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A geometric question

Let X = Flags(Cn) = GLn(C)/B be the parameter space of
complete flags

C0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Cn

B-orbit closures are the Schubert varieties Xw , indexed by
permutations

These yield a Z-module basis {[Xw ]} of the cohomology
H?(X )

Question

What are the structure coefficients of this algebra?

[Xu] · [Xv ] =
∑
w

cwu,v [Xw ]

Since cwu,v ∈ N, it should be possible to express cwu,v as the
cardinality of some set of combinatorial objects.
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A geometric question

Let X = Flags(Cn) = GLn(C)/B be the parameter space of
complete flags

C0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Cn

B-orbit closures are the Schubert varieties Xw , indexed by
permutations

These yield a Z[β]-module basis {[Xw ]} of the connective
K -theory CK (X )

Question

What are the structure coefficients of this algebra?

[Xu] · [Xv ] =
∑
w

cwu,v [Xw ]

Now, cwu,v ∈ N[β] [Brion, ‘02]. We recover H?(X ) at β = 0 and
K (X ) at β 6= 0.
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A combinatorial tool

The β-Grothendieck polynomials [Lascoux-Schützenberger
‘82, Fomin-Kirillov ‘94] are polynomial representatives:

Gu ·Gv =
∑
w

cwuvGw

{βkGw} is an additive basis for Polyn[β] := Z[x1, . . . , xn, β].
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Main idea

Main idea: Decompose Gu into a sum of pieces
∑

Dv that are
easier to multiply:

1 Expand Gu,Gv positively into the D-basis

2 Give a positive combinatorial rule for multiplying D’s

3 Collect the resulting D’s into G’s

Example (Silly!)

Du = Gu:

1 Trivial

2 Very hard!

3 Trivial
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Main idea

Main idea: Decompose Gu into a sum of pieces
∑

Dv that are
easier to multiply:

1 Expand Gu,Gv positively into the D-basis

2 Give a positive combinatorial rule for multiplying D’s

3 Collect the resulting D’s into G’s

Example (Slightly less silly)

D-basis = monomial basis:

1 Nice rule

2 Trivial

3 Most of the difficulty got shuffled over here
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New example: Glide polynomials

Example (P.-Searles ‘17)

We introduce the glide polynomials {Ga}, a new basis of
Polyn[β]:

1 Non-trivial rule for expanding Gw in G-basis

2 Non-trivial Littlewood-Richardson rule for {Ga}
3 Easier? Not so many terms to collect...

Glide polynomials are indexed by weak compositions (e.g.
a = 01003). A colored weak composition is a glide of a if it can be
obtained by a sequence of the following local moves:

1 0k ; k0

2 0k ; ij (i , j ≥ 0, i + j = k)

3 0k ; i(j + 1) (i , j ≥ 0, i + j = k)
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Glide polynomials

Definition (P.-Searles ‘17)

The glide polynomial is

Ga =
∑

glides b of a

β#redxb11 · · · x
bn
n

Example

G0102 = x0102 + x1002 + x0120 + x1020 + x1200 + x0111 + x1011

+ x1101 + x1110 + βx0112 + 2βx1102 + 2βx1120 + βx1021

+ βx0121 + 3βx1111 + βx1210 + βx1201 + 2β2x1112

+ 2β2x1121 + β2x1211
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Key properties

Theorem (P.-Searles ‘17)

{βkGa} is a basis for Polyn[β].

β-Grothendieck polynomials expand positively:

Gw =
∑
a

ewa Ga,

where ewa = β|a|−|w | ·#QY pipe dreams for w of weight a.

Example

G12543 is sum of 68 monomials, but only 9 glide polynomials:

G12543 = G0021 + G0120 + βG0121 + βG0220 + β2G0221 + β2G1220

+ β3G1221 + β3G2220 + β4G2221
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Key properties (cont.)

Theorem (P.-Searles ‘17)

{βkGa} has positive structure coefficients:

Ga · Gb =
∑
c

β|c|−|a|−|b|g c
a,bGc ,

where g c
a,b is the multiplicity of c in a�gen b.

Conjecture (P.-Emily Sergel)

Fix a, b. Then ∑
c

(−1)|c|−|a|−|b|g c
a,b = 1.
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Relations to other bases

If Gw = Gλ =
∑

a Ga is symmetric, each Ga is
quasisymmetric.

The quasisymmetric glides are the multi-fundamental basis
[Lam-Pylyavskyy ‘07] of QSymn[β]

Stable limits are multi-fundamental quasisymmetric functions:

lim
m→∞

G
(1)
0ma = L̃flat(a)

Specializing β = 0 gives the slide basis [Assaf-Searles ‘17] of
Polyn.
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Relations to other bases

Sw Fa

Thank you!!

sλ Fα

Gw Ga

Gλ L̃α
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