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Plan

O (Today) The CSP dichotomy theorem (Bulatov & Zhuk).

» Constraint satisfaction problems
» Statement of the Dichotomy Theorem
> "“Algebraic” perspective

» Hopefully accessible to everyone.

@ (Tomorrow) Algebraic idea # 1 from Zhuk's proof

» Still relatively accessible, but more technical. (Bring coffee)

@ (Friday) Algebraic idea # 2 from Zhuk's proof

» Very technical, assumes some universal algebra. (You've been warned)
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Part 1 — Constraint Satisfaction Problems
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M  fixed structure: relational, finite, and finite signature.

¢  formula over M

@ Aat-fmla — conjunction of atomic formulas
e pp-fmla - dy% where ¢ is Aat
©M - the n-ary relation defined in M by ¢(xi,. .., x,).

Fine print: formulas may contain parameters from M.
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M  fixed structure: relational, finite, and finite signature.

¢  formula over M

@ Aat-fmla — conjunction of atomic formulas
e pp-fmla - dy% where ¢ is Aat
©M  — the n-ary relation defined in M by o(xi,...,x,).

Constraint Satisfaction Problem CSP,(M)

(Fix M.)  CSP,(M) is the following decision problem:
Input: Nat-fmla ¢ (in signature of M)
Question: Is M £ &7

Fine print: formulas may contain parameters from M.
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CSP,(M) can be easy or hard

Example 1:  Ms3sar = ({0,1}, R3saT) where

Rasat = {(x1,...,%6) : (x1,%2,x3) # (Xa, X5, %6) }
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CSP,(M) can be easy or hard

Example 1:  Ms3sar = ({0,1}, R3saT) where

Rasat = {(x1,...,%6) : (x1,%2,x3) # (Xa, X5, %6) }

Rssar(x,y,2,0,0,0) encodes xVyVz
Rssar(x,y,2z,0,0,1) encodes xVyV -z, etc.
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CSP,(M) can be easy or hard

Example 1:  Ms3sar = ({0,1}, R3saT) where

Rasat = {(x1,...,%6) : (x1,%2,x3) # (Xa, X5, %6) }

Rssar(x,y,2,0,0,0) encodes xVyVz

Rssar(x,y,2z,0,0,1) encodes xVyV -z, etc.
Instances of 3-SAT can be encoded as Aat-fmlas over M3gaT.
.. we have a poly-time reducton 3-SAT <p CSP,(Mssa7).

.. CSP,(M3sa7) is NP-hard, hence NP-complete.
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Example 2: K3 = ({0,1,2}, #).

(=-free, parameter-free) Aat-fmlas in this signature can be pictured; e.g.,

\/ L

Xg—Fr ><5

P
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Example 2: K3 = ({0,1,2}, #).
(=-free, parameter-free) Aat-fmlas in this signature can be pictured; e.g.,

6
/ ><~r
\3,, .
P

Ks £ @ <= 3 assignment {x1,...,x5} — {0,1,2} preserving #
<= this graph can be 3-colored.

~+ polytime reduction 3-COL <p CSP,(K3).
", CSP,(K3) is NP-complete.
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Example 3: Ky < = ({0,1}, #, <).

How hard Is CSP,(K2 <)?
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Example 3: Kz < = ({0, 1}, #, <).
How hard Is CSP,(K>,<)?

Exercize: not hard

Nat-fmlas over Ky < can't “express” very much.
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Example 3: Kz < = ({0, 1}, #, <).
How hard Is CSP,(K>,<)?

Exercize: not hard
Nat-fmlas over Ky < can't “express” very much.

w(szS) =@ <= ( contains a certain kind of “configuration”;
in the worst case, one of the form

’§'\¥ qf_ '\S. N
4:‘[ \o__——oi Q-—.\/qé \\'
\ S} =z /7_4
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Example 3: Kz < = ({0, 1}, #, <).
How hard Is CSP,(K3 <)?

Exercize: not hard
Nat-fmlas over Ky < can't “express” very much.

cp(KlS) =@ <= ( contains a certain kind of “configuration”;

in the worst case, one of the form

- X
eSoy Z e
:{: [‘ \o__:—o-—i «®—— .\zqé \'
ez S z 7 \\V.é. ,/7-‘

We can efficiently test whether any such configurations occur in ¢.

CSPP(KQS) is in P.
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Example 4: M3, = ({0, 1,2}, R) where

R={(x,y,z,w) : x—y+z=w (mod 3)}.

Atomic formulas over M3, express (short) linear equations/Zs:

R(x,y,z,w) xX—y+z—w=0
R(x,y,z,1) x—y+z=1, etc

So Aat-fmlas over M3, express (certain) systems of linear equations/Zs.

We can solve such systems in poly time.

" CSPP(M3/,',,) is in P.
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Part 2 — The Dichotomy Theorem
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a «—NP-complete

M3ssar K3

CSP,( )

Kz, <

Msjin

CSPy (Ko, <)-REZ 1,
CSP(M3;in)

{all finite structures}
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" CSP,(Msenr) eNP—compIete
3SAT K3
CSP,( )
Kgyg
M in
3I CSPy(Ko,<) 321,
. CSP,(Msjp
{all finite structures} »(Maii)

CSP Dichotomy Conjecture (Feder, Vardi 1998)
For every M, CSP,(M) is in P or is NP-complete. J
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CSP,(K
CSPP(M3£A(T)3) KNP—compIete
M3ssar K3
CSP,( )
szg
Msjin
’ CSPy (Ko, <)-REZ 1,
- CSP, (M3
{all finite structures} »(Maii)
CSP Dichotomy Conjecture (Feder, Vardi 1998)
For every M, CSP,(M) is in P or is NP-complete. J

Plausible (in 1998).
@ Known for 2-element structures (Schaefer 1978)
@ Known for core graphs (Hell, Ne3et¥il 1990)

(Where should the “dividing line” be?)
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pp-interpretations

There is one “obvious” reason for CSP,(M) to be NP-complete:

If M3sat (or K3) is ‘ pp—interpretable‘ in M.

“pp-interpretation” means the usual thing:

There is a pp-definable set D C M”, a pp-definable equivalence relation E on D

with two blocks (so E C M2"), and a pp-definable 6-ary relation R on D (so
R C M®") such that

(D/E, R/E) = Mssar.

(A.k.a. “gadget definition.")
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pp-interpretations

There is one “obvious” reason for CSP,(M) to be NP-complete:

If M3sat (or K3) is ‘ pp—interpretable‘ in M.

pp-interpretation” means the usual thing:

There is a pp-definable set D C M", a pp-definable equivalence relation E on D

with two blocks (so E C M2"), and a pp-definable 6-ary relation R on D (so
R C M®") such that

(D/E, R/E) = Mssar.
(A.k.a. “gadget definition.")

Easy Fact

If Mssar <25 M, then CSP,(M) is NP-complete.
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pp-interprets M3zsar
|

U

M

v

Kz <

Ross Willard (Waterloo)

CSP,( )

CSP Dichotomy Theorem

</NP—compIete

Ames 2024
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pp-interprets M3zsar
|

M

v

U

Kz <

CSP,( )

Refined Dichotomy Conjecture

pp
If M3zsar <4 M, then CSP,(M) is in P.

</NP—compIete

(Bulatov, Jeavons, Krokhin 2001)
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pp-interprets M3zsar
|
v
U

eNP—compIete

CSP,( )

Kz <

M

Refined Dichotomy Conjecture (Bulatov, Jeavons, Krokhin 2001)

pp
If M3zsar <4 M, then CSP,(M) is in P.

The race is on!
Lots of partial results!
Frenetic activity!

Conferences! Workshops! Grant money! And then ...
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Part 3 — The Dichotomy Theorem
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The Refined Conjecture is proved!

i

e
=

CSP Dichotomy Theorem (A. Bulatov, D. Zhuk 2017; 2020.)

pp
If M is finite and Mszsar <4 M, then CSP,(M) is in P.

It was fun while it lasted.
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Part 4 — The algebraic perspective
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Example: M = (M, R) with arity(R) = 2.

Endomorphism of M: any map f : M — M satisfying

<Z) €ER = (;EZD €R.
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Example: M = (M, R) with arity(R) = 2.

Endomorphism of M: any map f : M — M satisfying
a f(a)
<b> ER = (f(b)) €R.
Definition

A polymorphism of M is any map f : M" — M satisfying

(Zi),...,(;:)el? = (fgi: n;)eR

“f preserves R"
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Example: M = (M, R) with arity(R) = 2.

Endomorphism of M: any map f : M — M satisfying
a f(a)
<b> €ER = (f(b)> €R.
Definition

A polymorphism of M is any map f : M" — M satisfying
a1 an f(a1, .. ))
e €ER = € R.
(bl) (b”> ( f(by,...,bn)

“f preserves R"
Example: monotone boolean functions = polymorphisms of ({0, 1}, <).

(Similarly for relations of higher arity, or M with more than one relation.)
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Example: Ky < = ({0,1}, #, <).

@ What endomorphisms does it have?
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Example: Ky < = ({0,1}, #, <).

@ What endomorphisms does it have? (Only id)

Ross Willard (Waterloo) CSP Dichotomy Theorem



Example: Ky < = ({0,1}, #, <).

@ What endomorphisms does it have? (Only id)

@ Does Kj < have any 2-ary polymorphisms?
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Example: Ky < = ({0,1}, #, <).

@ What endomorphisms does it have? (Only id)

@ Does Kj < have any 2-ary polymorphisms?  If f(x,y) is one:

£(0,0) # f(1,1) and £(0,0) < £(1,1)
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Example: Ky < = ({0,1}, #, <).

@ What endomorphisms does it have? (Only id)
@ Does Kj < have any 2-ary polymorphisms?  If f(x,y) is one:
f(0,0) # f(1,1) and £(0,0) < f(1,1)

—  f(0,0)=0 and f(1,1)=1
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Example: Ky < = ({0,1}, #, <).
@ What endomorphisms does it have? (Only id)
@ Does Kj < have any 2-ary polymorphisms?  If f(x,y) is one:
f(0,0) # f(1,1) and £(0,0) < f(1,1)
= f(0,0)=0 and f(1,1)=1

Also f(0,1) # f(1,0).
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Example: Ky < = ({0,1}, #, <).
@ What endomorphisms does it have? (Only id)
@ Does Kj < have any 2-ary polymorphisms?  If f(x,y) is one:
f(0,0) # f(1,1) and £(0,0) < f(1,1)
= f(0,0)=0 and f(1,1)=1
Also f(0,1) # f(1,0).

or i.e., only the projections

= o=
= OO
= Ol
= O| ™
o Oo|o
= |
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Example: Ky < = ({0,1}, #, <).
@ What endomorphisms does it have? (Only id)
@ Does Kj < have any 2-ary polymorphisms?  If f(x,y) is one:
f(0,0) # f(1,1) and f(0,0) < f(1,1)
= f(0,0)=0 and f(1,1)=1
Also f(0,1) # f(1,0).

or i.e., only the projections

— O
— OO
= O
= O
o Oo|o
L

@ Any “interesting” 3-ary polymorphisms?
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Example: Ky < = ({0,1}, #, <).

@ What endomorphisms does it have? (Only id)
@ Does Kj < have any 2-ary polymorphisms?  If f(x,y) is one:
f(0,0) # f(1,1) and f(0,0) < f(1,1)
= f(0,0)=0 and f(1,1)=1

Also f(0,1) # f(1,0).

f10 1 f10 1
0/0 O or 010 1 i.e., only the projections
11 1 110 1

@ Any “interesting” 3-ary polymorphisms? Yes!!

majority(x, y, z).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 16 / 26



On the other hand, M3sar = ({0, 1}, R3sar) where
Rasat = {(x1,---,x6) : (x1,%2,x3) # (x4, %5,%6) }
has only “trivial” polymorphisms (of all arities):

projections composed with an automorphism.

The same is true of K3 = ({0, 1,2}, #).
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The algebra of a finite structure

A map f: M" — M is idempotent if it satisfies f(a,...,a) =a Vae M.J
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The algebra of a finite structure

A map f: M" — M is idempotent if it satisfies f(a,...,a) =a Vae I\/I.J

Definition
Given a structure M, the idempotent polymorphism algebra of M is

M := (M, {all idempotent polymorphisms of M}).
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The algebra of a finite structure

A map f: M" — M is idempotent if it satisfies f(a,...,a) =a Vae I\/I.J

Definition

Given a structure M, the idempotent polymorphism algebra of M is

M := (M, {all idempotent polymorphisms of M}).

M for the structure; M for its associated algebra.

Example:

M= ({07 1}a S)

M = ({0, 1}, {all nonconstant monotone boolean functions}).
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Fix M. M its idempotent polymorphism algebra.

Each basic relation (say k-ary) of M:
e is preserved (coordinate-wise) by all operations of M . ..

@ ...so is a subuniverse of M.

Same is true for pp-definable relations of M.
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Fix M. M its idempotent polymorphism algebra.

Each basic relation (say k-ary) of M:
e is preserved (coordinate-wise) by all operations of M . ..

@ ...so is a subuniverse of M.

Same is true for pp-definable relations of M.
In fact:

Classical Fact (Geiger 1968, Bodnaréuk-Kaluznin-Kotov-Romov 1969)

{relations pp-definable in M} = {subuniverses of powers of M}
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Fix M. M its idempotent polymorphism algebra.

Each basic relation (say k-ary) of M:
e is preserved (coordinate-wise) by all operations of M . ..

@ ...so is a subuniverse of M.

Same is true for pp-definable relations of M.
In fact:

Classical Fact (Geiger 1968, Bodnaréuk-Kaluznin-Kotov-Romov 1969)

{relations pp-definable in M} = {subuniverses of powers of M}

Consequence: every pp-definable set R of M inherits the structure of an
algebra R (in the same signature as M).
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Fix M. M its idempotent polymorphism algebra.

Each basic relation (say k-ary) of M:
e is preserved (coordinate-wise) by all operations of M . ..

@ ...so is a subuniverse of M.

Same is true for pp-definable relations of M.
In fact:

Classical Fact (Geiger 1968, Bodnaréuk-Kaluznin-Kotov-Romov 1969)

{relations pp-definable in M} = {subalgebras of powers of M}
= SP(M).

Consequence: every pp-definable set R of M inherits the structure of an
algebra R (in the same signature as M).
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Dictionary

structure algebra
base M associated M

pp-def. relation R algebra R € SP(M)

pp-def. equivalence relation on R congruence of R
pp-def. quotient R/E quotient algebra R/E € HSP(M)
pp-def. function homomorphism
pp-interp. structure (N, R) N € HSP(M) with R < Nk
k-ary
Mssar ‘:L[; M ?
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Theorem 1 (Taylor ‘77 + Hobby-McKenzie ‘88 + Bulatov-Jeavons-Krokhin ‘05 +
Maréti-McKenzie ‘08 + Siggers ‘10 + Barto-Kozik ‘12)

M a finite structure, M its idempotent polymorphism algebra. TFAE:

pp
Q@ Mzsar 4 M.

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024

21/ 26



Theorem 1 (Taylor ‘77 + Hobby-McKenzie ‘88 + Bulatov-Jeavons-Krokhin ‘05 +
Maréti-McKenzie ‘08 + Siggers ‘10 + Barto-Kozik ‘12)

M a finite structure, M its idempotent polymorphism algebra. TFAE:

pp
Q@ Mzsar 4 M.

Q@ —INe HSP(M) with N = {O, 1} and Rzsat < N© (all ops of N are proj's).
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Theorem 1 (Taylor ‘77 + Hobby-McKenzie ‘88 + Bulatov-Jeavons-Krokhin ‘05 +
Maréti-McKenzie ‘08 + Siggers ‘10 + Barto-Kozik ‘12)

M a finite structure, M its idempotent polymorphism algebra. TFAE:

pp
Q@ Mgssar 4 M.
Q@ —INe HSP(M) with N = {O, 1} and Rzsat < N© (all ops of N are proj's).

© M has an “interesting” ( Taylor) operation®.

LAn operation f satisfying a system ¥ of one or more identities, each of the form
f(variables) = f(variables), nontrivial in that X can’t be modeled by f = projection on {0, 1}.
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Theorem 1 (Taylor ‘77 4+ Hobby-McKenzie ‘88 + Bulatov-Jeavons-Krokhin ‘05 +
Maréti-McKenzie ‘08 + Siggers ‘10 + Barto-Kozik ‘12)

M a finite structure, M its idempotent polymorphism algebra. TFAE:

pp
Q@ Mzsar 4 M.

Q@ —INe HSP(M) with N = {O, 1} and Rzsat < N© (all ops of N are proj's).

© M has an “interesting” ( Taylor) operation®.
© For some n > 1, M has a cyclic operation c¢(xi,...,xs), i.e.,

c(x1,x2, ... xn) = (X2, .-y Xnyx1)  VX1,...,%, € M.

© M has a Siggers operation s(xi, ..., Xs), i.e., satisfying

S(X7X7.y7.y7z7z):S(y7Z7Z7X7X’y) VX7y7Z€M'

LAn operation f satisfying a system ¥ of one or more identities, each of the form

f(variables) = f(variables), nontrivial in that X can’t be modeled by f = projection on {0, 1}.
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., Xs) satisfying

S(X7X’y7y7z7z) = s(y7z7z7X7X?.y)'

Proof sketch of (1) <= (5) (Siggers).

(=)
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., Xs) satisfying

S(X7X’y7y7z7z) :s(y7z7z7X’X?y)'

Proof sketch of (1) <= (5) (Siggers).

( <= ) Assume M has such an operation s(x1 ..., xg).
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., xg) satisfying

S(X7X’y’y7z7z) :s(y7z7Z7X’X?y)'

Proof sketch of (1) <= (5) (Siggers).
( <= ) Assume M has such an operation s(x1 ..., xg).
Let N = Mssar = ({0, 1}, Rssar).

Assume N <£> M.
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., xg) satisfying

S(X7X’y’y7z7z) :s(y7z7Z7X’X?y)'

Proof sketch of (1) <= (5) (Siggers).
( <= ) Assume M has such an operation s(x1 ..., xg).

Let N = M3sat = ({0,1}, R3saT1).

Assume N <£> M.

Then N = {0,1} expands to N € HSP(M) with R3sar < N°.
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., xg) satisfying

S(X7X’y’y7zﬂz) :s(y7z7Z7X’X?y)'

Proof sketch of (1) <= (5) (Siggers).
( <= ) Assume M has such an operation s(x1 ..., xg).
Let N = Mssar = ({0, 1}, Rssar).

Assume N <£> M.

Then N = {0,1} expands to N € HSP(M) with Rysar < N°.

On the one hand, every operation of N is a projection.
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., xg) satisfying

S(X7X’y’y7zﬂz) :s(y7z7Z7X’X?y)'

Proof sketch of (1) <= (5) (Siggers).
( <= ) Assume M has such an operation s(x1 ..., xg).
Let N = Mssar = ({0, 1}, Rssat).

Assume N <ﬂ> M.

Then N = {0,1} expands to N € HSP(M) with Rysar < N°.

On the one hand, every operation of N is a projection.

On the other hand, N has the operation s'.
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., xg) satisfying

S(X7X’y’y7zﬂz) :s(y7z7Z7X’X?y)'

Proof sketch of (1) <= (5) (Siggers).
( <= ) Assume M has such an operation s(x1 ..., xg).
Let N = Mssar = ({0, 1}, Rssat).

Assume N <ﬂ> M.

Then N = {0,1} expands to N € HSP(M) with Rysar < N°.

On the one hand, every operation of N is a projection.
On the other hand, N has the operation s'.

s satisfies the identity in (5), so cannot be a projection.
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pp
(1) M3sar 4 M.
(5) M has an operation s(xi, ..., Xs) satisfying

S(X7X’y7y7z7z) = s(yﬂz7Z7X7X7y)'

(=)
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pp
(1) M3sar 4 M.
(5) M has an operation s(xi, ..., Xs) satisfying

S(X7X’y7y7z7z) = s(yﬂz7Z7X7X7y)'

(=) Assume (1).
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pp
(1) Mzsar 4 M.
(5) M has an operation s(xi, ..., Xs) satisfying

S(X7X’y7y7z7z) :s(y7z7Z7X’X?y)'

(=) Assume (1).

Let F be the free algebra for HSP(M) on free generators x,y, z

(F is finite, F € HSP(M).)
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pp
(1) Mssar <4 M.
(5) M has an operation s(xi, ..., xg) satisfying

S(X7X’y’y7zﬂz) :s(y7z7Z7X’X?y)'

(=) Assume (1).

Let F be the free algebra for HSP(M) on free generators x, y, z.
(F is finite, F € HSP(M).)

Let E be the subuniverse of F? generated by

()-()-()-6)-C)-C)

Symmetry of the generators = E is symmetric (as a relation).
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pp
(1) Mssar <4 M.
(5) M has an operation s(xi, ..., xg) satisfying

S(X7X’y’.y7zﬂz) :S(y7Z7Z7X’X?y)'

(=) Assume (1).

Let F be the free algebra for HSP(M) on free generators x, y, z.
(F is finite, F € HSP(M).)

Let E be the subuniverse of F? generated by

()-()-()-6)-C)-C)

Symmetry of the generators = E is symmetric (as a relation).
Let G = (F, E) (a structure, one binary relation).

Observe: F € HSP(M), E<F? = G <% M.
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G = (F,E)

Case 1: E is irreflexive, i.e., (p,p) & E forall p € F.
Then G is a (simple) graph, and non-bipartite.

Thus (Bulatov 2005, building on Hell-Neset¥il 1990):

Ks; <% G.
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G = (F,E)

@

Case 1: E is irreflexive, i.e., (p,p) & E forall p € F.
Then G is a (simple) graph, and non-bipartite.

Thus (Bulatov 2005, building on Hell-Neset¥il 1990):
pp
Ks; — G.
PP
Known: MssaT — K.
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Then G is a (simple) graph, and non-bipartite.

Thus (Bulatov 2005, building on Hell-Neset¥il 1990):
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Ks; — G.
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Na

G = (F,E)

Case 1: E is irreflexive, i.e., (p,p) & E forall p € F.
Then G is a (simple) graph, and non-bipartite.

Thus (Bulatov 2005, building on Hell-Ne3etfil 1990):
pp
Ks; — G.
pp
Known: MssaT — K.
. pp
By construction, G— M.

PP -
.. M3saT —— M, contrary to assumption (1).
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So Case 1 is impossible: there exists a loop (p, p) € E.

R L
S\./—\./'}t }‘r‘

1
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So Case 1 is impossible: there exists a loop (p, p) € E.

f
R T
S\A.f'/jt }°r‘

x

1
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So Case 1 is impossible: there exists a loop (p, p) € E.

f
R T
5\./—\.Z/'/'}t t‘F

G=(F,E)
Recall: E is generated by (X) , <X> , (y) , (y) , <z> , (Z>
y z z X X y
— 3 6-ary term! s(x1,...,xg) such that

() ==(C)-()-()-()-()-C))

In the signature of M, hence equal mod HSP(M) to an operation of M.
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So Case 1 is impossible: there exists a loop (p, p) € E.

R L
5\./—\.z/'/jt :‘F

G=(F,E)
Recall: E is generated by (X> , <X> , (y) , (y) , <Z> , (Z>
y z z X X y
— 3 6-ary term! s(x1,...,xg) such that

() ==(C)-()-()-()-()-C))

A standard argument gives M |= s(x, x,y,y,z,z) =s(y,z,z,x,x,y). [

!In the signature of M, hence equal mod HSP(M) to an operation of M.
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Summary of Lecture 1

CSP,(M): decision problem about satisfiability of Aat-fmlas/M.

CSP Dichotomy Theorem of Bulatov and Zhuk (2017, 2020):

pp
Mssar ‘7L> M = CSPP(M) is in P.

Algebraic perspective
@ M — idempotent polymorphism algebra M.

e Connections between HSP(M) and pp-definable relations over M.

pp
Positive characterization of M3zsat <4 M (Theorem 1):

“M has a Taylor operation”
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