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Abstract. We prove a Skoda-type division theorem via a degeneration argument. The proof
is inspired by B. Berndtsson and L. Lempert’s approach to the 𝐿2 extension theorem and is
based on positivity of direct image bundles. The same tools are then used to slightly simplify
and extend the proof of the 𝐿2 extension theorem given by Berndtsson and Lempert.

1. Introduction

This paper employs degeneration methods to prove an 𝐿2 division theorem. The proof is
inspired by a similar technique by B. Berndtsson and L. Lempert to give a new proof of a
sharp 𝐿2 extension theorem [BL16]. In the process, we discover a tool that slightly simplifies
and extends the proof of 𝐿2 extension by Berndtsson and Lempert.
In the following 𝐻0 (𝑋, 𝑉 ) always denotes the space of holomorphic sections of the holo-

morphic vector bundle 𝑉 → 𝑋 .

Theorem 1 (𝐿2 division). Let 𝑋 be a Stein manifold and let 𝐸, 𝐺 → 𝑋 be holomorphic line
bundles with (singular) Hermitian metrics e−𝜑 and e−𝜓 , respectively. Fix ℎ = (ℎ1, . . . , ℎ𝑟) ∈
𝐻0 (𝑋, (𝐸∗ ⊗ 𝐺)⊕𝑟) and 1 < 𝛼 < 𝑟+1

𝑟−1 . Assume that

√
–1 𝜕𝜕̄ 𝜑 ≥ 𝛼(𝑟 − 1)

𝛼(𝑟 − 1) + 1
√

–1 𝜕𝜕̄ 𝜓.

Then for any holomorphic section 𝑔 ∈ 𝐻0 (𝑋,𝐺 ⊗ 𝐾𝑋 ) such that

𝑔

2
𝐺

:=
∫
𝑋

|𝑔 |2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
< +∞

there is a holomorphic section 𝑓 = (𝑓1, . . . , 𝑓𝑟) ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ) such that

𝑔 = ℎ
·

⊗ 𝑓 := ℎ1 ⊗ 𝑓1 + · · · + ℎ𝑟 ⊗ 𝑓𝑟
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and 

𝑓

2
𝐸⊕𝑟

:=
∫
𝑋

|𝑓 |2 e−𝜑

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)

≤ 𝑟
𝛼

𝛼 − 1

∫
𝑋

|𝑔 |2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
= 𝑟

𝛼

𝛼 − 1


𝑔

2

𝐺
.

If the number of generators 𝑟 is at most dim 𝑋 +1, Theorem 1 almost recovers the line bun-
dle version of Skoda’s Theorem (see Theorem 2.3). We say “almost” because in Theorem 1 we
have



𝑓

2
𝐸⊕𝑟 ≤

𝑟𝛼
𝛼−1



𝑔

2
𝐺
rather than



𝑓

2
𝐸⊕𝑟 ≤

𝛼
𝛼−1



𝑔

2
𝐺
. Still, even though stronger results are

known, our intent is to emphasize the technique used to prove Theorem 1. Both the original
proof of Skoda [Sko72] andmore recent generalizations [Var08] are based on functional analy-
sis and the Bochner formula, plus some very careful linear algebra estimates. Here instead we
present a degeneration argument based on Berndtsson’s Theorem on the positivity of direct
image bundles [Ber09]. Even though this degeneration approach is aesthetically pleasing, it
is not clear if it can recover the theorem in full generality. Part of the goal of this project
is to see if one can use degeneration techniques to achieve the same results obtained by the
ostensibly more powerful 𝐿2 methods.

The general philosophy is inspired by Berndtsson and Lempert’s proof of the 𝐿2 extension
theorem [BL16; Lem17] and by T. Ohsawa’s proof of a Skoda-type division theorem as a
corollary of the Ohsawa–Takegoshi 𝐿2 extension theorem. Ohsawa indeed remarks that the
division problem can be reformulated as an extension problem on the projectivizations of
the dual bundles (see [Ohs02], [Ohs04] and [Ohs15, Section 3.2]). It is thus natural to wonder
whether a Skoda-type theorem could be proved directly using techniques akin to [BL16].

The main idea is to look at all possible linear combinations 𝑣1 ⊗ 𝑓1 (𝑥) + · · · + 𝑣𝑟 ⊗ 𝑓𝑟 (𝑥).
Then one constructs a positively curved family of metrics that at one extreme “localizes” the
problem at the point of interest 𝑣 = ℎ(𝑥) and at the other extreme retrieves the usual 𝐿2-
norm for 𝑓 . Near ℎ(𝑥) the optimal solution to the division problem is somehow “trivial”; for
instance, if ℎ(𝑥) = (ℎ1 (𝑥), 0, . . . , 0), one takes 𝑓 (𝑥) = (𝑔(𝑥)ℎ1 (𝑥)−1, 0, . . . , 0). The positivity
of the direct image bundle [Ber09] will then imply that one can control



𝑓


𝐸⊕𝑟 by the norm

of the trivial solution near ℎ(𝑥). This last step is an instance of a more general extrapolation
technique for estimating operator norms under suitable curvature conditions [Lem17].

We start in Section 2 by recalling the definition of singularHermitianmetric (Definition 2.1)
and the fundamental theorem of Berndtsson on direct images (Theorem 2.2). We also recall
the full statements of 𝐿2 division (Theorem 2.3) and 𝐿2 extension (Theorem 2.4) as obtained
with the standard 𝐿2 technique. Next, in Section 3 we prove a calculus lemma that will be
used in the proof of both Theorem 1 and Theorem 2 below. The majority of this paper is then
devoted to the proof of Theorem 1. In Section 4 we reduce to the case in which ℎ1, . . . , ℎ𝑟 have
no common zeros and 𝑋 is a relatively compact domain in some Stein manifold. Section 5
reformulates the division problem as an estimate on the dual norm of some special functionals
on 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ). The main argument for Theorem 1 is in Section 6: after setting up the
degeneration in 6.1, we compute the extrema of the family of metrics in 6.2 and we apply
Berndtsson’s Theorem in 6.3 to conclude the proof.

It turns out that the same schema can be used to prove the following version of 𝐿2 extension.

Theorem 2 (𝐿2 extension). Let 𝑋 be a Stein manifold and 𝑍 ⊂ 𝑋 an analytic hypersurface.
Let 𝐿𝑍 → 𝑋 be the holomorphic line bundle associated to 𝑍, with 𝑇 ∈ 𝐻0 (𝑋, 𝐿𝑍) such that
𝑍 = (𝑇 = 0) and d𝑇 |𝑍 generically non-zero. Assume moreover that 𝐿𝑍 carries a (singular)
Hermitian metric e−𝜆 such that e−𝜆 |𝑍 . +∞ and sup𝑋 |𝑇 |2 e−𝜆 ≤ 1.
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Let 𝐿→ 𝑋 be a line bundle with (singular) Hermitian metric e−𝜑 such that
√

–1 𝜕𝜕̄ 𝜑 ≥ −
√

–1 𝜕𝜕̄ 𝜆 and
√

–1 𝜕𝜕̄ 𝜑 ≥ 𝛿
√

–1 𝜕𝜕̄ 𝜆

for some 𝛿 > 0. Then for any holomorphic section 𝑓 ∈ 𝐻0 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍) such that

𝑓

2
𝑍

:=
∫
𝑍

|𝑓 |2 e−𝜑 < +∞

there is a holomorphic section 𝐹 ∈ 𝐻0 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ) such that 𝐹 |𝑍 = 𝑓 ∧ d𝑇 and

∥𝐹∥2
𝑋

:=
∫
𝑋

|𝐹 |2 e−𝜆−𝜑 ≤ 𝜋

(
1 + 1

𝛿

) ∫
𝑍

|𝑓 |2 e−𝜑 = 𝜋
(
1 + 1

𝛿

)

𝑓

2
𝑍
.

We want to emphasize that the sole difference between this last statement and the actual
𝐿2 extension theorem (Theorem 2.4) is that here we require

(1.1)

{√
–1 𝜕𝜕̄ 𝜑 ≥ −

√
–1 𝜕𝜕̄ 𝜆√

–1 𝜕𝜕̄ 𝜑 ≥ 𝛿
√

–1 𝜕𝜕̄ 𝜆

instead of the weaker {√
–1 𝜕𝜕̄ 𝜑 ≥ 0√
–1 𝜕𝜕̄ 𝜑 ≥ 𝛿

√
–1 𝜕𝜕̄ 𝜆

.

In particular, the two conditions are clearly the same in the special case
√

–1 𝜕𝜕̄ 𝜆 ≥ 0 and
Theorem 2 recovers the hyperplane case of Berndtsson and Lempert’s Theorem [BL16, The-
orem 3.8].
A key role in the proof of Theorem 2, which is summarized in Section 7, will be played

by the seemingly innocuous Lemma 3.1. This slightly improved version of [BL16, Lemma
3.4] is indeed what allows us to prove the theorem under the assumption (1.1) rather than√

–1 𝜕𝜕̄ 𝜆 ≥ 0, and at the same time simplify the proof.
The assumption that codim𝑋 𝑍 = 1 in Theorem 2 makes the statement and the proof

cleaner but is not really needed. As remarked in Section 8 (in particular Theorem 3), in fact
minimal modifications of the same arguments prove analogous statements for 𝑍 of higher
codimension.

Acknowledgements. I am grateful to Dror Varolin for bringing this topic to my attention,
for many helpful discussions and a lot of encouragement. I also thank Bo Berndtsson, László
Lempert, Christian Schnell, and Xu Wang for providing useful comments and suggestions.
Finally, I thank the anonymous referees for their helpful observations.

2. Background and notation

Let 𝐿 be a holomorphic line bundle over a complex manifold 𝑋 .

Definition 2.1 ([Dem92]). A singular Hermitian metric for 𝐿 is a measurable section e−𝜙 of
𝐿∗ ⊗ (𝐿∗)† → 𝑋 such that for any holomorphic frame 𝜉 of 𝐿 over 𝑈 ⊂ 𝑋 the measurable
function |𝜉 |2 e−𝜙 is non-negative and log( |𝜉 |2 e−𝜙) ∈ 𝐿1

loc (𝑈).

Note that, according to this definition, smooth Hermitian metrics are in fact singular Her-
mitian metrics.
Assume now that 𝐿 is a holomorphic line bundle over an ambient Stein manifold 𝑌 and

let 𝑋 be relatively compact in 𝑌 . Consider the trivial fibration 𝑋 × D → D, where D is the
complex unit disk. Let 𝑝 : 𝑋 × D → 𝑋 be the projection on the first factor and e−𝜙 be a
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Hermitian metric for 𝑝∗𝐿 → 𝑋 × D that is smooth up to the vertical boundary of 𝑋 × D.
For each 𝜏 ∈ D, define the Hilbert space

H𝜏 (e−𝜙) :=
{
𝑓 ∈ 𝐻0 (𝑋, 𝐿 ⊗ 𝐾𝑋 )

���� 

𝑓

2
𝜏

:=
∫
𝑋

|𝑓 |2 e−𝜙𝜏 < +∞
}
,

where e−𝜙𝜏 is the restriction of 𝑒−𝜙 to 𝑝∗𝐿|𝑋×{𝜏} .
Since the metric e−𝜙 is smooth up to the boundary of 𝑋 , all these Hilbert spaces are in fact

trivially the same as vector spaces but have norms that vary with 𝜏. Thus, they form a trivial
vector bundle with a non-trivial metric. The following theorem is due to B. Berndtsson.

Theorem 2.2 ([Ber09]). Assume that e−𝜙 is a smooth Hermitian metric for 𝑝∗𝐿→ 𝑋 × D with
non-negative curvature and let 𝜉 . 0 be a holomorphic section of the vector bundleH𝜏 (e−𝜙)∗ → D.
Then the function

D ∋ 𝜏 ↦−→ log∥𝜉𝑡 ∥2
𝜏,∗

is subharmonic.

Thus in particular 𝜏 ↦→ log∥𝜉∥2
𝑡,∗ is subharmonic for anyfixednon-zero 𝜉 ∈ 𝐻0 (𝑋, 𝐿⊗𝐾𝑋 )∗

with finite 𝐿2-norm.
Next, we recall the complete statements of 𝐿2 division and 𝐿2 extension obtained from the

original proofs based on 𝐿2 methods.

Theorem2.3 (𝐿2 division). Let 𝑋 be a Stein manifold of complex dimension 𝑛 and let 𝐸, 𝐺 → 𝑋

be holomorphic line bundles with (singular) Hermitian metrics e−𝜑 and e−𝜓 , respectively. Fix
ℎ = (ℎ1, . . . , ℎ𝑟) ∈ 𝐻0 (𝑋, (𝐸∗ ⊗ 𝐺)⊕𝑟) and 𝛼 > 1. Let 𝑞 := min(𝑟 − 1, 𝑛) and assume that

√
–1 𝜕𝜕̄ 𝜑 ≥ 𝛼𝑞

𝛼𝑞 + 1
√

–1 𝜕𝜕̄ 𝜓.

Then, for any holomorphic section 𝑔 ∈ 𝐻0 (𝑋,𝐺 ⊗ 𝐾𝑋 ) such that

𝑔

2
𝐺

:=
∫
𝑋

|𝑔 |2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼𝑞+1 < +∞,

there is a holomorphic section 𝑓 = (𝑓1, . . . , 𝑓𝑟) ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ) such that

𝑔 = ℎ
·

⊗ 𝑓 := ℎ1 ⊗ 𝑓1 + · · · + ℎ𝑟 ⊗ 𝑓𝑟
and 

𝑓

2

𝐸⊕𝑟
:=

∫
𝑋

|𝑓 |2 e−𝜑

( |ℎ|2 e−𝜓+𝜑)𝛼𝑞

≤ 𝛼

𝛼 − 1

∫
𝑋

|𝑔 |2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼𝑞+1 =
𝛼

𝛼 − 1


𝑔

2

𝐺

(see [Dem82, Théorème 6.2] and [Var08, Theorem 2.1]).

Once more, in Theorem 1 the constant 𝑞 is everywhere replaced by 𝑟 − 1, the constant 𝛼
𝛼−1

is replaced by 𝑟𝛼
𝛼−1 , and 𝛼 cannot be greater than

𝑟+1
𝑟−1 . Consequently, Theorem 1 is strictly

weaker than Theorem 2.3.

Theorem 2.4 (𝐿2 extension). Let 𝑋 be a Stein manifold and 𝑍 ⊂ 𝑋 an analytic hypersurface.
Let 𝐿𝑍 → 𝑋 be the holomorphic line bundle associated to 𝑍, with 𝑇 ∈ 𝐻0 (𝑋, 𝐿𝑍) such that
𝑍 = (𝑇 = 0) and d𝑇 |𝑍 generically non-zero. Assume moreover that 𝐿𝑍 carries a (singular)
Hermitian metric e−𝜆 such that e−𝜆 |𝑍 . +∞ and sup𝑋 |𝑇 |2 e−𝜆 ≤ 1.
Let 𝐿→ 𝑋 be a line bundle with (singular) Hermitian metric e−𝜑 such that

√
–1 𝜕𝜕̄ 𝜑 ≥ 0 and

√
–1 𝜕𝜕̄ 𝜑 ≥ 𝛿

√
–1 𝜕𝜕̄ 𝜆
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for some 𝛿 > 0. Then for any holomorphic section 𝑓 ∈ 𝐻0 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍) such that

𝑓

2
𝑍

:=
∫
𝑍

|𝑓 |2 e−𝜑 < +∞

there is a holomorphic section 𝐹 ∈ 𝐻0 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ) such that 𝐹 |𝑍 = 𝑓 ∧ d𝑇 and

∥𝐹∥2
𝑋

:=
∫
𝑋

|𝐹 |2 e−𝜆−𝜑 ≤ 𝜋

(
1 + 1

𝛿

) ∫
𝑍

|𝑓 |2 e−𝜑 = 𝜋
(
1 + 1

𝛿

)

𝑓

2
𝑍

(see [Bło13, Theorem 1] and [GZ15, Theorem 2.1]).

Again, the difference between Theorem 2 and Theorem 2.4 is that in the latter we have a
slightly weaker requirement on the curvature of e−𝜑.
Here we have only considered the case of extension from a hypersurface since in this

case all objects are always naturally defined. See [BL16; Ohs01; Man93; Dem00] for the
corresponding results in higher codimension.

3. A calculus lemma

We now establish the following lemma, which plays a key role in the proofs of both Theorem
1 and Theorem 2. The result is a slight modification of Lemma 3.4 in [BL16].

Lemma 3.1. Let 𝜈 : (−∞, 0] → R+ be an increasing function such that

lim
𝑡→−∞

e−𝐵𝑡 𝜈(𝑡) = 𝐴 < +∞

for some 𝐵 > 0. Then, for all 𝑝 > 𝐵,

lim
𝑡→−∞

e−𝐵𝑡
∫ 0

𝑡

e−𝑝(𝑠−𝑡) d𝜈(𝑠) = 𝐴𝐵

𝑝 − 𝐵
.

Remark 3.2. In contrast to Lemma 3.4 in [BL16], we do not require 𝜈 to be bounded above by
𝐴 e𝐵𝑡 for all 𝑡 < 0. This weakened hypothesis allows us to obtain the more precise estimates
needed for Theorem 1 and Theorem 2. ^

Proof. Integrating by parts one gets

e−𝐵𝑡
∫ 0

𝑡

e−𝑝(𝑠−𝑡) d𝜈(𝑠) = e(𝑝−𝐵)𝑡
∫ 0

𝑡

e−𝑝𝑠 d𝜈(𝑠)

= e(𝑝−𝐵)𝑡
[
𝜈(0) − e−𝑝𝑡 𝜈(𝑡) + 𝑝

∫ 0

𝑡

e−𝑝𝑠 𝜈(𝑠) d𝑠

]
.

By the assumptions we have

lim
𝑡→−∞

e(𝑝−𝐵)𝑡
(
𝜈(0) − e−𝑝𝑡 𝜈(𝑡)

)
= −𝐴.

Moreover, for any 𝜀 > 0 there is 𝑡𝜀 < 0 such that (𝐴− 𝜀) e𝐵𝑡 ≤ 𝜈(𝑡) ≤ (𝐴+ 𝜀) e𝐵𝑡 for all 𝑡 ≤ 𝑡𝜀 .
Then ∫ 0

𝑡

e−𝑝𝑠 𝜈(𝑠) d𝑠 ≤
∫ 0

𝑡𝜀

e−𝑝𝑠 𝜈(𝑠) d𝑠 + (𝐴 + 𝜀)
∫ 𝑡𝜀

𝑡

e−(𝑝−𝐵) 𝑠 d𝑠

≤ 𝐶𝜀 +
𝐴 + 𝜀
𝑝 − 𝐵

(
e−(𝑝−𝐵)𝑡 − e−(𝑝−𝐵)𝑡𝜀

)
= 𝐶′

𝜀 +
𝐴 + 𝜀
𝑝 − 𝐵

e−(𝑝−𝐵)𝑡

and similarly ∫ 0

𝑡

e−𝑝𝑠 𝜈(𝑠) d𝑠 ≥ 𝐶′′
𝜀 + 𝐴 − 𝜀

𝑝 − 𝐵
e−(𝑝−𝐵)𝑡 ,
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so that
𝐴 − 𝜀
𝑝 − 𝐵

≤ lim
𝑡→−∞

e(𝑝−𝐵)𝑡
∫ 0

𝑡

e−𝑝𝑠 𝜈(𝑠) d𝑠 ≤ 𝐴 + 𝜀
𝑝 − 𝐵

.

Since this holds for all 𝜀 > 0 we conclude that

lim
𝑡→−∞

e(𝑝−𝐵)𝑡 𝑝
∫ 0

𝑡

e−𝑝𝑠 𝜈(𝑠) d𝑠 =
𝐴𝑝

𝑝 − 𝐵

and then

lim
𝑡→−∞

e−𝐵𝑡
∫ 0

𝑡

e−𝑝(𝑠−𝑡) d𝜈(𝑠) = −𝐴 + 𝐴𝑝

𝑝 − 𝐵
=

𝐴𝐵

𝑝 − 𝐵
,

as wanted. □

We can now move to the proof of Theorem 1.

4. Preliminary reductions for Theorem 1

No base locus. We can assume that the sections ℎ1, . . . , ℎ𝑟 have no common zeros. Indeed,
let 𝐷 be the zero-set of ℎ𝑟 . Then 𝑋 \ 𝐷 is again Stein and ℎ|𝑋\𝐷 has no zeros. Assuming that
Theorem 1 holds for {ℎ1 = · · · = ℎ𝑟 = 0} = ∅, we obtain 𝑓 ∈ 𝐻0 (𝑋 \ 𝐷, (𝐸⊕𝑟 ⊗ 𝐾𝑋 ) |𝑋\𝐷)
such that

𝑔 |𝑋\𝐷 = ℎ|𝑋\𝐷
·

⊗ 𝑓

and ∫
𝑋\𝐷

|𝑓 |2 e−𝜑

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1) ≤ 𝑟
𝛼

𝛼 − 1


𝑔

2

𝐺
< +∞.

As ℎ is bounded on any bounded chart 𝑈 ⊂⊂ 𝑋 ,∫
𝑈\𝐷

|𝑓 |2 e−𝜑 ≤ 𝐶

∫
𝑈\𝐷

|𝑓 |2 e−𝜑

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1) ≤ 𝐶𝑟
𝛼

𝛼 − 1


𝑔

2

𝐺
< +∞,

where 𝐶 > 0 depends on 𝑈 , ℎ and 𝛼(𝑟 − 1). Hence, by Riemann’s Removable Singularities
Theorem, 𝑓 extends to 𝑓 ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ). As 𝐷 has measure 0,∫

𝑋

|𝑓 |2 e−𝜑

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1) =

∫
𝑋\𝐷

|𝑓 |2 e−𝜑

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1) ≤ 𝑟
𝛼

𝛼 − 1


𝑔

2

𝐺
< +∞,

and, because ℎ
·

⊗ 𝑓 and 𝑔 coincide on the open set 𝑋 \ 𝐷, we have ℎ
·

⊗ 𝑓 = 𝑔 everywhere on
𝑋 , solving the division problem.

Remark 4.1. The same argument proves Theorem 1 when 𝑋 is essentially Stein, given that it
has been proved for Stein manifolds. Recall that a manifold 𝑋 is essentially Stein if there is a
divisor𝐷 such that 𝑋 \𝐷 is Stein. For instance, projective manifolds are essentially Stein. ^

𝑋 bounded pseudoconvex. We can reduce 𝑋 to a relatively compact domain in some larger
Stein manifold, and say that sections extend up to the boundary of 𝑋 (or are defined on 𝑋̄ ) if
they extend to a neighborhood of 𝑋 in the ambient Stein manifold. We can also assume that
𝜔 and 𝐸, 𝐺 extend to the ambient manifold (𝐸, 𝐺 holomorphically) and that the metrics e−𝜑

and e−𝜓 are smooth. If the result is proved under these assumptions, then the universality of
the bounds yields the general case by standard weak-∗ compactness theorems, Lebesgue-type
limit theorems and approximation results for singular Hermitian metrics on Stein manifolds
(see the first paragraph in Section 3 of [BL16]).



A DEGENERATION APPROACH TO SKODA’S DIVISION THEOREM 7

5. Dual formulation of the division problem

Fix a section 𝑔 ∈ 𝐻0 (𝑋,𝐺 ⊗ 𝐾𝑋 ) to be divided. We may assume, after possibly shrinking 𝑋 ,
that 𝑔 is holomorphic up to the boundary of 𝑋 . Let 𝛾 : 𝐸⊕𝑟 ⊗ 𝐾𝑋 → 𝐺 ⊗ 𝐾𝑋 be defined by

𝛾 (𝑒1, . . . , 𝑒𝑟) := ℎ1 ⊗ 𝑒1 + · · · + ℎ𝑟 ⊗ 𝑒𝑟 .

Proposition 5.1. There exists 𝑓 = (𝑓1, . . . , 𝑓𝑟) ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ) such that

𝑔 = ℎ1 ⊗ 𝑓1 + · · · + ℎ𝑟 ⊗ 𝑓𝑟 = ℎ
·

⊗ 𝑓

and 

𝑓

2
𝐸⊕𝑟 < +∞.

Proof. Since 𝑋 is a relatively compact domain in a Stein manifold, any solution 𝑓 in the
ambient manifold will restrict to a solution on 𝑋 with bounded 𝐿2-norm. Hence, it suffices
to show that for a Stein manifold 𝑋 there is a not-necessarily-𝐿2 solution of the division
problem.
As the ℎ1, . . . , ℎ𝑟 have no common zeros, the map 𝛾 is a surjective morphism of vector

bundles and thus we have the short exact sequence of vector bundles

0 −→ ker 𝛾 −→ 𝐸⊕𝑟 ⊗ 𝐾𝑋 −→ 𝐺 ⊗ 𝐾𝑋 −→ 0.

The induced sequence in cohomology then yields

0 → 𝐻0 (𝑋, ker 𝛾) → 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ) → 𝐻0 (𝑋,𝐺 ⊗ 𝐾𝑋 ) → 𝐻1 (𝑋, ker 𝛾) = 0,

where the last term on the right vanishes by Cartan’s Theorem B. Hence, the map induced by
𝛾 in cohomology is surjective, meaning that for any 𝑔 ∈ 𝐻0 (𝑋,𝐺 ⊗ 𝐾𝑋 ) we can find

𝑓 = (𝑓1, . . . , 𝑓𝑟) ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 )

such that
𝑔 = 𝛾 ◦ 𝑓 = ℎ1 ⊗ 𝑓1 + · · · + ℎ𝑟 ⊗ 𝑓𝑟 ,

proving the statement. □

Since there is a solution 𝑓 with finite 𝐿2-norm, there is a (unique) solution 𝑓 with minimal
𝐿2-norm. To prove Theorem 1, we thus need to estimate



𝑓


𝐸⊕𝑟 .

Lemma 5.2. Let 𝑓 ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ) be any solution to the division problem with finite
𝐿2-norm. Then the solution 𝑓 with minimal 𝐿2-norm has norm

𝑓

2

𝐸⊕𝑟 = sup
𝜉∈Ann 𝐻0 (𝑋,ker 𝛾 )

|𝜉 (𝑓 ) |2

∥𝜉∥2
∗
,

where ∥·∥∗ is the norm for the dual Hilbert space 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 )∗ and Ann 𝐻0 (𝑋, ker 𝛾) is
the annihilator of 𝐻0 (𝑋, ker 𝛾), i.e. all linear functionals on 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ) that vanish on
𝐻0 (𝑋, ker 𝛾).
Moreover, one can restrict the supremum to functionals 𝜉𝜂 ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 )∗ of the form

𝜉𝜂 (𝑓 ) := (𝛾 ◦ 𝑓 , 𝜂)𝐺 =

∫
𝑋

(ℎ
·

⊗ 𝑓 )𝜂̄ e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
,

for 𝜂 ∈ 𝐶∞
𝑐 (𝑋,𝐺 ⊗ 𝐾𝑋 ) (smooth compactly supported sections of 𝐺 ⊗ 𝐾𝑋 ).
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Proof. Note first that the supremum is independent of the choice of the arbitrary 𝐿2 solution 𝑓 .
Indeed, if 𝜉 ∈ Ann 𝐻0 (𝑋, ker 𝛾) and 𝛾 ◦ 𝑓 = 𝛾 ◦ 𝑓 ′ = 𝑔, then by linearity 𝑓 − 𝑓 ′ ∈ 𝐻0 (𝑋, ker 𝛾),
so that 𝜉 (𝑓 ) = 𝜉 (𝑓 ′).
Next, we claim that 𝑓 ⊥ 𝐻0 (𝑋, ker 𝛾). Indeed, if 𝑘 ∈ 𝐻0 (𝑋, ker 𝛾), then 𝛾 ◦ (𝑓 + 𝜀𝑘) = 𝑔

for all 𝜀 ∈ C. As 𝑓 is the minimal norm solution, we have that

C ∋ 𝜀 ↦−→


𝑓 + 𝜀𝑘

2

𝐸⊕𝑟 =


𝑓

2

𝐸⊕𝑟 + 2Re[(𝑓 , 𝑘)𝐸⊕𝑟 𝜀] +𝑂( |𝜀 |2)

has minimum at 𝜀 = 0 (here (·, ·)𝐸⊕𝑟 denotes the 𝐿2 inner product on 𝐸⊕𝑟 ⊗ 𝐾𝑋 ). Hence
(𝑓 , 𝑘)𝐸⊕𝑟 = 0.
Finally, notice that if 𝑘 ∈ 𝐻0 (𝑋, ker 𝛾) then

𝜉𝜂 (𝑘) = (𝛾 ◦ 𝑘, 𝜂)𝐺 = 0,

i.e. 𝜉𝜂 ∈ Ann 𝐻0 (𝑋, ker 𝛾). Conversely, if
0 = 𝜉𝜂 (𝑓 ) = (𝛾 ◦ 𝑓 , 𝜂)𝐺

for all 𝜂 ∈ 𝐶∞
𝑐 (𝑋,𝐺 ⊗ 𝐾𝑋 ), then 𝛾 ◦ 𝑓 = 0. Hence{

𝜉𝜂 | 𝜂 ∈ 𝐶∞
𝑐 (𝑋,𝐺 ⊗ 𝐾𝑋 )

}
⊆ Ann 𝐻0 (𝑋, ker 𝛾)

is dense and we may restrict to elements 𝜉𝜂 when computing the supremum. □

By Lemma 5.2

𝑓

2
𝐸⊕𝑟 = sup

𝜂∈𝐶∞
𝑐 (𝑋,𝐺⊗𝐾𝑋 )

| (𝛾 ◦ 𝑓 , 𝜂) |2

𝜉𝜂

2
∗

= sup
𝜂∈𝐶∞

𝑐 (𝑋,𝐺⊗𝐾𝑋 )

| (𝑔,P𝜂) |2

𝜉𝜂

2
∗

≤


𝑔

2

𝐺
sup

𝜂∈𝐶∞
𝑐 (𝑋,𝐺⊗𝐾𝑋 )



P𝜂

2
𝐺

𝜉𝜂

2
∗

,

(5.1)

where
P : 𝐿2 (𝑋,𝐺 ⊗ 𝐾𝑋 ) −→ 𝐻0 (𝑋,𝐺 ⊗ 𝐾𝑋 ) ∩ 𝐿2 (𝑋,𝐺 ⊗ 𝐾𝑋 )

denotes the Bergman projection. Therefore, to prove Theorem 1 it suffices to prove that

P𝜂

2
𝐺
≤ 𝑟

𝛼

𝛼 − 1


𝜉𝜂

2

∗

for all 𝜂 ∈ 𝐶∞
𝑐 (𝑋,𝐺 ⊗ 𝐾𝑋 ).

6. Proof of Theorem 1

6.1. Setup. Instead of working directly on the vector bundle 𝐸⊕𝑟 ⊗ 𝐾𝑋 → 𝑋 , we lift ev-
erything to the line bundle

𝐿 := pr∗𝑋 (𝐸 ⊗ 𝐾𝑋 ) ⊗ pr∗P𝑟−1
OP𝑟−1 (1) −→ 𝑋 × P𝑟−1,

whereOP𝑟−1 (1) is the hyperplane bundle ofP𝑟−1 and pr𝑋 , prP𝑟−1
are the projections of 𝑋×P𝑟−1

on 𝑋 , P𝑟−1 respectively. Explicitly, fix once for all coordinates 𝑣1, . . . , 𝑣𝑟 for C𝑟 (descending
to the homogeneous coordinates [𝑣1 : · · · : 𝑣𝑟] for P𝑟−1) and declare the lift of a section
𝑠 ∈ 𝐻0 (𝑋, 𝐸⊕𝑟 ⊗ 𝐾𝑋 ) to be the section 𝑠 ∈ 𝐻0 (𝑋 × P𝑟−1, 𝐿) defined by

(6.1) 𝑠(𝑥, [𝑣]) := 𝑣∗ · 𝑠(𝑥) = 𝑣∗1 𝑠1 (𝑥) + · · · + 𝑣∗𝑟 𝑠𝑟 (𝑥) ∈ 𝐻0 (𝑋 × P𝑟−1, 𝐿),
where 𝑣∗1 , . . . , 𝑣

∗
𝑟 are the dual coordinates of 𝑣1, . . . , 𝑣𝑟 of C𝑟 .

Notice that the lift is a bijectivemap, since all sections of 𝐿 are of the form (6.1). We can then
lift the functionals 𝜉𝜂 ∈ 𝐻0 (𝑋, 𝐸⊕𝑟⊗𝐾𝑋 )∗ of Lemma 5.2 to functionals 𝜉𝜂 ∈ 𝐻0 (𝑋×P𝑟−1, 𝐿)∗
defined as 𝜉𝜂 (𝑠) := 𝜉𝜂 (𝑠) for all 𝑠 ∈ 𝐻0 (𝑋 × P𝑟−1, 𝐿).
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Remark 6.1. One can interpret the lifted section 𝑠 by thinking of the projective space P𝑟−1
as parametrizing all possible choices of linear combinations (up to scaling). Hence, the value of
the section 𝑠 at (𝑥, [𝑣]) can be thought of (tautologically) as the linear combination parametrized
by 𝑣 of the entries of the vector 𝑠(𝑥). What follows is essentially a procedure to “single out”
the linear combination given by [ℎ(𝑥)] (the equivalence class of ℎ(𝑥) in P𝑟−1). ^

Next, we define a family of metrics for 𝐿 → 𝑋 × P𝑟−1, parametrized by

𝜏 ∈ L := {𝑧 ∈ C | Re 𝑧 < 0}.
Toward this end, let

𝜒𝜏 (𝑥, 𝑣) := max
(
log( |𝑣|2 |ℎ(𝑥) |2 − |𝑣 · ℎ(𝑥) |2) e−𝜓+𝜑 −Re 𝜏, log |𝑣|2 |ℎ(𝑥) |2 e−𝜓+𝜑

)
.

Then, for 𝜎 ∈ 𝐿(𝑥,[𝑣] ) , set

𝔥𝜏 (𝜎 , 𝜎 ) (𝑥,[𝑣] ) :=
𝑟!
𝜋 𝑟−1 e−(𝑟−1) Re 𝜏 |𝜎 |2 e−𝜑

|𝑣|2
(
|𝑣|2 e− 𝜒𝜏

)𝛼 (𝑟−1)
.

Notice that whether the maximum defining 𝜒𝜏 is attained by the first or the second entry is
independent of the choice of the representative 𝑣 of [𝑣] ∈ P𝑟−1, and that the weight |𝑣|2 e− 𝜒𝜏
is a well-defined function on 𝑋 × P𝑟−1. Notice also that 𝜒𝜏 depends only on 𝑡 := Re 𝜏 (as does
𝔥𝜏 ), so in the following we will write 𝜒𝑡 (and 𝔥𝑡) instead.

Remark 6.2. As we shall soon see, the choice of 𝜒𝑡 is motivated as follows. For 𝑡 = 0, the
maximum is realized by the second entry, so that

( |𝑣|2 e− 𝜒𝑡 )𝛼 (𝑟−1) =
1

( |ℎ(𝑥) |2 e−𝜓+𝜑)𝛼 (𝑟−1) ,

providing the weighting by the norm of ℎ in∥·∥𝐸⊕𝑟 .
On the other hand, as 𝑡 → −∞, the function |𝑣|2 e− 𝜒𝑡 gets very small at all 𝑣 ∈ P𝑟−1 that are

not “sufficiently aligned” with ℎ(𝑥). The precise sense of this statement will be more evident
in Subsection 6.2, but for the moment note that 1 − |𝑣·ℎ(𝑥) |2

|𝑣 |2 |ℎ(𝑥) |2 constitutes a measurement of
the angle between 𝑣 and ℎ(𝑥). ^

The family of metrics 𝔥𝜏 induces the family of 𝐿2-norms

∥𝜎 ∥2
𝜏 :=

𝑟!
𝜋 𝑟−1 e−(𝑟−1) Re 𝜏

∫
𝑋×P𝑟−1

|𝜎 |2 e−𝜑

|𝑣|2
(
|𝑣|2 e− 𝜒𝜏

)𝛼 (𝑟−1)
∧ dVFS,

where dVFS is the (fixed) Fubini–Study volume form of P𝑟−1.
We interpret the family 𝔥𝜏 as a metric 𝔥 for the pull-back of 𝐿 on 𝑋 ×P𝑟−1×L, and we claim

that sum of the curvature of 𝔥 and the Ricci curvature is non-negative. To start, e−𝜑−𝛼 (𝑟−1) 𝜒

is non-negatively curved: e−𝜑−𝛼 (𝑟−1) (−𝜓+𝜑) contributes semipositively by the hypothesis on
curvature of Theorem 1, and by Lagrange’s identity we have

log
(
|𝑣|2 |ℎ(𝑥) |2 − |𝑣 · ℎ(𝑥) |2

)
= log

∑︁
1≤ 𝑖<𝑗≤𝑟

|ℎ𝑖 (𝑥)𝑣𝑗 − ℎ𝑗 (𝑥)𝑣𝑖 |2,

which is (locally) plurisubharmonic, being the logarithm of a sum of norms squared of (locally)
holomorphic functions (likewise for the right-hand side of the maximum). This leaves us to
check that the negativity coming from the factor ( |𝑣|2)𝛼 (𝑟−1)−1 is compensated by the Ricci
curvature coming from the Fubini–Study volume form: in local coordinates we can write

1
|𝑣 |2 |𝑣|

2𝛼 (𝑟−1) dVFS as d𝑉 (𝑧)
(1+|𝑧 |2 )𝑟+1−𝛼 (𝑟−1) (where d𝑉 (𝑧) is the standard Euclidean volume form),

which is positively curved for 𝛼 < 𝑟+1
𝑟−1 .
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6.2. Extrema of the family of norms. We now investigate the behavior of the family of
norms ∥·∥𝑡 near 𝑡 = 0 and as 𝑡 → −∞.
At the 𝑡 = 0 extreme we have 𝜒0 (𝑥, 𝑣) = log

(
|𝑣|2 |ℎ(𝑥) |2 e−𝜓+𝜑

)
, so that

∥𝑠∥2
0 =

𝑟!
𝜋 𝑟−1

∫
𝑋×P𝑟−1

|𝑣 · 𝑠|2 e−𝜑

|𝑣|2 ∧ dVFS

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)

=

∫
𝑋

|𝑠|2 e−𝜑

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1) = ∥𝑠∥2
𝐸⊕𝑟 ,

(6.2)

which recovers the norm-squared of 𝑠 before the lifting. Consequently, for 𝑡 = 0, lifting
functionals also preserves norms:


𝜉𝜂




0,∗
= sup
𝑠∈𝐻0 (𝑋×P𝑟−1 ,𝐿)

|𝜉𝜂 (𝑠) |
∥𝑠∥0

= sup
𝑠∈𝐻0 (𝑋,𝐸⊕𝑟⊗𝐾𝑋 )

|𝜉𝜂 (𝑠) |
∥𝑠∥𝐸⊕𝑟

=


𝜉𝜂

∗ .

We now turn to the other extreme of the family, i.e. 𝑡 → −∞. Fix 𝑥 ∈ 𝑋 and let 𝐴𝑡,𝑥 be the
set of 𝑣 ∈ P𝑟−1 such that the maximum in 𝜒𝑡 is achieved by the second entry, i.e.

𝐴𝑡,𝑥 =

{
𝑣 ∈ P𝑟−1

����� 1 − |𝑣 · ℎ(𝑥) |2
|𝑣|2 |ℎ(𝑥) |2 < e𝑡

}
.

By choosing homogeneous coordinates so that 𝑣1 is parallel to ℎ(𝑥) (which is not 0 since we
are assuming that the ℎ𝑖 ’s have no common zeros), and by choosing local coordinates so that
𝑣1 = 1, one sees that 𝐴𝑡,𝑥 is a ball of real dimension 2𝑟 − 2, centered at [ℎ(𝑥)] (the origin, in
local coordinates) and of radius

√︃
e𝑡

1−e𝑡 ∼
𝑡→−∞

e𝑡/2.

We can then split ∥𝑠∥2
𝑡 into two summands:

∥𝑠∥2
𝑡 =

∫
𝑋

I𝑡,𝑠 (𝑥) +
∫
𝑋

II𝑡,𝑠 (𝑥),

where

I𝑡,𝑠 (𝑥) :=
𝑟!
𝜋 𝑟−1

e−(𝑟−1)𝑡

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)

∫
𝐴𝑡,𝑥

|𝑣 · 𝑠(𝑥) |2 e−𝜑

|𝑣|2 ∧ dVFS

and

II𝑡,𝑠 (𝑥) :=
𝑟!
𝜋 𝑟−1

e−(𝑟−1)𝑡

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)

∫
P𝑟−1\𝐴𝑡,𝑥

|𝑣 · 𝑠(𝑥) |2 e−𝜑 e𝛼 (𝑟−1)𝑡

|𝑣|2
(
1 − |𝑣·ℎ |2

|𝑣 |2 |ℎ |2
)𝛼 (𝑟−1) ∧ dVFS .

For the first term we get

(6.3) lim
𝑡→−∞

I𝑡,𝑠 (𝑥) = 𝑟
|ℎ

·

⊗ 𝑠|2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
,

since asymptotically∫
𝐴𝑡,𝑥

|𝑣 · 𝑠(𝑥) |2 e−𝜑

|𝑣|2 ∧ dVFS ∼
𝑡→−∞

𝜋 𝑟−1

(𝑟 − 1)! e(𝑟−1)𝑡 |ℎ
·

⊗ 𝑠|2 e−𝜑

|ℎ|2 .

For the second

II𝑡,𝑠 (𝑥) = e−(𝑟−1)𝑡
∫ 0

𝑡

e−𝛼 (𝑟−1) (𝑡−𝑡) d𝜈𝑥,𝑠 (𝑡),

with

𝜈𝑥,𝑠 (𝑡) :=
𝑟!
𝜋 𝑟−1

1
( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)

∫
𝐴𝑡,𝑥

|𝑣 · 𝑠|2 e−𝜑

|𝑣|2 ∧ dVFS = e(𝑟−1)𝑡 I𝑡,𝑠 (𝑥).
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Clearly 𝜈𝑥,𝑠 is increasing and positive. Moreover, by (6.3),

lim
𝑡→−∞

e−(𝑟−1)𝑡 𝜈𝑥,𝑠 (𝑡) = 𝑟
|ℎ

·

⊗ 𝑠|2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
.

Hence, by Lemma 3.1,

(6.4) lim
𝑡→−∞

II𝑡,𝑠 (𝑥) = 𝑟
|ℎ

·

⊗ 𝑠|2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
𝑟 − 1

𝛼(𝑟 − 1) − (𝑟 − 1) .

All in all

(6.5) lim
𝑡→−∞

∥𝑠∥2
𝑡 = 𝑟

𝛼

𝛼 − 1

∫
𝑋

|ℎ
·

⊗ 𝑠|2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
= 𝑟

𝛼

𝛼 − 1




ℎ ·

⊗ 𝑠



2

𝐺
,

retrieving (a multiple of) the norm-squared of the image ℎ
·

⊗ 𝑠 of 𝑠.

6.3. Monotonicity of the family of dual norms and end of the proof. Now that we
have a metric 𝔥 for (the pull-back of) 𝐿 on 𝑋 × P𝑟−1 × L with positive enough curvature,
Berndtsson’s Theorem 2.2 gives the core step of the argument. Fix 𝜂 ∈ 𝐶∞

𝑐 (𝑋,𝐺 ⊗ 𝐾𝑋 ).

Lemma 6.3. The function
(−∞, 0] −→ R

𝑡 ↦−→ log



𝜉𝜂


2

𝑡,∗
is non-decreasing. In particular,

𝜉𝜂

2

∗ =



𝜉𝜂


2

0,∗
≥



𝜉𝜂


2

𝑡,∗
for all 𝑡 ≤ 0.

Proof. Step 1. We first prove that sup𝜏∈L



𝜉𝜂


2

𝜏,∗
< +∞. Once more,




𝜉𝜂


2

𝜏,∗
only depends

on Re 𝜏 =: 𝑡, so it suffices to prove that



𝜉𝜂


2

𝑡,∗
is uniformly bounded for all 𝑡 sufficiently

negative (the other 𝑡’s are in a compact interval, so the corresponding norms are automatically
uniformly bounded).
Let

𝐶𝜂 :=
∫
𝑋

|𝜂|2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
< +∞,

then 


𝜉𝜂


2

𝑡,∗
= sup

∥ 𝑠∥2
𝑡 =1

������
∫
𝑋

(ℎ
·

⊗ 𝑠)𝜂̄ e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1

������
2

≤ 𝐶𝜂 sup
∥ 𝑠∥2

𝑡 =1

∫
𝑋

|ℎ
·

⊗ 𝑠|2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
.

By (6.3), if 𝑡 is sufficiently negative,

|ℎ
·

⊗ 𝑠|2 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1
≤ 2
𝑟
I𝑡,𝑠 (𝑥)

(in the sense of top forms), so that


𝜉𝜂


2

𝑡,∗
≤

2𝐶𝜂
𝑟

sup
∥ 𝑠∥2

𝑡 =1

∫
𝑋

I𝑡,𝑠 (𝑥) ≤
2𝐶𝜂
𝑟

< +∞,

as wanted.
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Step 2. Consider now the trivial fibration (𝑋 × P𝑟−1) ×L
prL−→ L. We have already checked

at the end of Subsection 6.1 that the curvature of 𝔥, seen as a metric for pr∗
𝑋×P𝑟−1

𝐿→ (𝑋 ×
P𝑟−1)×L, plus theRicci curvature coming from the Fubini–Study volume form is non-negative
on the total space 𝑋 × P𝑟−1 × L. Then, up to a smooth approximation of 𝜒, Berndtsson’s

Theorem 2.2 implies that 𝜏 ↦→ log



𝜉𝜂


2

𝜏,∗
is subharmonic in L. Since




𝜉𝜂



𝜏,∗

only depends on

𝑡 = Re 𝜏, it follows that 𝑡 ↦→ log



𝜉𝜂


2

𝑡,∗
is convex on (−∞, 0). If this map decreases anywhere

on (−∞, 0), then by convexity we would have lim𝑡→−∞ log



𝜉𝜂


2

𝑡,∗
= +∞, contradicting the

uniform boundedness of



𝜉𝜂


2

𝑡,∗
obtained in Step 1. Hence the statement follows. □

Let now 𝑠 ∈ 𝐻0 (𝑋, (𝐸 ⊗ 𝐾𝑋 )⊕𝑟) be any solution of ℎ
·

⊗ 𝑠 = P𝜂 (such 𝑠 exists with bounded
𝐿2-norm by the same argument of Proposition 5.1). Then by (6.5) and Lemma 6.3 we have

𝜉𝜂

2

∗ =



𝜉𝜂


2

0,∗
≥ lim

𝑡→−∞




𝜉𝜂


2

𝑡,∗

≥ lim
𝑡→−∞

1
∥𝑠∥2

𝑡

������
∫
𝑋

(ℎ
·

⊗ 𝑠)P𝜂 e−𝜓

( |ℎ|2 e−𝜓+𝜑)𝛼 (𝑟−1)+1

������
2

= lim
𝑡→−∞



P𝜂

4
𝐺

∥𝑠∥2
𝑡

=
𝛼 − 1
𝛼𝑟



P𝜂

2
𝐺

for all 𝜂 ∈ 𝐶∞
𝑐 (𝑋,𝐺 ⊗ 𝐾𝑋 ). Hence, by (5.1), we conclude that the minimal-norm solution 𝑓

to the division problem ℎ
·

⊗ 𝑓 = 𝑔 has norm

𝑓

2
𝐸⊕𝑟 ≤



𝑔

2
𝐺

sup
𝜂∈𝐶0

𝑐 (𝑋,𝐺⊗𝐾𝑋 )



P𝜂

2
𝐺

𝜉𝜂

2
∗

≤ 𝑟
𝛼

𝛼 − 1


𝑔

2

𝐺
,

proving Theorem 1.

7. Berndtsson and Lempert’s proof of the 𝐿2 extension theorem, revisited

The proof of Theorem 2 is in many respects quite similar to the proof of Theorem 1 and
indeed, as already mentioned in the introduction, the Berndtsson and Lempert approach to
the 𝐿2 extension theorem served as an inspiration for the proof of Theorem 1. Hence, we will
not delve too much into the analogous technical details (that are in any case already described
in [BL16]) and instead focus on the differences and the general philosophy.

7.1. Preliminary reductions. As in the proof of Theorem 1, we can assume that 𝑋 is a
relatively compact domain in some larger Stein manifold and that the metrics involved are
smooth (see Section 4 and [BL16]). Moreover, perhaps after shrinking 𝑋 further, we can
assume that 𝑍 meets the boundary of 𝑋 transversely and that the section 𝑓 ∈ 𝐻0 (𝑍, 𝐿 ⊗ 𝐾𝑍)
to be extended is holomorphic up to the boundary of 𝑍.
Since the singularities of 𝑍 are of codimension at least one in 𝑍, they are contained in a

hypersurface 𝐻 of 𝑋 not containing 𝑍. Similarly to what we did to remove the base locus
in Section 4, we can then reduce to the case of smooth 𝑍 (and d𝑇 |𝑍 . 0) by solving the
problem for 𝑍 \ 𝐻 ⊂ 𝑋 \ 𝐻 and then extending the solution to 𝑋 by Riemann’s Removable
Singularities Theorem and the identity principle.
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7.2. Dual formulation of the extension problem. As in Proposition 5.1, we can assume
that there is some solution 𝐹 ∈ 𝐻0 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ) to 𝐹 |𝑍 = 𝑓 ∧ d𝑇 with finite 𝐿2-norm.
Then, as in Lemma 5.2, the norm of the solution 𝐹 with minimal 𝐿2-norm is

𝐹

2

𝑋
= sup

𝑔∈𝐶∞
𝑐 (𝑍,𝐿 |𝑍⊗𝐾𝑍 )

|𝜉𝑔 (𝑓 ) |2

𝜉𝑔

2
∗

,

where 𝜉𝑔 is the functional that associates

𝜉𝑔 (𝑠) :=
∫
𝑍

𝜎 𝑔̄ e−𝜑

to 𝑠 ∈ 𝐻0 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ), with 𝑠|𝑍 =: 𝜎 ∧ d𝑇 . Therefore,

𝐹

2
𝑋
≤


𝑓

2

𝑍
sup

𝑔∈𝐶∞
𝑐 (𝑍,𝐿 |𝑍⊗𝐾𝑍 )



P𝑔

2
𝑍

𝜉𝑔

2
∗

,

where

P : 𝐿2 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍) −→ 𝐻0 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍) ∩ 𝐿2 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍)

denotes the Bergman projection. Thus it suffices to prove that

(7.1)


P𝑔

2

𝑍
≤ 𝜋

(
1 + 1

𝛿

)

𝜉𝑔

2
∗

for all 𝑔 ∈ 𝐶∞
𝑐 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍) (see also (3.4) in [BL16]).

7.3. The family of metrics. We now define a family of metrics for 𝐿 ⊗ 𝐿𝑍 → 𝑋 by intro-
ducing a weight 𝜒𝜏 that “collapses” 𝑋 onto 𝑍:

𝜒𝜏 := max(log |𝑇 |2 − 𝜆 − Re 𝜏, 0).

Of course this function only depends on Re 𝜏 =: 𝑡 and thus in the following we will use the
notation 𝜒𝑡 instead. We then obtain a corresponding family of metrics 𝔥𝜏 for 𝐿 ⊗ 𝐿𝑍 → 𝑋

by setting

𝔥𝜏 := e− Re 𝜏 e−𝜑−𝜆 e−(1+𝛿 ) 𝜒𝜏 ,

and a family of norms for sections 𝑠 ∈ 𝐻0 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ) given by

∥𝑠∥2
𝑡 := e−𝑡

∫
𝑋

|𝑠|2 e−𝜑−𝜆 e−(1+𝛿 ) 𝜒𝑡 .

Wewill interpret 𝔥𝜏 as a metric 𝔥 for pr∗
𝑋
(𝐿⊗ 𝐿𝑍) → 𝑋 ×L (recall thatL denotes the left com-

plex half-plane). Notice that 𝔥 has non-negative curvature by the hypotheses of Theorem 2.

Remark 7.1. Compared to the metrics used in [BL16], the multiplicative constant in front
of 𝜒𝑡 is the fixed value 1 + 𝛿 and thus we will not be able to send it to infinity. Rather than
being a problem, this and Lemma 3.1 are what keep the curvature of 𝔥 under control without
assuming that

√
–1 𝜕𝜕̄ 𝜆 ≥ 0 (see also [Ngu23; NW23] for similar observations). ^

We will denote by ∥·∥𝑡,∗ the induced dual norms on linear functionals of

𝐿2 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ) ∩ 𝐻0 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ).
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7.4. Extrema of the family of norms. Clearly one has ∥𝑠∥2
0 = ∥𝑠∥2

𝑋 . To study the other
extremum 𝑡 → −∞, fix 𝑡 < 0 and consider the set 𝐴𝑡 of points in 𝑋 for which the maximum
in 𝜒𝑡 is attained by 0:

𝐴𝑡 :=
{
𝑥 ∈ 𝑋

��� |𝑇 (𝑥) |2 e−𝜆 ≤ e𝑡
}
.

We then write

∥𝑠∥2
𝑡 = e−𝑡

∫
𝐴𝑡

|𝑠|2 e−𝜑−𝜆 + e−𝑡
∫
𝑋\𝐴𝑡

|𝑠|2 e−𝜑−𝜆
(

e𝑡

|𝑇 |2 e−𝜆

)1+𝛿

and proceed to estimate the two summands as 𝑡 → −∞.
Notice first that the set 𝐴𝑡 collapses to 𝑍 as 𝑡 → −∞. More precisely, it asymptotically

resembles a tube about 𝑍 of radius-squared around each 𝑧 ∈ 𝑍 asymptotic to e𝑡
| d𝑇 (𝑧) |2 e−𝜆 .

Write 𝑠|𝑍 =: 𝜎 ∧ d𝑇 , then

(7.2) lim
𝑡→−∞

e−𝑡
∫
𝐴𝑡

|𝑠|2 e−𝜑−𝜆 = 𝜋
∫
𝑍

|𝜎 |2 e−𝜑 .

As in Subsection 6.2, the second integral can be rewritten as

e−𝑡
∫ 0

𝑡

e−(1+𝛿 ) (𝑡−𝑡) d𝜈𝑠 (𝑡), with 𝜈𝑠 (𝑡) :=
∫
𝐴𝑡

|𝑠|2 e−𝜑−𝜆 .

Since 𝜈𝑠 is clearly positive increasing and satisfies lim𝑡→−∞ e−𝑡 𝜈𝑠 (𝑡) = 𝜋
∫
𝑍
|𝜎 |2 e−𝜑, Lemma

3.1 gives

lim
𝑡→−∞

e−𝑡
∫ 0

𝑡

e−(1+𝛿 ) (𝑡−𝑡) d𝜈𝑠 (𝑡) =
𝜋

𝛿

∫
𝑍

|𝜎 |2 e−𝜑 .

All in all one gets

(7.3) lim
𝑡→−∞

∥𝑠∥2
𝑡 = 𝜋

(
1 + 1

𝛿

) ∫
𝑍

|𝜎 |2 e−𝜑 .

7.5. Monotonicity of the family of dual norms. As in Lemma 6.3 (or [BL16, Lemma 3.2]),
to prove that 

𝜉𝑔

2

∗ =


𝜉𝑔

2

0,∗ ≥


𝜉𝑔

2

𝑡,∗ for all 𝑡 ≤ 0

it suffices to show that sup𝑡≤0


𝜉𝑔

2

𝑡,∗ < +∞. Berndtsson’s Theorem 2.2 will then give the
required estimate. Let

𝐶𝑔 :=
∫
𝑍

|𝑔 |2 e−𝜑 < +∞

(recall that 𝑔 has compact support in 𝑍), then

𝜉𝑔

2
𝑡,∗ = sup

∥ 𝑠∥ 𝑡=1

����∫
𝑍

𝜎 𝑔̄ e−𝜑
����2 ≤ 𝐶𝑔 sup

∥ 𝑠∥ 𝑡=1

∫
𝑍

|𝜎 |2 e−𝜑 .

As in Lemma 6.3, it suffices to check uniform boundedness for 𝑡 less than some very negative
fixed 𝑡0. If this is the case, by (7.2) one gets∫

𝑍

|𝜎 |2 e−𝜑 ≤ 2
𝜋

e−𝑡
∫
𝐴𝑡

|𝑠|2 e−𝜑−𝜆 ≤ 2
𝜋

e−𝑡
∫
𝑋

|𝑠|2 e−𝜑−𝜆 e−(1+𝛿 ) 𝜒𝑡 ,

so that


𝜉𝑔

𝑡,∗ is bounded by some uniform constant, as wanted.
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7.6. End of the proof. To conclude the proof it is enough to show that

(7.4) lim
𝑡→−∞



𝜉𝑔

2
𝑡,∗ ≥

𝛿

𝜋 (1 + 𝛿)


P𝑔

2

𝑍

for all 𝑔 ∈ 𝐶∞
𝑐 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍). Indeed, if (7.4) holds one has

P𝑔

2

𝑍
≤ 𝜋

(
1 + 1

𝛿

)
lim
𝑡→−∞



𝜉𝑔

2
𝑡,∗ ≤ 𝜋

(
1 + 1

𝛿

)

𝜉𝑔

2
∗ ,

which is what is needed to prove Theorem 2 by (7.1).
Let 𝑠 ∈ 𝐻0 (𝑋, 𝐿 ⊗ 𝐿𝑍 ⊗ 𝐾𝑋 ) be any finite-norm extension of P𝑔 (so that 𝑠|𝑍 = P𝑔 ∧ d𝑇 ).

Then by (7.3)

lim
𝑡→−∞



𝜉𝑔

2
𝑡,∗ ≥ lim

𝑡→−∞
1

∥𝑠∥2
𝑡

����∫
𝑍

|P𝑔 |2 e−𝜑
����2 = lim

𝑡→−∞



P𝑔

4
𝑍

∥𝑠∥2
𝑡

≥ 𝛿

𝜋 (1 + 𝛿)


P𝑔

2

𝑍
.

This concludes the proof of Theorem 2.

8. Remarks on extension in higher codimension

When the subvariety 𝑍 has codimension 𝑘 higher than 1, the adjoint formulation does not fit
the extension problem as well as in the hypersurface case of Theorem 2.
A special context in which formulating extension in terms of canonical sections makes

sense is the setting of the Ohsawa–Takegoshi–Manivel Theorem [Man93; Dem00]. Assume
that 𝑍 is cut out by a holomorphic section 𝑇 of some holomorphic vector bundle 𝐸 → 𝑋

of rank 𝑘 and that 𝑇 is generically transverse to the zero section of 𝐸. This means that we
know a priori that the normal bundle of 𝑍 in 𝑋 extends to the vector bundle 𝐸 → 𝑋 and that
we have the adjunction formula (𝐾𝑋 ⊗ det 𝐸) |𝑍 = 𝐾𝑍 . Assume also that sup𝑋 ℎ(𝑇, 𝑇̄) ≤ 1
for some metric ℎ for 𝐸 → 𝑋 .

Then everything goes through in the same way as Theorem 2, up to replacing 𝐿𝑍 with det 𝐸
and adapting the curvature assumptions. Explicitly, assume that

√
–1 𝜕𝜕̄ 𝜑 ≥

√
–1 𝜕𝜕̄ log det ℎ

and √
–1 𝜕𝜕̄ 𝜑 ≥

√
–1 𝜕𝜕̄ log det ℎ − (𝑘 + 𝛿)

√
–1 𝜕𝜕̄ log ℎ(𝑇, 𝑇̄).

Then for every holomorphic section 𝑓 ∈ 𝐻0 (𝑍, 𝐿|𝑍 ⊗ 𝐾𝑍) such that∫
𝑍

|𝑓 |2 e−𝜑 < +∞

there is a holomorphic section 𝐹 ∈ 𝐻0 (𝑋, 𝐿 ⊗ det 𝐸 ⊗ 𝐾𝑋 ) such that 𝐹 |𝑍 = 𝑓 ∧ det(d𝑇) and∫
𝑋

|𝐹 |2 e−𝜑+log det ℎ ≤ 𝜎𝑘

(
1 + 𝑘

𝛿

) ∫
𝑍

|𝑓 |2 e−𝜑,

where 𝜎𝑘 := 𝜋𝑘/𝑘! is the volume of the unit ball in real dimension 2𝑘. Here the weight is the
function 𝜒𝜏 := max

(
log ℎ(𝑇, 𝑇̄) − Re 𝜏, 0

)
and the family of metrics is

e−𝑘Re 𝜏 e−𝜑+log det ℎ e−(𝑘+𝛿 ) 𝜒𝜏 .

Notice that this recovers Theorem 2 with 𝐸 = 𝐿𝑍 and ℎ = e−𝜆 .
Unfortunately in general we cannot assume that 𝑍 is cut out by a section of some vector

bundle. In such case no clear analogue of adjunction is available and thus the non-adjoint
formulation is preferable.
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Theorem 3 (non-adjoint 𝐿2 extension). Let 𝑋 be a Stein manifold with Kähler form 𝜔 and
let 𝜌 : 𝑋 → [−∞, 0] be such that

log dist2
𝑍 −𝛽 ≤ 𝜌 ≤ log dist2

𝑍 +𝛼
for some smooth function 𝛽 on 𝑋 and some constant 𝛼 (so that 𝑍 = {𝜌 = −∞}). Fix 𝛿 > 0, let
𝐿→ 𝑋 be a holomorphic line bundle with metric e−𝜑, and assume that

√
–1 𝜕𝜕̄ 𝜑 + Ric𝜔 ≥ 0,

√
–1 𝜕𝜕̄ 𝜑 + Ric𝜔 +(𝑘 + 𝛿)

√
–1 𝜕𝜕̄ 𝜌 ≥ 0.

Then for every holomorphic section 𝑓 ∈ 𝐻0 (𝑍, 𝐿|𝑍) such that

𝑓

2
𝑍

:=
∫
𝑍

|𝑓 |2 e−𝜑+𝑘𝛽 d𝑉𝑍 < +∞

there is a holomorphic section 𝐹 ∈ 𝐻0 (𝑋, 𝐿) such that 𝐹 |𝑍 = 𝑓 and

∥𝐹∥2
𝑋

:=
∫
𝑍

|𝐹 |2 e−𝜑 d𝑉𝑋 ≤ 𝜎𝑘

(
1 + 𝑘

𝛿

)

𝑓

2
𝑍
.

By taking 𝑋 to be a pseudoconvex domain𝐷 ⊂ C𝑛, 𝜌 = 𝐺−𝜓, 𝜑 = 𝜙−𝑘𝜓 and 𝛽 = 𝐵+𝜓 one
obtains Theorem 3.8 in [BL16] (without the assumption that 𝐺 and 𝜓 are plurisubharmonic).

The argument is the same as the one for Theorem 2, except that the functionals 𝜉𝑔 are now

𝜉𝑔 (𝑠) :=
∫
𝑍

𝑠𝑔̄ e−𝜑+𝑘𝛽 d𝑉𝑍

and the weights are 𝜒𝜏 := max(𝜌 − Re 𝜏, 0). Then the family of norms becomes

∥𝑠∥2
𝑡 := e−𝑘𝑡

∫
𝑋

|𝑠|2 e−𝜑 e−(𝑘+𝛿 ) 𝜒𝑡 d𝑉𝑋 .

Clearly ∥𝑠∥2
0 = ∥𝑠∥2

𝑋 . For the other end of the family, let 𝐴𝑡 := {𝜑 < 𝑡}, then

∥𝑠∥2
𝑡 = e−𝑘𝑡

∫
𝐴𝑡

|𝑠|2 e−𝜑 d𝑉𝑋 + e−𝑘𝑡
∫
𝑋\𝐴𝑡

|𝑠|2 e−𝜑 e−(𝑘+𝛿 ) (𝜌−𝑡) d𝑉𝑋 .

Since the set 𝐴𝑡 is asymptotic to a tube around 𝑍 of radius-squared bounded above by e𝑡+𝛽 ,
it follows that

lim
𝑡→−∞

e−𝑘𝑡
∫
𝐴𝑡

|𝑠|2 e−𝜑 d𝑉𝑋 ≤ 𝜎𝑘

∫
𝑍

|𝑠|2 e−𝜑+𝑘𝛽 d𝑉𝑍

and, by Lemma 3.1,

lim
𝑡→−∞

e−𝑘𝑡
∫
𝑋\𝐴𝑡

|𝑠|2 e−𝜑 e−(𝑘+𝛿 ) (𝜌−𝑡) d𝑉𝑋 ≤ 𝑘𝜎𝑘

𝛿

∫
𝑍

|𝑠|2 e−𝜑+𝑘𝛽 d𝑉𝑍 .

All in all

lim
𝑡→−∞

e−𝑘𝑡
∫
𝑋

|𝑠|2 e−𝜑 e−(𝑘+𝛿 ) 𝜒𝑡 d𝑉𝑋 ≤ 𝜎𝑘

(
1 + 𝑘

𝛿

) ∫
𝑍

|𝑠|2 e−𝜑+𝑘𝛽 d𝑉𝑍 ,

which is what is needed to prove Theorem 3.
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