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Example of a pp-interpretation
Recall K3 = ({0,1,2},#) and Mssar = ({0,1}, R3sar) where

R3sat = {(x1,...,%6) : (x1,x2,X3) # (x4, X5,%6)}

Here is a pp-interpretation of K3 in M3gaT.

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024

1/26



Example of a pp-interpretation
Recall K3 = ({0,1,2},#) and Mssar = ({0,1}, R3sar) where

R3sat = {(x1,...,%6) : (x1,x2,X3) # (x4, X5,%6)}
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Example of a pp-interpretation
Recall K3 = ({0,1,2},#) and Mssar = ({0,1}, R3sar) where
Rasar = {(x1,...,%6) 1 (x1,%2,%3) # (x4, x5, %6)}-
Here is a pp-interpretation of K3 in M3gaT.
o Let a be the (atomic) formula R3sar(x1,x2,0,1,1,0).

Then D := aMssam = {(0,0), (0, 1), (1,0)}.

o Let B be the formula
a(XhXZ) & O[(X3,X4) & R3SAT(X15X2707X37X470)'

Then S := gMssat =
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Example of a pp-interpretation
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Example of a pp-interpretation
Recall K3 = ({0,1,2},#) and Mssar = ({0,1}, R3sar) where
Rasar = {(x1,- .-, %) : (x1,%,x3) # (xa, x5, %) }-
Here is a pp-interpretation of K3 in M3gaT.
o Let a be the (atomic) formula R3sar(x1,x2,0,1,1,0).

Then D := aMssam = {(0,0), (0, 1), (1,0)}.

o Let B be the formula
a(xy, x2) & afx3,xa) & R3sat(x1,x2,0,x3,xs,0).

Then S := gMssaT = “not-equals” on D.
So (D, S) = K3, which proves K3 it M3saT.
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Summary of Lecture 1

CSP,(M): decision problem about satisfiability of Aat-fmlas/M.

CSP Dichotomy Theorem of Bulatov and Zhuk (2017, 2020):
pp
Mssar <4 M —> CSPP(M) isin P.
Algebraic perspective
© M — idempotent polymorphism algebra M.

o Connections between {pp-definable relations over M} and HSP(M).

pp
Positive characterization of Ms3sar <4 M (Theorem 1):

“M has a Taylor operation”
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Plan for today

Intro to solving CSP,(M) when M has a Taylor operation

© Preliminary remarks

» Aat-fmlas as multi-sorted structures
» Preprocessing — enforcing local consistency and irreducibility.

» Generalized Aat-fmlas.

@ A ‘crazy” reduction strategy
© The module-free case
© Zhuk's extension/refinement to the general (Taylor) case
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Part 1 — Preliminary remarks
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Simplifying assumptions

Fix M (finite structure).
N

Fix ¢ (Aat-fmla/M), say o= /\ a; (aj atomic).
i=1

(We want to know if oM # 2.)
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Simplifying assumptions

Fix M (finite structure).
N

Fix ¢ (Aat-fmla/M), say o= /\a,- (i atomic).
i=1

(We want to know if oM # 2.)

WLOG we can assume (by modifying ¢ and/or M):

@ No variable occurs more than once in each «;.
@ Parameters occur only in «; of the form x = a.

@ Re-interpret x = a as U,(x) where U, = {a} is now a relation of M.

» Now parameters don’t occur at all.
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Simplifying assumptions

Fix M (finite structure).
N

Fix ¢ (Aat-fmla/M), say o= /\a,- («vj atomic).
i=1

(We want to know if oM # @.)

WLOG we can assume (by modifying ¢ and/or M):

@ No variable occurs more than once in each «;.
@ Parameters occur only in «; of the form x = a.

@ Re-interpret x = a as U,(x) where U, = {a} is now a relation of M.

» Now parameters don't occur at all.

Atomic subformulas «g,...,ay now are called the constraints (of ).
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Microstructure hypergraph
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Microstructure hypergraph
Example: M = ({0,1,2}, <, <,E) where E = {(a,a,a):a€ M},

o = (x<y) AN(y<z) A E(z,u,v).

Construct
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Microstructure hypergraph
Example: M = ({0,1,2}, <, <,E) where E = {(a,a,a):a€ M},

e = (x<y) AN (y<z) A E(z,u,v).

Construct

X (o = N
< (o~ N

u

Formally: the microstructure (multi-)hypergraph of a Aat-fmla ¢ over M is the multi-sorted
structure ® whose:

@ Sorts are indexed by the variables occurring in .
@ Domain of each sort is M.

@ Each constraint R(xj, ... ,x,-k) of ¢ gives a relation inl""’xik of ®, which is just R
interpreted as having type (x;, ..., X ).
Solution to ¢ = choice of one value in each domain of ® collectively
satisfying every relation of ®.
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Preprocessing: 1-consistency

=

X

o = N
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Preprocessing: 1-consistency

=

X

1 =
y
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Preprocessing: 1-consistency

@ &’ is a substructure of the original ®.

@ @’ has the same solutions as ® (and ).

e Each relation of ¢’ is (i.e., projects onto each coordinate

domain).

@' with this last property is called
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Preprocessing: 1-consistency

@ &’ is a substructure of the original ®.

@ @’ has the same solutions as ® (and ).

Each relation of ¢’ is (i.e., projects onto each coordinate

domain).
@’ with this last property is called

@ @’ can be found efficiently (polynomial time in the size of ).

e Each domain of &' is pp-definable in ® (hence also in M).
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Cycle consistency

=&’ (1l-consistent)
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Cycle consistency

(1-consistent)

Pick a domain (say x) and a value in that domain, say 1.
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Pick a domain (say x) and a value in that domain, say 1.
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Cycle consistency

=&’ (1l-consistent)

Pick a domain (say x) and a value in that domain, say 1.

Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 8 /26



Cycle consistency

Pick a domain (say x) and a value in that domain, say 1.
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Cycle consistency

Pick a domain (say x) and a value in that domain, say 1.
Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)

Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.
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Cycle consistency

y
.-_./ 2
0
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Pick a domain (say x) and a value in that domain, say 1.
Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)

Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 8 /26



Cycle consistency

xE®
EW <
NED

Pick a domain (say x) and a value in that domain, say 1.
Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)

Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.
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Cycle consistency

y

(2
@ E\
5
X V4

Pick a domain (say x) and a value in that domain, say 1.
Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Continue along the cycle.
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Cycle consistency

x @)
NEW

Pick a domain (say x) and a value in that domain, say 1.
Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Continue along the cycle.
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Cycle consistency

E <

N

———
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Pick a domain (say x) and a value in that domain, say 1.
Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Continue along the cycle.
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Cycle consistency
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Pick a domain (say x) and a value in that domain, say 1.
Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Continue along the cycle.
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Cycle consistency

Pick a domain (say x) and a value in that domain, say 1.

Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.
Continue along the cycle.

Can't “return” to 1. ——  Returning to ®’, delete 1 from sort x.
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Cycle consistency

(1-consistent)

Pick a domain (say x) and a value in that domain, say 1.

Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.
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Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 8 /26



Cycle consistency

Pick a domain (say x) and a value in that domain, say 1.

Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.
Continue along the cycle.
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Cycle consistency

Pick a domain (say x) and a value in that domain, say 1.

Pick a “cycle through relations,” e.g., x >y — z — x. (Ignore the rest.)
Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.
Continue along the cycle.

Can't “return” to 1. ——  Returning to ®’, delete 1 from sort x.

“Cycle consistency” = 1-consistency + enforcing this cycle condition. ‘
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Irreducibility; generalized fmlas

Both Bulatov's and Zhuk's proofs require one more ‘“consistency” notion
(related to the inductive nature of their algorithms).

@ They are more difficult to explain, and justify.

Zhuk calls his condition irreducibility.
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Irreducibility; generalized fmlas

Both Bulatov's and Zhuk's proofs require one more ‘“consistency” notion
(related to the inductive nature of their algorithms).

@ They are more difficult to explain, and justify.

Zhuk calls his condition irreducibility.

Enforcing any/all of these conditions (1-consistency, cycle-consistency,
irreducibility):

@ Does not change the set of solutions.

@ Might lead to empty domain(s) ~» “proof of inconsistency.”

@ Else, leads to a generalized Aat-formula or | GenAat-fmla |:

Substructure of a microstructure hypergraph of a Aat-fmla,
where the domains are pp-definable subsets of M.
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Going forward, | focus entirely on GenAat-fmlas (usually 1-consistent).

Domains Dy, Dy, ... and relations R C D, x D, etc. are pp-definable in M.
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Going forward, | focus entirely on GenAat-fmlas (usually 1-consistent).

Domains Dy, Dy, ... and relations R C D, x D, etc. are pp-definable in M.

Flipping to the algebraic perspective: domains are subalgebras D, < M,
and relations are subalgebras R <D, x D,.

Call & a GenAat-fmla [over M.
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Part 2 — Reduction Strategy
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Crazy ldea

You are given a GenAat-fmla CD/M (Assume cycle-consistent, irreducible, ...)
4R\ /2D
b =
Dy Dy Dy D,

Question: does ® have a solution?
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Crazy ldea

You are given a GenAat-fmla CD/M. (Assume cycle-consistent, irreducible, .. .)
R R
b =
Dy Dx Dy D,

Question: does ® have a solution?

Proposal:  “Simplify” &, in this way:
@ Temporarily ignore the constraint relations.
@ Pick one of the domains, say Dy. Pick a proper subuniverse B < Dj.
© Throw out the elements in D, ~. B. Define D, := B.

© Bring back the relations (trimmed). Let @’ be the new GenAat-fmla.

@ Just answer the question for . (¢’ is a proxy for ®.)
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Crazy ldea

You are given a GenAat-fmla CD/M. (Assume cycle-consistent, irreducible, .. .)

o =

Dw D; Dy Dz

Question: does ® have a solution?

Proposal:  “Simplify” &, in this way:
@ Temporarily ignore the constraint relations.
@ Pick one of the domains, say Dy. Pick a proper subuniverse B < Dj.
© Throw out the elements in D, ~. B. Define D, := B.

© Bring back the relations (trimmed). Let @’ be the new GenAat-fmla.

@ Just answer the question for . (¢’ is a proxy for ®.)
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Crazy ldea

You are given a GenAat-fmla CD/M. (Assume cycle-consistent, irreducible, .. .)

o =

Dw D; Dy Dz

Question: does ® have a solution?

Proposal:  “Simplify” &, in this way:
@ Temporarily ignore the constraint relations.
@ Pick one of the domains, say Dy. Pick a proper subuniverse B < Dj.
© Throw out the elements in D, ~. B. Define D, := B.

© Bring back the relations (trimmed). Let @’ be the new GenAat-fmla.

© Just answer the question for ¢'. (¢’ is a proxy for ®.)

What could possibly go wrong?

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 12 /26



Problem: Maybe @ has solutions, but ¢’ does not.

(Because every solution to ® passes through D, ~\ B.)
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Problem: Maybe @ has solutions, but ¢’ does not.

(Because every solution to ® passes through D, ~\ B.)

Question: Can we choose D, and “special” B < Dy to avoid the problem?

l.e., so that

® has a solution = & has a solution passing through B (at x)?‘

(Without knowing the relations of ®7?)
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Problem: Maybe ® has solutions, but @’ does not.

(Because every solution to ® passes through D, ~\ B.)

Question: Can we choose D, and “special” B < Dy to avoid the problem?

l.e., so that

® has a solution = & has a solution passing through B (at x)?‘

(Without knowing the relations of ®7?)

There is a precedent (Barto, Kozik): “Yes” in the module-free case.
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Part 3 — The module-free case
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“Module-free case” — refers to finite structures M for which

pp
@ Mssar <4 M, and

e HSP(M) contains no (idempotent reduct of a) module.
Equivalent relational characterization:

pp
(Zp, “x=y+z—w =0") <» M for all primes p and all n > 1.

Barto & Kozik (2009) proved CSP Dichotomy for the module-free case, by
showing that the “crazy idea” strategy can be implemented.

What “special” subuniverses did they choose?
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WARNING:
The Surgeon General has determined

that listening to rest of this lecture

may cause nausea and/or headaches
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Absorbing subuniverses

Definition (Barto, Kozik)
Let A be a finite idempotent algebra and B < A.

Say that B is a 2-absorbing subuniverse of A, and write B <2 A, if there
exists a binary (term) operation t(x, y) of A such that

t(A,B)C B and t(B,A)C B.
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Definition (Barto, Kozik)
Let A be a finite idempotent algebra and B < A.

Say that B is a 2-absorbing subuniverse of A, and write B <2 A, if there
exists a binary (term) operation t(x, y) of A such that

t(A,B)C B and t(B,A)C B.

Say that B is a 3-absorbing subuniverse of A, and write B <i3 A, if there
exists a ternary operation t(x, y, z) of A such that

t(A,B,B)C B and t(B,A,B)C B and t(B,B,A)C B.
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Absorbing subuniverses

Definition (Barto, Kozik)
Let A be a finite idempotent algebra and B < A.

Say that B is a 2-absorbing subuniverse of A, and write B <2 A, if there
exists a binary (term) operation t(x, y) of A such that

t(A,B)C B and t(B,A)C B.

Say that B is a 3-absorbing subuniverse of A, and write B <i3 A, if there
exists a ternary operation t(x, y, z) of A such that

t(A,B,B)C B and t(B,A,B)C B and t(B,B,A)C B.

Similarly for n-absorbing subuniverse and B <1, A.
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Examples
Q@ A= (A *,...) with 0€ A suchthat 0xx=x%x0=0 Vx € A
{0} <2 A witnessed by xxy.
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Examples
Q@ A= (A *,...) with 0€ A suchthat 0xx=x%x0=0 Vx € A
{0} <2 A witnessed by xxy.

Q A= ({07 1}7 maj(x,y,z)).

A has no proper 2-absorbing subuniverse.
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Examples
Q@ A= (A *,...) with 0€ A suchthat 0xx=x%x0=0 Vx € A
{0} <2 A witnessed by xxy.

Q@ A= ({07 1}7 maj(x,y,z)).

A has no proper 2-absorbing subuniverse. But

{0},{1} <3 A both witnessed by maj(x, y, z).

@ A =({0,1,2}, -) where - is the “rock-paper-scissors” operation.

1
1
1

A has no proper n-absorbing subuniverse (for any n).
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B<,A — B<z3A — B<uA —

B is an absorbing subuniverse (written B <1 A) if it is an n-absorbing
subuniverse for some n.

A good lecture would spend > 10 minutes talking about interesting formal
properties of <.

Here are two:

@ < propagates within pp-definitions (e.g., over GenAat-fmlas).
@ Suppose A = the idempotent polymorphism algebra of M and B <1, A.

Then Vm > n, V pp-formula ¢(xi, ..., xm)/M, if for every i there
exists a solution to ¢ in M passing through B in all but coordinate i,
then there exists a solution to ¢ in B™.
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PC algebras

A is polynomially complete (PC) if every operation f : A" — A can be
realized as a term operation of A with parameters:

(X1, xn) = t(x1,..., Xn, A1, ..., 3K)-
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PC algebras

A is polynomially complete (PC) if every operation f : A" — A can be
realized as a term operation of A with parameters:

(X1, xn) = t(x1,..., Xn, A1, ..., 3K)-

Examples

@ A = (A, all idempotent operations on A).

The only proper subuniverses are singletons {0}. All are absorbing
subuniverses.
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PC algebras

A is polynomially complete (PC) if every operation f : A" — A can be
realized as a term operation of A with parameters:

(X1, xn) = t(x1,..., Xn, A1, ..., 3K)-
Examples

@ A = (A, all idempotent operations on A).

The only proper subuniverses are singletons {0}. All are absorbing
subuniverses.

@ A =({0,1,2}, -) where - is the “rock-paper-scissors’ operation.

Every subset of A is a subuniverse. No proper subset is an absorbing
subuniverse.
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Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)
Suppose
@ M is finite, idempotent, and has a Taylor operation.
e HSP(M) is module-free.  (i.e., congruence meet-semidistributive, i.e., omits 1,2)

o ® is a GenAat-fmla over M, and is cycle-consistent.

v
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Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)
Suppose

@ M is finite, idempotent, and has a Taylor operation.
- HSP(M) is module-free. (i.e., congruence meet-semidistributive, i.e., omits 1,2)

o ® is a GenAat-fmla over M, and is cycle-consistent.
Then:

Q If Dy is a domain and B <1 Dy, then B "works"” for the red. strategy:

® has a solution = & has a solution passing through B.

V.
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Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)
Suppose

@ M is finite, idempotent, and has a Taylor operation.
e HSP(M) is module-free.

o ® is a GenAat-fmla over M, and is cycle-consistent.
Then:

(i.e., congruence meet-semidistributive, i.e., omits 1,2)

Q If Dy is a domain and B <1 Dy, then B "works"” for the red. strategy:
® has a solution = & has a solution passing through B.

@ If no D, has a proper absorbing subuniverse, then for every D, with
|Dy| > 1 and for every maximal congruence 6 of D,

(a) (Zhuk) Dy/0 is PC, and
(b) Every 6-class works for the reduction strategy.

v
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Part 4 — Zhuk's extension /refinement
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Left centers, Zhuk centers

A,C idempotent algebras

Suppose R <,4 A x C. sd = “subdirect,” i.e., proj;(R) = A and proj,(R) = C
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Left centers, Zhuk centers

A,C idempotent algebras

Suppose R <,4 A x C. sd = “subdirect,” i.e., proj;(R) = A and proj,(R) = C

R
The left center of R is %}
AR
AMR)={acA: {a} x CCR}.

A C
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Left centers, Zhuk centers

A,C idempotent algebras

Suppose R <,4 A x C. sd = “subdirect,” i.e., proj;(R) = A and proj,(R) = C
R
The left center of R is %
AR 4
AMR)={acA: {a} x CC R}
(R)={acA: {a} x CCR) S
Definition

Suppose A is finite and idempotent, and B < A.
Say B is a Zhuk center of A, and write B <z¢ A, if

B = A(R) for some R <,4 A x C, where C is finite, idempotent,

and ‘(C has no proper 2-absorbing subuniverse |.
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B is a Zhuk center of A <= B = A\(R) for some R <.y A x C, where (C}

has no proper 2-absorbing subuniverse |

Example. A = ({0, 1}, maj)
B = {0}.
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B is a Zhuk center of A <= B = A\(R) for some R <.y A x C, where C}

has no proper 2-absorbing subuniverse |

Example. A = ({0, 1}, maj)
B = {0}.

maj(x, y, z) is monotone, so < is a subuniverse of A2:
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B is a Zhuk center of A <= B = A\(R) for some R <¢4 A x C, where C

has no proper 2-absorbing subuniverse |

Example. A = ({0, 1}, maj)
B = {0}.

maj(x, y, z) is monotone, so < is a subuniverse of A2:

< is subdirect, and we saw C (= A) has no proper 2-absorb. subuniverse.
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B is a Zhuk center of A <= B = A\(R) for some R <¢4 A x C, where C

has no proper 2-absorbing subuniverse |

Example. A = ({0, 1}, maj)
B = {0}.

maj(x, y, z) is monotone, so < is a subuniverse of A2:

< is subdirect, and we saw C (= A) has no proper 2-absorb. subuniverse.

The left center of <'is
A(=) = {0}
. {0} is a Zhuk center of A.
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A good lecture would spend > 10 minutes talking about interesting formal

properties of <zc.

Here are two (from Zhuk).

© If A has a Taylor operation, then

B<zc A — B<sA.

@ <z propagates within pp-definitions.

Unlike absorbing subuniverses, Zhuk centers are fragile under adding extra

operations to A.
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Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)
Suppose

@ M is finite, idempotent, and has a Taylor operation.

e HSP(M) is module-free.

o & is a GenAat-fmla over M, and is cycle-consistent.
Then:

Q If Dy is a domain and B <1 Dy, then B “works” for the red. strategy:

® has a solution = & has a solution passing through B.

@ If no D, has a proper absorbing subuniverse, then for every D, with
|D«| > 1 and for every maximal congruence 6 of Dy,

(a) Dy/0is PC, and

(b) every f-class works for the reduction strategy.

y
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Theorem 3 (Kozik—2016;mprovingBarto-Koztk26069)- Zhuk 2017/20

Suppose
@ M is finite, idempotent, and has a Taylor operation.

o & is a GenAat-fmla over M, and is cycle-consistent and irreducible.
Then: B <y Dy or B <zc Dy
Q If Dy is a domain and B=<By, then B "works” for the red. strategy:

® has a solution = & has a solution passing through B.

2-absorbing subuniverse or Zhuk center

@ If no D, has a proper absorbing-stuburmiverse, then for every D, with

|D«| > 1 and for every maximal congruence 6 of Dy,

(a) D4/ is PC or a simple module, and

(b) If PC, then every #-class works for the reduction strategy.
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