Tutorial - The Constraint Satisfaction Problem Dichotomy Theorem. Lecture 1

Ross Willard

Waterloo (Canada)

Assoc. Sym. Logic meeting - Ames, IA 15 May 2024

Plan

(1) (Today) The CSP dichotomy theorem (Bulatov \& Zhuk).

- Constraint satisfaction problems
- Statement of the Dichotomy Theorem
- "Algebraic" perspective
- Hopefully accessible to everyone.
(2) (Tomorrow) Algebraic idea \# 1 from Zhuk's proof
- Still relatively accessible, but more technical. (Bring coffee)
(3) (Friday) Algebraic idea \# 2 from Zhuk's proof
- Very technical, assumes some universal algebra. (You've been warned)

Part 1 - Constraint Satisfaction Problems

M fixed structure: relational, finite, and finite signature.
$\varphi \quad$ formula over M

- ^at-fmla - conjunction of atomic formulas
- pp-fmla - $\exists \vec{y} \psi$ where ψ is \wedge at
$\varphi^{\mathrm{M}} \quad$ - the n-ary relation defined in M by $\varphi\left(x_{1}, \ldots, x_{n}\right)$.

Fine print: formulas may contain parameters from \mathbf{M}.

M fixed structure: relational, finite, and finite signature.
$\varphi \quad$ formula over M

- ^at-fmla - conjunction of atomic formulas
- pp-fmla - $\exists \vec{y} \psi$ where ψ is \wedge at
- the n-ary relation defined in \mathbf{M} by $\varphi\left(x_{1}, \ldots, x_{n}\right)$.

Constraint Satisfaction Problem $\mathrm{CSP}_{p}(\mathbf{M})$

(Fix M.) $\quad \operatorname{CSP}_{p}(\mathbf{M})$ is the following decision problem:
Input: $\quad \wedge$ at-fmla φ (in signature of \mathbf{M})
Question: Is $\varphi^{\mathbf{M}} \neq \varnothing$?

Fine print: formulas may contain parameters from \mathbf{M}.

$\mathrm{CSP}_{p}(\mathbf{M})$ can be easy or hard

Example 1: $\quad \mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

$\mathrm{CSP}_{p}(\mathbf{M})$ can be easy or hard

Example 1: $\quad \mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

$R_{3 S A T}(x, y, z, 0,0,0)$ encodes $x \vee y \vee z$
$R_{3 S A T}(x, y, z, 0,0,1)$ encodes $x \vee y \vee \neg z$, etc.

$\mathrm{CSP}_{p}(\mathbf{M})$ can be easy or hard

Example 1: $\quad \mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

$R_{3 S A T}(x, y, z, 0,0,0)$ encodes $x \vee y \vee z$ $R_{3 S A T}(x, y, z, 0,0,1)$ encodes $x \vee y \vee \neg z$, etc.

Instances of 3-SAT can be encoded as \wedge at-fmlas over $\mathbf{M}_{3 S A T}$.
\therefore we have a poly-time reducton $3-\mathrm{SAT} \leq_{p} \operatorname{CSP}_{p}\left(\mathbf{M}_{3 S A T}\right)$.
$\therefore \operatorname{CSP}_{p}\left(\mathrm{M}_{3 S A T}\right)$ is NP-hard, hence NP-complete.

Example 2: $\quad \mathbf{K}_{3}=(\{0,1,2\}, \neq)$.
(=-free, parameter-free) \wedge at-fmlas in this signature can be pictured; e.g.,

φ

Example 2: $\quad \mathbf{K}_{3}=(\{0,1,2\}, \neq)$.
(=-free, parameter-free) \wedge at-fmlas in this signature can be pictured; e.g.,

φ
$\varphi^{\mathrm{K}_{3}} \neq \varnothing \Longleftrightarrow \exists$ assignment $\left\{x_{1}, \ldots, x_{6}\right\} \rightarrow\{0,1,2\}$ preserving \neq \Longleftrightarrow this graph can be 3-colored.
\rightsquigarrow polytime reduction $3-\mathrm{COL} \leq_{p} \operatorname{CSP}_{p}\left(\mathbf{K}_{3}\right)$.
$\therefore \operatorname{CSP}_{p}\left(\mathbf{K}_{3}\right)$ is NP-complete.

Example 3: $\quad \mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

How hard Is $\operatorname{CSP}_{p}\left(\mathbf{K}_{2, \leq}\right)$?

Example 3: $\quad \mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

How hard Is $\operatorname{CSP}_{p}\left(\mathbf{K}_{2, \leq}\right)$?
Exercize: not hard
\wedge at-fmlas over $\mathbf{K}_{2, \leq}$ can't "express" very much.

Example 3: $\quad \mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.
How hard Is $\operatorname{CSP}_{p}\left(\mathbf{K}_{2, \leq}\right)$?

Exercize: not hard
\wedge at-fmlas over $\mathbf{K}_{2, \leq}$ can't "express" very much.

$$
\begin{aligned}
\varphi^{\left(\mathrm{K}_{2, \leq}\right)}=\varnothing \Longleftrightarrow & \varphi \text { contains a certain kind of "configuration"; } \\
& \text { in the worst case, one of the form }
\end{aligned}
$$

Example 3: $\quad \mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

How hard Is $\operatorname{CSP}_{p}\left(\mathbf{K}_{2, \leq}\right)$?

Exercize: not hard
\wedge at-fmlas over $\mathbf{K}_{2, \leq}$ can't "express" very much.

$$
\begin{aligned}
\varphi^{\left(\mathrm{K}_{2, \leq}\right)}=\varnothing \Longleftrightarrow & \varphi \text { contains a certain kind of "configuration"; } \\
& \text { in the worst case, one of the form }
\end{aligned}
$$

We can efficiently test whether any such configurations occur in φ.
$\therefore \operatorname{CSP}_{p}\left(\mathbf{K}_{2, \leq}\right)$ is in P .

Example 4: $\quad \mathbf{M}_{3 \text { lin }}=(\{0,1,2\}, R)$ where

$$
R=\{(x, y, z, w): x-y+z=w \quad(\bmod 3)\} .
$$

Atomic formulas over $\mathbf{M}_{3 \text { lin }}$ express (short) linear equations $/ \mathbb{Z}_{3}$:

$$
\begin{array}{rrl}
R(x, y, z, w) & x-y+z-w & =0 \\
R(x, y, z, 1) & x-y+z=1, \text { etc }
\end{array}
$$

So \wedge at-fmlas over $\mathbf{M}_{3 \text { lin }}$ express (certain) systems of linear equations $/ \mathbb{Z}_{3}$.

We can solve such systems in poly time.
$\therefore \operatorname{CSP}_{p}\left(\mathbf{M}_{3 \text { lin }}\right)$ is in P.

Part 2 - The Dichotomy Theorem

$\mathbf{M}_{3 S A T}$	\mathbf{K}_{3}
	$\mathbf{K}_{2, \leq}$
$\mathbf{M}_{3 \text { lin }}$	

\{all finite structures $\}$

$M_{3 S A T}$	K_{3}
	$K_{2, \leq}$
$M_{3 \text { lin }}$	

\{all finite structures $\}$

CSP Dichotomy Conjecture

(Feder, Vardi 1998)
For every $\mathbf{M}, \operatorname{CSP}_{p}(\mathbf{M})$ is in P or is NP-complete.

$M_{3 S A T}$	K_{3}
	$K_{2, \leq}$
$M_{3 \text { lin }}$	

\{all finite structures $\}$

CSP Dichotomy Conjecture

(Feder, Vardi 1998)
For every $\mathbf{M}, \operatorname{CSP}_{p}(\mathbf{M})$ is in P or is NP-complete.

Plausible (in 1998).

- Known for 2-element structures (Schaefer 1978)
- Known for core graphs (Hell, Nešetřil 1990)
(Where should the "dividing line" be?)

pp-interpretations

There is one "obvious" reason for $\operatorname{CSP}_{p}(\mathbf{M})$ to be NP-complete:

$$
\text { If } \mathbf{M}_{3 S A T} \text { (or } \mathbf{K}_{3} \text {) is pp-interpretable in } \mathbf{M} \text {. }
$$

"pp-interpretation" means the usual thing:
There is a pp-definable set $D \subseteq \mathbf{M}^{n}$, a pp-definable equivalence relation E on D with two blocks (so $E \subseteq \mathbf{M}^{2 n}$), and a pp-definable 6-ary relation R on D (so $R \subseteq \mathrm{M}^{6 n}$) such that

$$
(D / E, R / E) \cong \mathbf{M}_{3 S A T}
$$

(A.k.a. "gadget definition.")

pp-interpretations

There is one "obvious" reason for $\operatorname{CSP}_{p}(\mathbf{M})$ to be NP-complete:

$$
\text { If } \mathbf{M}_{3 S A T} \text { (or } \mathbf{K}_{3} \text {) is pp-interpretable in } \mathbf{M} \text {. }
$$

"pp-interpretation" means the usual thing:
There is a pp-definable set $D \subseteq \mathbf{M}^{n}$, a pp-definable equivalence relation E on D with two blocks (so $E \subseteq \mathbf{M}^{2 n}$), and a pp-definable 6-ary relation R on D (so $\left.R \subseteq \mathbf{M}^{6 n}\right)$ such that

$$
(D / E, R / E) \cong \mathbf{M}_{3 S A T}
$$

(A.k.a. "gadget definition.")

Easy Fact

If $\mathbf{M}_{3 S A T} \xrightarrow{p p} \mathbf{M}$, then $\operatorname{CSP}_{p}(\mathbf{M})$ is NP-complete.

Refined Dichotomy Conjecture
If $\mathbf{M}_{3 S A T} \stackrel{\text { Pp }}{\nrightarrow} \mathbf{M}$, then $\operatorname{CSP}_{p}(\mathbf{M})$ is in P .
(Bulatov, Jeavons, Krokhin 2001)

Refined Dichotomy Conjecture

(Bulatov, Jeavons, Krokhin 2001)

If $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$, then $\operatorname{CSP}_{p}(\mathbf{M})$ is in P .

The race is on!
Lots of partial results!
Frenetic activity!

Part 3 - The Dichotomy Theorem

The Refined Conjecture is proved!

CSP Dichotomy Theorem (A. Bulatov, D. Zhuk 2017; 2020.)

If \mathbf{M} is finite and $\mathbf{M}_{3 S A T} \stackrel{p p}{\nrightarrow} \mathbf{M}$, then $\operatorname{CSP}_{p}(\mathbf{M})$ is in \mathbf{P}.

It was fun while it lasted.

Part 4 - The algebraic perspective

Example: $\mathbf{M}=(M, R)$ with $\operatorname{arity}(R)=2$.

Endomorphism of \mathbf{M} : any map $f: M \rightarrow M$ satisfying

$$
\binom{a}{b} \in R \Longrightarrow\binom{f(a)}{f(b)} \in R
$$

Example: $\mathbf{M}=(M, R)$ with $\operatorname{arity}(R)=2$.

Endomorphism of \mathbf{M} : any map $f: M \rightarrow M$ satisfying

$$
\binom{a}{b} \in R \Longrightarrow\binom{f(a)}{f(b)} \in R
$$

Definition

A polymorphism of M is any map $f: M^{n} \rightarrow M$ satisfying

$$
\begin{gathered}
\binom{a_{1}}{b_{1}}, \ldots,\binom{a_{n}}{b_{n}} \in R \Longrightarrow\binom{f\left(a_{1}, \ldots, a_{n}\right)}{f\left(b_{1}, \ldots, b_{n}\right)} \in R . \\
\text { "f preserves } R "
\end{gathered}
$$

Example: $\mathbf{M}=(M, R)$ with $\operatorname{arity}(R)=2$.

Endomorphism of \mathbf{M} : any map $f: M \rightarrow M$ satisfying

$$
\binom{a}{b} \in R \Longrightarrow\binom{f(a)}{f(b)} \in R
$$

Definition

A polymorphism of M is any map $f: M^{n} \rightarrow M$ satisfying

$$
\begin{gathered}
\binom{a_{1}}{b_{1}}, \ldots,\binom{a_{n}}{b_{n}} \in R \Longrightarrow\binom{f\left(a_{1}, \ldots, a_{n}\right)}{f\left(b_{1}, \ldots, b_{n}\right)} \in R . \\
\text { " } f \text { preserves } R \text { " }
\end{gathered}
$$

Example: monotone boolean functions $=$ polymorphisms of $(\{0,1\}, \leq)$.
(Similarly for relations of higher arity, or \mathbf{M} with more than one relation.)

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
(Only id)

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
(Only id)
- Does $\mathbf{K}_{2, \leq}$ have any 2-ary polymorphisms?

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
(Only id)
- Does $\mathbf{K}_{2, \leq}$ have any 2-ary polymorphisms? If $f(x, y)$ is one:

$$
f(0,0) \neq f(1,1) \quad \text { and } \quad f(0,0) \leq f(1,1)
$$

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
(Only id)
- Does $\mathbf{K}_{2, \leq}$ have any 2-ary polymorphisms? If $f(x, y)$ is one:

$$
\begin{aligned}
& f(0,0) \neq f(1,1) \quad \text { and } \quad f(0,0) \leq f(1,1) \\
& f(0,0)=0 \quad \text { and } \quad f(1,1)=1
\end{aligned}
$$

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
(Only id)
- Does $\mathbf{K}_{2, \leq}$ have any 2-ary polymorphisms? If $f(x, y)$ is one:

$$
\begin{aligned}
& f(0,0) \neq f(1,1) \quad \text { and } \quad f(0,0) \leq f(1,1) \\
\Longrightarrow \quad & f(0,0)=0 \quad \text { and } \quad f(1,1)=1
\end{aligned}
$$

Also $\quad f(0,1) \neq f(1,0)$.

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
- Does $\mathbf{K}_{2, \leq}$ have any 2-ary polymorphisms? If $f(x, y)$ is one:

$$
\begin{aligned}
& f(0,0) \neq f(1,1) \quad \text { and } \quad f(0,0) \leq f(1,1) \\
\Longrightarrow \quad & f(0,0)=0 \quad \text { and } \quad f(1,1)=1
\end{aligned}
$$

Also $\quad f(0,1) \neq f(1,0)$.

f	0	1				
0	0	0				
1	1	1	\quad or \quad	f	0	1
:---	:---	:---				
0	0	1				
1	0	1	\quad i.e., only the projections			

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
- Does $\mathbf{K}_{2, \leq}$ have any 2-ary polymorphisms? If $f(x, y)$ is one:

$$
\begin{aligned}
& f(0,0) \neq f(1,1) \quad \text { and } \quad f(0,0) \leq f(1,1) \\
\Longrightarrow \quad & f(0,0)=0 \quad \text { and } \quad f(1,1)=1
\end{aligned}
$$

Also $\quad f(0,1) \neq f(1,0)$.

f	0	1				
0	0	0				
1	1	1	\quad or \quad	f	0	1
:---:	:---:	:---:				
0	0	1				
1	0	1				

i.e., only the projections

- Any "interesting" 3-ary polymorphisms?

Example: $\mathbf{K}_{2, \leq}=(\{0,1\}, \neq, \leq)$.

- What endomorphisms does it have?
- Does $\mathbf{K}_{2, \leq}$ have any 2-ary polymorphisms? If $f(x, y)$ is one:

$$
\begin{aligned}
& f(0,0) \neq f(1,1) \quad \text { and } \quad f(0,0) \leq f(1,1) \\
\Longrightarrow \quad & f(0,0)=0 \quad \text { and } \quad f(1,1)=1
\end{aligned}
$$

Also $\quad f(0,1) \neq f(1,0)$.

f	0	1		
0	0	0		
1	1	1	\quad	or
:---	\quad	f	0	1
:---	:---	:---		
0	0	1		
1	0	1		

i.e., only the projections

- Any "interesting" 3-ary polymorphisms? Yes!!

$$
\text { majority }(x, y, z)
$$

On the other hand, $\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

has only "trivial" polymorphisms (of all arities):
projections composed with an automorphism.

The same is true of $\mathbf{K}_{3}=(\{0,1,2\}, \neq)$.

The algebra of a finite structure

A map $f: M^{n} \rightarrow M$ is idempotent if it satisfies $f(a, \ldots, a)=a \quad \forall a \in M$.

The algebra of a finite structure

A map $f: M^{n} \rightarrow M$ is idempotent if it satisfies $f(a, \ldots, a)=a \quad \forall a \in M$.

Definition

Given a structure \mathbf{M}, the idempotent polymorphism algebra of \mathbf{M} is

$$
\mathbb{M}:=(M,\{\text { all idempotent polymorphisms of } \mathbf{M}\}) .
$$

The algebra of a finite structure

A map $f: M^{n} \rightarrow M$ is idempotent if it satisfies $f(a, \ldots, a)=a \quad \forall a \in M$.

Definition

Given a structure \mathbf{M}, the idempotent polymorphism algebra of \mathbf{M} is

$$
\mathbb{M}:=(M,\{\text { all idempotent polymorphisms of } \mathbf{M}\}) .
$$

\mathbf{M} for the structure; \mathbb{M} for its associated algebra.

Example:

$$
\begin{aligned}
& \mathbf{M}=(\{0,1\}, \leq) \\
& \mathbb{M}=(\{0,1\},\{\text { all nonconstant monotone boolean functions }\}) .
\end{aligned}
$$

Fix $\mathbf{M} . \quad \mathbb{M}$ its idempotent polymorphism algebra.

Each basic relation (say k-ary) of \mathbf{M} :

- is preserved (coordinate-wise) by all operations of $\mathbb{M} \ldots$
- ...so is a subuniverse of \mathbb{M}^{k}.

Same is true for pp-definable relations of \mathbf{M}.

Fix $\mathbf{M} . \quad \mathbb{M}$ its idempotent polymorphism algebra.

Each basic relation (say k-ary) of \mathbf{M} :

- is preserved (coordinate-wise) by all operations of $\mathbb{M} \ldots$
- ...so is a subuniverse of \mathbb{M}^{k}.

Same is true for pp-definable relations of \mathbf{M}.

In fact:

Classical Fact

(Geiger 1968, Bodnarčuk-Kalužnin-Kotov-Romov 1969)
\{relations pp-definable in $\mathbf{M}\}=\{$ subuniverses of powers of $\mathbb{M}\}$

Fix $\mathbf{M} . \quad \mathbb{M}$ its idempotent polymorphism algebra.
Each basic relation (say k-ary) of \mathbf{M} :

- is preserved (coordinate-wise) by all operations of $\mathbb{M} \ldots$
- ...so is a subuniverse of \mathbb{M}^{k}.

Same is true for pp-definable relations of \mathbf{M}.

In fact:

Classical Fact

(Geiger 1968, Bodnarčuk-Kalužnin-Kotov-Romov 1969)
$\{$ relations pp-definable in $\mathbf{M}\}=\{$ subuniverses of powers of $\mathbb{M}\}$

Consequence: every pp-definable set R of \mathbf{M} inherits the structure of an algebra \mathbb{R} (in the same signature as \mathbb{M}).

Fix $\mathbf{M} . \quad \mathbb{M}$ its idempotent polymorphism algebra.

Each basic relation (say k-ary) of \mathbf{M} :

- is preserved (coordinate-wise) by all operations of \mathbb{M}...
- ...so is a subuniverse of \mathbb{M}^{k}.

Same is true for pp-definable relations of \mathbf{M}.

In fact:

Classical Fact

(Geiger 1968, Bodnarčuk-Kalužnin-Kotov-Romov 1969)
$\{$ relations pp-definable in $\mathbf{M}\}=\{$ subalgebras of powers of $\mathbb{M}\}$

$$
=\mathrm{SP}(\mathbb{M})
$$

Consequence: every pp-definable set R of \mathbf{M} inherits the structure of an algebra \mathbb{R} (in the same signature as \mathbb{M}).

Dictionary

structure	algebra
base M	associated \mathbb{M}
pp-def. relation R	algebra $\mathbb{R} \in \mathrm{SP}(\mathbb{M})$
pp-def. equivalence relation on R	congruence of \mathbb{R}
pp-def. quotient R / E	quotient algebra $\mathbb{R} / E \in \mathrm{HSP}(\mathbb{M})$
pp-def. function	homomorphism
pp-interp. structure (N, R)	$\mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $\mathbb{R} \leq \mathbb{N}^{k}$
$\hat{k-a r y}_{\prime}$	
$\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$?

Theorem 1 (Taylor ' $77+$ Hobby-McKenzie ' 88 + Bulatov-Jeavons-Krokhin ' $05+$ Maróti-McKenzie '08 + Siggers '10 + Barto-Kozik '12)
\mathbf{M} a finite structure, \mathbb{M} its idempotent polymorphism algebra. TFAE:
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$.

Theorem 1 (Taylor ' $77+$ Hobby-McKenzie ' 88 + Bulatov-Jeavons-Krokhin ' $05+$ Maróti-McKenzie '08 + Siggers '10 + Barto-Kozik '12)
\mathbf{M} a finite structure, \mathbb{M} its idempotent polymorphism algebra. TFAE:
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$.
(2) $\neg \exists \mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $N=\{0,1\}$ and $R_{3 S A T} \leq \mathbb{N}^{6}$ (all ops of \mathbb{N} are proj's).

Theorem 1 (Taylor ' $77+$ Hobby-McKenzie ' 88 + Bulatov-Jeavons-Krokhin '05 + Maróti-McKenzie '08 + Siggers '10 + Barto-Kozik '12)
\mathbf{M} a finite structure, \mathbb{M} its idempotent polymorphism algebra. TFAE:
(1) $\mathrm{M}_{3 S A T} \stackrel{p p}{4} \mathrm{M}$.
(2) $\neg \exists \mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $N=\{0,1\}$ and $R_{3 S A T} \leq \mathbb{N}^{6}$ (all ops of \mathbb{N} are proj's).
(3) \mathbb{M} has an "interesting" (Taylor) operation ${ }^{1}$.
${ }^{1}$ An operation f satisfying a system Σ of one or more identities, each of the form $f($ variables $)=f$ (variables), nontrivial in that Σ can't be modeled by $f=$ projection on $\{0,1\}$.

Theorem 1 (Taylor ' $77+$ Hobby-McKenzie ' 88 + Bulatov-Jeavons-Krokhin '05 + Maróti-McKenzie '08 + Siggers '10 + Barto-Kozik '12)
\mathbf{M} a finite structure, \mathbb{M} its idempotent polymorphism algebra. TFAE:
(1) $\mathrm{M}_{3 S A T} \stackrel{p p}{\leftrightarrows} \mathrm{M}$.
(2) $\neg \exists \mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $N=\{0,1\}$ and $R_{3 S A T} \leq \mathbb{N}^{6}$ (all ops of \mathbb{N} are proj's).
(3) \mathbb{M} has an "interesting" (Taylor) operation ${ }^{1}$.
(C) For some $n>1, \mathbb{M}$ has a cyclic operation $c\left(x_{1}, \ldots, x_{n}\right)$, i.e.,

$$
c\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\left(x_{2}, \ldots, x_{n}, x_{1}\right) \quad \forall x_{1}, \ldots, x_{n} \in M
$$

(5) \mathbb{M} has a Siggers operation $s\left(x_{1}, \ldots, x_{6}\right)$, i.e., satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y) \quad \forall x, y, z \in M
$$

${ }^{1}$ An operation f satisfying a system Σ of one or more identities, each of the form $f($ variables $)=f($ variables $)$, nontrivial in that Σ can't be modeled by $f=$ projection on $\{0,1\}$.
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\nmid} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

Proof sketch of $(1) \Longleftrightarrow(5) \quad$ (Siggers). (\Longleftarrow)
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\nmid} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

Proof sketch of $(1) \Longleftrightarrow(5) \quad$ (Siggers).
(\Longleftarrow) Assume \mathbb{M} has such an operation $s\left(x_{1} \ldots, x_{6}\right)$.
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\nmid} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

Proof sketch of $(1) \Longleftrightarrow(5) \quad$ (Siggers).
(\Longleftarrow) Assume \mathbb{M} has such an operation $s\left(x_{1} \ldots, x_{6}\right)$.

$$
\begin{aligned}
& \text { Let } \mathbf{N}=\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right) . \\
& \text { Assume } \mathbf{N} \xrightarrow{p p} \mathbf{M} .
\end{aligned}
$$

(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\nmid} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

Proof sketch of $(1) \Longleftrightarrow(5) \quad$ (Siggers).
(\Longleftarrow) Assume \mathbb{M} has such an operation $s\left(x_{1} \ldots, x_{6}\right)$.

$$
\text { Let } \mathbf{N}=\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)
$$

Assume $\mathbf{N} \xrightarrow{p p} \mathbf{M}$.
Then $N=\{0,1\}$ expands to $\mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $R_{3 S A T} \leq \mathbb{N}^{6}$.
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

Proof sketch of $(1) \Longleftrightarrow(5) \quad$ (Siggers).
(\Longleftarrow) Assume \mathbb{M} has such an operation $s\left(x_{1} \ldots, x_{6}\right)$.

$$
\text { Let } \mathbf{N}=\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)
$$

Assume $\mathbf{N} \xrightarrow{p p} \mathbf{M}$.
Then $N=\{0,1\}$ expands to $\mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $R_{3 S A T} \leq \mathbb{N}^{6}$.
On the one hand, every operation of \mathbb{N} is a projection.
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

Proof sketch of $(1) \Longleftrightarrow(5) \quad$ (Siggers).
(\Longleftarrow) Assume \mathbb{M} has such an operation $s\left(x_{1} \ldots, x_{6}\right)$.

$$
\text { Let } \mathbf{N}=\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)
$$

Assume $\mathbf{N} \xrightarrow{p p} \mathbf{M}$.
Then $N=\{0,1\}$ expands to $\mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $R_{3 S A T} \leq \mathbb{N}^{6}$.
On the one hand, every operation of \mathbb{N} is a projection.
On the other hand, \mathbb{N} has the operation $s^{\mathbb{N}}$.
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\nmid} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

Proof sketch of $(1) \Longleftrightarrow(5) \quad$ (Siggers).
(\Longleftarrow) Assume \mathbb{M} has such an operation $s\left(x_{1} \ldots, x_{6}\right)$.

$$
\text { Let } \mathbf{N}=\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)
$$

Assume $\mathbf{N} \xrightarrow{p p} \mathbf{M}$.
Then $N=\{0,1\}$ expands to $\mathbb{N} \in \operatorname{HSP}(\mathbb{M})$ with $R_{3 S A T} \leq \mathbb{N}^{6}$.
On the one hand, every operation of \mathbb{N} is a projection.
On the other hand, \mathbb{N} has the operation $s^{\mathbb{N}}$.
$s^{\mathbb{N}}$ satisfies the identity in (5), so cannot be a projection.
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\stackrel{p p}{4}} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

$$
(\Longrightarrow)
$$

(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\stackrel{p p}{4}} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

(\Longrightarrow) Assume (1).
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{\leftrightarrows} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

(\Longrightarrow) Assume (1).
Let \mathbb{F} be the free algebra for $\operatorname{HSP}(\mathbb{M})$ on free generators x, y, z. (\mathbb{F} is finite, $\mathbb{F} \in \mathrm{HSP}(\mathbb{M})$.)
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

(\Longrightarrow) Assume (1).
Let \mathbb{F} be the free algebra for $\operatorname{HSP}(\mathbb{M})$ on free generators x, y, z. (\mathbb{F} is finite, $\mathbb{F} \in \mathrm{HSP}(\mathbb{M})$.)

Let E be the subuniverse of \mathbb{F}^{2} generated by

$$
\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y} .
$$

Symmetry of the generators $\Longrightarrow E$ is symmetric (as a relation).
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

(\Longrightarrow) Assume (1).
Let \mathbb{F} be the free algebra for $\operatorname{HSP}(\mathbb{M})$ on free generators x, y, z.
(\mathbb{F} is finite, $\mathbb{F} \in \mathrm{HSP}(\mathbb{M})$.)
Let E be the subuniverse of \mathbb{F}^{2} generated by

$$
\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y} .
$$

Symmetry of the generators $\Longrightarrow E$ is symmetric (as a relation).
Let $\mathbf{G}=(F, E)$ (a structure, one binary relation).
(1) $\mathbf{M}_{3 S A T} \stackrel{p p}{4} \mathbf{M}$.
(5) \mathbb{M} has an operation $s\left(x_{1}, \ldots, x_{6}\right)$ satisfying

$$
s(x, x, y, y, z, z)=s(y, z, z, x, x, y)
$$

(\Longrightarrow) Assume (1).
Let \mathbb{F} be the free algebra for $\operatorname{HSP}(\mathbb{M})$ on free generators x, y, z.
(\mathbb{F} is finite, $\mathbb{F} \in \operatorname{HSP}(\mathbb{M})$.)
Let E be the subuniverse of \mathbb{F}^{2} generated by

$$
\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y} .
$$

Symmetry of the generators $\Longrightarrow E$ is symmetric (as a relation).
Let $\mathbf{G}=(F, E)$ (a structure, one binary relation).
Observe: $\mathbb{F} \in \operatorname{HSP}(\mathbb{M}), \quad E \leq \mathbb{F}^{2} \Longrightarrow \mathbf{G} \xrightarrow{p p} \mathbf{M}$.

Case 1: E is irreflexive, i.e., $(p, p) \notin E$ for all $p \in F$.

Case 1: E is irreflexive, i.e., $(p, p) \notin E$ for all $p \in F$. Then \mathbf{G} is a (simple) graph, and non-bipartite.

$$
\mathbf{G}=(F, E)
$$

Case 1: E is irreflexive, i.e., $(p, p) \notin E$ for all $p \in F$.
Then \mathbf{G} is a (simple) graph, and non-bipartite.
Thus
(Bulatov 2005, building on Hell-Nešetřil 1990):

$$
\mathbf{K}_{3} \xrightarrow{p p} \mathbf{G} .
$$

$$
\mathbf{G}=(F, E)
$$

Case 1: E is irreflexive, i.e., $(p, p) \notin E$ for all $p \in F$.
Then \mathbf{G} is a (simple) graph, and non-bipartite.
Thus
(Bulatov 2005, building on Hell-Nešetřil 1990):

$$
\mathbf{K}_{3} \xrightarrow{p p} \mathbf{G} .
$$

Known: $\quad \mathbf{M}_{3 S A T} \xrightarrow{p p} \mathbf{K}_{3}$.

$$
\mathbf{G}=(F, E)
$$

Case 1: E is irreflexive, i.e., $(p, p) \notin E$ for all $p \in F$.
Then \mathbf{G} is a (simple) graph, and non-bipartite.
Thus
(Bulatov 2005, building on Hell-Nešetřil 1990):

$$
\mathbf{K}_{3} \stackrel{p p}{\longrightarrow} \mathbf{G} .
$$

Known: $\quad \mathbf{M}_{3 S A T} \xrightarrow{p p} \mathbf{K}_{3}$.
By construction,
$\mathbf{G} \xrightarrow{p p} \mathbf{M}$.

$$
\mathbf{G}=(F, E)
$$

Case 1: E is irreflexive, i.e., $(p, p) \notin E$ for all $p \in F$.
Then \mathbf{G} is a (simple) graph, and non-bipartite.
Thus
(Bulatov 2005, building on Hell-Nešetřil 1990):

$$
\mathbf{K}_{3} \xrightarrow{p p} \mathbf{G} .
$$

Known: $\quad \mathbf{M}_{3 S A T} \xrightarrow{p p} \mathbf{K}_{3}$.
By construction,
$\mathbf{G} \xrightarrow{p p} \mathbf{M}$.
$\therefore \mathbf{M}_{3 S A T} \xrightarrow{p p} \mathbf{M}$, contrary to assumption (1).

So Case 1 is impossible: there exists a loop $(p, p) \in E$.

So Case 1 is impossible: there exists a loop $(p, p) \in E$.

Recall: E is generated by $\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y}$.

So Case 1 is impossible: there exists a loop $(p, p) \in E$.

Recall: E is generated by $\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y}$.
$\Longrightarrow \exists 6$-ary term ${ }^{1} s\left(x_{1}, \ldots, x_{6}\right)$ such that

$$
\binom{p}{p}=s^{\mathbb{F}^{2}}\left(\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y}\right) .
$$

${ }^{1}$ In the signature of \mathbb{M}, hence equal $\bmod \operatorname{HSP}(\mathbb{M})$ to an operation of \mathbb{M}.

So Case 1 is impossible: there exists a loop $(p, p) \in E$.

Recall: E is generated by $\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y}$.
$\Longrightarrow \exists 6$-ary term ${ }^{1} s\left(x_{1}, \ldots, x_{6}\right)$ such that

$$
\binom{p}{p}=s^{\mathbb{F}^{2}}\left(\binom{x}{y},\binom{x}{z},\binom{y}{z},\binom{y}{x},\binom{z}{x},\binom{z}{y}\right) .
$$

A standard argument gives $\mathbb{M} \models s(x, x, y, y, z, z)=s(y, z, z, x, x, y)$.
${ }^{1}$ In the signature of \mathbb{M}, hence equal $\bmod \operatorname{HSP}(\mathbb{M})$ to an operation of \mathbb{M}.

Summary of Lecture 1

$\operatorname{CSP}_{p}(\mathbf{M})$: decision problem about satisfiability of \wedge at-fmlas $/ \mathbf{M}$.
CSP Dichotomy Theorem of Bulatov and Zhuk (2017, 2020):

$$
\mathbf{M}_{3 S A T} \stackrel{p p}{\hookrightarrow} \mathbf{M} \Longrightarrow \operatorname{CSP}_{p}(\mathbf{M}) \text { is in } \mathrm{P} .
$$

Algebraic perspective

- $\mathbf{M} \mapsto$ idempotent polymorphism algebra \mathbb{M}.
- Connections between $\operatorname{HSP}(\mathbb{M})$ and pp-definable relations over \mathbf{M}.

Positive characterization of $\mathbf{M}_{3 S A T} \stackrel{p p}{\not} \mathbf{M}$ (Theorem 1):
"M has a Taylor operation"

