UNIVERSITY OF WATERLOO

Maple T.A. Content
Developer’s Manual

A Guide to Creating Great Questions

by Michael Fattori
of the MFCF Instructional Support Group

This manual not only discusses how to work within the Maple T.A. programming environment, but also
how to create dynamic and robust questions using simple mathematical principles. Always remember
that official documents exist with more detailed technical information about the features of Maple T.A.
These can be provided by your supervisor.

Table of Contents

T A oY [V 4T] o D T T PSSP PO PR PPPPOPRN 1
The Maple T.A. Development ENVIFONMENTiiiii ittt e e e e e e e e eeir e e s e e e e e e e e e esnaassrsaaaees 2
F AN Fdo) a1 oY oo I = 1 o] USRI 4
FEEADACK. ... ettt e st e s bt e e s bt e e s be e e s be e e sbe e e s abeeesree s 5
COMIMON [SSUEBS ...ttt ettt e e e e s r e et r e e e e e e s e s s bbb e s et e e e e e e e e s s s snbanaeeeeeeesessas 7
PrESENTING AN EXPIrESSION ittt ittt e e ettt e e e e et tab e e e e e e taa e e e eeeaeba e e e eeeeereaaaaes 7
FraCTiONS cooieiiiiie e e e e e e e e e e e e e e 7

Lo Y A7 a VoY o o 1= LU PSPPI 8
PrESEIVING PrECISION Luiiiiiiiiiiei ettt e e ettt ee e e e e e et b e e s e e e eeabseeeeeatsbanseeeeansannnnaaans 11
1P O PP PP 11
<RSP Error! Bookmark not defined.
[D1<Tol] o g T BN ol = Yox Y PP UUS 11
VLY I o oY =4[V=T=T o o F - PP PPPPPTPPNN 13
Constructing Polynomials Using Desired ROOTSuuuuiiiiieeeiiiiiiiiiiiiiiieeeeeeeeeescirirrree e e e e e e e e e e e s asssraseeeeas 13
VA - T=do ¢ T= Lo T I T o] [=T U PPPUPRROt 15
Reverse Engineering: FiNal TROUGNTS..........uuiiiiiiiiii ettt e e e e e e e e e e eannes 19

Rl 10T =8 e T LY F= VA L =T =T IR UUU 22
The WED Site EAITOr .. ueeiiiiiie ettt sttt et e e s e e sab e e e s abe e e sabeeesabeeesmbeeesans 22
FiN Fdo) a1 oY o 1Tl [0 = d YU SUUR 23
(€] =T [Ta Y= K] U SUUUU 25
(O] o= Y F=Y o L= 2 o] U PPPUPROt 26

LN 110 0 =1] o PO P PP OPPPTT 31

VAT A =] o] o117V o TP UUPT PR PPPPNE 33

Introduction

This manual contains a variety of tips and tricks that are useful when developing Maple T.A.
questions. Readers are advised to become familiar with the Maple T.A. development
environment before reading this manual, though a brief discussion of this environment is given
below to help get you started. Hopefully this manual will serve as a faster reference than the
official Maple documents available to you, but this will be at the expense of the more explicit
details about Maple T.A. functionality. However, this document contains tricks (mainly on
reverse engineering) that won’t be found in the official documentation from Maple, and hence
is a valuable resource in its own right.

Development on Maple T.A. can sometimes be frustrating, especially when just starting out, but
most of the major issues have been dealt with before. This manual should allow you to
overcome common difficulties and also help you employ the full power of Maple T.A. to create
great questions.

The Maple T.A. Development Environment

You should know how to get to the development website already. This section discusses how to
develop a question on that website, not how to navigate it. The first step is creating a new
guestion by clicking the “Questions” button and then clicking “New Question”.

cf MapleTA. Developer

Systerm Homepage » Class Homepadge

Questions __ Content Manager
1 Mew Search
MNew Question
Import Question Bank PIY

You will be taken to a screen which looks like this

The Question Type
Question Designer v

The Question Description

Feedback Add
There is no feedback

Algorithm Add
There is no algorithm.

Information Fields Add
There are no info fields set.

Hints Add
There are no hints set

Solution Add

There is no solution set.

We can create most questions using the “Question Designer” type. Enter the name of the
guestion in the ‘Question Description’ field. The most important sections accessible from this
page are the feedback and the algorithm. The existing documentation from Maple can tell you
about the algorithm editor, namely, how to create variables and what functions are available to
you. Just as important to the overall question is the feedback, which is shown to the student
after they complete the question, or often after a test is finished. Feedback should be
complete, aimed at the appropriate skill level, and hopefully informative to the students.

When the feedback and algorithm are complete you can click “Next” in the upper left corner of
the screen. This takes you to a screen which looks like this:

Text of the question:

[=] Source O&: B ¢ 4L E B 7 U s x X
iEE|lEEEE=E=10 21T Wifm Sl
JORPO=xmiT®
Jreedback aigorith |[1nfo [Hints][Sotution | Edit

This is where you write the question which students will be given. Variables defined in the
algorithm editor can be used here. To give the students a place to enter their answers, place

your cursor wherever you want the answer box to appear and click the checkmark symbol ©
from the menu. This leads to a screen where you can edit how you would like the students to
be graded.

Edit Response Area - Mozilla Firefox 5]
dev.nfc umetert e

Edit Response Area

[Choose Question Type

Formula:
® Formula
* Maple Weighting |1
© Multiple Choice | | Gub-type: [Formula - e.g. &' snfx"2) v
® Numeric

Ar
® List
® Essay

nnnnn

Feedback | lgortten [it |[it | Soluon o

There are several modes for grading.

Formula type: The formula type allows for grading of expressions. If the student’s answer
should involve variables (e.g., What is the area of a circle with radius r?) then the formula type
can be used. This type is lenient on students since it does not require explicit multiplication.
That is, 2x can be entered as 2x instead of 2 *x. Use this type for simple expressions of
variables. For answers involving functions (e.g., e*), use the Maple-graded type.

Maple type: We often call this Maple-graded. It allows you to enter Maple code to grade the
student’s response which is stored as a variable SRESPONSE. The answer, defined by you, is

stored as the variable SANSWER. This grading type requires a call to Maple on the servers, and

so it should only be used if necessary. The last line of the grading code should evaluate to a
number between 0 and 1 which represents the mark the student should receive for their
answer.

Multiple Choice: This type allows you to develop questions where students must choose one of
several possible alternates as the answer. It works fairly intuitively and allows control over
where the choices appear. That is, we can make the choices appear in random order or a
predefined order, or a mixture of both.

Numeric: This is the simplest type of grading. If the answer is a number, then the numeric
grading type can usually handle it. It can be adjusted to accept exact answers or approximate
answers. Basic functions (exp (4) , cos (3), sqgrt (2))andimportant constants (P1i,
exp (1)) can be entered as well.

The List and Essay types are not often used by this development team and hence have not been
experimented with very often. Feel free to investigate these if the other question types do not
seem to suit your purposes. A detailed discussion of all of these question/grading types can be
found in the official Maple T.A. documentation.

This document will mostly focus on the feedback and algorithm sections of the development
environment because questions are generally not as difficult to grade as they are to
algorithmically generate and provide feedback for.

Algorithm Editor

The algorithm editor is where we engineer our questions. We generate random numbers,
perform calculations with them, and generate variables for feedback. The functions available to
you are found in the manuals from Maplesoft. While some functions are built in to the
algorithm editor, we can call on Maple at any time using the maple () function. This sends a
string of Maple commands to our server which uses Maple software to run the commands.
Many things you can do in Maple can be accessed using this function. The result of the last line
of code executed in Maple is returned to the algorithm editor. If you want more than one thing
returned from Maple, return a list of the things you need at the end of the code by separating
the items with commas.

Remember that the simplest way to test the call you make to Maple is to run the same code in
a Maple worksheet first. With few exceptions, whatever works in a maple worksheet should
work from the algorithm editor. Just remember to consider the data type returned from Maple.
In particular, if you are asking Maple to return a plot, you need to use the plotmaple ()

command instead. The plotmaple () command is discussed in detail later on in this
document.

Feedback

The feedback section is where developers get a chance to educate the students. It allows
students to see what they did wrong, and how to do it right. This makes the feedback section
one of the most important in question development.

We almost always write the feedback so that it answers the specific question that was asked of
the student, and not a generalized version of it. We often develop questions so that the
solution can always be found using the same steps. This makes it tempting to provide a
generalized solution to the problem, where all numbers have been replaced with variables.
However, we try not to do this. It may not be easy for the student to see how the generalized
solution can be applied to the specific set of numbers they were given, so we write feedback to
help the students who struggle the most with the problem. Always solve the specific problem
you give the students so that they can compare their calculations with the feedback and see
where they went wrong. Also, we may overlook complications in the calculations needed for a
specific problem if we just solve a generalized version of it.

We can use variables defined in the algorithm editor in the feedback section. We often use the
equation editor to write the expressions of the solution. There is a separate document on
MathML available to you to discuss the details of working with MathML (the language of the
equation editor) but most of the work you will do is possible using just the equation editor. To

open the equation editor, hit the sigma button 2 from the menu in the feedback section. This
opens a window where math expressions can be written just by typing. For instance, x2 can be
written by entering x~ 2. Most expressions can be written intuitively like this. Right-clicking
opens a set of palettes that you can use to enter more complicated expressions/functions.
Experiment for yourself and read the MathML document for more details.

There are two tabs in the equation editor. The first is where you enter expressions and the
other is the MathML tab where we can enter MathML code directly, or edit the MathML code
of an existing expression. When we place algorithmic variables representing numeric values
into the equation editor, we almost always need to stop them from being italicized.

For instance, suppose we define an algorithmic variable $x to be a random integer. We want to
display this integer in the feedback and so we enter $x into the equation editor. $x will be
italicized when we close the equation editor and, when we preview the question, we get an
italicized version of whatever random integer $x is. Numbers (such as -2 or 6.35) should
always be presented as normal text, whereas variables (such as y or f) should be italic. Often

you will need to fix this in the equation editor, which requires editing the MathML code.
Double-click the $x from the feedback section and the equation editor will open up. Click the
MathML tab and the code which generates $x will be displayed. Look for the algorithmic
variable’s name, in this case, $x. It should appear in the code with tags around it;
<mi>$x</mi> (search using ctrl-fif you can’t find it). To make the algorithmic variable
appear normally (non-italicized), enter mathvariant="normal’ inthe opening tag as

follows: <mi mathvariant=’'normal’>$x</mi>.

This is what we do for all algorithmic variables which we want to appear as non-italicized
numbers, which is most of them. You will be scanning the MathML code in order to make this
change often, and should get used to doing so. We understand that this is a bit tedious, and
have asked Maplesoft to fix this problem numerous times.

Other than this issue, the feedback is reasonably simple to create. You will find yourself
frequently going between the algorithm editor and the feedback section since we often end up
defining variables solely for use with the feedback.

Common Issues

This section will discuss the most common development issues, which mainly involve
presenting feedback properly. The most common issue was discussed just above, at the end of
the feedback section, where we have to change italicized algorithmic variables representing
numbers to non-italicized values.

Presenting an Expression

There are a number of things which can go wrong when trying to present an expression to
students. The major rules of presenting are:

* Numbers are not italicized

* Variables are italicized

* As often as possible, reduce your expressions to their most succinct forms (except for
when not simplifying is more demonstrative to the student).

Fractions

. a .
A common issue is to present a fraction in lowest terms. We might want to calculate 5, using

the variables $a and $b. We should present this fraction in lowest terms if we are to use it in
further calculations, or if it is a final answer (so almost always). We can make use of two built in
functions from the algorithm editor; the mathml () function and the frac () function. We

can define a new variable $aoverb to be the fraction % as follows.
Saoverb=frac ($Sa, $b) ;

This is stored as a different data type than other numbers, with a numerator and a
denominator in lowest terms, but can still be used in calculations (and grading) as a number. To
present this, make a new variable $aoverbml which will be a MathML expression of the
fraction.

Saoverbml=mathml ("$Saoverb") ;

We then place Saoverbml wherever we need the fraction in the feedback. Do not place this
in the equation editor though since this is already a MathML object. The result would be a
broken image r

Sometimes we need the numerator and denominator of a fraction separately so that we can
place them in the equation editor. This often happens when we need to place the fraction in a

larger expression. Unfortunately, placing $Saoverb into the equation editor will make the
fraction appear as a/b instead of % . To get the numerator and denominator separately, we

make the variables

Snumerator=S$a/gcd(Sa, $b) ;
Sdenominator=3Sb/gcd(S$Sa, $b) ;

This separates the numerator and denominator of the fraction in lowest terms. Then the only
concern is whether the denominator is ever 1, which we usually don’t display in the feedback. If
you can reverse engineer your question so that this doesn’t happen then the problem is solved
(try making the numerator or denominator a prime number), otherwise, more sophisticated
manipulation of MathML code may be required

The mathml () function will attempt to turn anything you give it into a MathML expression.
Try giving the mathml () function the exact expression you want to display before working
directly with the MathML code. If you must create the MathML code manually for your
expression, compose the whole string which will be the MathML code of the expression in the
algorithm editor. This is not ideal but it can work.

Fractions have been dealt with frequently by developers, and so ask for help if none of these
strategies seem to work. They may have a trick or two up their sleeves.

Polynomials
We frequently work with polynomials but they can be difficult to present. This is best illustrated
with an example.

Example

We ask the student, “Find the roots of the polynomial ax? + bx + ¢” where we have
generated the coefficients a, b and ¢ as algorithmic variables. Suppose, using whatever
methods we choose to generate a, b and ¢, each value can be positive or negative. How do we
present this polynomial properly?

A cheap technique would be to present the polynomial as (a)x? + (b)x + (¢), asin (—3)x? +
(2)x + (=5). This would allow us to forget about the sign of the coefficients since the
expression would always be technically correct. But this is not a properly formatted polynomial.
It looks strange, especially if the coefficients are ever 1 or —1. We can do better.

A general way to take care of this is to define two variables for each of the coefficients; one
variable to record the absolute value of the coefficient; one variable to record its sign (4 or —)
which should be placed in front of the coefficient. We can also check at this time if the variable
has value 1 or —1.

So for the variable $a we write:

Sa= .. ;
Sva=if (eq(abs (Sa), 1), "", abs(%a));
$ada=if (gt ($a,0), "", "-m);

The variable $va is defined as an empty string if the absolute value of $a is 1, and the absolute
value of $a otherwise. This is because we will place this variable in front of x2 in the expression

and we want x2 or - x?2 instead of 1x2 or —1x2. We might consider forcing the value of $a to
never be 1 or —1 in order to define $va as simply the absolute value of $a, which will work if
the context allows.

We define the variable $ada to be an empty string if $a is positive and the negative sign if $a is
negative. Since $a is at the beginning of the polynomial we would not include a plus sign in
front of $a if it were positive.

For the variable $b we write:

Sb= .. ;
$vb=1f (eq(abs ($b), 1), "",abs ($b)) ;
$adb:lf(gt($b,0), "-|-","−n);

Notice that we define $vb in the same way as we did with $va.

Also notice the changes made to $adb. Instead of an empty string when $b is positive, we make
$adb a plus sign. When $b is negative we make $adb the “sminus;” symbol instead of just

o o

“.”_ This is because is the small negative sign you would use to indicate a negative

”

number, and “sminus;” is the subtraction sign you would use in an expression (it is slightly

”

larger). Note that when you hit refresh in the algorithm editor, the “sminus;” will change to
“~”_This has not changed it back to the smaller negative symbol, but rather it is displaying the
actual “sminus;” symbol for you. Unfortunately this means that you must keep track of which
subtraction signs are large, and which are small. If in doubt, just erase and rewrite it the way

you want.

We define the same extra variables ($vc and $adc) for the variable $c, except that $vc should
simply be the absolute value of $¢ (we want $¢ to appear no matter what its value since $c is
not a coefficient).

Sc= .. ;
Svc=abs (Sb) ;
$adC:lf(gt($b,O), "-|-","−n);

Now to write the polynomial, we can enter the following into the equation editor:

10

Equation Editor MathML

Sada $va-x2 Sadb $vb-x 8adec $ve

Then we can remove the multiplication signs and change every variable to be non-italicized by
editing the MathML code. To remove the multiplication signs find

<mo lspace='0.0em' rspace='0.0em'>⋅</mo>

in the MathML code, occurring after $va and $vb, and delete it.

The result should be $ada $vax® $adb $vbx $adc $vc, and the students will see, depending

on the values of $a, $b and $c, a proper expression like 5x° + x— 2 or x° + 5x + 4.

Many other presentation issues can be solved using similar techniques as the ones used here.
You will likely develop some tricks of your own to save time. This particular problem might also
have been solved by making the mathm1 () function do some work. We could have made the
first two terms of the expression by having a variable defined as

Sfirstpart=mathml ("$a*x"2+Sb*x") ;
This would give us the first two terms just fine. Then we would write in the feedback section

$firstpart $adc $ve

Notice that only the second part is written in the equation editor. We might think that the
whole expression could have been written with the mathml () function, but if we try to add
$c tothe S$firstpart expression (Sfirstpart=mathml ("Sa*x"2+Sb*x+$c") ;) we
get an annoying result, which demonstrates one of many shortcomings of the mathml ()

0 .
function in Maple T.A. The result would display as (6 X+ 7 X,) — 2 or something similar,
with the first two terms bracketed for what can only be understood as absolutely no reason at

5
all. =

Note that the sometimes poor functionality of the mathml () function is a good reason to
become familiar with actual MathML code.

Now, using the techniques of this section, you should be able to handle most presentation
issues. One way to avoid presentation issues is to engineer your questions so as to avoid the
issues, but that takes time and practice, there is no general method of doing so, and it may not
be possible for the particular context of the question. Hopefully in the future Maplesoft will
take care of these time-consuming issues so that you do not have to.

11

Preserving Precision

We often have answers to our questions which are not simple. We frequently want students
(especially math students) to enter exact answers. This means we need our solutions to be
exact so that we compare an exact answer to the student’s answer.

w
We frequently have answers involving 7 (since m is awesome). The trick to preserving accuracy

with 1 is to do all of your calculations involving m on paper. Basically, we get the numbers
surrounding 1 in complete precision so that we never have to resort to storing the expression
as a decimal.

Suppose the answer to a question is %. Then firstly, we should grade the student using the

numeric grading-type. In the algorithm editor, we can store the fraction % as a variable
Sans=frac ($a, $b) ;

and then in the answer field for the numeric grading we would write Sans*P1i. Of course if we
have the variables $a and $b we could also write $Sa*P1i/Sb in the answer field.

Note the use of capital P in Pi. Constants in Maple and hence, in Maple T.A. begin with capital
letters. Be sure to always use capital Pi for .

We take these measures for preserving accuracy so that we do not calculate an imprecise
decimal version of the answer. This would force us to grade the student only to a certain degree
of accuracy, whereas the algebraic exact form of the answer is desired.

Just calculate what you need so that the answer field used for grading is the exact expression.
More complicated expressions may involve the calculation of more individual parts to the
answer.

ex

There are similar concerns for answers involving e*. Remember to calculate the parts for the
exponent separately and anytime the constant e appears, simply write exp (1).

The concerns for other types of exact expressions are the same. In general, try to never use
decimals, and find the answer in pieces that can be composed in the answer field.

Decimal Accuracy
Sometimes the mathematics we study involves approximating answers (e.g., many statistics

questions). We want students to provide an answer to a certain degree of accuracy, which
means students must round their answers to a particular decimal place (specified in the
question).

12

The best approach is to have students round their answer to the n™ decimal place by including
this instruction in the question, then grading their answer to (n-1) decimal places to avoid any
ambiguity in the type of rounding the student or Maple T.A. uses.

Since the answer should be a number anyway, we use the numeric grading type. In the window
for editing the numeric answer box, there is an option “Required with:” which has a drop down
menu next to it. The default is “Absolute accuracy”, and you need to change this to “Margin of

error”.

Numeric
Weighting 1
Numeric Part $ans
Units Part:

Numeric Format: Accept 1000s separator
Accept scientific notation [1.234.0:1.234E +3: 23 - 1257

O Accept $ sign
Accept anthmetic
Required with: | Margin of error v

Margin of Error |0.0010

When you ask students to round to n decimal places, set the margin of error 1 in the (n — 1)"
decimal place. The image above was taken from a question requiring students to round to 4
decimal places, and hence the margin of error was 1 in the 3" decimal place, i.e. 0.001.

We do this to avoid the discrepancy between the common understanding of “round to the n"
decimal place”, and banker’s rounder which Maple T.A. uses. This way, when a student rounds
to the specified decimal place the answer will always be correct (assuming their calculations
were correct), and any discrepancy is in the student’s favour. This avoids students complaining
about incorrect marking since we are grading them on a more lenient order of magnitude than
we actually asked of them. Be sure to produce an answer to the required degree of accuracy to
compare against the student’s answer.

13

Reverse Engineering

There are basic concerns when developing a question that you are likely aware of already.

* There must be a solution.

* Any correct solution must be graded as correct.
* C(Clear language and correct grammar is required.
* The feedback must be correct.

And a number of other concerns could be in this list. It is not just about getting a question to
work. We should try to make sure that our questions are not ridiculously hard to solve. A good
guestion only challenges students in the manner intended (mostly). There are many ways that a
solution can become complicated and the following tricks should help you reverse engineer
questions in order to simplify not only the solution of a question, but the entire construction of
a question.

Constructing Polynomials Using Desired Roots

Suppose we must employ the quadratic formula in our solution to find the roots of a quadratic.
(This is very common, which is probably why there is a song dedicated to the quadratic formula
written by a math teacher http://www.youtube.com/watch?v=D 0vgqi7fU4.) If we must use

these roots again in the solution, then we should make sure that those roots are not too
complicated to work with. This usually requires us to reverse engineer a question so that roots
of the quadratic will always be integers. We illustrate with some examples.

Example 1
The question to the student is, “Find the roots of the polynomial ax? + bx + ¢.”

We know that the quadratic formula gives us the answer(s) to this question as

—b +Vb?% — 4ac
X =
2a

We might be tempted to simply define the coefficients a, b and ¢ as random integers. Then all

—b+VbZ—-4ac
2a

we have to do is define the answer to be both of and we are done. But this would

be an oversimplification. We have a number of things to consider when constructing our
quadratic. What if we want there to be two solutions? For instance, x2 only has one root at 0
(or two equal roots at 0 depending on how you look at it). In fact, any time b? — 4ac = 0 we

14

have only one root (or again, two equal roots). On that note, whenever b? — 4ac < 0 we have
no real roots.

So it will not do to simply choose random coefficients. A better way to construct this
polynomial is to work in reverse and choose two random roots and then decide what the
guadratic should be.

One solution might be to define two variables, $r1 and $r2 as our roots. If we want to
guarantee the roots are distinct we have a number of options:

* We can define them as random integers in separate ranges.
* We can define $r2 to be equal to $r1, plus or minus a constant.
* We can define the first as positive and the other as negative.

There are many ways to get the desired result. Be creative and consider the problem you are
working on. A good tip is to choose integers as your roots. This means that the solution to the
question will be integers, which is often preferable to decimals.

To construct the polynomial with the required roots, remember the factor theorem. If $r1 isa
root of a polynomial f(x), then f(x) = (x — $r1)g(x) for some polynomial g(x).

We can thus construct a quadratic with the roots $r1 and $r2 as

ax?+bx+c=(x—$r1)(x — $r2)
=x%2 4+ (=$r2 — $rl)x + $r1$r2

And we have our values for a, b and c. We even have another degree of freedom in that we
can choose to multiply (x — $r1)(x — $r2) by any constant we wish. Just make sure to carry
out the required calculations to find a, b and c.

And don’t stop at quadratics! We can use this method to produce a cubic polynomial with three
roots $r1,$r2 and $r3 by calculating (x — $r1)(x — $r2)(x — $r3), or a quartic polynomial
with four roots similarly. Another great advantage of this method is that the coefficients in the
expanded polynomial with all be integers when the roots are integers, which is much simpler
for students to analyze.

Example 2
The question to the studentis “Where does ax3 + bx? + cx + d touch the x-axis and where
does it cross the x-axis ?”

Remember that a polynomial will cross the x-axis at roots of odd degree, and merely touch the
x-axis at roots of even degree. You will likely only need to worry about roots of degree 1 and 2,
but keep this in mind.

15

Thus to construct our cubic polynomial we can choose $r1 to be where the curve

touches the x-axis and $r2 to be where the curve crosses the x-axis. Then our cubic

would be: (x — $r1)2?(x — $7r2). Then we just carry out the calculations as before to determine
our coefficients a, b, c and d.

Constructing polynomials from their desired roots can be useful. It helps us have simple
solutions, and helps our feedback look cleaner. Sometimes solving for the roots of a polynomial
is just one step of a problem. In these scenarios it is much easier to work with integer solutions
to do the rest of the problem.

Pythagorean Triples

A Pythagorean Triple is a set of three integers which are the side lengths of a right triangle.
These are special since they are integers a, b and ¢ which satisfy the equation a? + b? = c2.

In some problems, we may find that the solution involves introducing a right triangle and
solving for one if its sides. If we want a simple answer from this calculation it helps to be able to
engineer the triangle so that it will have all integer side lengths. In other instances we might use
Pythagorean Triples behind the scenes in order to guarantee a simple solution to some other
problem (an example of this will be provided).

There is a simple formula that gives all the Pythagorean Triples:

Suppose that m and n are two positive integers, with m < n.
Then n? — m?, 2mn, and n? + m? is a Pythagorean Triple.

It's easy to check algebraically that the sum of the squares of the first two is the same as the
square of the last one. Note that this means n? + m? is the hypotenuse.

Here are the first few triples for m and n between 1 and 6.

m =
1 2 3 4 5
2 [3,4,5] —
3 [8,6,10] | [512,13] —
n= 4 [158,17] | [12,16,20] | [7,24,25] —
5 [24,10,26] | [21,20,29] | [16,30,34] | [9,40,41] -
6 [35,12,37] | [32,24,40] | [27,36,45] | [20,48,52] | [11,60,61]

16

Example 1

The question to the studentis “If sin 8 = %, then what is the value of cos8 ?”

We would like to be able to ask this question so that the solution is another simple fraction. If
we were to randomly choose a and b then cos 8 might not be so simple. In particular it may
have a radical in the exact expression.

We should first understand how to solve the problem given to the student. If sinf = % then

opposite

we can use the identity sin6 = and then construct the right triangle with angle 6,

hypotenuse

opposite side length a and hypotenuse length c. Then we calculate the length of the adjacent
side b using the Pythagorean Theorem a? + b? = ¢2.

In order to ensure b is an integer, the side lengths of the right triangle must be a Pythagorean

. . . . b
Triple. Then the answer will be a simple fraction cosx = -

To construct the Pythagorean Triple, we just need to create a suitable m and n, which means
m and n are positive integers with m < n. The following code accomplishes this:

Sm=rint (1,4);
Sn=Sm+rint (1, 4);

This will restrict m and n to be no greater than 3 and 4 respectively while ensuring m < n.
We restrict the range of m and n so that the solution will not involve identifying too large of a
number as a square. This is important if students are expected to solve these problems without
calculators.

Now we construct our side lengths using the formulas, remembering that the hypotenuse must
be n? + m?2.

Sh=Sn"2+Sm"2;
So=$n"2-5m"2;
$a=2*Sm*Sn;

Using these side lengths we can now write the question easily and be confident that the
solution will not be too complicated. Thank you Pythagoras!

Example 2
Suppose we wish to ask a student to find the intersection points between a line and a circle
centered at the origin.

This sounds fairly straightforward, but there are a number of things we must consider. Since we
are generating the line and the circle algorithmically, we must ensure that points of intersection

17

exist. It would also be easier to provide feedback if we knew there were always two points of
intersection, which also avoids complications involved with grading. On top of all this, it would
be ideal if the points of intersection had integer coordinates so that the solution is not a
complicated expression.

An easy way to guarantee that the points of intersection are integers is to create the circle, pick
two points on the circle with integer coordinates, then calculate the equation of a line between
these points. But does a general circle centered at the origin necessarily pass through points
with integer coordinates? Of course, if we guarantee that the circle has an integer radius r,
then the points (r,0), (0,7), (—7,0) and (0, —r) have integer coordinates, but we do not want
to draw lines between only these points since it will not really challenge the student
algebraically. For any other points, notice that if the circle has an integer r as a radius, then
any points (x,y) on the circle with integer coordinates can be thought to describe a right
triangle with hypotenuse .

Now we see that for any such a point to have integer coordinates (when the radius of the circle
is an integer), the side lengths of the right triangle must be a Pythagorean Triple.

So we just need to choose positive integers m and n with m < n so that we can create a
Pythagorean Triple. This will determine the radius of the circle (n? + m?), and then we have
some flexibility with our choices of x and y.

Choose m and n and calculate the side lengths of the corresponding right triangle as before.
Then choose points on the circle. We can pick our first point (x4, y;) as follows:

Sx1=So* (-1)"rint (0, 2);
syl=$a*(-1)"rint (0,2);

This point will lie on the circle (since \/x? + y? = r). Now we wish to choose another point on
the circle so that we may draw a line through both points, but we must make sure that the line

18

has an equation and isn’t simply a constant, which means the line cannot be vertical or
horizontal.

Spick= rint (0,2);
Sx2= if (gt ($x1,0),
if (gt (Syl,0), switch($pick,0,-%h), switch($pick,0,-$h)),
if (gt (Syl,0), switch($pick,S$h,0), switch($Spick,$h,0)));
Sy2=if (gt ($x1,0),
if (gt (Syl,0), switch($pick,-$h,0), switch($pick,Sh,0)),
if (gt (Syl,0), switch($pick,0,-%h), switch($pick,0,5h)));

This code basically places the second point on the x or y-axis as far from the initial point as
possible (while still remaining on the circle). The second point is chosen farther away so that it
will be possible to pick a point on the line, interior to the circle, which also has integer
coordinates. We did this so that in the question we can describe the line to the students based
on this point and the slope (since the y-intercept may not be an integer). It would not be very
interesting if we described the line using one of the points of intersection, since then the
students would have part of the answer already.

Of course, picking (x,y,) faraway from (x;,y;) is not enough to guarantee that a point with
integer coordinates will lie on the line interior to the circle. We must prove that such a point
will exist with the intersection points chosen in order to guarantee that we can always find the
interior point. The proof is not too challenging. Essentially, the point interior to the circle will be
chosen by moving up/down the rise of the line and left/right the run of the line from either
(x1,¥1) or (x,,y,) appropriately (so that we remain on the line and move interior to the
circle). The rise and run will be integers, since

X2—X1

Y27 and run =)
ged (V2—y1,x2—x1) ged (YV2—y1,x2—x1)

rise =

If the rise and run have a gcd > 1, then the point chosen as above will have integer
coordinates (since we are moving from a point with integer coordinates up/down and left/right
in integer amounts), and lie interior to the circle. It is a little tricky to prove that the point will lie
interior to the circle. The rise and run having a gcd > 1 is what guarantees this (can you
explain why?), and once this is understood, the proof only involves showing that the rise and
run have a common factor greater than 1. This can be done by rewriting the rise and run in
terms of n and m. If we can show this for the two cases when (x;,y;) liesin the first
quadrant, then the result is true in general by symmetry.

It may not be worth your time to prove this on your own, at least while you are at work. This
problem has been written already and exists in the question databases.

19

Once these key points have been identified though, we can start writing the question, knowing
with absolute confidence that no matter what equations need to be solved, the solutions will
exist and be simple. The hard work will pay off when we are not struggling to find some way of
presenting a solution when it might be an integer or a complicated expression involving
radicals, and then needing to use that again later. Not to mention, the final solution will be
much simpler for students.

This is far superior to writing static versions of the question using specially chosen numbers.
Now a whole classroom could be given this problem and students would not be able to cheat
off of each other (at least in the most direct ways). Also, if an instructor wishes, they could raise
the bounds on m and n to get even more versions out of the same question without ever
worrying that the code will not work.

Reverse Engineering: Final Thoughts

So now we know two great tricks to use when we need to reverse engineer a question: the
construction of polynomials based on desired roots; and the use of Pythagorean Triples. Both
are powerful tools if used correctly, and act as secure launching pads from which to base
guestions on. But there is always more work to be done to make the question work correctly,
and these tricks are not always applicable.

We always want to make questions as reasonable to solve as possible, which requires an
understanding of how the question works. A good way to begin thinking about how a question
can be written is to write a static version first. Since many questions are adapted from paper-
based questions, we can start by writing a solution to the static question we have on paper.
After seeing the steps involved we can try to write our question by ensuring that those same
steps can be used when the question is algorithmic. If an expression shows up in the solution
that could easily become complicated if the numbers are just a bit different, then that is a good
place to start reverse engineering from. Trying designing all the variables involved in the
complicated expression so that the expression simplifies easily. For instance, if at some point
we rewrote ($p — $q) as (\/$_p + \/$_q)(\/$_p - \/$_q), by recognizing that $p and $q were
perfect squares in a static version of a question, then we should try to guarantee that $p and
$q are always perfect squares (say, by defining their roots as integers first).

Luckily, the process of writing complete feedback is a natural way to ensure that the question is
reasonable to solve. If you are having a lot of trouble writing feedback because there are too
many ways that things can change, then you will likely want to engineer the variables involved
in order to simplify things. This makes the feedback easier to write and makes the solution
more reasonable for students. It’s a win-win situation.

20

Another example of a question which requires a fair amount of reverse engineering is given
below to further illustrate the types of considerations needed when creating a question.

Example

The question to the student is “Calculate the area between the curves y = \/k(x + p),
y =—k(x+p) andtheline y=mx+b.”

This question is not so simple. To solve it we would need to integrate with respect to y from the
lowest intercept to the highest, if the curves are constructed properly. By that | mean that there
is indeed a space between these curves.

We should first note that the two curves y = \/k(x +p) and y = —\/k(x + p) together
yZ

=
parabola to intersect the curve y = mx + b in two distinct places. Since we will be using these

form the sideways parabola x = p and so we know that we just want this sideways

intercepts as bounds for the eventual integration, we should try to guarantee that the
intercepts are at integer values of x and y. We have complete control over all of these
variables and so we should be able to do this.

One way would be to choose two points on the sideways parabola with integer coordinates,
then draw a line between these two points.

y2
=
choose p however we like, so to simplify things, choose p to be an integer.

So we just need two points (x,y) satisfying x = p where x and y are integers. We can

Sp=rint (1, 0);

2
This will do, though there is some flexibility here. Now we just need y? to be an integer. We

haven’t even chosen k yet, so let’s choose k to be an integer.

Sk=rint (2,10);

2
Now we can easily make 2= an integer by choosing a multiple of k for our first y-value, and
y X y

another multiple of k for our second y-value.

Syl=-Sk*rint (1,4);
Sy2= Sk*rint (4,7);

Now we have two points on the sideways parabola with integer coordinates. Since the sideways
parabola is symmetric about the x-axis, we chose $y1 below the x-axis and $y2 above the
x-axis to make the question interesting. (If you observe the graph, we now have a situation in
which integrating with respect to y is simpler than integrating with respect to x, hence

21

justifying our methodology to the student). We made sure that $y1 was not directly below

$y2 by choosing to multiply k by a different constant for each, hence giving different

x-values. We want this because in the equation y = mx + b, m is undefined for vertical lines.

If these are the y-values, then the corresponding x-values can be obtained from the equation
_ v

X =="-=p.

Sx1=($y1"2)/Sk-$p;

Sx2=($y2"2) /Sk-$p;

Now that we know we want our line to pass through ($x1,$y1) and ($x2,$y2) we can
calculate mand b for the curve y = mx + b.

$y2-$y1

The slope m can be calculated as :
$x2—$x1

sm=frac(Sy2-Syl,$x2-$x1);
We can substitute one of our points to solve for b. Let’s use ($x1,$y1). We get

$y1 =226 1 + b

$x2—-$x1
$y2-$y1

$y1 $x2—-$x1 $x1=1b
$y1($x2—-$x1)—$x1($y2-$y1)
$x2—-$x1 -

$y1$x2—-$y1$x1-$y2$x1+$y1$x1 b
$x2—-%$x1 -

$y1$x2-$y2$x1
oo RRT = b
$x2—-%$x1

This calculation can and should be done on paper. If we had been content with defining

b = $y1 — $m = $x1 in the algorithm editor, we would usually get a decimal answer when
really, as was shown above, b can be expressed as a fraction. We were also able to cancel out
the terms $y1$x1 and —$y1$x1 in the second last step, which means that we are able to
reduce the computations performed.

It is always a good idea to do paperwork on your own to prevent unnecessary code and reduce
calculations made on the server. Often, performing calculations on paper allows us to gain
deeper insight as to how questions work, which is important when we are trying to create an
algorithmic question from a single, static question, from a paper-based assignment.

Now that we have the equation of our sideways parabola and line which intersect at integer
coordinates, we just need to write the question and perform the required integration.

22

Things You May Need

Here we provide some examples of how to use more advanced techniques in Maple T.A. We
will discuss:

* Uploading images to the web site editor.

* Generating an algorithmic image.

* Grading a list of items entered by the student.
* Using Maple Plots in questions.

* Creating animations for use in feedback.

The Web Site Editor

The Web Site editor can be accessed through the menu dropdowns “Content Manager” and
then “Web Site Editor”.

G/MapIeT,A, Developer

Systerm Homepadge » Class Homepag

Actions Content Manager Gradeh
| Assignments
Question Repository
Course Modules

Devel(eb Site Editor

This is where you can upload images and flash movies to use in your questions. You’ll be taken
to a screen which looks something like this:

Course
RightTriangle1.jpg
RightTriangle2.jpg
w Functions i

parabola.gif

The unorganized files at the top are where images that are uploaded using the “Insert/Edit
Image” button les! go. If we upload images from the Web Site editor directly we can choose
which folders we want our images to go into. Try to keep your images organized in a logical
way.

To upload an image to a folder, say the “Functions” folder from the image above, just hover
your mouse next to the folder and hit the “Upload file(s) to this point” button.

23

This will take you to a screen where you can browse your computer for the image you want to
upload and rename the image you are uploading. If you want the same name, just click the
entry field for changing the name when you have chosen the image. Otherwise rename it.

Cancel OK

Enter the complete path of the file you wish to upload:

C:\images'\exponential.gif

Save into Functions/ as

9 Single file with file name : exponential.gif

Zip archive

You can only upload .jpg and .gif image files. Once the image is uploaded you will be taken to
the previous menu. You can look at the pictures in any folder by clicking on the folder name,
then selecting the image you want to see.

Movies in .swf format (that is, flash movies), can be uploaded in the Web Site editor in exactly
the same way, though you will likely not need this as much.

Once an image exists on the server, we can add it to questions using the “Insert/Edit Image”
button l«fl. We can also use these images to create algorithmic images.

Algorithmic Images

We sometimes want to use an image in a question. We may even want the image to have
different numbers or labels appear on it depending on the numbers generated in the algorithm
section. We can use images stored on the Maple T.A. server (which you can find in the Web Site
editor) for algorithmic images. The following code is the template to really take control of our
images, and is placed directly in the source code.

<div align=left, right, or center>

<applet code="applets.labelImage.LabelImage" width="width in pixels of your image"
height="height in pixels of your image" codebase="/mapleta/modules">
<param name="image" value="URL of your image">

<param name="size" value="Number of algorithmic labels you want'">
<param name="label.l.x" value="x-position of label 1 in pixels">

.y" value="y-position of label 1 in pixels">
.text" value="Your label 1">

.x" value="x-position of label 2 in pixels">

.y" value="y-position of label 2 in pixels">
.text" value="Your label 2">

<param name="label.
<param name="label.
<param name="label.
<param name="label.

DN

<param name="label.
</applet>
</div>

24

The bolded parts are the parts you control. We will look at these from top to bottom.

<div align=left right center>
First you choose the alignment of the image as one of left, right or center.

<applet code="applets.labelImage.LabellImage" width="width in pixels of your
image" height="height in pixels of your image" codebase="/mapleta/modules">

Find out the width and height of your image in pixels, and enter these in quotations
after width=and height=. You can find these values by opening your image with
paint and checking image—attributes in the menu.

<param name="image" value="URL of your image">

Enter the URL of your image in quotations. You can find the URL of your image in the
web site editor.

<param name="size" value="Number of algorithmic labels you want'">

Enter the number of algorithmic “labels” you want in quotations (that is the number of
things you wish to algorithmically place on your image).

The code below is repeated for every algorithmic “label” you wish to place on the

image.

<param name="label.l.x" value="x-position of label 1 in pixels">
<param name="label.l.y" value="y-position of label 1 in pixels">
<param name="label.l.text" value="Your label 1">

Except that for the n™ label we write name="label.n.x", name="1label.n.y", and
name="label.n.text". The x-position and y-position are the xy-coordinates in pixels of
the label you wish to place on the picture. The values increase left to right and top to
bottom. You will likely need to play around with these values to get things exactly where
you intend. Where the code reads "Your 1abel 1", enter what you would like to appear
in the xy-coordinates you have specified. This can be (mostly) any string, and will work
with variables defined in the algorithm editor. We cannot place MathML expressions
here (much to the author’s dismay). The most common labels are numbers from the
algorithm editor.

Anything that was in bold can have a variable from the algorithm editor go in its place. Just

make sure you don’t do something like place the word “hello” as the x-coordinate for your

label. Since we have the freedom to include variables from the algorithm editor in this code, we

can place any number we want, anywhere we want, and on any picture we want! So we can do

far more than simply changing the radius on a circle diagram. We can change the picture itself,

and move the labels wherever we need them. Make sure that if you make any such changes,

that you make all the required changes. If you change the picture, make sure the height and

width are changed appropriately as well, and that the labels are in sensible places for the new

picture.

25

To place your image into the feedback or the question itself, enter the above code into the
source code directly. If you aren’t sure how to read the source code, enter a distinctive string
(use “math rules” if you aren’t feeling creative) wherever you want the algorithmic image to be.
Then enter the source code and hit “ctrl f” (the standard way to search for a string) and search
for your distinctive string. Wherever you find the string, replace it with the algorithmic image
code.

Grading Lists

Suppose the answer to your question is actually a list of answers. Worse yet, suppose you are
not even sure how many items will be in the list! Well, as long as you have a way to generate
the answer yourself, you can grade the student’s response using the following code:

mark:= 0;

res:= [SRESPONSE];

ans:= [SANSWER];

denomin:= convert (nops (ans),int);
totresponse := convert (nops(res), int);
deduct := max(totresponse-denomin, O0);
i:= 1;

while “not’ (nops(res) = 0) do

if i > nops(ans) then
res:=subsop (1=NULL, res);
i:=1;

elif res[l]l=ans[i] then
mark:= mark+1l;

subsop (1=NULL, res) ;

subsop (1=NULL, ans) ;

res:
ans:

=l

i:= 1;

else
i:= 1i+1;
end if;
end do;
evalf ((mark-deduct) /denomin) ;

If you understand it, great! Otherwise, th

e code is very robust. Just copy and paste and watch the list grading happen. It even gives part
marks! If the student gives too many answers it deducts marks, and only gives marks for correct
answers.

This code should be used with the maple-graded type (the only type where you specify grading
code), with the maple syntax option. In the answer field, simply enter the answers separated by
commas. If the answer comes as a single variable which is a list then just place the variable in
the answer field. If this doesn’t work, try changing the line

[SANSWER]; to
SANSWER;

ans:
ans:

26

Using Maple Plots

Sometimes we include plots from Maple in our questions. This is good if we need to plot a
function that is not always the same in our question.

We can do this from the algorithm editor using the function plotmaple (). We use this
function in much the same way as we use the maple () function, except that plotmaple ()
is specifically used to return images from maple. If you can generate a plot in maple, you can
bring it back to the algorithm editor in many cases. The plot will be a variable that you place
where you wish in the question.

plotmaple () consumes a string, and the string is two arguments. The first argument is the
maple code that produces the plot you want. The second argument is for the options of the
width and height of the plot returned:

plotoptions='width=250 height=250"'
where the width and height are in pixels. You can change them to be any value, not just 250.
Separate the two arguments with a comma.

Most plots can be returned from Maple. We will take a look at some examples so as to
understand the basics.

Example 1

Suppose we want to ask the student to identify the plot of y = v/x. A good range to view this
functionis 0 < x <5 and 0 <y < 5. We would enter the following into the algorithm
section.

Splot=plotmaple ("plot (sqgrt (x),x=0..5,y=0..5)");

Note that we do not need the second argument (the plotoptions argument) to get the plot.
A default size is chosen for us. This code would give us the following plot:

54

27

To specify a new size, say 100x100 pixels (which is quite small), we would write the following.
Splot=plotmaple ("plot (sqrt (x),x=0..5,y=0..5), plotoptions="width=100 height=100"");

This gives a very small plot:

Usually the smallest plot you will want is 250x250 pixels. Somewhere near 400x400 pixels is the
largest. Whatever size you choose, just make sure the important aspects of the plot are visible
and clear.

Example 2
Suppose we want to ask the students to identify one of three plots; ¥ = x2, y =+/x and
y = sin x.

If we want a different plot to show up each time, then we could define a variable that switches
between the functions we want. Then we just place that variable as the function to plot in the
plotmaple () call.

Sfunction = switch(rint(0,3), ’"x"2', ’'sqgrt(x)’, ’'sin(x)’);
Splot = plotmaple ("plot ($function, x=-5..5, y=-5..5)");

This would give us a plot of whatever the variable $function happens to be at the time.

While this code would give us the graphs we want, the view of each function is not ideal. The
range —5 < x <5 and —5 <y <5 isjust a sort of “catch all” that will show each function
satisfactorily, but is not ideal for any function in particular. If we want a better view of each of
these graphs, we need to decide on a range for the view of each function:

Fory = x?, let’s use theranges —3<x <3 and 0 <y <0O.
Fory =+/x, let’suse theranges 0 <x <5 and 0 <y < 5.
Fory = sinx, let’s use theranges —2mr < x < 2m and -2 <y < 2.

We could then write our code as follows:

$Spick3=rint (0, 3);

$function=switch ($pick3, ’"x"2’, ’'sqrt(x)’, ’'sin(x)’);

$xhi = switch($pick3, 3, 5, 2*Pi);

$xlo = switch($pick3, -3, 0, -2*Pi);

$yhi = switch($pick3, 9, 5, 2);

$ylo = switch($pick3, 0, 0, -2);

Splot = plotmaple ("plot ($function, x=$xlo..$xhi, y=S$ylo..$yhi)");

28

The main idea here is to make variables which are the upper and lower bounds for x and y,
then use those variables as the ranges in the plotmaple () call. A trick used here is to define
a random integer $pick3, then use this as the index for multiple switch () calls. This allows
us to prepare a set of variables which “go together”. This is a good trick in general for questions
with multiple versions.

Example 3
Suppose we want to highlight the area between curves on a plot. Say, the area between
sin (x) and cos (x) ontheinterval 0 < x <.

We need to be familiar with the two functions sin (x) and cos (x), in particular, we need to
recognize that the two curves intersect at % on the interval 0 < x < m. Also, cos (x) =

sin(x)on 0 <x < E, and sin(x) > cos (x) on % <x<m.

To highlight the area between the curves we need to make use of some plotting functions from
Maple. Firstly, we will need the display function from the plots package. This function
displays several plots on the same graph. It is a good way to compose a plot if no single call to
the plot function will give you the entire image you need. In a Maple worksheet, in order to use
the display function, we can call on the plots package by writing:

[> with(plots) -
Then call on the display function on a separate line.

Similarly, to use display with the plotmaple () function we would write:

Splot=plotmaple ("with (plots):
display (..)");

Then we would give the arguments to the display function in place of the ellipses.

Note: We can also use the long form of the display function which does not require us to call
on the plots package. This is true of any of the functions in packages that we might use. If you
know the function’s name and the name of the package it comes from (which can be found in
the Maple help files), then the long version of the call to the function is

PackageName [FunctionName] (function arguments)

Now that we know how to call upon the display function, in order to highlight the area between
the curves we need to combine a few plots.

The first plot you will need is a plot of the two functions, sin (x) and cos (x), on the range we
will view the finished plot from. The default range is —10 < x < 10 and y adjusts according

29

. . s 3
to the function. We should view the area on a smaller range, say — > <x< >y and

—1.5 < y < 1.5. So we can leave the default range since it “covers” the smaller range we will
view the finished product from. (This will make more sense when we place all of our plot
commands in the display function which takes in an argument to specify the view of the
combined plots, regardless of the view of the individual plots). We can make a plot of sin (x)
and cos (x) with the following plot command:

plot([sin(x),cos(x)], colour=[red, blue], thickness=2)

The thickness is a matter of preference. When filling in areas between curves, the curves
themselves may look a bit thin, especially around the filled-in area. Hence the author’s
preference is to make the function’s lines thicker by adding the option thickness=2.

Now we need to fill in the area between these curves by making use of the filled=true
plotting option available through the regular plot command.

The filled=true option can be added to a regular plot command. Rather than drawing the
curve, the plot command will fill in the area between the curve and the x-axis. The trick to
filling in the region between two curves is to fill in the function closest to the x-axis with the
colour white, and fill in the function furthest from the x-axis with the colour of your choice
(let’s say gold). This gives the appearance of only the area between the curves being filled in
with colour.

In order for this to work properly, the white fill must come before the colour fill. That is, the
function which gives the white filled space must come before the function which gives the
colour filled space in the plot command. Also, we must specify the range on which we are
“filling”, otherwise the fill will be everywhere in the default range —10 < x < 10.

We can break the areas to fill into two sections: everything above the x-axis; and everything
below the x-axis.

Considering the area above the x-axis from 0 < x < m, we will need a whitespace under
sin(x) on 0 <x < %, and under cos (x) on g <x< % (to see this, the finished plot is shown
at the end of this example). If we understand the Heaviside function, we can do this with one

plot command, otherwise you will need two separate plot commands to get this. Using the
Heaviside function the call is:

plot (sin(x)-Heaviside (x-Pi/4)* (sin(x)-cos(x)), x=0..Pi/2,
filled=true, colour=white)

30

To get the gold areas above the x-axis we need to fill in cos (x) withgoldon 0 < x < % and

sin (x) with gold on T<x<m Again taking advantage of the Heaviside function, the call is:
4

plot (cos (x) -Heaviside (x-Pi/4) * (cos (x)-sin(x)), x=0..Pi,
filled=true, colour=gold)

Looking below the x-axis, we will need to fill in cos (x) with gold on the interval g <x<m.

The call is:
plot (cos(x), x=Pi/2..Pi, filled=true, colour=gold)

Now that we have the functions and the areas, we just display each of these plots
simultaneously using the display function. The display function simply takes in Maple
functions which evaluate to some sort of plot, separated by commas. Then a final argument
view=[a..b, c..d] isgiventoview the plotsontherange a<x<b and c <y <d.

So we place all of our pieces in the display command to get the final call to plotmaple () as:

Splot=plotmaple ("plots[display] (plot([sin(x),cos(x)],
colour=[red, blue], thickness=2), plot(sin(x)-Heaviside (x-
Pi/4)* (sin(x)-cos(x)), x=0..Pi1i/2, filled=true, colour=white),
plot (cos (x) -Heaviside (x-Pi/4) * (cos (x)-sin(x)), x=0..Pi,
filled=true, colour=gold), plot(cos(x), x=Pi/2..Pi, filled=true,
colour=gold), view=[-Pi/2..3*Pi/2, -1.5..1.51),
plotoptions='width=600 height=400"");

The width and height are just preferences added at the end. The resulting plot from this call is:

15

151

Not bad! When you are more comfortable making this sort of complicated call you may be able
to algorithmically change the range to be filled in, the functions you are working with, and any
of the other aspects of the graph. It usually just requires some basic mathematical analysis of
the functions being worked with (but the more you make algorithmic the harder it gets).

31

Animations

Creating an animation is similar to creating a plot. The underlying idea is to write a plot
command with a variable which increases incrementally along a range. Each increment that the
variable increases corresponds to a frame of the animation. The easiest way to illustrate how to
create an animation is with an example.

Example 1
We want to create an animation of the unit circle being traced from 0 < 8 < m. First we can
discuss how to plot using parametric curves. Suppose we just want to see the curve defined by

(x(6),y(8)) = (cos (0),sin (), 0<0<m
Notice that this is the upper half of the unit circle. To plot this we would use the plot command
plot([cos(t), sin(t), t=0..Pi], x=-2..2, y=-2..2)

We have replaced 6 with t (which is a commonly used variable for parametric curves). If we
placed this in the plotmaple () function we would get the following graph.

2

.,4_~<
P

I T

-1

T T N T N T S T

|
N

In order to animate the curve being traced out we would use the function animate () from
the plots package. This consumes three arguments:

* The first is the function you wish to base your animation off of. We wish to animate the plot
above which was made using the plot command. So our first argumentis plot.

* The second argument is a list of the arguments you wish to give to the function specified in
the first argument. In our case, the first argument was plot, and so the second argument
is a list of the arguments we will give to the pl ot command.

* The “third” argument is any number of modifications we wish to make to the animate
command. A comprehensive list can be found in the Maple help files, but you will need to

32

know a few right now. Let’s take a look at the code. It is colour coded so that you can
distinguish the first, second and third arguments.

with(plots):
animate (plot, [[cos(t), sin(t), t=0..A]], A=0..Pi, view=[-2..2, -2..2],
paraminfo=false, frames=50)

So we have called on plot, and given it the arguments [cos (t), sin(t), t=0..A].

Notice that we did not specify a range to view the animation in the second argument. Instead
we specified the view in the “third argument” (in blue) with the call view=[-2..2, -2..2]
(but we could have specified a range in the second argument if we wanted to).

Also notice that we have made t range from 0 to A. This is how we make the animation work.
Each frame of the animation will be the image we would get from the call

plot([cos(t), sin(t), t=0..A)1);

As A increases from 0 to m this would be an animation of half the unit circle being traced. We
specified exactly how A increases in the third argument by writing 2=0. . P1i. The
paraminfo=false argumentis to get rid of a label showing the value of A in each frame
of the animation, since we do not normally need to show that information. We can choose to
have n frames in the animation by writing frames=n (we chose n = 50 frames above).

Placing the above two lines of code into the plotmaple () function gives the animation. Note
that we can choose the variable A to be anything.

Example 2

Suppose we want to show a student how the function f(x) = asin (x) changesas a
increases. We might decide to range a from —2 to 2, and let’s make the curve blue just for
fun. Then the call would be:

Splot=plotmaple ("with (plots):
animate (plot, [a*sin(x), x=-2*Pi..2*Pi, y=-3..3, colour=blue],
a=-2..2, paraminfo=false, frames=50)");

Adding too many frames can cause the running time of your question to increase quickly.
Around 50 is a good medium quality number of frames, and the default is somewhat less than
this. The abilities of the animate function are quite extensive and a more thorough discussion of
its capabilities can be found in the Maple help files.

33

Wrapping Up

Creating great questions takes practice. When you are more comfortable using the techniques
explored in this manual you can always experiment and expand on the basics. The best
guestions are always written with solid mathematical principles working behind the scenes and
sometimes creating a problem which is relatively easy to solve can involve math which is well
beyond the scope of the solution. Employing these mathematical principles effectively will
allow you to write questions more easily, and with greater clarity. Computers are easier to
program when solid mathematics is used.

Remember that the feedback you provide students needs to be at their skill level. Employing
advanced techniques for a problem may seem obvious to you, but you are not writing the
feedback for yourself. If the students understood the advanced techniques, they likely would
not need to review the feedback anyway.

Hopefully your work here will help you appreciate the effort which goes into creating effective,
educational questions. One of the most difficult tasks is giving the student enough information
to find the solution, while not giving too much away. Providing too many hints fails to teach the
student problem solving skills. Providing too few hints causes the student excessive frustration.
If you can find the right balance you may even learn to read the problems from your own
courses more effectively!

