i+---+x,)11 ++zi+, 5.,+

if<n.
0 fr>,,

(4.25) Let be the longest element of Sn. Then

for a/i f p.,

‘,.o(f) = p,,r”(f)

More generally,

(422) For all pennutatsons iv,

rS =

Proof fly linearity we may assume that f = s° where a € N” Since 0 = s(X, n) by
(3.5’) we have

= 50(X.,+1 2n)

/

/

(-1.20) For each prr,nutotio;i in we hone

Sn
DEft’I t)tvi)

whe rr D( in) is the diagram (1.21)) of in.

Example. If in (1432), k( !)(isi)) rtinsmsl.s of Ibm- ‘liagrammis

55

so that

and therefore by (2.7) we have

- su n)) = f(s,...s) +
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which is equal to wii(z°) by (2.16’).j$

Transitions

A transition is an equation of the form

T(w.r) Si, =xrSu+St
vet

where r 1, in and it are permutations and iV is a set of permutations. It exists only for certain
values of r, depending on w. An example is (416), in which r is the last descent of in.

By (4.15’) we have

=

summed over transpositions t = t such that €(ut) = ((it) + 1, where aCt) is the sign of — r, So for
T(w, r) to hold there must be exactly one j > r such that

‘%

A B

,,

‘%

A B

‘,

57
From (4.26) it follows that if T(w, r) exists we must have in(r) > w(r + I), i.e., r must be a

descent of in. Hence

by (4.23), and hence

p,r°(10) = sn(Xn ii)

do(w) r d,(w)

where do(w) (resp. d1(w)) is the first (resp. last) descent of in. (In terms of the code c( w), da( in) is
the first descent of the sequence c(w), and d1(u) is the largest i such that c1{w) 0.) In general.
not all descents of in will give rise to transitions, but the last descent always does, by (4.16).

Consider next the set t = t(w, r) of permutations that feature in T(u’, r). Each v € t is of
the form v = Vtr with 1< rand e(v) = £(u) + I ( ((in)). Again by (1.10), this means that

U C
I

‘‘

____ ____

‘I

_____

r

j

‘‘

-±zx:
Consider the graphs G(w) and G(u) of in and u. They differ only in rows r and j

I.

r

j

6%

‘,
‘‘

‘p

(1) f(ut_1) = f(u) + 1,

(2) in = ULrj. G(w) G(u) 0(v)

¼

p

r

j

p¼

‘p
d%

‘p

j

S

.1’ fl G(w) is empty, where .1’ is the open
The element v = tjr oft for which

leader if and only if

C D

(4.27)

region indicated in the diagram above.
I is maxima] is called the leader oft. Thus v € t is the

0(w) 0(u)

By (1.10) the relation (I) above is equivalent to An 0(u) = , where .4 is the open region indicated
in the diagram. Moreover, j is the only integer > r such that u(j) > u(r) and AflG(u) = , and this
will be the case if and only if (AUBUC)flG(u) is empty. Since (AuBUC)flG(u) = (AUBUC)flG(w),
it follows that

(4.26) There is a transition T(w, r) if and only if

r

(A’ U B’) fl G(w) = 0

Remark (4.28), The set ‘P will be empty if and only if there is no i < r such that w(i) < mU). We

_____________ ______

can always avoid this possibility by replacing in by i x in. If t(iv, r) is not empty, then v — 1 x ii
J ‘‘I

C D is a bijection of cb(w, r) onto t( I x in, r + I).
The condition (4.26) is stable under reflection in the main diagonal, which interchanges 0(w)

and G(in_i). llence

(4.29) The transition T(in, r) exists if and only if T(w_i. s) exists, where s = mU). Moreot’er we
have

so that T(in 1s) is the rrlation

= + OiL.
vet

(AU BU C) fl 0(w) = 0.
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We may notice directly one corollary of (4.29). Let

be the number of monomials in G,, each counted with its multiplicity. (By (1.17), S, is a positive

sum of monomials.) If T(w, r) is a transition, we have

Schubert polynomials (I) 59
Proof: c(w) is the number of positive integers k > i such that w(k) < w(i), hence is equal to m+ n.
Similarly for the other assertions,jJ

Suppose first that m = o, I.e (by (4.27)) that v is the leader oft. Then from (4.31) we have
c,(w) = cr(t’) and c,.(w) = c(v). hence in this case c(v) = tirc(w) and therefore A(v) = Mw)

If on the other hand m > 0. there are two possibilites
either

and also, by (4.29)

S(I)= 6(t)+ Z S,(l)
vEt

6— (1) = S—1 (1) + e0— ‘(1)
vat

From these two relations it follows, by induction on 4w) and on the integer S(1), that

(4.30) S(1)=S-(I)

d¼

M 0
‘,

4’

‘,

c(v) > Cr(W) > c1(w) > cr(u).

In both cases it follows that A(v) is of the form RA(w), where I? is a raising operator and a 1
Hence A(u) > A(w) (for the dominance partial ordering on partitions), and we have proved

7- /
/

or

c(v) > c,(w) cr(w) > cr(u),

Card K(D(w)) = Card K(D(uC1)).

(1.32) If T(w, r) is a transition, we hare A(u) ? A(w) for all E ‘P(w. r). with equality if and
or In other words that 6. and S_i each contain the same number of monomials. So if Kohnert’s only if v is the leader of 4’.j

algorithm (4.20) is true, we should have

Doubtless the combinatorialists will seek a “bijective’ proof of this fact.

Let T(w, r) be a transition and let u C t(w, r). Consider again the graphs of to and ii

‘p

Recall (1.26) that for any permutation in we have

Hence for vi C t(w, r) we have

P
j

A(w’).

N

r

0
d

0

0
J

G(u’)

‘1
6%

G(v)

(4.33) A(w) Mo) .Mv’) Mw’)

______ ______

—

______

by (4.29) and (4.32). Moreover, at least one of the inequalities (*) is strict unless vi is the leader of
t(w, r) and v1 is the leader oft(w , s) (in the notation of (4.29)). In the notation of the diagram
preceding (4.27) this means that

(A’ U B’ U C’) fl GO) =

and hence as in the proof of (4.26), that Card t < I.
(4.34) If T(w, r) is a transition with in reziUary, (hen t(w r) is either empty or consists of one
vezillary permutation.

Proof: Suppose that $ is not empty, and let a t. By (1.27) we have A(w)’ = A(w1), and hence
all the inequalities in (4.33) are equalities. Thus v is vexillary, and by the remarks above it is the
only member of t.JJparticular, cr(w) > c,4t’) for all viE t(w, r).

Let map denote respectively the number of points of G(w) (or equivalently G(v)) in the open

regions of MN, P. (The regions marked with a zero contain no graph points.) Then we have

(4.31) c(w)= m+n, cr(w) = n+p+ 1,

ct(u)=m+n+p+1, cr(u)=n,

and ck(V) = ck(w) if Ic 1, r. in

A .
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(4.35) Let T(w, r) be a transition with r > do(w). Thcn

dc(v) do(w)

From (4.35) we have

Schubert polynomials (I)

do(wk) do(u’1_,)

61

for all v € ‘(w, r)
for 1 k p, and from (4.31) we have

We distinguish three cases:

(a) i > d, so that ci I — 1 and therefore ck(v) = ck(w) for 1 k ci.

(b) I = ci. In this case we have ck(v) = ck(w) for 1 < k < d— land

(1) c(w,) <

where r = du(w&_i). Hence di(w&) S di(wk_i) and therefore

eOv&) S

Moreover, if e(wk) = e(wk_l) we must have di(wk) = di(wk_j) and hence by (1)

f(wk) < f(w&_i).

It follows that the p + 1 points (r1, yk) = (e(wk), f(wt)) are all distinct. Since they all satisfy
1 S x S e(w) and I Yk S ((iv), we have p + I 5 e(w)t(w), as required.J

Front As before, let t = UtIr with I < r, and let d0(w) = ci. We have to show’ that

by (4.31), so that cd_i(v) < cd(v).

(c)
I > ci. Since ci < r we have I + I < r and c,(w) S cI+i(w), hence w(i t 1) > w(i). The

diagram on p.58 shows that w(i+ 1) > w(j), or equivalently 1(1+1) > v(i), so that c,(i) 5
Hence

cd._i(v) = cd_1(w) S C(W) C Cd(V)

c1_i(v) = c1_i(w) S c-(w) < c,(v) S c,+i(v)

The rooted tree of a permutation

In what follows we shall when necessary replace a permutation w by 1 x in, in order to ensure
that at each stage the set (w, r) is not empty (4.28). Observe that this replacement does not
change the bound (d(w) — d0(wfl((w) in (436).

The rooted tree T of a permutation iv defined as follows
(i) if w is vexillary, then 7’ = {w};

(ii) if w is not vexillary, take the maximal transition for iv:

and therefore

c1_1(u) < c(u) S c+i(v).

Since the sequences (cj(v) cd(v)) and (c1(w) cd(w)) differ only in the 1th place, we have

ci(u) S
... S cd(e) as required.

The maximal transition for iv is T(w, d1(rn)). Let us temporarily write in — r’ to mean that

yE 4’(w, d1(w)).

(4.36) Suppose that

w = — Wi — — in,,

is a chain of marling1 transitions in which none of the in is Crassmannian. Then

p < (dj(w) — do(rnflf(w).

Proof’: For any permutation v, let e(v) = di(v) — do(e) 0. Also let f(v) denote the last nonzero

term in the sequence c(v), i.e. f(v) = cd1()(v). Recall that v is Grassmannian if and only if it has

only one descent, that is to say if and only if e(v) = 0.

(.) Sw = rS +
vet

— J, A

t

..
A’

where r = d(w). (If iZ is empty, replace in by 1 x iv as explained above.) To obtain T, join in by
an edge to each a E cj, and attach to each cC 4’ its tree Ti..

By (4.36), T is a finite tree, and by construction all its endpoints are vexillary permutations of
length ((iv). It follows from (4.28) that — x t’ is a bijection of T onto T1

,,. Tbus T depends
(up to isomorphism) only on the diagonal equivalence class (Chapter 1) of the permutation iv.

Recall that p : P, — P,,, is the homomorphism defined by pm(z;) = x, if I 5 1 5 in, and
pm(sj) = 0 if I> in.

(4.37) Let V be the set of endpoints of T. Then if in S do(w) we have

Pm(Sw) = E 5(vI(Xm).
icy
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Proof: 11w is vexillary we have prn(Sw) = SA(w)(.V,n) by (4.4), since ó1(w) = do(w) m. If w is

not vexillary, it follows from the maximal transition (.) above that

Pm(Gw) = ZPm(6v)
Cat

since r = d,(w) > do(w) m. The result now follows by induction on Card(T,. )41

Multiplication of Schur functions

Let p, u be partitions and let u C S,, u’ E S be Crassmannian permutations of shapes p,

respectively. Let to = ii x U’ C Sn, so that by (4.6) and (4.8)

Sw =5U SL,xu’

= s(.V,.)s(X3)

where r = do(u) and s = a + da(u’). Ilence if us r we have

sp(Xfl)sM(Xn) = Z SA(v)(Xn)
VEV

where V is the set of endpoints of the tree TW. here the integer us can be aribtrarily large, because

we can replace w by 1. x iv for any positive integer k. Consequently we have

= Z 5A(v)
may

where V is the set of endpoints of the tree and u (resp. u’ ) is Grassmannian of shape ji

(nsp. v )II

The same argument evidently applies to the product of any number of Schur functions. If

are

partitions, let u C S,, be a Crassmannian permutation of shape pN, for each

= I k (so that nj 1(p(’)) + £(pt’1’)) and let iv = x - - - x u. Then

= Z 5A(v)

In particular, suppose that each (‘) is one-part partition, say = (p), so that the left-hand

side of (4.38’) becomes h,, h3 = hM. Correspondingly, each tt is a cycle of length i+l, namely

= (p, + 1,1,2 pg). Now [M, Ch.l, §6] the coefficient ofa Schur function 5A in h0 is the Kostka

number Hence we have

1 + 13

1112 + 1113 + £313

4 + 112 + 1
1112 + 1j13 + 11 + 111213 + X1

xl

1j13 + 1113

Li1,

111213

+

xi

412 + 1j13

4x,
x1113

xx;

44xj
4
412 + 4r
413

41313

44
44x

H

V

Schubert polynomials for S4

SW

II + 12 + 13
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and so by (437)

p(S) =

(1.38)

iv

I 234

1243

1324

1342

1423

1432

2131

2143

2314

2341

2413

2431

3124

3142

3214

3241

:3112

3421

4123

41:32

1213

4231

1312

1321

1lx

+ zi4xs

(4.38’)

where y is the set of endpoints of the trre T.II
EV

(4,39) K,, is the number of endpoints of shape .A in the tree of to = ui x 2 X -

.

r
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Appendix

A Combinatorial Constructionof the Schubert Polynomials
by Nantel Bergeron

Here a “diagram” will be any finite lion empty set of lattice points (if) in the positive quadrant
(i 1, i I). For example the diagram D(w) of a permutation w is a diagram in the above sense.
Let D be any diagram. We denote by D{rrti) the diagram D restricted to the row r and r + I.
Let j(r, D) = (fi,i2 ik) be the columns of B in which there is exactly one demerit of Dirr+tiper column. Choose a column j C j(r, B). Assume first that (r + ,j,) £ Dtrr+i

.
If I = k orif (r, Ji+i) C (r,r+l) let B1 be the diagram obtained from B by replacing the element (r + I, j,)hy (r,j). Now suppose instead that (r, j’) E D(±t). We say that the point (ri,) is r-flxed with

respect to D(w) if the number of elements of B in the column j, and in the rows r’ > r is equal tothe number of elements of D(w) in the same area, Now ifs = I (and if there Is no r-fiiecl element
with respect to D(w) in B) or if (r ± l,j_1) C Dvr±;), let D1 be the diagram obtained from D by
replacing the element (ri1) by (r+ I,j). In both cases we say that the diagram B1 is obtained fromD hy a “B-move” (with respect to D(w)). For example let D be such that Dvr+l) is the following:

In this appendix, we shall give a combinatorial rule based on diagrams for the construction of
the Schubert polynomials. A different algorithm had been conjectured (and proved in the case of
vexillary permutations) by A. Rohnert. We shall give, at the end of tIns appendix, a sketch of how
one can show the equivalence of the two rules. I wish to acknowledge my indebtedness to Mark
Shimozono for the stimulating exchanges regarding this work.

Combinatorial construction

t
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For this case j(r, D) = (2,5! 8,9). We can perform on this diagram a B-move in column 2, 5 or 9

and obtain, respectively, the following diagrams:

=
The element in column S is not allowed to move since (r+ 1,5) Dvr±ii- Let c1(w) denote the set

of all diagrams (including D(w)) obtainable from D(w) by any sequence of B-moves.

Next for DC Q(w) let 1D denote the monomial xx’x where a is the number of elements

of D in the ith row, For any permutation w we shall have the following theorem.

(B.1) Sw=
PEO(W)

To prove this we will proceed by reverse induction on ((it). If it = u’ (the longest element of S)

then (B.l) holds since Q(wa) contains only the element D(wo) and = x6. On tIme other hand

from (4.3), S. = x6. Now if it ito then let r = min{i w(i) < w(i + 1)). From (4.2) we have

(B.2) Sw = ôrSws..

Let v = WSr. By the induction hypothesis equation (B. I) holds for S... The induction step will be

to ‘apply” the operator 8 to the diagrams in 9(v). To this end we need more tools.

For the moment let us fix D € 9(v). Let a = ar(D) and 6 = ar÷i(D) he respectively the

number of elements of D in the rti, and r + lit rows. We have

if a>b,

(8.3) OrrD = .
. ...

= U if a = 6,

Eb_a—i . . . . if a &k0 r r+1

This suggests we define the operator 3r directly on the diagram D. For tIns we need only to

concentrate our attention on the rows r and r + 1 of D. Let j(r, D) = (31,12 jp). Notice

that in all columns j < w(r) of D(tf÷s) there are exactly two elements and in column w(r) =

of D(r_+i) there is exactly one element in position (r, it). We shall mow reduce the sequence of

indices j(r D) according to the following rule. Let J(o) = (jo,j j1). Remove from J(O) all

pairs m.m+t for which (r,jk) C B and (r + 1,jk+m) c 8. Let us denote the resulting sequence

by J1. Repeat recursively this process on J11 until no such pair can be found. Let us denote by

J(r. B) = (Ii 12 f) the final sequence. From construction, the sequence f(r, D) is such that if

(r, fk) C D then (r, Jt+m) C D. Let up(r, D) be the minimal k such that (r, Ii) C 8. If (r+ 1, fq) 8

then set up(r, D) = q + 1. We are now in a position to define the operation of 8r on the diagram

B. To this end let us first assume that a > 6. This means that we have a —6 more elements in row

r then in row r + I. Hence q — up(r, B) + I a —6— 1 for q the length of f(r, D). The equality
holds if and only if up(r, B) = I, In tIme case a > 6 the operator 8 on the diagram B is defined by

the map

(B.4a) ôrD — {D, Dm, D,...,

where D0 is identical to D except that we remove the element in position (r, w(r)) and for k =
1,2,.., a—b—I we successively set 8k Lobe identical to D_1 except that the element (r. Jur(r’.D)+k...J)
is replaced by (r + 1, Jurcr.D)+k—t)’ Now if a < 6 we have up(r, B) — 1 6— a + 1 (with equality ill’

up(r, B) = q + 1). So up(r, 8)— 1 > 6— a. In this case the operator 8 on the diagram 8 is defined

by the map

(8.46) OrD — (Do, Dm, D

where B0 is identical to B except that we remove the element in position (r, lAir) and the element

(r lfp(rD)—t) is replaced by (r.f0vn_m). For k = 1,2 b—a — 1 we successively set 8k to

be identical to Dk_1 except that tIme element (r + I, fup(r,D)—k—m) is replaced by (r, fupvn)._kI).
Finally if a = 6 then

8rxD± Z
D,E3,D

with the positive sign in case (B.4a) and the negative sign in case (B.4b). For (B.4c) the result of

(B.5) is zero.

We shall now show’ that

Proo The reader will notice that in D(v) the rectangle defined by time rows 1! 2 r + I and the

columns 1,2 w(r) — I is filled with elements. None of these elements can fl-move. Hence these
elements are fixed in any diagram DC 9(v). The same applies to all elements in column w(r) they
are packed in the smallest rows and there are no elements in the rows strictly greater than r. Now’
let D be a diagram in fl(v) and assume that UrD = (D0, B1 D} is non-empty. The remark

II (Sic)

With this definition of 8. we have that

Or B — ()

(8.5)

(8.6) Or maps 9(v) into Q(w).

1/

/j
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r
above implies that the element in position (r, w(r)) does not aWect the sequence of B-moves from

D(v) to D. Hence we can apply the same sequence of B-moves to D(v) — {(r, w(r))} and obtain Do.

Moreover 8(v)— {(r, w(rfl} is obtainable from 8(w) by a simple sequence of B-moves in rows r, r+ 1,

for this one successively B-moves all the elements in row r + I and columns given by j(r, D(w)).

This gives that D is obtainable from 8(w) by a sequence of B-moves, that is D € cBw). Now

from the construction of 3,8, Dt (k > 0) is obtained from Dk_t by exactly one B-move. Hence

0,8 C fl(w). II

It is appropriate at this point to give an example. Let w = (6.3.95, 1,2,11,8,1,7, 10). Hence

= 2 and v = (6,93,5. 1,2,11.8,4,7,10). We have depicted below the diagrams 8(w) and D(v)

In our example the fixed elements described above are colored in grey and the element in position

(r, w(r)) is colored black.

To prove (B.1) the first step is to find a subset of [2(t) such that when we operate with 69, we
obtain [2(w). To this end let

flo(u) = {D E fl(s) ar(D) > a,+(D) and up(r, 8) = 1).

[2(w) = U 0,8 (disjoint union)

Proof It is clear from construction that the subsets 0,8 are disjoint when DC [20(0). From (8.6)
we only have to prove that for any 8’ C [2(w) there is a 8 C [20(v) such that 8’ € 0,D- To see
that, reduce the sequence j(r, 8’) = (ii,.., j,,) b removing recursively all pairs jk,jk÷i for which
(r,jk) € 8’ and (r + ljk+;) € 8’. Denote the final sequence by f’(r. 8’). Let 8 be the bubble
diagram obtained from 8’ by adding an element in position (r, w(r)) and successively B-moving all
elements in positions (r + 1, J) € 8’. We have that 8 E fl(s). To see this one applies to 8(e) the
sequence of B-moves from Dew). to D—-{(r, w(r))}. Of course one should ignore any B-move in rows
r, r+ 1 performed on the origñtalldements of 8(v) in row r. But by the choice of r, the other B-moves
apply almost directly and the resu1’t &agram is precisely 8. Moreover since f(r. 8) = f’(r, 8’)
and up(r.D) = 1 we have 8€ fib(s) and U € 0,8. If

-

6 7 • 9 ii ii

-i-mi
U

1:
I
r

—It4:::hr
We have

ii

:x: :::::

:J:+4
(8.7)

8(w)

Now let V be the

L
8(v)

DEO0(ul

following diagram of

-L

fl(s).

[ 8

A’

here, a,(D) = 7, ,+i (8) = 4 and j(r, 8) = (3,5,7,8.10). The reduced sequence f(r, 8) is (8, 10)

and up(r, 8) = I. Hence 0,8 = {Do, D, 82) where

(8.8)

We shall now investigate the effect of 3, on Qi(v) = fl(s) —
flo(e). More precisely we have

Z rZO’
ocn (v)

Proof: There are two classes of diagrams in fl(s). The first class contains the diagrams 8 for
which a,(D) = a,+(D). In this case it is trivial that 8,1D = 0. The other class is formed by
the diagrams 8 such that o,(D) a,+i(D) and up(r, 8) > 1. In this case we shall construct

p
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Kohnert’s construction

Let B be any diagram. Choose (if) € B such that (if’) 0 for all f > f. Let us suppose

that there isa point (i’,j) g B with i’ < i, Then let h < i be the ]argest integer such that (hi) B

and let D denote the dagram obtained from B by replacing (I, j) by (I,, j). %Ve say that B1 is

obtained from B hy a “K-move”. Now let K(D(w)) denote the set of all diagrams (including B

itself) obtainable from B by any sequence of K-moves. Kohnert’s conjecture states that for any

permutation w we have

S SD

A. Kohnert has proved (8.9) for the case where ii is a vexillary permutation but the general case

was still open. For the interested reader here is a sketch of how one may prove (8.9).

We have noticed by computer that fl(w) = K(D(w)). The idea then is to show both inclusions

by induction. The inclusion K(D(w)) C fl(w) is the easiest one. We only have to show that any K-

move of an element (1, j) to (h, j) can be simulated using B-moves. For this we proceed by induction

an involution, D — B’, such that OrxD + = 0. Let f(r, 0) = (f ,f fe), a = ar(D)

and b = 0r+i (B). We first define the involution for the case a > b. Since TSp(r, 0) > 1 We must

have q — up(r, 0) + I ° — b. So let B’ be identical to D except that the elements in positions

(r, fup(r,D)). (r, fup(r.D)+i ) (r, fur(r.D)+a_b_ ) are B-moved to the positions (r + 1, filrlr.fJ 1L

(r + I, fup(r,D)+l) (r + 1 fop(r,D)+a—b—L). It is clear that B’ € Q(v). But fV B’) = f(r, B)

and up(r, B’) > up(r, B) > 1, hence B’ E fli(u). Moreover we have a(B) = b and ar+i(D) = a,

hence Un0 + = 0. The case a < b is similar to the previous one. U

A proof of (8.1) is now completed

using the induction hypothesis, we have

combining (8.2), (B5), (B.?) and (88). More precisely

SW UrSv

5
DEO(ii)

(B.2)

5
DE U,, V
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on i — h. If I — h = I then the K-move Is simply one move. Now if i — h > 1, we first perform the
sequence of B-moves in row h, h + 1 necessary to B-move the element (h+ if) to (hi). Then Using
the induction hvpothesj5 we can K-move (if) to (h + If). Finally we reverse the first sequence of
B-moves in rows A, h + 1. That shows K(D(w)) C I?(w).

The other inclusion needs a lot more work. For B € K(D(w)) and I any row of B let B(B)
denote the set of all diagrams (including B) obtainable from B by any sequence of B-moves in the
rows i, I + 1 only. It is clear that if i is big enough then B1(D) C K(B(w)). We may then proceed
by reverse induction on I. Now for a fixed i, notice that B,(D(w)) is obtainable from D(w) using
only K-moves. Let fl0 denote the set of all diagrams obtainable from B(D(w)) by any sequence
of K-moves for which no elements crosses the border between the rows I + 1 and i + 2. A simple
inductive algorithm may be used here to show that for any B we have B,(D) C 0o Next
let 0i denote the set of a]] diagrams of K(D(w)) which have k more elements than 0(w) in the
rows 1,2 I + 1. For almost all the cases it is fairly easy to show (using induction on k and the
induction hypothesis on 1) that for B € Q we have B,(B) C But some of the cases are really
hard to formalize! Now this completed would show that Q(w) C K(B(w)) since K(D(w)) =

(11.8)

S
DEO0It’) P,Ea..D

S
D’Efl(w

(0.5)

(0.7)

(8.9) SW =

DEK(D(w))

r..

Ar,



Chapter V

Orthogonality

Pr. = Z[x1

= Z[r1,....
where z ..., r0 are independent indeterminates.

= e1x’ — fqi + . . +

from which it foliws that the x’ (1 I < n) generate Ar.[rr.] as a An-module. On the other hand,
if we have a relation of linear dependence

TI

1

V

72 Notes on Schubert Polynomials

Recall that

73

(5.1) P is a free A-modislc of rank n! with basis

= {x° :0 s — I I ‘ n}.

PwoL by induction on ii. The result is trivally true when n = 1, so assume that a > I and that
is a free A_,-moduIe with basis B_’. Since P = Pn_ 1(m), it follows that P,, is a free

Ar..5[z0)-module with basis Br..1. Now

=

because the identities

er(xi
,..., rn)=Z(_xnrer...s(xi ir.)

show that A0_1 C An[xn], and on the other hand it is clear that A C Ar..L[zfl]. Hence P is a free
A[xr.}-moduIe with basis B_1.

To complete the proof it remains to show that Ar.[z0] is a free A-moduIe with basis
1, x0 x1. Since fl(r0 — z,) = 0, we have

=0

9’
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that

As before, let 6 = (a —1, a —2,1.0)- By reversing the order of ri.... r, in (5.1) it follows

(5.1’) The monomials 1°, a C 6(z.e., OS ti, Sn — I for I S S a) form a An-basiS of Pn.Il

We deFine a scalar product on P,. with values In A, by the role

<19 >= OtFQ(f9) (f.g € F,,)

where wo is the longest element of Sn. Since &w, is An-linear, so is the scalar product.

(5.3) Let wE S,, and JOE P,. Then

(i) <af,g><LOw-”J>

(ii) < wJ,g > c(w) < f,wg >

= (_flC(w) ;s the sifl of U,.

(i) It is enough to show that <âjf,g >=< J, 8g> for I < I < a — 1. We have

<81J,g > = &0((ô,J)g) =

=

because 8,! is symmetrical in r and 11+1. The last expression Is symmei.rlcal in 1 and y, hence

<8J,g >< 8y,f >< f,ög> as required.

(ii) Again it is enough to show that < s5f,g > — < f,s,g >. We have

It follows that

(1 ifvw0u,
=

1 0 otherwise,

(0 ifowou,
<6, 6 >=

I <x,1 > 80(’6) = I if,, = wou.lI

< woeu,evw, > = e(o) <li6 >
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with coefficients f C An, then we have also

for j = 1,2 a, and since

= 0

Proof: We have

it follows that f’ = ‘‘‘
= In = 0.11

det(z7’) = fl(r — r,) I-u,
‘<3

<6,,S > =< O00r,Sv>

=< >
by (5.3). Also t(wou) = e(w0) — 1(u) = 1(u), hence

(5.2)

(5.5) Let U,VESn. Then

Proof: We have

> e(v)6,,.

,rhere

Proof:

< er,,,, > =< 0e,,, Oj,0%j,0X >

=< âa,vw,(woSu),x6 >

= (u) < wpâ,,6,,r6 >
by (5.3) and (2.12). By (42) the scalar product is therefore zero unless 1(u) — 1(v) = £(uu), and
then it is equal to e(v) < wo6,4,,,r6 >. Now S,,,,—i is a linear combination of monomials x such
that a C 6 and al = 1(u) — 1(v). hence wo(S0_i )r6 is a sum of monomiab z where

<S1f,g > a,,,,((s,J)g) =

fl=woa+hcwob+b=(n—1,...,n—1).

Now ö,,,0r = 0 unless all the components 0, of B are distinct; since 0 5 0 S a — 1 for each i, it
follows that ,,r0 = 0 unless/i = w6 for some WE Sn, and in that case

and since äjs, = —a this is equal to

= —a,(J(sg)) = —<1,519>

(5.4) Let u,vCSn be such that £(u)+l(v) = (). Then

= B — 6 = to6 — 6

must have all its components 0. So the only possibility that gives a nonzero scalar product is
to = ha = O,u = v, and in that case

<eu,eU >=
11 ifvwou

0 otherwise.

= ((O)a,,,,(r6) = e(v).ll
(5.6) The Schubert polynomials ‘Sf4 WE 5n, form a An1aszs of Pn.
Proof: Let u, v C Sn and let

(1) woS,, = Z auaia,
ad



> a.c0b =

ACB’ = 1

where A = (oua), B = (bvp) and C = (CaLl) are square matrices of size n, with coefficients in A,..

From (3) it follows that each of A, B,C has determinant ±1; hence the equations (2) can be solved

for x, i C 6, as An-linear combinations of the Schubert polynomials 6,, in C S,. Since by (5.1’)

the x from a An-basis of?,,, so also do the

Z

A1 = {w € Sn t(s1w) > £(w)},

then S,, is the disjoint union of A and s1A, and s1A = Air0. hence

Z’,g) = e(w){O(waf)Oi(O.,ww,g) — OjUw(wof)(O,,ww0g)3.

[(inn) = ((u) — £(w) = e(u) — [(in)

[(ow) = [(ow0)
— [(w1w,,) = [(in) —

Hence the polynomial (2) is (i) symmetric in .r1 z,, (by (1) above), (ii) independent of In, (iii)
homogeneous of degree €(u) — F(s). hence it vanishes unless [(u) = F(v) and u = w = u, in which
case it is equal to e(w) = c(s). Hence

f’(woGu, Saw0) = (o)óu. < w06,4, >

by (5.5). This completes the proof of ()•IJ

10 ifwwo,
(qwa)06(z) if w = in0.

X(wz, I)
= fi (IWcI) — x)

is non-zero if and only if w(i) j whenever i + i n, that is to say if and only if in ino; and

z(wox,r) fi (In+i_i_zj)
‘+3 Sn

= 11’t — x) =
j(k

The polynomial ã(z, y) is a linear combination of the monomials x, a C 6, with coefficients in
y,,] = PnU), hence by (4.11) can be written uniquely in the form

>
tvES

/

/
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(2) c(v)Svw, = >
0c

with coefficients aua, bao C A,,. Let ceo =< 1a Ø >. Then from (5.5) we have

or in matrix terms

(3)

which by (4.2) is equal to

(2)

Orthogonality

summed over WE 5,, such that

77

We have

and

(5.7)
wES,

for alt f,g€Pn.

Proof: Let cT’(f, g) denote the right-hand side of (5.7). We claim first that

(1) t(f,g)€An.

For this it is enough to show that b4 = 0 for 1 i <n — 1. Let

(5.8)

wcs,

Since for all #, E I’,, we have

Now let r = (xi, . . x,,) and y = (UI Un) be two sequences of independent variables, and let

à.=g(x,y) fi (r—y1)
(the “semiresultant”). We have

(5.9)

For

— (b)’) = (8)(O) — (O)(8) = 0,

it follows that 814(f,g) = 0 for all i as required.

Next, since each operator d, is A,,-linear, it follows that cF(f,g) is An-linear in each argument.

By (5.6) it is therefore enough to verify (5.7) when f = woS0 and g = S,, where ti v C S,,. We

have then

= >
wCS.
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with T(y) e P0(y). By (5.5) we have The shape of v is
79

‘F(y) =c à(x, y), (—s) >

where the suffix: means that the scalar product is taken in the s variables. hence
and the shape 010’ is say

A = A(v) = (0(r) — r u(2) —2, u(1) — 1)

uc5
The relation between these two partitions is

by (2.10) where cC S., acts by permuting the z.

Now this expression (1) must be independent of z :.,. hence we may set s, = y’ (I

I n). But then (5.9) shows that the only non-zero term in the suit’ (1) is that corresponding to

v = w0. and we obtain

“C S..

Remark, Let a = r + s where r, s 1, and regard S. x S as a subgroup of 5,,, with S. permuting

1,2,..., r and 5, permuting r + 1,..., r + s. Let w, ivg’ be the longest elements of Sr. 5, respec
(p) (,)tively, and let u = x - If w ES,,, we have 8,.,S.. = S,, if t(wu) = t(w) — €(u), that is to

say if too is Grassmannian (with its only descent at r), and i90S,, = 0 otherwise. hence by applying

to the s-variables in (5.10) we obtain

where G,, C 50 is the set of Grnssmannian permutations v with descent at r (i.e. eli) < r(i + 1) if

I r). On the other hand, it is easily verified that

and that v’ = vuw0 is the permutation

ô,s(sy) = llH’ ui)
i=i j=i

Pi5Ar+1_, (1ir)

that is to say A is the complement say ji, of p in the rectangle (s’) with r rows and s columns,
Hence, replacing each y1 by —y,, we obtain from (5.10) by operating with d0 on both sides and
using (4.8)

11ff” +y,) =
1=1 j=1

summed over all tic (s9, where i is the complement of p in (sr), This is one version of the usual
Caurhy identity fM Chapter I (4.3)’).

Let (6”),tEs be the A0-basis ofp,, dual to the basis (SW) relative to the scalar product (52).
By (5.3) and (5.5) we have

N

< S,, tt’oSvw, > e(vwa )6.,,,

IX(r,y) = E Sw(x)woS”(y)
WES.

(1)

T(y) = (7,(\(z,y)wo(S,,(—zfl)

= ah(’)’ c(v)X(t’z, y)eivo(Swwo(_s))

I).

Hence we have proved

(5.10) (“Cauchy formula”)

T(y) =

“(‘Li) = II

(5.11)

30A(x,y) =
VEGr.

or equivalently

which shows that

(5.12)

< Su(r). woSvw (—x) >= 6,,

S”(r) = woS0(_r)

(c(r + 1) .( + s) t’(l) (r))

hence is also Grassmannian, with descent at s.

for all WE S. From (5.10) it follows that

or equivalently

(5.13) 11 (‘—)= Z S(z)5W(y),

WOO..

Ti F



and therefore also

so that

Z °k06W;j

n
wCS
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Let (ro)flco be the basis dual to (110c6. If

= auaza,

=

then by taking scalar products we have

> n,b0 =

form
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Hence (5.15) is true for all Schubert polynomials S,, ne S,,. Since the scalar product is An-linear
it follows from (5.6) that (5.15) is true for all f€ H.II

Let O be the homomorphism that repiaces each y, by r. Then (5.15) can be restated in the

(5.15’) O < f(x), C(r, y) >r- f(s)

(5.14)

Z ew(r)edf(y) =
WES oh) W

= z°y,.

From (5.13) it follows that ‘Jo is the coefficient of z° in fJ1<(’ —
y), and hence we Find

‘a = (—U’flea.(xi+i x)

for all I E H.
Now let z = [:1 :J be a third set of variables and consider

(1)

where 3 = 6 — all

Let

< C(x,y),801r’C(z,:) >1

for u, v € S,, where O and v act on the x variables. By (5.3) this is equal to

(2) ((U) < C(x, ), vô,_, C(x, ii) >r

and by (5.15’) we have

(3)

(4)

C(r, y) = c(wo)S(wor. y) = flu —

I <3

If f(x) € H,, (4.11), let J(y) denote the polynomial in y’ y,, obtained by replacing each x, by

y. Then we have

(5.15) <f(z)C(r,y) >r J(Y),

Hence we have

where as before the suffix z means that the scalar product is taken in the z variables. In other

words, C(z, y) is a “reproducing kernel” for the scalar product.

ProoE From (5.13) we have

9yr < C(r,y),O,ir’C(x,:) >s = &uC(, :),

< C(z, :), a_1C(1, y) >r = eô,,_i C(z, y).

Since °yr and 9, commute it follows from (1)-(4) that

OvO.1_1C(,, y) = e(v)OzrduvC(r,:)

= e(v)O80v’C(z,y).

O(Vôu_l woA) = e(v)O(ô, u1 woA)

for all ii, v ES,,, where A = A(z, y) and U = O,.

Let E,, denote the algebra of operators of the form

(5.16)

Hence by (5.5)

C(z,y) = ((wo)Sw(wox)6wwa(y).

WES.

< C(z,y),6,,,,(z) >r = t(wwo)Swwu(y)

=

with coefficients w € Qn = Q(r, ..., x,,). For such a we have

(5.17) = (wo)ar19@(wl wozI))

for all to S,,, where and w1w0 act on the x variables in A.

/
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For 9((w ‘woiX)) = E.jcs_ O(uw wnI), and by (58) O(uw ‘wosl) = (uww0x, z) is

zero if is 0 in, and is equal to qwo)ao if it = w.

Let it € Sn. and let (at,... a) be a reduced word for it, so that 8, = Since

= (x. — x÷,Y’(1 — sa) for each a 1, it follows that we may write

by (5.9) again.

Iwo! ifu=w0

O(a,(Af)) =
(0 otherwise.

= 0 e(w0)wo(f)qw0)a6 = wo(f)

The matrix of coefficients (a,,) in (5.18) is triangular with respect to the ordering , and one

sees easily that the diagonal entries a,, are non-zero (they are products in which each factor is of

the form x — ri). Hence we may invert the equations (5.18), say

= >: 5u,at
‘<U

and thus we can express any € E as a linear combination of the operators . Explicitly! we

have

= >:
wCS.

Proof: By linearity we may assume that = JO, with f E Q,,. Then

=

Now by (4.2) &—z,,. is either zero or equal to and by (5.20) O(O,,,) is zero if

in 0 it, and is equal to I if in = it. Hence the right-hand side of (522) is equal to JO, = 0, as

required.(5.18) a, =e(wo)aolZa,,v

where u it means that v is of the form s . . . sb,, where (b, b) is a subword of (a os).

The coefficients a,, in (5.18) are polynomials, for it follows from (5.16) and (5.17) that

(5.19)

a,, = &(O,(vwoA))

= r(v)9(vO,—i u3).

(5.20) For all f E P0 we hove

(5.23)

In patticular, it follows from (5.22) and (5.21) that

Proof: From (5.18) we have

O(O,(J)) = a:1> a,,v(f)O(o4.

By (5.9) this is zero if is wo, and if is = in0 then by (2.10)

‘<U

O(Owq(1fl) = a >: e(w)w(f)O(u,)
wES

=

hence is a polynomial.

The coefficients a,,,9,, in (5.18) and (5.23) satisfy the following relations:

(5.24) (i) flay =

(ii) a,—i,—i = v (a,,),

(iii) 0i1,c =
forafl u,vE50, where 1= w0uwo,u= woumo.

Proof: (i) By (5.23) and (2.12) we have

fl, =

= e(vwo)e(uwo)O(o,,wou’w0S) by (5.16)

= c(uv)a,,,,0. by (5.19).

by (5.9),

(5.21)

(ii) From (5.18) we have

S(vO,_i woA) = r(wo)v(n)>: v(a,—,.,— )D(vw’ w0A)

= e(v)v(a,_i ,—i)

(5.22)

and likewise
O(O,or’ w0) = >: a,,.O(wv

= a,,
again by (5.9). Hence (ii) follows from (5.16).

(iii) Since O = e(u)wc&wo (2.12) we have

= (uwo)wo(Za,,u)wo

= e(uwo) >:



(525) Let E be the subalgebra of operators € E such that d(P) C P,. Then E is a free

Ii’,—

84 Notes on Schubert Polynomials

and hence n = e(utLio)wo(auu).lI

Pmodtde with basis (Uw)weS..

Proof: = wOw € E,, then by (5.22)

= O((O,-t)) € ft.

On the other hand. (he & are a Q-basis of En, and hence are linearly independent over

Chapter VI

Double Schubert Polynomials

85

Let x = (x zn)y = (Yt y,) be two sequences of independent indeterminates and
recall (5.8) that

ä(x.y)= fi (x—y).
1+) S

For each wE S. we define the double Schubert polynomial $w(l, y) to be

(6.1)
6w(1,Y) =

where acts on the r variables.
Since Ni, 0) = 16 we have

(6.2) (x,0) =

the (single) Schubert polynomial indexed by w.
From the Cauchy formula (5.10) we have

tieS,

and by (4.2)

=

if ((uw) = ((two) — ((wwo), i.e. if ((uw) = ((in) — e(v), and

= 0

otherwise. ilence

(6.3) S(x,y) = Z
III

t



F
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summed over all U, v € S, such that w = vu and 1(u) = 1(u) + 1(u)

From (6.3) it follows that SW(x, y) isa homogeneous polynomialof degree 1(w) in x. Sq_i!

1/i Yn1• We have

(6.4) (i) OW(S, &i) = A(x, 1?),

(ii) Si(x,y)=l,

(iii) S_ (x, y) = SW(—y, —r) = f(w)Sw(y, x) for all wE Sn,

(iv) SW(x,x)Oforall wES0 except iv= 1.

Proof: (i) is immediate from the definition (6.1).

(ii) and (iii) follow from (6.3).

(iv) follows from (5.20), since SW(x,x) = O(OW_iWOzX) = 0 if w 1.11

(6.5) (Stability) If in > vs and i is the embedding of 5,, in 5,,,. then

for all wE S,,

=

Proof: This again follows from (6.3) and the stability of the single Schubert polynomials (45)11

From (6.5) it follows that the double Schubert polynomials S(x, y) are well defined for all

permutations wE S.

For any commutative ring K, let K(S) denote the K-module of all functions on S with

values in K. We define a multiplication in K(S.,) as follows: for f,g 6

(fg)(w) = f(u)g(v)
up

summed over all u, v E 5c,3 such that uu = wand 1(u) +1(v) = 1(w). For this multiplication, K(Sr,j

is an associative (but not commutative) ring, with identity element 1, the characteristic function of

the identity permutation 1. It carries an involution J — 1’ defined by
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(i) If fg = f and f(1) is not a zero divisor in K, then g = I.

(ii) If fg = 1, then gf = 1.

(iii) is a unit (i.e. inverti&le) in K(SOC) if and only if f(l) is a unit in K.

Proof: (i) We have JO) = f(l)g(1) and hence g(1) = 1. We shall show by induction on 1(w)
that g(w) = 0 for all it’ 1. So let r > 0 and assume that g(u) = 0 for all u € 5 such that
I < 1(u) r — I. Let w he a permutation of length r. We have

(1) f(w) = (Jg)(w) = f(w)g(l) + J(I)g(w) + f(u)g(v)

I where the sum on the right is over u, v € S such that is 1. uØ 1, isv = wand ((u) + 1(u) =
so that I 1(t) r — I and therefore g(u) = 0. hence (1) reduces to f( l)g(w) = 0 and therefore
9(w) = 0 as required.

(ii) We have f(1)g(l) = iso that 1W) is a unit in K. Also J(gf) = (19)1 = f. whence yf = I by (i)
above.

(iii) Suppose fisa unit in K(S), with inverse g. Since Jg = I we have J(l)g(l) = 1, whence f(l)
is an unit in K.

Conversely, if J(1) is an unit in K we construct an inverse g off as follows. We define g(l) =
fOY’ and proceed to define g(w) by induction on 1(w). Assume that g(u) has been defined for all
such that l(v) < l(w) and set

g(w) = —f(1)’ Zf(u)g(v)

summed over u, v such that uu = w, u 0 wand 1(n) + 1(u) = l(w). This definition gives (fg)(w) = 0
as required.j

Now let 6(x) (resp. S(r,y)) he the function on Sw whose value at a permutation w is S,L(z)
(resp. G,, (x, y)). (The coefficient ring K is now the ring Z[x, y] of polynomials in the x’s and Vs.)
Since Oi(r) = 6(z. a) = 1, it follows from (6.6)(iii) that S(x) and 6(x, ij) are units in K(Sw).

A
which satisfies

(fg)_ = g’f•

for all f,g € K(Sw).

(6.6) Let f,g C K(S).

(6.7) (i) 6(r,0) = 6(x),

(H) S(x, x) =
(iii) S(x, y = 6Hy, —x).
(iv) 5(x)_i = S(0,x),

(v) 5(z) =

(vi) S(x,y) = 5(y)_i5(x) =

p.

V
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Double Schubert polynomials soProof: (i)-(iii) follow directly from (62) and (6.4). where .4 = ao,_1 . Oif, or explicitly

p4i
11th)

From (6.3) and (6.4) we have

f(y1
== Z6_(v)6fr = Z°°0(’ 1=1

For any integer r, let S(i, r) denote the polynomial obtained from 6 fry) by setting m =

summed over u, v € S such that no = w and E(u) + 1(v) = £(w). In other words,

y2==r.
Since

I n—I
(1) S(r, y) = 6(0, yi)S(i)

I 6afr, r) = £X(x, r)
= —

=1

In particular, when y = x we obtain 6(0, x)S(z) = S(z,z) = I by (ii) above, and hence 0(0, =

= 6,fr —

5(z)1.

This establishes (iv); part(v) now follows from (iv) and (iii), and (vi) from (iv) and W where r —r means (x’ — ri2— r,...), it follows from the defihitions (6.1) and (4.1) thatabove.

Sfr, r) = Sfr — r)From (6.7) (vi) we have

6(r) = S(y)S(r, it) for all permutations w. Hence, by (6.7)(vi),
or explicitly

S(r — r) = 6(r)_to(s)6(r) = S(y)S0(r,y)
d in particular, for all integers q,

‘4.0

summed over nv such that no = wand £(u) + 1(v) = 1(w), so that u = wv and S = O06 by

S(q — r) = S(r)6(q)
(4.2). Hence

S(x) = > 6(z. y)BvSw(it) from which it follows thatV

(where the operators 8. act on they variables). The sum here may be taken over all permutations
(6.9) &(r) =v, since = 0 unless 1(wir 1) = 1(w) — 1(v). By linearity and (4.13) it follows that

for all r € Z.(6.8) (Interpolation Formula) For all 1€ Pn = Z[r, r0] we have
Since Sw(r)isasumofmonomialswith pitive integralcoefficients(4 17) 6(1) is the numberf(s) = Swfr.y)Owf(y)

of monomith in Sw(x) (each monomial counted the number of times it occurs). By homogeneity,
U:

we havesummed over pennutations we

(The reason for the restriction to s° in the summation is that if w we shall have (610) S(r) =w(m) > w(m + 1) for some in > n, and hence 8,. = where v = u’s,,; but On! = 0 for all
From (6.7)(v) and (6.9) we obtainf€Pn,sincem>n,andthereforeO,.f=0.)

Remarks. 1. By setting each y = 0 in (6.8) we regain (4.14).
= SHirt = 6(l)2. When n = 1, the sum is over SO), which consists of the permutations u = ss—i . .s (p 0);

that we have another proof of the fact (1.30) that S.._(l) = 6,’( 1).
nip is dominant, of shape (p), so that (see (6.15) below) Ow,(r,y) = (z— y’) .. (s —

y,). Hence tIle
Now consider the function F = 6(1)—I, whose value at we S is

case a = I of (6.8) is Newton’s interpolation formula
.

number of monomials in 6,., if w $ 1,ffr) = Efr —gd (i
— y)f(y’ Yp+i) I F(w)

= {, ifw = 1.
p?0

//

[4
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For each positive integer p we have

Notes on Schubert Polynomials Double Schubert polynomials

2. If w is dominant of length p. then 5,. is a monomial hy (4.7), and hence in this case
91

I;’ ,‘

(Zv iy “) r”) SW(1)
\ro

which is equal to pce,.(l) (consider the coefficient of t” in (e’ — 1)” ). On the other hand, F(w) is

by definition equal to

F(w1)’ F(u’,,)

summedover all sequenc (wi. tv) of permutations such that wt . . . w = w.1(w, )+ . .+E(u’) =

1(w) = p. and w 1 for I 1 p. It follows that each rn has length I, hence w1 = 5a, say, and

that (ai a) is a reduced word for w. Since

Si. = + ‘ Z

by (4.4), we have F(w1) = 5,(1) = a, and hence the sum (2) is equal to aia . . a summed

over all (a1 a) E R(w).

We have therefore proved that

(6.11) The number of monomials in 5,. is

S,.(1) =

summed acer all (a’..... a) C R(w), where p = ((w).II

Remarks. 1. The reduced words for 1,,, x w(m ? I) are (m + a m + o) where (at a) C

12(w). Hence from (6.11) and homogeneity we have

summed over R(w) as before. Letting m — c, we deduce that

Card 12(w) = pl lim Si,,. (i
rn—ce m)

3. Suppose that w is vexillary of length p. Then by (1.9) we have

=

where A is the shape of wand = ( ) the flag of iv. Ilence

5,. = SA(.V,.f_, ..-,Xs.+,)

for each m ? 1. If we now set each z, = and then let ,n — , we shall obtain in the limit the
Schur function 5A for the series e’ ([.NlJ, Cli. I, §3. Lx. 5), which is equal to h(A)” where li(A) is
the product of the hook-lengths of A. Hence it follows from (6.12) that if iv is vexillary of length p.
then

Card R(w) =
h(A)

where A is the shape of a’. In other words, the number of reduced words for a vexillary permutation
of length p and shape A p is equal to the degree of the irreducible representation of S indexed by
A.

1. It seems likely that there is a q-analogue of (6.11). Some experimental evidence suggests the
following conjecture:

Sw(1,q,q21...)
= qctaiU_QILO_qdP)

summed as in (6.11) over all reduced words a = (Si a) form, where

(1)

= (5(1) —1)

=

=

by (6.9). The value of(I) at a permutation w of length p is by (6.10) equal to

z
RI,.)

(2)

Ii (6.13)

(6.Ilq’?)

4

0(a) = a, <

When to is ‘exillary the double Schubert polynomialS,. (r, y) can be expressed as a multi-Schur
function, just as in the case of (single) Schubert polynomials (Chap. IV). We consider first the case
of a dominant permutation:

(6.14) If w is dominant of shape A, then

Sw(’,Y) fi (zj—y)
(.fleA

= SACAi — m —(6.12)
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where m=((A) and

Proof As in (4.6) we proceed by descending induction on 1(w), u’ C 5,,. The result is true for

In = we, since w0 is dominant of shape 6 and

Sw,(i, y) = ‘Mx y) = fl (x —
y).

t’j )EA

Suppose w U’o is dominant of shape A. Then A C (and A 6). Let r 0 be the largest

integer such that A4 = n—i for 1 i 5 r, and let a = A+1 + lSn — r— 1. Then ws is dominant.

((wsa) = (1w) + 1, and A(Ws,) = w) + c, and therefore

=

=O,((r, YrtI) fl (x, —y))
I i .1 lEA

by the inductive hypothesis; since A, = A,+i it follows that

With this notation recalled, we have

Double Schubert POlynomials

(6.16) 6(z, y) = SA((XJ, — -)m.
(‘ —

y )‘flb)

Proof: The proof is essentially the same as that of (4.9) (which is the case y = 0). By (4.10) the

dominant permutation Wi. constructed from w in the proof of (4.9) has shape

— ( ml m ,fl

P—’9& 9i— i,...,

P
if

G(x,y)= 1J
(:,j I E A

winch is equal to sA(Xl — )‘A m — YAJ by (15)11

(6.15) If u’ is Grassmann,an of shape A then

&w{z,y) = SAMm — :+m-I, ,
—

Proof: This follows from (6.14) just as (.1.8) follows from (7)•lI

Finally let w be vexillary with shape

and therefore by (6.15) we have

=

where m = m2 + + mi. = ((A) and the sequence (A _) is obtained by subtracting the

sequence ((Y9 )‘“l (Y91 )“‘) term by term from the sequence (X1 Vm). Hence the same

argument as in (4.9) establishes (6.17)11

Remark. From (6.16) and (6.4)(iii) we obtain

= (_1)IAISA,((_zk )“t,.,., (z)nh )

where .3 = Xj, —
so that (if rk (xj) = rk (y) = I for each I I)

rk (Z,+1 — Z) = f+i — ft + 9k.i —I —

= —

A(w) = (pr’

and flag

(w) = (fr . . . .

as in Chapter IV. Then w is also vexillary, with shape

A(w1) = A(w)’ = ( 1Iq,...

the conjugate of A(w), and flag

‘i ‘lk
= (g1,..., Ui.

whore by (1.41)

g+qt=fi.÷i_+pk1_1 (151(k).

Let Tr (resp. r) be the shift operator (4.21) acting on ther (resp. y) variables. Then we have

by (1.41). Hence (6.4)(iii) reduces to the duality theorm (3.8”) (with p = 0) when w is vexihllary.

(6.17) r:r;s(x,y) = 6I,xw(x,y)

for all r 1 and all permutations w.

Prooi By (6.3) and (4.21) we have

rr6(r,y) = e(u)G,,xu(r)6t,xt(y)

summed over un such that uu = in and 1(u) + l(u) = 1(w). By (6.3) again, the right-hand side

is equal to Sj,(z, y). II
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In particular, suppose that in is vexillary. With the notation of (6.16), the flag of U x w (resp.

1_ x w’) is obtained from that of in (resp. w_t) by replacing each ft by f’ + r (resp. each g, by
g + r). hence hy (6.16) we have

S1. (z, y) = 5A ((XIL +r — 3”.+r )“ ,..., (Xj,. +r — +r 1’”)

(‘) LI) = SA(.’r —Pr Pr

S(z,y) fl (r_yJ)=fA(z,y)say.
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and hence

Chapter VII

Schubert Polynomials (2)

(6.18)

for all r 1, whcre pV (resp. p) is the homomorphism Pr of (4.25) acting on the z (rcsp. ,j)

variables.

(6.19) Let IT: (resp. ,r1,) denote ,rt,.i acting on the £ (rcsp. y} variables. Then if in is verillary of

shape A, we hate

xrySw(r, y) = SA(Ar — Yj.

Proof By (4.21) we have r = and w = pV1r. Hence (6.19) follows from (6.17) and (6.18).U

In particular, suppose that in is dominant of shape A, so that by (6.14)

Recall the decomposition (1.17) of a Schubert polynomial SW:

In this case (6.19) gives

iij lEA

95

= Zd0S(xi ,...,x,n)6u(xm+t,xrn+2,...)

Our first aim in this Chapter will be to give a method for calculating the coefficients d0. We shall
then apply our results to the calculation of Card (R(w)), the number of reduced decompositions
in = s, (where p = ((in)) of a permutation in.

For this purpose, we introduce the operators 8, i 1, defined hy

if f(sw) < 1(w),
drew =

10 otherwise.

Remarks. I. If is the (linear) involution defined by ‘(S.n) = S— for each permutation in, it

follows from (4.2) that dl = wdw. hence we may define 3, = for any permutation in, and we
have 8 = d . whenever (a ,..., a) is a reduced word for in.
2. If in E Sn we have OSW = 0 for all > ri because 3SW = wO6,_i, which is zero because
w’(i) <w’(i+ 1).

(7.2) O, commutes with d1 for all i,j 1.

Proof: We have

WrWyfA(Z,Y) = SA(Xr — Yr)

for all r 1, which is Sergeev’s formula (3.12’).

(7.1)

Likewise

I DSW,J = 3w,, if t(sws,) = ((in) — 2,
=

0 otherwise.

( 8,6,, = if ((sws,) = ((in) —2,
aja:eW =

1 0 otherwise.
[hence 8U

—
&O vanishes on each Schubert polynomial S,, and therefore vanishes identically.I

rf 7
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Both sides of (1) are determinants with n — 1 rows and columns which agree in all rows except

the Ill) row. On the left-hand side, the elements of the row are by (Th 10)

h1(X) + tht_1(X1+1)
as polynomials an t,x, 12,....

Proof: The coefficient of 1” (1 5 p S r) on the left-hand side is

(‘)

summed over all reduced sequences (at,..., a) satisfying

n—r<oj<..<a<n—i.

Let b = ii
—
a,11 for all 1<1< p, so that

and on the right-hand side they are lieU + Xi), where k runs form n —21 + I to 2n —21— 1 in each
case.

Now we have

h(X1) + thi_1(X11) = li(t + X1) — the_1U + X,) + th_1(t + X.1) — t2he2(t + X.,.i)

= lieU ÷ A,) — t(t — ii )ht..,U + Ai

Hence ifwe add t(t — 11+1) times the (1+ I)’ row to the jth row in the determinant on the left-hand
side, we shall obtain the right-hand side of (1)11

For each r I, let
(2)

t,U) = tro + to;÷1)(l + t8,)..

• .

. a:,e. = =

= ‘

For each permutation w, we have (1 + tO)6 = G for all sufficiently large j by (7.!), so that
tr(t)øw is a polynomial in ((and n,,z, . . .). With this notation, we have

(7.5) OtOi’ ‘On_r+i(1?x” ‘‘ ‘z,1) =
Hence (1) is equal to

a=xr’x2...z,, bxx;...1 c=(x...x,÷iY’

= zç— ‘beG1 (s,..., r,)

= r7’bc(i + sjTh).. ‘(1 + z,8,)a

=Zc’(I+53)...O÷18)0b

= z(l + ‘82) ‘‘(I + ziO,)G -(il. . .
-
‘zfl)

= ç-’(l + rio;)”’ (1 + ri8_t)GW()(r2, ,r,) by IJ

96 Notes on Schubert Polynomials

(7.3) Let an0 = w’ be the longest element of S,1. Then for r = 1,2,..,,n — I we have

(I + °:_r) ‘‘‘(I + tO_j60 = (I + tO,) -(1 + tbr)Swo

Let an = s, ‘‘‘5a1, so that w0ww, = Sb ‘‘‘sb,, Then

N

Z ‘‘‘Bb,tSwo

summed over all reduced sequences (b b) satisfying (2), which is the coefficient of (1’ on the

right hand side of (7.2)11

Next, we have

(7.4) = (I + tO,)’’. (1 + t8_1)S0(z, ,...,

Proof: Let s = n — r + I and

Proof: By (4.22) we have to show that

so that abc = n—i n—22 3 ‘‘‘rn. Hence

where X1 = x’ + ‘ ‘ ‘ + r for each I 1, and 6 = 6. For this it is enough to show that

(1) (1+tO1)so(Y, ,.,X.,t+A’1+t t+.V,..,)=stG , ,,..,A’1...,,t±X1,..., t+X,)

foril,2,..., n—i.

by (1.2!)

by (7.1)

Let an be any permutation. If w(1) = r, then s ‘ . . sr_iw(1) = I, so that we may Write

‘Sr_Lw = 1 x an1

4



(n+i) (n+i)to = w0 5r—i s,(1 x to,)

(n+[) (n) (n)= ‘s,1u’0 (I x w )(l x u.’0 w,)

= Sn—r+ :(l x

= i 13. r)

= ‘tr_i(Si )O,_I(_S.(x2, xjin)

= tr_i(xi)6wj12,ra, .
.

Remark. The right-hand side of (7.6) is a sum of terms of the form çS(2, £3,.. .). By applying
(7.6) to each G, and so on, we can decompose S, into a sum of monomials, and thus we have
another proof of the fact (.1,17) that G, is a polynomial in x’s, with positive integer coefficients.

If,
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where w1 ts defined by
w(i+ 1) if w(i+ I) < r,

io,(i) =
I w(i+ 1)—i if w(i+ 1)>

If the code of in is (c1 , c2, . . .) (so that C1 = r — 1), the code of to, is (c2 ca, . . .). With this notation
we have

(7.6)

Proof: Suppose that inc S+t. Then

(7.7)
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and let torn be the permutation whose code is (cm, , . . .), where (e, ,c,, . . .) is the code of is’

With this notation established, we have

= x”(x m)Sw,..(:m+i,xm+2,. .

Proof: We proceed hy induction on m; the case m = I is (7.6). From (7.6) we have

=

= ExssI+m+P—le(

summed over all is = s where

since w+U(l x w’a”) = s. Hence

x) = 0WW +,(xr .

ci(w)+1p,+m<u, <‘<op

and ((un,,) = £(w1) — p. The code of ut,,1 statisfies c,(uzsi1) = c1(w1) for I I < m — I, and hence

= 5_m4.i . .

It follows that

by (75)

by (7.2)

Next, let m 1 and assume that the permutation in statisfies

Ii.

w(l) > w(2)> ...> w(m).

Define a partition p = p(w, rn) of length m by

) = £r—’t(S,)s(I,÷,,5_÷, . -)
and therefore, by the inductive hypothesis.

= 1a,+m+p—i 1rn—2 ,

m—ip_ (x_). . . (xfl)S() (‘m+i I 5,n+2,’ ..)
= xr_tx_? . . 5m_ip(xm) . 4pl(ti)Sw(xm+,,sn,÷2, . .

Finally, for any permutation to, let u be the unique element of 5,,, such that wu(I) > ‘‘. >
wu(m), and let p = p(wv. m). We have £(wv) = ((in) + ((is) and (WV),,, = torn, so that by (7.7)

G(x) = xJ’(i sm)Sw,_(xmti,xm+, .
‘

pj=w(I)—(m+l—i) (1<1Cm)

Ilence

If inc 5m+n we have p, n. hence pC (rim).

Also let

cP(s, Sm) = ‘1’,,, (Sm) “I’,,,(x2)t,, (xi)

(7.8)

=

= O(x’-t(x, xmHSw,(zmti, ‘mt”

Now by (4.14), for any polynomial fc m, we have

I = Z r(Of)5,
SCSI”)

ir -r
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where S(m) consists of the permutations whose codes have length in, and q(8f) is the constant

term of the polynomial a0f. Applying this to (TM), we obtain our final result:

(7.9) G(x) = ZGo(zi rm)q(.8uu(r’1(xi ,.,

summed over all u c (n) such that £(uv) = f(u) + ((t’).II
For each such u, the constant term ‘,(8(zt(z1 rfl) is a polynomial in the (non

commuting) operators a? with integer coefficients. Hence (7.9) gives a decomposition of the Schubert

polynomial S(x) of the form

(7.10) S(r) =

where y = (ri x,,,) and z = (xm+i If w C 5(n+n) so that G(x) C Pm+... then

u 5(m) and t e S<”) in this sum. From (4.18) we know that the coefficients d in (710) are 0.

In particular, if we apply (7.7) to a permutation of the form x to. we shall obtain

(1) S..(r) = r3(ri Zn)Gw(In+i.Sm+u.. .

Schubert polynomials (V 101

(7.15) The coefficients a(A,v) in (7.13) are O.J

Since L’o(xi,..., IntO) = ‘o(zi r_) and sA(zi p..., mO) = 5A(Zi xm) if ((A) in,
it follows from (7.13) that

(7.16) a1(A, v) = am(A, v) = a(A, u) say

for all partitions A such that ((A) < m.

We may also calculate the operator %(i mm) as follows. For each integer p 1 and each
subset Dof{12 p—i) let

summed over all sequences (u1 u,,) such that I ui S < ii,, 5 in and ii, < u-ti whenever
I ED. Then Qnp(st Sm) 5 a homogeneous polynomial of degree p. and is zero if m 5 Card(D).

Now let a = (at a) he a reduced word, so that e(SG, . ‘3,,) = p. The descent set of a is

D(a) = a, > II,+i).

r,,,) = Z QD(a).e(w)(Zi

it is clear from the definitions that the coefficient of a; = a; - . - a; in P0(11 x_) = fl’11 Po(r)
is just QD(.),,,(ri mm). Hence

mm) = ZQDS.P’i

=ZFwxt r)a.Ij

/

-- F too

1
t
j

u-I,

On the other hand, by (.1.6) we have

(2) = G..., G,_

and comparison of (1) and (2) gives

(7.12) G(z) = %(‘i.. . . , mn)S,s(xm+i . in+. . .

By (4.3). 6t,xw is symmetrical in ri,..., r,. Ilence so is the operator P0(x1 x), and we

may therefore write 1’o in the form

(7.13) ‘t0(x1 z,,) = Z am(A, v)sA(rl

We now define, for each permutation w,

(7.14)

summed over partitions A of length 5 in and permutations t-. with integral coefficients o,0(A, v).

From (7.12) and (7.13) we have

aER(w)

a homogeneous polynomial of degree t(w).

With these definitions we have

(7.17)
Ph

Proof: Let a = (a1 a,,) be a reduced word. Since

= a,,,(A, v)s(z, mm)Sw(mm+j ,mm±z,...)

summed over A of length 5 in and o such that ((va) = ((w) — t(u). The Schur functions occuring

here are precisely the Scliuhert polynomials G, where u is Groasmannian with descent atm. Hence,

by (4.18),

‘l’o(z,) = (1 +sa)(1 ÷,3;)...

w

r.rW’rf

V-V
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Comparison of (7.17) and (713) now shows that F(xj ,..., x,,,) is a symmetric polynomial In
r,, and that

(7.18) F(xt,..., x,,) = Zam(A, w)sA(x[ x,)

= p,n(St,, -l).

F

Schubert polynomials (2)

(7.22) Let wE S,, and let E = w0ww0, when wo is the longest element of S,,. Then

= F = wE’,.

where is the involution that interchanges 5A and s’. In other words

a(A,w’”) = a(A,W) = a(A’,w)

103

The sum in (7.18) is over partitions A such that f(A) m and IAI = f(w). By (7.16) we have

r,,O) = F,.(xi x)

and therefore we have a well defined symmetric function F,. e A, such that pm(Fw) = F,.(z,,...,
for all m 0: namely

(7.19) F,. =

where the sum is over partitions A of £(w), and a(A, w) = am(A, w) for any m 1(A).

Since the coefficient of it..’ x in Qo(x x,,) is I if m p. it follows that the coefficient

of x .x (where p = 1(w)) in F,.(xi z,,,) is equal to Card(R(w)) whenever m 1(w). On

the other hand, the coefficient of i1’ .x, in a Schur function 5A, where Al = p is equal to f, the
number of standard tableaux of shape A, or equivalently the degree of the irreducible representation

x5 of 5,, indexed by the partition A ([M], Ch.1, §7). It follows therefore from (7.19) that

(7.20) Card R(w) = > a(A, w)fA.lI
1Alt(wI

Remark. Since the coefficients a(A, w) are > 0 by (7.15), the number of reduced words for w is

always equal to the degree of an (in general reducibie) representation of the symmetric group St(w)
It is therefore natural to ask whether there is a natural” action of this symmetric group on the

Z-span (or perhaps Q-span) of the set R(w). with chnracter E a(A, w)XA.
A

for all partitions A.

For the proof of (7.22) we require a lemma. If t is a standard tableau of shape A, the descent
set D(t) oft is the set of I such that i + I lies in a lower row than i in the tableau t. We have

(7.23) s = Z
where the sum is over the standard tableaux of shape A, and p =
Proof: In the notation of [NI, Ch. I, §5). x is the sum of monomials 1T where T runs through
the (column-strict) tableaux of shape A. Lath such tableau T determines a standard tableau t, as
follows. If a square in the JLH column of the diagram of A is occupied by the number i, replace i
by the pair (I, j). Since T is column-strict the pairs (I, j) so obtained are all distinct. If we now
order them lexiographically, (so that (1, j) precedes A(i’, j’) if and only if either i < i’ or i = i’ and
j < j’) and relabel them as 1,2 p we have a standard tableau t say T — t. It follows easily
that x’ = QD(I),,, which proves the lemma.II

T—i

If D is any subset of { 1,2 p — 1 }, let denote the complementary subset, and let D’ =
(p — I : I C D}. From the definition of QD.p we have

(1) QD,p(x, tm—I, . . . ,x) = Qv’,,(ri x).

Ifa(ai a,,)ER(w),Iet=(n—ai n—o,,)anda’=(n—a,, n—ai).Thenwe

Iji

We shall conclude with some properties of the symmetric functions F,. and the coefficients

(7.21) Let uESn,oESn’ Then

a(A,w).
I have

Proof: By (7.IB), we have for any N,

F0(x) = F(x)F(r).

1fr4) = PN(SINX,J_

(2)

= PN(SINxu_tSI,,,+Nxv_l)

where a” = (iv)1 = w0w’w0. Also

= pN(StNxu_l)PN(Prn+N(SI_+NXV’))

= F(x1 IN)F0(xI ZN).ll

nER(F), aER(u1),

by (4.6)

(3) D(ê) =

Moreover, it t is a standard tableau we have

(4)

D(a’) = D(a)’.

DO’) = Dçt)

V
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where 1’ is the transpose oft, obtained by reflecting tin the main diagonal. For i € D(t) if and only
if i + 1 does not lie in a later column than i in the tableau t, that is to say if and only ill D(t’).

Since F is symmetric, it follows from (1),(2), and (3) that

Zm)Fw(’m xi)F.(r1 z_)

WSA = = Z
IESl(A)

and hence by (7.16) that F = Fm..
From (7.23) and (.1) above we have

for all partitions A of p, where St(A) is the set of standard tableaux of shape A, and hence it follows
from (2) and (3) and the definition of F,, that wE’.. = Fir. hence

(I) 01 C C a,, a1+i C .• C a143,

Schubert polynomials (2) los
where m = 1(A), and each 14 is a (0,1) vector of weight p. Let V be the (0,1) matrix whose 1th
row is V., for I = 1,2 m. Then V has row sums Mi p, and column sums
As in the proof of (1.26) it follows that p A(w)’. Since a(p, in) = (p’, w”) by (723). the same
argument applied top’ and w gives p’S A(w)’ i.e., A(w’) p.
(ii) Suppose now that p = A(w)’. Then there is only one (0,1) matrix V with row sums p and
column sums c.. Its first row V1 is Era summed over j such that q 0, i.e. such that there exists
k > j with w(k) < w(j). From (3) it follows that

wi’1 =

and therefore a1 + 1 a,, + I are the terms of the sequence w that have a smaller element
somewhere to the right, in increasing order of magnitude. Hence al has no smaller elements to the
right of it, and therefore lies to the right of a1 + 1, so that 1(s, w) = 1(w) — I. The same argument
shows that 1(sa,sa, in) = £(s. w)—1 and so on. Hence ifw1 = s,, s, w we have 4wt) =
and A(wç) = .). It follows by induction on i(p) that the word (ai a) determined by
the matrix V is reduced, and hence rs(p, in) = I when ,s = A(w)’. By (7.23) it follows that a(p, w) = 1
when i = A(w).

(iii) This follows immediately from (1) and (ii), and the characterization (1.27) of vexillary
permutations.II

V
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which completes the proof of (7.22)11

wE’-. = P. = Ft

Pioof: (1)

word (a1,

(7.24) (i) a(p,w) = 0 unless A(w_t) <p5 A(w
(ii) a(p,w) = 1 if p = A(w’) or =

(iii) in is verillary if and only if F.. is a Schur function.

Suppose a(p,w) 0. Then the monomial x” occurs in F, and hence there is a reduced
ap) for in such that

By (1.14) the code of in is

(2) c(w)
=

-
S, (c,)

If (‘) = the sum of the first p terms of this senes is

and since a < . . . < a,, this is equal to

+ s..1(c01_.1 ) + sa,(cai )),

(3) wU)(ea + ca,._, + . . . + Ca,) = V1 say,

where V1 is a (0,1) vector (i.e., a vector with each component 0 or 1) of weight Mt - Likewise the sum
of the next block of p terms of the series (2) is a (0,1) vector V2 of weight p, and soon. Hence

4’
a
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Appendix

Schubert varieties
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then g is identified with the matrix (gjj).
The group C acts on F: if U = (U1) and g C C, then 9U is the flag (gU1). Let B be thesubgroup of G that fixes the standard Hag V. Then g £ B if and only if 9Cj is a linear combinationof c1,.., e1, for 1 i n, that is to say if and only if gq = 0 whenever i > j, so that B is thegroup of upper triangular matrices in CL(E).
A basis ofa Hag U = (U,) is a sequence (u1 u,,) in V such that ti1 CU1 —lL_ for I < 1< n,or equivalently such that u ii, is a basis of U for each i. Given such a basis of U, there is aunique g C C such that ge, = u1 for each i, and we have U = g V. Hence C acts transitively on theflag manifold F, and the mapping gV— gB is a bijection of F onto the coset space C/B.For a flag U= (U1), let

Let V be a vector space of dimension ii over a field K, and let (ei c) be a basis of V, fixedonce and for all. A flag In V is a sequence U= (U1)0<1< of subspaces of V such that

0=U0CU1ccU=V

N

with strict inclusions at each stage, so that dim U1 = I for each i. in particular, if V1 is the subspaceof V spanned bye1 Cj, then V= (Vj)o<1< is a flag in V, called the standard flag.The set F = F(V) of flags in V is called the flag manifold of V.
Let C be the group of all automorphisims of the vector space V. Since we have fixed a basis ofwe may identify C with the general linear group GL(k) : if g € C and

gcjz:gjje (l<j<n)
1=1

E1 = E1(u) = {j:l <j < n and U A U1 t

r
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for 0< 1< n. Then (E0. En) is a ‘flag of sets’ i.e. we have

(Al) (I) Card(E) = i for 0 < 1< n,

(ii)E1_i C E for 1 5 l n.

Proof: (I) Fix i and let d = dim (L11fl l/j). Since

UflVj — UflV (UiflVj)+i t’

__ ____ ____

I

V.U1flj(U1nV)nk_j

it follows that d1 — d_ = 0 or 1. Since d0 = 0 and 4 = i, there are therefore i jumps In the

sequence (d0, ci, 4), which proves (i).
(ii) Suppose that j E1, so that U n = (L n V1. Intersecting with U..1, we see that j
hence E_, C EI.fl

From (Al) it follows that that each U € F deLermines a permutation wE .9,, as follows w(i)

is the unIque element of E — for i = 1,2 n. Let F — 5,, denote the mapping so

defined. C,, = (BwB)/B CO/B = F.

The subsets C,, are the Schubert cells in the flag manifold F. By (A.3), F is the disjoint union of
the C.

Let UE F. Then UE c, if and only if Uhas a basis (is1 is,,) such that u E Vw(I)— Vw(;)_I

for each 1. We may normalize the is by taking

U1 = CW0) + lower terms.

We can then subtract from is1 suitable multiples of the u for which k < land w(k) < w(i), so as to
make the coefficient of Cw(k) in is, zero for each such k. Then a, is replaced by a vector of the form

Cw(,) + aqe3

where the sum is over j < w(i) such that j w(k) for any k < i, i.e., such that j < w(i) and
w(j) > 1, or equivalently (i,j) E D(w), the diagram of a’.

(A.4) Let Ue F. Then UE C,, if and only if U has a basis (is1 is,,) of the form

U. = +

where the sum is over all j in the 1t1, row of the diagrvm of w, and the coefficients a,3 are arbitrary
elements of the field K. Moreover, the oq are uniquely determined by the flag U, and the mapping

so defined is a bijection.
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we see that there exists bc B such that = be, for all j, or equivalently

= beW = bwe1.

Hence U = bw V as required.

For the converse it is enough to show that (i) (w I’) = w and (ii) (b U) = ( U) for all b € B
and U € F. As to (i) wl, fl k is spanned by the basis vectors Cap) such that k i and w(k) <j,
and therefore wV fl 1’ wi’j fl l’ if and only ifj = w(k) for some k i. Thus the set E1(wlfl
consists of w(1),..., w(i), which establishes (i). Finally as to (ii), we have b111 fl = b(U, fl 1’) if
be B, so that E,(b U) = E( U) and hence (b I’) = ( U) as required.

From (A2) we have immediately

(A3) (Bruhat decomposition) C is the disjoint union of the double cosets BwB, w €5,,

For each w€ S.,, let

The symmetric group acts on V by permuting the basis elements C-:

w(e) =

for w € 5,, and 1 5 1 n. Hence we may regard S., as a subgroup of C.

(A.2) Let U€F,w€S. Then (U) = w if and only if U=bwVfor some 6€ B.

Proof: Suppose ( LI) = w. Then for I = I n we have

(1)

and

U, fl Vat,) D U1 fl V1o_1

(2) U1_, fl Vail) = r’. fl Vw(I)_l‘.11_I

By virtue of (1) we can choose u € U1 of the form

(3)

(2).

= e,) + lower terms

where by ‘lower terms’ is meant a linear combination ole1 eo)_,; and is- U1_, by virtue of

By rewriting (3) in the form

= e1 + lower terms (1 Sf <n)

1

F

1<
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Proof: Clearly each “matrix” a = (aq) of shape D(w) determines a basis (ILL,.., u) of V as above,

and hence a flag U € C,,. If a’ = (a71) determines (ti!..., u) and the same flag U, then each or

must be expressible as

t4 =ui+cquj,

and from the form of z4 and the u it follows that u = u for each i, and hence a = oH

Since Card D(w) = ((w) it follows from (A.4) that the Schubert cell C,, is isomorphic to affine

space of dimension £(w).

Let U € F and let (Ill ts) be any basis of U. Since u1,.., ti is a basis for U, for each

= 1,-n — 1, the flag U determines each of the exterior products u1 A-- -Au1 € A’(V) up to a

nonzero scalar multiple, and hence U determines the vector

(1)

up to a nonzero scalar multiple, where £ = V® A2V 0 ---0 A”’ V. If P(E) denotes the projective

space of F (i.e. the space whose points are the lines in F), we have an injective mapping

w F — P(E)

(the Pljcker embedding) for which r( Lfl is the line in £ generated by the vector (I).

Assume from now on that the field K is the field of complex numbers- Then the embedding

,- realizes the flag manifold F as a complex projective algebraic variety, which is smooth because

F has a transitive group of automorphisms (namely G). Each Schubert cell C,. is a locally closed

subvariety of F, isomorphic to affine space of dimension ((w).

For each w € 5,, let

xW =

he the closure of C,. in F. The X, are the Schubert varieties in F, and a flag U lies in X,. if and

only if U has a basis (ui,.., u,,) such that u1 C V,.(I) for each i. Each X is in fact a union of

Schubert cells C0 if (ai. .. . , a) is a reduced word for w, then C. C X,. if and only if v is of the

form s&, - - . s, where (bi ,..., bq) is a subsequence of (01,..., ar), that is to say if and only if v w

in the Bruhat order. In particular, X1 = C1 is the single point V C F. At the other extreme, if w0 is

the longest element ofS0, then X,1,, is the whole of F, and the dimension of F is £(w0) = n(n —1).

Let H(F; Z) be the cohomology ring (with integral coefficients) of the projective variety F.

Each closed subvariety X of F determines an element [X] C H(F; Z), and cup-product in H(F; Z)

corresponds, roughly speaking, to intersection of subvarieties. In particular, for each is E S,, we
have a cohomology class [XW] € H’(F; Z), and it is a consequence of the cell decomposition (A.3)
of F that the [XW] form a Z-basis of H’(F; Z). In particular [XW,] is the identity element.

The connection between the classes [X,,,] and the Schuhert polynomials S(w € 5,,) is given
by

a,. - a,
=

a,.,

where the sum on the right hand side is over all transpositions t = t12 such that i < r < j n and
£(wt) = £(w) + 1, as in (4.15”).

Define e,... n € H’(F; Z) by

From (1) we deduce the counterpart of (4.16): if r is the last descent of is (so that r n—i). then
we have

= 0r + Z
where ow’ are as in (4-16). Now iteration of (4.16) will ultimately express S. as asum ofmonomials,
i.e. as a polynomial in xl,.., x,,.1; and iteration of(2) will express a,. as the same polynomial in

Hence ifwe define a: P. — H’(F;Z) by a(r) = (I I n) we have a,. = a(S,.)
for all is €5,,, and the proof of (AS) is complete. II

3<’

1:1

(A.5) There is a su*ct,ve ring homomorphism

such that

a: Z(x1
,..,

x,,J — H’(F;Z)

for each w€S,,.

Proof: Let us temporarily write

a(S) = (K,.,,.]

N

= [K,.,,.]

for is € s,,. Monk [Mo] proved that for all WE 5,, and r = I,.., n—I

(1)

Cl = a’

Ci=O’i—i—i (2Sin—1)

= —an_I

(2)

ii

U,,

V
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in fact the kernel of the homomorphism a is generated by the elementary symmetric functions

e., of the r’s.

We shall draw one consequence of(A.5) that we have not succeeded in deriving directly from the

definition (4.1) of the Schubert polynomials. Since the a,, wE S.,, form a Z-basis of H(F; Z), any

product aa(u, vS S.,) is uniquely a linear combination of the o.,, and it follows from intersection

theory on F that the coefficient of a,. in u0o isa non-negative integer. From this we deduce

(AG) Let u, v be permutation,, and write SS, as an integral linear combination of the 6L say

r.
(

Sue,. = YZc::,.S.

Then the coefficients ct’,. are non-negative.

We have only to choose n sufficiently large so that u,v and all the permutations w such that

cr,. 0 lie in S.,, and then apply the homomorphism a of (AS).

Remark. The coefficients in (AG) are zero unless

(a) 4w) = £(u) + 4°)
(b) u S w and v is.

For S6,. is homogeneous of degree t(u) + 4v), which gives condition (a). Also we have

ct’, =O,.(S6,)

= Z
by (2.17), and the only possible nonzero term in this sum is that corresponding to ci = u. Hence if
çW, 0 we must have v w, and by symmetry also uS is.

Chapter L The notion of the diagram of a permutation w is ascribed to J. Riguet in [LS 1]

The code of is is the Lehmer code, familiar to computer scientists. Vexillary permutations were

introduced in [LS1] and enumerated in [LS4], though from a somewhat different point of view from

that in the text.

Chapter IL Divided differences, in the context of an arbitrary root system, were introduced

independently by Bernstein, Gelfand and Gelfand [BGG] and Dcmazure [D]. Both these papers

establish (2.5), (210) and (2.13) in this more general context.

Chapter IlL Multi-Schur functions were introduced and the duality theorm (3.8) proved, by

Lascoux [Li] The proof of Sergeev’s formula (3.12) is also due to Lascoux (private communication).

Chapter IV. Schubert polynomials, like divided differences, are defined in the context of

an arbitrary root system in [BGG] and in [Dj. What is special to the root systems of type A is

the stability property (4.5), which ensures that the Schubert polynomial 5,. is well-defined for all

permutations wE S. Propositions (4.7), (4.8) and (4.9) are stated without proof in various places

in [LSi]-[LS7j but as far as I am aware the only published proof of (4.9) is that of M. Vachs [W],

which is different from the proof in the text. Proposition (415), appropriately modified, is valid for

any root system, and in this more general form will be found in [BGG] and [DJ.

Chapter V. The scalar product (5.2) is introduced in [LST]. The symmetry properties (523)

of the coefficient matrices (a0,.), (f3,.) are indicated in [LS6].

Chapter VL Double Schubert polynomials were introduced in [L2]. For the interpolation

forumla (68), see [LS5]. The generalization (6.20) of Sergeev’s formula (3.12) is due to Lascoux

(private communication).

Chapter VIL This chapter is mostly an amplification of [LS2]. Propositions (7.2i)-(724)

are due to Stanley [S].
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