
Maple T.A. Tips and Techniques - Algorithmic Variables (Part I)

Introduction
You can use algorithmic variables to randomize your questions in Maple T.A. These algorithmic variables can use the
built-in algorithmic generator or can use any of Maple's randomization routines. This article discusses various func-
tions built into Maple T.A. that can be used to create random variables and provides some examples. A later article will
discuss routines and packages in Maple that can be used in Maple T.A. to create random variables.

Algorithmic Variables in Maple T.A.
To create an algorithmic variable in Maple T.A., use the algorithm designer in the Question Bank Editor. Algorithmic
variables can be used in any question type and can be used in the question text, the answer region, as well as in the
hints and feedback sections. Algorithmic variables are denoted by a dollar sign, for example $var.

To create an algorithmic variable:
1. Upload an existing Question Bank or create a new one.
2. Open an existing Topic or add a new one.
3. Click Add a question.
4. Choose the question type from the drop-down menu.
5. In the Algorithm field, click Add.
6. If you know the format of the command, you can type it in the text box and proceed to Step 8. Otherwise, click

Show Designer to load the algorithm designer tool.
7. Type the required information in the algorithm designer template. Note that you do not need to use the $ to

denote variables in the template. Click OK to add the command to the algorithm text box and displays a possible
value for the variable.

8. Click Refresh to have Maple T.A. generate another possible value for the variable(s).
9. Click Save to return to the main page for the question.

You can now continue creating your question and can use the variables that you created.

You can use the algorithm designer to create simple random integers, set conditions on the variables, or enter a Maple
command that will generate a random object.

Randomization Functions in Maple T.A.

Maple T.A. contains several functions for creating random variables. You can create random integers or real numbers,
perform operations on lists of items, or set conditions on variables.

It is important to note that the algorithm generator in Maple T.A. works linearly. This means you must be careful to
define variables before referencing them in other variable definitions.

Random Numbers
You can define random numbers or display given numbers in a specific format using the following functions.

rand(m,n) - enerates a random real number between m and n (inclusive), rounded to 6 decimal places
rand(m,n,k) - as above, but expressed to k significant digits
range(n) - generates a random integer between 1 and n (inclusive)
range(m, n) - generates a random integer between m and n (inclusive)
rint(n) - generates a random integer between 0 and n-1 (inclusive)
rint(m, n) - generates a random integer between m and n-1 (inclusive)
decimal(n,x) - returns x expressed as a floating-point number rounded to n decimal places

List Operations
There are several functions in Maple T.A. that operate on lists. These allow you to choose an item out of a list based
on a property or a value. They are very useful if you want to create a question with the same stem or base informa-
tion, but have answers with different properties.

min(a,b,c,d,…) - returns the smallest element from a list
max(a,b,c,d,…) - returns the largest element from a list
indexof(k,a,b,c,d,…) - returns the index of item k within a list. The position numbering in the list starts at 0. If the
item k is not present in the list, the function returns a value of -1.
rank(n,a,b,c,d,…) - returns the nth element from an ordered list. The position numbering in the list starts at 1. If n is
less than one or larger than the number of elements in the list, the function returns an error message.
switch(n, a, b, c, …) - returns the nth item from a list. The position numbering in the list starts at 0. If n is larger than
one less than the number of elements in the list, the function returns the last element of the list. If n is less than zero,
the function returns the first element.

Conditions
You can place conditions on your variables. For example, you can specify that two variables are not to be equal, or
define a value for a specific variable based on the values of other variables.

condition:x - where x is the definition of the condition
if(a,b,c) -if a is nonzero, return b. Otherwise, return c
eq(a,b) - returns 1.0 if a is equal to b. Otherwise, it returns 0.0.
ne(a,b) - returns 1.0 if a is not equal to b. Otherwise, it returns 0.0.
gt(a,b) - returns 1.0 if a is greater than b. Otherwise, it returns 0.0.
ge(a,b) - returns 1.0 if a is greater than or equal to b. Otherwise, it returns 0.0.
lt(a,b) - returns 1.0 if a is less than b. Otherwise, it returns 0.0.
le(a,b) - returns 1.0 if a is less than or equal to b. Otherwise, it returns 0.0.
not(a) - returns 1.0 if a is equal to 0.0. Otherwise it returns 0.0.

Examples

These examples include the Maple T.A. source code required to generate the question. If you want to easily load the
questions into Maple T.A., download the April05Tips.qu file from the Web site and upload it into the Question Bank
Editor.

1. Basic Arithmetic

In this example we use a multiple choice ques-
tion and ask the student to add two numbers.
In the algorithm designer, we define two integer
variables, $a and $b, and then define a third
variable, $ans, which is the sum of $a and $b.
In the choices to be displayed, we create an
inline algorithmic variable that is the product of
$a and $b by using the format ${expression}.

mode=Multiple Choice@
name=arithmetic@
editing=useHTML@
algorithm=$a=range(2,10);
$b=range(3,15);
condition:not(eq($a,$b));
$ans=$a+$b;@
question=What is $a+$b?@
answer=3@
choice.1=$a@
choice.2=$b@
choice.3=$ans@
choice.4=${$a*$b}@

2. Calculating Area
In this example we use a numeric question and ask the student to calculate the area of a rectangle given two algorith-
mically-generated values for the width and length. This example shows that you can combine commands, such as
decimal(x,n) and rand(m,n). We've also added a condition on the variables $width and $length so that they will not be
equal.

question=Given a rectangle with width of $width meters and length of $length meters, calculate its area.@
answer.num=$area@
answer.units=m^2@
showUnits=true@
grading=exact_value@
negStyle=both@
numStyle=thousands @
mode=Numeric@
name=area@
algorithm=$width=decimal(1,rand(2.5,6.5));
$length=decimal(1,rand(4.5,10.0));
condition:not(eq($width,$length));
$area=$width*$length;@

One of the features of Maple T.A. is the ability to define inline algorithmic expressions
directly in questions by using the format ${expression}.

3. Color Combinations
This fill-in-the-blanks example illustrates the use of the
switch command to customize the question. Given two
lists of information, one of three pairs of colors and
one of the colors when the pairs of colors are mixed,
we can define a random index value and then base the
question on one of these three pieces of matching
information.

mode=Blanks@
name=color@
algorithm=$index=rint(3);
$choice0="red and blue";
$choice1="red and yellow";
$choice2="blue and yellow";
$mix=switch($index,"$choice0","$choice1","$choice2");
$color=switch($index,"purple","orange","green");@
question=When you mix $mix, you get <1> @
blank.1=%24color@
extra=@
format.input=text@

Summary

There are a wide variety of routines that can be used to create algorithmic variables within Maple T.A. This article summarized these
functions and provided a few examples. If you'd like more information on the randomization functions inside Maple T.A., see the
Advanced Authoring section of the online Instructor Help.

© Maplesoft, a division of Waterloo Maple Inc., 2005. Maplesoft, Maple, and Maple T.A. are trademarks of Waterloo Maple Inc. All other trademarks are property of their respective owners.

Corporate Headquarters
Maplesoft, Waterloo, Canada
t. 519.747.2373 | f. 519.747.5284
800.267.6583 (US & Canada)
info@maplesoft.com

www.maplesoft.com | www.mapleapps.com

European Office
Maplesoft Europe GmbH, Zug, Switzerland
t. +41 (0)41 763 33 11
f. +41 (0)41 763 33 15
info-europe@maplesoft.com

The Algorithmic Editor shows both the algorithmic commands and a sample value for
the variables.

Maple T.A. Tips and Techniques – Algorithmic Variables
(Part II)

Introduction

You can use algorithmic variables to randomize your questions in Maple T.A. These
algorithmic variables can use the built-in algorithmic generator or can use any of Maple’s
randomization routines. In a previous article, Algorithmic Variables (Part I), we covered
various functions inside Maple T.A. that can be used to create random variables. This
article discusses several of the routines and packages in Maple that can be used in Maple
T.A. to create random variables.

Algorithmic Variables in Maple T.A.

To create an algorithmic variable in Maple T.A., you can use the algorithm designer in
the Question Bank Editor. Algorithmic variables can be used in any question type and
can be used in the question text, the answer region, as well as in the hints and feedback
sections. Algorithmic variables are denoted by a dollar sign, for example $var.

To create an algorithmic variable:

1. Upload an existing Question Bank or create a new one.
2. Open an existing Topic or add a new one.
3. Click Add a question.
4. Choose the question type from the drop-down menu.
5. In the Algorithm field, click Add.
6. If you know the format of the command, you can type it in the text box and

proceed to Step 8. Otherwise, click Show Designer to load the algorithm designer
tool.

7. Type the required information in the algorithm designer template. Note that you
do not need to use the $ to denote variables in the template. Click OK to add the
command to the algorithm text box and display a possible value for the variable.

8. Click Refresh to have Maple T.A. generate another possible value for the
variable(s).

9. Click Save to return to the main page for the question.

You can now continue creating your question and can use the variables that you created.

Algorithm Design Tool

You can use the algorithm designer to create simple random integers, set conditions on
the variables, or enter a Maple command that will generate a random object.

Randomization Routines in Maple

Maple has many randomization routines that can be used in Maple T.A. This section
discusses a subset of the available functions. The function rand will generate a random
integer, while randpoly will generate a random polynomial with specific properties. The
LinearAlgebra package contains the RandomMatrix and RandomVector functions. The
RandomTools package contains a variety of functions for creating random Maple objects,
from simple random integers or polynomials to lists of values that follow specific
probability distributions. In addition, since Maple is a programming language, you could
write your own customized program in Maple to generate any type of variable or object
that you need.

All random number generators use the same underlying random number sequence, so
when using Maple’s randomization routines, you must include randomize(): as the first
part of the call. This uses a number based on the system clock as the initial state instead
of the default seed that is used in Maple. If you don’t include randomize(), each call will
return the same sequence of values since each call to Maple from within Maple T.A.
starts a new Maple kernel and that will reset the default randomization seed.

Notes

1. When entering multiple commands, ensure that all (except the last) have a trailing
colon. The last command should have a trailing semi-colon.

2. When referencing negative (or possibly negative) random variables in a maple
variable definition, be sure to place the negative variable in parentheses,
otherwise you may receive an error message.

Random Integers

The rand() function is a simple way to create random integers. You can also you the
RandomTools[Generate] command as shown in the RandomTools section below.

rand() Generates a 12-digit nonnegative integer

rand(n)() Generates a random integer between 0 and n-1 (inclusive)

rand(a..b)() Generates a random integer between a and b (inclusive)

Random Polynomials

The randpoly function is the most straightforward way to create random polynomials.
You can also you the RandomTools[Generate] command as shown in the RandomTools
section below.

randpoly(variables,
options)

Generates a random polynomial in terms of variables using the
options specified. The most common options are used to specify
the type of coefficients and exponents, the degree of the
polynomial, and the number of terms in the polynomial.

These options are included as follows:

coeffs=rand(a..b) – the default is rand(-99..99)
degree=n – the default is 5
expons=n – the default is rand(6)
terms=m – the default is 6, but this value is overridden by the degree option if
there is a conflict

LinearAlgebra Functions

The two most common random objects that can be created using the LinearAlgebra
package are Matrices and Vectors. You can create both row and column vectors.

LinearAlgebra[RandomMatrix](m, n, density,
generator)

Generates a random m x n matrix using
the options specified.

LinearAlgebra[RandomVector][o](dimension,
density, generator)

Generates a random vector using the
options specified. [o] can be used to
specify a row vector instead of a column
vector (which is the default).

Some examples:

$M=maple("randomize(): LinearAlgebra[RandomMatrix](3,3)"); returns a random 3x3
matrix

$V=maple("randomize(): LinearAlgebra[RandomVector][row](6,
generator=rand(1..5)/10))"); returns a row vector of 6 elements whose entries are rational
numbers with a denominator of 10 and a numerator between 1 and 5. The elements are
returned in simplified form.

RandomTools Functions

There are many functions in the RandomTools package, including sub-packages that
implement different pseudo-random number generators. There are several
RandomTools[Generate] functions can be used to create random objects, a selection of
which are included in the table below. Each of the functions in the table below should
follow RandomTools[Generate], as in RandomTools[Generate](choose({a,b,c,d,e,f}));

choose(collection) Select one of the entries in a non-empty collection with equal
probability

complex(flav) A random complex number with real and imaginary parts described
by the given random flavor flav

exprseq(flav,n) An expression sequence with n entries where each entry is
described by the given random flavor flav

float(opts) A random floating-point number in a particular range. The options
can include a range (e.g., range=2.532..7.723) and the number of
digits (e.g., digits=4).

identical(expr) Describes the object expr itself

integer(opts)
negint(opts)
nonnegint(opts)
nonposint(opts)
nonzeroint(opts)
posint(opts)

A random integer in a particular range. The options can include a
range (e.g., range=0..10) and a statistical distribution from where
the integer is chosen (e.g., distribution=poisson[5])

list(flav, n) A list with n entries where each entry is described by the given
random flavor flav

listlist(flav, m, n) A list of m lists, each with n entries, where each entry is described
by the given random flavor flav. In the case where only m is given,
n is assumed equal to m.

rational(opts)
negative(opts)
nonnegative(opts)
nonpositive(opts)
nonzero(opts)
positive(opts)

A random rational number in a particular range. The options can
include a range, a statistical distribution from where the rational
number is chosen, or a denominator.

polynom(coeffs, x,
opts)

A random polynomial in a given number of variables x with
coefficients coeffs of a given random flavor. The default degree of
the polynomial is 5, but you can specify the degree of the
polynomial by using the degree option (e.g., degree=3).

set(flav,n) A set containing n entries where the entries of the set are described
by the given random flavor flav. The final set can contain fewer

than n entries if the same object is generated more than once.

truefalse(opt) Describes the values true or false. By default, the values true and
false will be chosen with equal probability, but you can modify this
by using the probability option (e.g., probability=p, where p is a
numeric value between 0 and 1 that specifies the probability that the
object will be true).

Some examples:

$a=maple("randomize(): RandomTools[Generate](integer(range=2..9))"); returns a
random integer between 2 and 9 (inclusive)

$b= maple("randomize(): RandomTools[Generate](list(rational(denominator=30), 10))");
returns a list of 10 rational numbers whose denominator is 30. They are returned in
simplified form.

$c=maple("randomize():
RandomTools[Generate]([integer(range=3..10),rational(range=3..10,
denominator=13)])"); returns a list of two elements where the first element is an integer
in the range 3 to 10 and the second element is a rational number between 3 and 10 whose
denominator is 13

You can also include other Maple commands in the algorithmic variable definition.
$d=maple("randomize(): seq(RandomTools[Generate](integer(distribution=normald[3.5,
1.5])), i=1..10)"); creates a 10-item sequence of integers that follow a normal distribution.

Examples

The following examples include the Maple T.A. source code required to generate the
question. If you want to easily load the questions into Maple T.A., download the
Aug05Tips.qu file from the Web site and upload it into the Question Bank Editor.

1. Degree of polynomial

This numeric question uses Maple to generate a random polynomial and Maple's
MathML[ExportPresentation] function to generate a nicely formatted version of it. We
then ask the student to determine the degree of the polynomial.

question=What is the degree of $displaypoly?@
answer.num=$b@
answer.units=@
showUnits=false@
grading=exact_value@

negStyle=minus@
numStyle=thousands scientific dollars arithmetic@
mode=Numeric@
name=Polynomial@
algorithm=$a=range(0,2);
$b=range(2,5);
$poly=maple("randomize(): randpoly(x,degree=$b)");
$displaypoly=maple("printf(MathML[ExportPresentation]($poly))");@

2. Intersection of Sets

Here we use the RandomTools[Generate](set) function, to generate two unique sets and
ask the student to determine the intersection. This question is written as a Maple-Maple
question because we want the student to enter in a set as the answer.

question=What is the intersection of $set1 and $set2? <p>
</p>
Enclose your answer in braces.@
maple=is($RESPONSE=$ANSWER);@
maple_answer=$set1 intersect $set2@
type=maple@
mode=Maple@
name=Intersection@
editing=useHTML@
algorithm=$set1=maple("randomize():
RandomTools[Generate](set(posint(range=8),5))");
$set2=maple("randomize(): RandomTools[Generate](set(posint(range=10),4))");@

3. Matrix Determinant

In this example, we use Maple's LinearAlgebra[RandomMatrix] function to create a
square matrix with entries between -9 and 10. Again, we use
MathML[ExportPresentation] to generate a nicely formatted version for display.

question=Calculate the determinant of the following matrix.
$m.@
maple=evalb($ANSWER-$RESPONSE=0);@
maple_answer=LinearAlgebra[Determinant]($matrix);@
type=formula@
mode=Maple@
name=Matrices - Determinants@
editing=useHTML@
algorithm=$n= int(rand(2,4));
$matrix=maple("randomize():LinearAlgebra[RandomMatrix]($n,$n,generator=rand(-
9..10))");
$m=maple("printf(MathML:-ExportPresentation($matrix))");@

 Two Maple commands are being used. One to create the Matrix construct, and one to
generate a nicely formatted version for display.

Summary

There are a wide variety of routines and packages in Maple that can be used to create
algorithmic variables in Maple T.A. You can use straight functions or combinations of
functions to achieve the result that you want. This article summarized a subset of such
functions. If you’d like more information on the available randomization routines in
Maple, refer to the Maple documentation.

Techniques for Creating Algorithmically Generated

Questions

© Maplesoft, a division of Waterloo Maple Inc., 2007

Maple T.A. supports algorithmic questions, which allows you to generate many different
questions that have the same basic structure. Algorithmic questions are very useful for
generating hundreds of practice questions for students, and can also be used in
assignments to ensure each student gets a different version of the question. This
document explores techniques for creating good algorithmically generated questions. The
focus is not so much on the technical aspects of creating these questions (see the
Instructor help for the technical details), but rather on ways to think about your problem
which lead to better algorithms. It includes examples of ways to generate values with
different properties, and introduces you to some Maple commands that may be useful for
generating question values.

Start with the Answer

Example 1: Consider the following problem:

What is the square root of n?

Approach 1:

1) Select a number, n, between 1 and 100
2) Take the square root of n
3) Check if the square root of n is an integer
4) If it isn’t, go to back to step 1) and try again

Approach 2:

1) Select a number, k, between 1 and 10
2) Set n = k^2

Both approaches lead to acceptable values for n, but the first approach will take much
longer to generate an acceptable question. It uses a “pick a possible value, test to see if it
has the necessary characteristics, if not reject, and pick again” approach. It is more
complicated to understand, and therefore will probably take longer to write and require
more testing. Since it is more complicated, it will also be harder to reuse or modify later.

The second approach is to decide what characteristics you need in your variables, and
then write the generation steps to ensure that only values that have those characteristics
get generated in the first place.

The fundamental difference between the two approaches is that the first one starts with
the question, and the second starts with the solution. When creating algorithmic

questions it is almost always better to start with the solution.

Example 2: Factor a quadratic, .

We need to create the quadratic for use in the question, and we need to ensure that the
roots are both real and both integers. One approach is to find values for b and c using the

quadratic formula,
, where a=1.

To ensure real roots, we must pick values such that . To ensure integer roots,
we also need to make sure that it is a perfect square and that the numerator is a multiple
of . All of this is possible but it would take some thought and care to get it right.

However, if we start with the solution, the problem becomes much simpler. If the

factorization is , then we just need to pick nice, integer values for m, and
n. Then we expand the factors, and the question is created.

Picking Values with Specific Characteristics

Starting from the solution is a key component to creating a good algorithmic question.
Often, you will need to select values with particular characteristics. Here, too, the best
approach is to find a way to build in the characteristics you need, rather than use a pick-
test-reject-pick again method.

Problem: Pick a number from 10, 20, 30, …, 100.
Solution: Pick a number from between 1 and 10, and then multiply it by 10

Implementation: $a = rint(1,11)*10

In Maple T.A., use the rint function to generate a random integer. The command

rint(m,n) will generate a random integer between m and n-1 inclusive. The command

rint(n) will return a number between 0 and n-1.

Note that with this implementation, if you wish to change the upper bound, for example
to 200, you only need to change a single number.

Problem: You need to make three variables, all different, and they all have to have a
common factor.
Solution: Fix a list of possible common factors, for example {2, 3, 5}. Pick each
variable from a different range, say a comes from 1-3, b comes from 4-6, and c comes
from 7-9. Randomly pick a common factor, k, from the common factor list. Your values
are then

Implementation:

$a = rint(1,4)

$b = rint(4,7)

$c = rint(7,9)

$k = switch(rint(3), 2, 3, 5)

In Maple T.A., switch(n, a, b, c,…) returns the nth item from the list a, b, c, …,
where the position numbering starts at 0.

Problem: You need your variable to be one of: .

Solution: Sometimes the simplest solution is best. If you need to pick from a fixed set of
items, put all the possible values in a list, and then randomly pick one of them.
Implementation:
$v = switch(rint(5), Pi/2, Pi/3, Pi, 2*Pi, 0)

$v_Display =

maple("MathML[ExportPresentation](identify($v))")

Or in one step

$v = maple("randomize();

[Pi/2, Pi/3, Pi, 2*Pi, 0][(rand(1 .. 5))()]");

Using Maple’s Random Generation Tools

When using Maple to generate your values you have access to many built-in tools for
creating random objects with particular properties. These tools should be used
selectively. Calls to built-in Maple T.A. commands are the most efficient option. If you
just need to pick random integer values, you may find the Maple T.A. functions range()
or rint() sufficient. However, for the cases where it does make sense to use these random
generation tools, you will find them very powerful and very convenient.

Here are a few examples of the sorts of tools that are available. For more information,
consult the Maple help system.

RandomTools[Generate]

This command can be used to generate a wide variety of objects, including fractions,
integers, non-zero integers, polynomials, complex numbers, and lists. You can further
specify the characteristics of each type of object.

You can ask for a list of 5 integers between -10 and 10, and excluding zero:

You can ask for a fifth degree polynomial whose coefficients are fractions with 12 in the
denominator (Maple will simply fractions like 9/12 before displaying the result).

For more information, see the ?RandomTools[Generate] help page inside Maple.

LinearAlgebra[RandomMatrix]

This command can be used to create a random matrix of a specified size, with entries
selected using the criteria given by the user.

To create a 3x3 matrix with entries from 1 to 9:

To create a lower-diagonal matrix with the same type of entries:

For more information, see the ?LinearAlgebra[RandomMatrix] help page.

Tip – To call Maple from within Maple T.A. the maple command must be enclosed in
 maple(“ “).

For example,
$poly =

maple(“RandomTools[Generate](polynom(positive(denominator=1

2),x,degree=5))”)

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to

demonstrate the use of Maplesoft Products to solve a particular problem. It has been made available for

product evaluation purposes only and may not be used in any other context without the express permission

of Maplesoft.

Three Steps to More Effective Algorithms
in Maple T.A.

© Maplesoft, a division of Waterloo Maple Inc., 2007

Every question type in Maple T.A. can take advantage of algorithmically-generated
variables in question statements, answers, hints, or feedback. By using algorithmic
variables in questions you can generate numerous variations on a single template
question. This style of question generation offers many benefits, including that any
changes or corrections that need to be done only have to be made to the template – not to
each variation of the question. However, if algorithms are not optimally created, you may
not take advantage of all the benefits they offer. This Tips and Techniques article will
demonstrate how to write clean, efficient algorithms while avoiding some common
pitfalls.

1. Use Conditions Sparingly

The condition statement provides a convenient way of setting conditions that must be
met when the system generates variable values, although, this means that multiple
instantiations of the variables may have to be generated before the conditions are finally
met. To ensure optimal efficiency, reduce the number of conditions in your algorithm,
where possible, by adjusting the variable definitions appropriately.

For example, suppose you wanted two random integers $a and $b such that
1 ≤ $a < $b ≤ 4.

Instead of:

$a = range(4);

$b = range(4);

condition: lt($a,$b);

Try:

$a = range(3);

$b = range($a+1,4);

For further examples of how to optimize your variable definitions, see the previous Tips
and Techniques entitled “Techniques for Creating Algorithmically Generated Questions”.

2. Delete Any Unused Variables

Suppose you had defined a variable $y, for example $y = maple("sin($x)");, and
after subsequent changes to your question, $y no longer contributes to any other variable,
nor is it used anywhere else in the question. To improve performance, you should remove
this line of code from your algorithm.

3. Invoke Maple Selectively

Algorithmic variables can be generated by Maple T.A., Maple or both. To define a
variable via Maple use the following syntax:

 $<variable_name> = maple("<Maple_command>");

Using Maple to define variables puts the entire suite of Maple commands at your
disposal. Keep in mind, each call to Maple from within Maple T.A. starts a new Maple
kernel. To maximize the performance of your question, avoid unnecessary calls to
Maple.

By taking advantage of Maple T.A.’s built-in functions for basic range- and list-based
variables, and reserving Maple commands for more advanced functionality, your
questions will run much faster than they would by relying on Maple calls alone. The
examples below will help you decide whether to use Maple or Maple T.A. to create your
algorithm.

Use Maple T.A. functions to…

Call the Maple engine to…

Generate a random integer or floating

point number in a range.

$a = rand(0,1);

$b = range(-5,5,2);

$c = rint(8);

Generate a random sequence of numbers that

follows a statistical distribution.

$L =

maple("RandomTools[Generate](list(dist

ribution(Normal(5,3)),10))");

Define a string or a literal formula

(also a string).

$s = "This is a string.";

$a = "sqrt(3)/2";

$f = "(x+1)/(x-1)";

Define functions and other symbolic objects.

$f = maple("proc(x) x^2*exp(x) end

proc");

$S = maple("{seq($f(i),i=1..10)}");

Choose an item from a list, be it the n
th

indexed item, the n
th
 largest, or the max

or min.

$a = rint(6);

$b = rint(6);

$m = min($a,$b);

$z = rint(4);

$x = switch($z,1,-4,-7,10);

$ans =

switch($z,"odd","even","odd","

even");

Create a random list, vector or matrix.

$n = range(10);

$M = maple("randomize():

LinearAlgebra[RandomMatrix]($n,$n)");

Randomize specific parameters (e.g.,

coefficients or exponents) of an

expression.

$n = range(2,10);

$f = "x^$n-x";

$g = "cos($n*x)";

Create random expressions.

$f = maple("
RandomTools[Generate](polynom(integer(

range=-5..5),x))”);

Render simple expressions in MathML.

$n = range(2,10);

$F = mathml("x^$n");

$G = mathml("sin($n*x)");

Render more complex or randomly generated

expressions in MathML.

$p = maple("randomize():

randpoly(x,degree=5)");

$P =

maple("MathML[ExportPresentation]($p)"

);

Perform integer arithmetic.

$a = rint(5);

$b = range(-3,3);

$c = ($a+3*$b)^2;

Reduce a fraction.

$a = range(8);

$b = range(8);

$c = frac($a,$b);

Perform arithmetic and general symbolic

computation on expressions.

$f = "x^2-x";

$g = maple("randomize():

randpoly(x,degree=2)");

$h = maple("factor(($f)+($g))");

$a = switch(rint(4),2,3,4,6);

$b = maple("sin(Pi/$a) ");

Perform basic floating point

calculations.

$a = range(10);

$b = decimal(4,sin(pi/$a));

Do more sophisticated floating point

calculations.

$a = range(10);

$b = maple("fsolve(x^3-x+$a,x)");

Legal Notice: The copyright for this application is owned by Maplesoft. The application

is intended to demonstrate the use of Maple to solve a particular problem. It has been

made available for product evaluation purposes only and may not be used in any other

context without the express permission of Maplesoft.

	Algorithmic Variables - part 1
	Algorithmic Variables - part 2
	Algorithmic Variables - Techniques
	Algorithmic Variables - How to Write More Effective Algorithms

