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Plan

1 (Today) The CSP dichotomy theorem (Bulatov & Zhuk).

I Constraint satisfaction problems

I Statement of the Dichotomy Theorem

I “Algebraic” perspective

I Hopefully accessible to everyone.

2 (Tomorrow) Algebraic idea # 1 from Zhuk’s proof

I Still relatively accessible, but more technical. (Bring coffee)

3 (Friday) Algebraic idea # 2 from Zhuk’s proof

I Very technical, assumes some universal algebra. (You’ve been warned)
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Part 1 – Constraint Satisfaction Problems
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M fixed structure: relational, finite, and finite signature.

ϕ formula over M

∧at-fmla – conjunction of atomic formulas

pp-fmla – ∃~yψ where ψ is ∧at

ϕM – the n-ary relation defined in M by ϕ(x1, . . . , xn).

Constraint Satisfaction Problem CSPp(M)

(Fix M.) CSPp(M) is the following decision problem:

Input: ∧at-fmla ϕ (in signature of M)

Question: Is ϕM 6= ∅?

Fine print: formulas may contain parameters from M.
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CSPp(M) can be easy or hard

Example 1: M3SAT = ({0, 1},R3SAT ) where

R3SAT = {(x1, . . . , x6) : (x1, x2, x3) 6= (x4, x5, x6)}.

R3SAT (x , y , z , 0, 0, 0) encodes x ∨ y ∨ z

R3SAT (x , y , z , 0, 0, 1) encodes x ∨ y ∨ ¬z , etc .

Instances of 3-SAT can be encoded as ∧at-fmlas over M3SAT .

∴ we have a poly-time reducton 3-SAT ≤P CSPp(M3SAT ).

∴ CSPp(M3SAT ) is NP-hard, hence NP-complete.
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Example 2: K3 = ({0, 1, 2}, 6=).

(=-free, parameter-free) ∧at-fmlas in this signature can be pictured; e.g.,

X6

*

*2 I It- -
X
, I X4S=
=

F E

W I
X
3
-x5
#

I

ϕK3 6= ∅ ⇐⇒ ∃ assignment {x1, . . . , x6} → {0, 1, 2} preserving 6=
⇐⇒ this graph can be 3-colored.

 polytime reduction 3-COL ≤P CSPp(K3).

∴ CSPp(K3) is NP-complete.
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Example 3: K2,≤ = ({0, 1}, 6=, ≤).

How hard Is CSPp(K2,≤)?

Exercize: not hard

∧at-fmlas over K2,≤ can’t “express” very much.

ϕ(K2,≤) = ∅ ⇐⇒ ϕ contains a certain kind of “configuration”;

in the worst case, one of the form

I↑* E
-⑰

It We
- a&
- I ↳ /I

·
I

We can efficiently test whether any such configurations occur in ϕ.

∴ CSPp(K2,≤) is in P.
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Example 4: M3lin = ({0, 1, 2}, R) where

R = {(x , y , z ,w) : x − y + z = w (mod 3)}.

Atomic formulas over M3lin express (short) linear equations/Z3:

R(x , y , z ,w) x − y + z − w = 0

R(x , y , z , 1) x − y + z = 1, etc

So ∧at-fmlas over M3lin express (certain) systems of linear equations/Z3.

We can solve such systems in poly time.

∴ CSPp(M3lin) is in P.
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Part 2 – The Dichotomy Theorem
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NP

CSPp(K2,≤)

CSPp(M3lin)

CSPp(M3SAT )
CSPp(K3)

P

NP-complete

K3M3SAT

K2,≤

M3lin

{all finite structures}

CSPp( )

CSP Dichotomy Conjecture (Feder, Vardi 1998)

For every M, CSPp(M) is in P or is NP-complete.

Plausible (in 1998).

Known for 2-element structures (Schaefer 1978)

Known for core graphs (Hell, Nešeťril 1990)

(Where should the “dividing line” be?)
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pp-interpretations

There is one “obvious” reason for CSPp(M) to be NP-complete:

If M3SAT (or K3) is pp-interpretable in M.

“pp-interpretation” means the usual thing:

There is a pp-definable set D ⊆ Mn, a pp-definable equivalence relation E on D
with two blocks (so E ⊆ M2n), and a pp-definable 6-ary relation R on D (so
R ⊆ M6n) such that

(D/E , R/E) ∼= M3SAT .

(A.k.a. “gadget definition.”)

Easy Fact

If M3SAT
pp
↪−→M, then CSPp(M) is NP-complete.
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NP

P

NP-complete

K3M3SAT

K2,≤

M3lin

CSPp( )

pp-interprets M3SAT

Refined Dichotomy Conjecture (Bulatov, Jeavons, Krokhin 2001)

If M3SAT

pp

↪→6 M, then CSPp(M) is in P.

The race is on!
Lots of partial results!
Frenetic activity!
Conferences! Workshops! Grant money! And then . . .
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Part 3 – The Dichotomy Theorem
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The Refined Conjecture is proved!

CSP Dichotomy Theorem (A. Bulatov, D. Zhuk 2017; 2020.)

If M is finite and M3SAT

pp

↪→6 M, then CSPp(M) is in P.

It was fun while it lasted.
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Part 4 – The algebraic perspective
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Example: M = (M, R) with arity(R) = 2.

Endomorphism of M: any map f : M → M satisfying(
a
b

)
∈ R =⇒

(
f (a)
f (b)

)
∈ R.

Definition

A polymorphism of M is any map f : Mn → M satisfying(
a1

b1

)
, . . . ,

(
an
bn

)
∈ R =⇒

(
f (a1, . . . , an)
f (b1, . . . , bn)

)
∈ R.

“f preserves R”

Example: monotone boolean functions = polymorphisms of ({0, 1},≤).

(Similarly for relations of higher arity, or M with more than one relation.)
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Example: K2,≤ = ({0, 1}, 6=,≤).

What endomorphisms does it have?

(Only id)

Does K2,≤ have any 2-ary polymorphisms? If f (x , y) is one:

f (0, 0) 6= f (1, 1) and f (0, 0) ≤ f (1, 1)

=⇒ f (0, 0) = 0 and f (1, 1) = 1

Also f (0, 1) 6= f (1, 0).

f 0 1

0 0 0
1 1 1

or

f 0 1

0 0 1
1 0 1

i.e., only the projections

Any “interesting” 3-ary polymorphisms? Yes!!

majority(x , y , z).
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On the other hand, M3SAT = ({0, 1},R3SAT ) where

R3SAT = {(x1, . . . , x6) : (x1, x2, x3) 6= (x4, x5, x6)}

has only “trivial” polymorphisms (of all arities):

projections composed with an automorphism.

The same is true of K3 = ({0, 1, 2}, 6=).
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The algebra of a finite structure

A map f : Mn → M is idempotent if it satisfies f (a, . . . , a) = a ∀ a ∈ M.

Definition

Given a structure M, the idempotent polymorphism algebra of M is

M := (M, {all idempotent polymorphisms of M}).

M for the structure; M for its associated algebra.

Example:

M = ({0, 1},≤)

M = ({0, 1}, {all nonconstant monotone boolean functions}).
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Fix M. M its idempotent polymorphism algebra.

Each basic relation (say k-ary) of M:

is preserved (coordinate-wise) by all operations of M . . .

. . . so is a subuniverse of Mk .

Same is true for pp-definable relations of M.

In fact:

Classical Fact (Geiger 1968, Bodnarčuk-Kalužnin-Kotov-Romov 1969)

{relations pp-definable in M} = {subuniverses

subalgebras

of powers of M}

= SP(M).

Consequence: every pp-definable set R of M inherits the structure of an
algebra R (in the same signature as M).
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Dictionary

structure algebra

base M associated M

pp-def. relation R algebra R ∈ SP(M)

pp-def. equivalence relation on R congruence of R

pp-def. quotient R/E quotient algebra R/E ∈ HSP(M)

pp-def. function homomorphism

pp-interp. structure (N,R) N ∈ HSP(M) with R ≤ Nk

M3SAT

pp

↪→6 M ?

k-ary
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Theorem 1 (Taylor ‘77 + Hobby-McKenzie ‘88 + Bulatov-Jeavons-Krokhin ‘05 +

Maróti-McKenzie ‘08 + Siggers ‘10 + Barto-Kozik ‘12)

M a finite structure, M its idempotent polymorphism algebra. TFAE:

1 M3SAT

pp

↪→6 M.

2 ¬∃N ∈ HSP(M) with N = {0, 1} and R3SAT ≤ N6 (all ops of N are proj’s).

3 M has an “interesting” (Taylor ) operation1.

4 For some n > 1, M has a cyclic operation c(x1, . . . , xn), i.e.,

c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1) ∀x1, . . . , xn ∈ M.

5 M has a Siggers operation s(x1, . . . , x6), i.e., satisfying

s(x , x , y , y , z , z) = s(y , z , z , x , x , y) ∀x , y , z ∈ M.

1An operation f satisfying a system Σ of one or more identities, each of the form
f (variables) = f (variables), nontrivial in that Σ can’t be modeled by f = projection on {0, 1}.
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(1) M3SAT

pp

↪→6 M.

(5) M has an operation s(x1, . . . , x6) satisfying

s(x , x , y , y , z , z) = s(y , z , z , x , x , y).

Proof sketch of (1)⇐⇒ (5) (Siggers).

(⇐= )

Assume M has such an operation s(x1 . . . , x6).

Let N = M3SAT = ({0, 1}, R3SAT ).

Assume N
pp
↪−→M.

Then N = {0, 1} expands to N ∈ HSP(M) with R3SAT ≤ N6.

On the one hand, every operation of N is a projection.

On the other hand, N has the operation sN.

sN satisfies the identity in (5), so cannot be a projection.
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(1) M3SAT

pp

↪→6 M.

(5) M has an operation s(x1, . . . , x6) satisfying

s(x , x , y , y , z , z) = s(y , z , z , x , x , y).

( =⇒ )

Assume (1).

Let F be the free algebra for HSP(M) on free generators x , y , z .
(F is finite, F ∈ HSP(M).)

Let E be the subuniverse of F2 generated by(
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

)
.

Symmetry of the generators =⇒ E is symmetric (as a relation).

Let G = (F , E ) (a structure, one binary relation).

Observe: F ∈ HSP(M), E ≤ F2 =⇒ G
pp
↪−→M.
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- r
⑦ * ④ 8. .- ⑤

-

S

⑤

2- I P
.

8 ↳- ·

r

G = (F
, E)
G = (F ,E )

Case 1: E is irreflexive, i.e., (p, p) 6∈ E for all p ∈ F .

Then G is a (simple) graph, and non-bipartite.

Thus (Bulatov 2005, building on Hell-Nešeťril 1990):

K3
pp
↪−→ G.

Known: M3SAT
pp
↪−→ K3.

By construction, G
pp
↪−→M.

∴ M3SAT
pp
↪−→M, contrary to assumption (1).
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K3
pp
↪−→ G.

Known: M3SAT
pp
↪−→ K3.

By construction, G
pp
↪−→M.

∴ M3SAT
pp
↪−→M, contrary to assumption (1).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 24 / 26



- r
⑦ * ④ 8. .- ⑤

-

S

⑤

2- I P
.

8 ↳- ·

r

G = (F
, E)
G = (F ,E )

Case 1: E is irreflexive, i.e., (p, p) 6∈ E for all p ∈ F .

Then G is a (simple) graph, and non-bipartite.

Thus (Bulatov 2005, building on Hell-Nešeťril 1990):
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So Case 1 is impossible: there exists a loop (p, p) ∈ E .

- r I
⑦ * ④ 8. .- ⑤

-

S

⑤

2- I P
.

8 ↳- ·

r

G = (F
, E)
G = (F ,E )

Recall: E is generated by

(
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

)
.

=⇒ ∃ 6-ary term1 s(x1, . . . , x6) such that(
p
p

)
= sF

2

((
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

))
.

A standard argument gives M |= s(x , x , y , y , z , z) = s(y , z , z , x , x , y).

1

In the signature of M, hence equal mod HSP(M) to an operation of M.

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 25 / 26



So Case 1 is impossible: there exists a loop (p, p) ∈ E .

- r I
⑦ * ④ 8. .- ⑤

-

S

⑤

2- I P
.

8 ↳- ·

r

G = (F
, E)
G = (F ,E )

Recall: E is generated by

(
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

)
.

=⇒ ∃ 6-ary term1 s(x1, . . . , x6) such that(
p
p

)
= sF

2

((
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

))
.

A standard argument gives M |= s(x , x , y , y , z , z) = s(y , z , z , x , x , y).

1

In the signature of M, hence equal mod HSP(M) to an operation of M.

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 25 / 26



So Case 1 is impossible: there exists a loop (p, p) ∈ E .

- r I
⑦ * ④ 8. .- ⑤

-

S

⑤

2- I P
.

8 ↳- ·

r

G = (F
, E)
G = (F ,E )

Recall: E is generated by

(
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

)
.

=⇒ ∃ 6-ary term1 s(x1, . . . , x6) such that(
p
p

)
= sF

2

((
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

))
.

A standard argument gives M |= s(x , x , y , y , z , z) = s(y , z , z , x , x , y).

1In the signature of M, hence equal mod HSP(M) to an operation of M.
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So Case 1 is impossible: there exists a loop (p, p) ∈ E .
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Recall: E is generated by
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)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

)
.

=⇒ ∃ 6-ary term1 s(x1, . . . , x6) such that(
p
p

)
= sF

2

((
x
y

)
,

(
x
z

)
,

(
y
z

)
,

(
y
x

)
,

(
z
x

)
,

(
z
y

))
.

A standard argument gives M |= s(x , x , y , y , z , z) = s(y , z , z , x , x , y).

1In the signature of M, hence equal mod HSP(M) to an operation of M.
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Summary of Lecture 1

CSPp(M): decision problem about satisfiability of ∧at-fmlas/M.

CSP Dichotomy Theorem of Bulatov and Zhuk (2017, 2020):

M3SAT

pp

↪→6 M =⇒ CSPp(M) is in P.

Algebraic perspective

M 7→ idempotent polymorphism algebra M.

Connections between HSP(M) and pp-definable relations over M.

Positive characterization of M3SAT

pp

↪→6 M (Theorem 1):

“M has a Taylor operation”
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