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The flag variety

Let X = Flags(Cn) be the variety of complete flags

C0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Cn.

The group GLn(C) acts on the variety X by change of basis,
as does its subgroup B of invertible upper triangular matrices
and its maximal torus T of invertible diagonal matrices.

The T-fixed points are in bijection with permutations w in the

symmetric group Sn: they are the flags F
(w)
• defined by

F
(w)
k = 〈~ew(1), ~ew(2), . . . , ~ew(k)〉 where ~ei is the i-th standard

basis vector.

The Schubert variety Xw is the B-orbit closure of F
(w)
• .
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Singularities and resolutions

Schubert varieties are generally singular.

H.C. Hansen (1973) and M. Demazure (1974) introduced
Bott-Samelson varieties BS (i1,i2,...,i`(w)), which are
resolutions of singularities for Xw , one for each reduced word
si1si2 · · · si`(w)

of w .

We show how Bott-Samelsons are encoded by rhombic tilings.
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The Elnitsky polygon

Given a permutation w ∈ Sn, the Elnitsky 2n-gon E(w) has sides
labeled 1, 2, . . . , n,w(n),w(n − 1), . . . ,w(1), in which the first n
labels form half of a regular 2n-gon, and sides with the same label
are parallel.
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3

s4s2s5s6s5s3s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4

s2s5s6s5s3s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2

s5s6s5s3s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5

s6s5s3s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6

s5s3s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5

s3s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3

s4s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4

s3s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3

s2s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2

s1s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1

s5s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1s5

s2s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1s5s2

s3s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1s5s2s3

s6s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1s5s2s3s6

s4s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1s5s2s3s6s4

s5
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Elnitsky tilings

Let T(w) be the set of rhombic tilings of E(w) in which the
rhombi have sides of length one and edges parallel to edges of
E(w).
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Theorem (S. Elnitsky 1997): T(w) is in bijection with the
commutation classes of reduced words of w .

s3s4s2s5s6s5s3s4s3s2s1s5s2s3s6s4s5
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Reading a Bott-Samelson

Key fact: Bott-Samelsons only depend on a commutation class of
reduced words for w .

Attach a vector space Vx to each vertex x with dimension =
distance from x to •. (Standard flag along left border.)
For each edge x − y , impose the relation Vx ⊂ Vy .
The space of all such assignments is a smooth subvariety of∏

x∈Vert(T) GrdimVx (Cn) and is the Bott-Samelson for that
commutation class.
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Zonotopal tilings

Can consider more general tilings by zonotopes (centrally
symmetric polygons):

Obtain other resolutions of singularities, generalized
Bott-Samelson varieties
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Posets of resolutions and tilings

We have a well-understood poset of zonotopal tilings by
refinement:

↘ ↙

This corresponds to a poset of resolutions of singularities:

ZT1 ZT2

ZZ

Xw
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Thanks!

Thank you!!
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