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Example of a pp-interpretation

Recall K3 = ({0, 1, 2}, 6=) and M3SAT = ({0, 1},R3SAT ) where

R3SAT = {(x1, . . . , x6) : (x1, x2, x3) 6= (x4, x5, x6)}.

Here is a pp-interpretation of K3 in M3SAT .

Let α be the (atomic) formula R3SAT (x1, x2, 0, 1, 1, 0).

Then D := αM3SAT =

{(0, 0), (0, 1), (1, 0)}.

Let β be the formula

α(x1, x2) & α(x3, x4) & R3SAT (x1, x2, 0, x3, x4, 0).

Then S := βM3SAT =

“not-equals” on D.

So (D,S) ∼= K3, which proves K3
pp
↪−→M3SAT .
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Summary of Lecture 1

CSPp(M): decision problem about satisfiability of ∧at-fmlas/M.

CSP Dichotomy Theorem of Bulatov and Zhuk (2017, 2020):

M3SAT

pp

↪→6 M =⇒ CSPp(M) is in P.

Algebraic perspective

M 7→ idempotent polymorphism algebra M.

Connections between {pp-definable relations over M} and HSP(M).

Positive characterization of M3SAT

pp

↪→6 M (Theorem 1):

“M has a Taylor operation”
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Plan for today

Intro to solving CSPp(M) when M has a Taylor operation

1 Preliminary remarks

I ∧at-fmlas as multi-sorted structures

I Preprocessing – enforcing local consistency and irreducibility.

I Generalized ∧at-fmlas.

2 A “crazy” reduction strategy

3 The module-free case

4 Zhuk’s extension/refinement to the general (Taylor) case
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Part 1 – Preliminary remarks
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Simplifying assumptions

Fix M (finite structure).

Fix ϕ (∧at-fmla/M), say ϕ =
N∧
i=1

αi (αi atomic).

(We want to know if ϕM 6= ∅.)

WLOG we can assume (by modifying ϕ and/or M):

No variable occurs more than once in each αi .

Parameters occur only in αi of the form x = a.

Re-interpret x = a as Ua(x) where Ua = {a} is now a relation of M.

I Now parameters don’t occur at all.

Atomic subformulas α1, . . . , αN now are called the constraints (of ϕ).
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Microstructure hypergraph

Example: M = ({0, 1, 2}, <, ≤,E ) where E = {(a, a, a) : a ∈ M},

ϕ = (x < y) ∧ (y ≤ z) ∧ E (z , u, v).

=: ΦConstruct

x y z v

u

0

1

2

0

1

2

0 0

0

1 1

1

2 2

2

Formally: the microstructure (multi-)hypergraph of a ∧at-fmla ϕ over M is the multi-sorted
structure Φ whose:

Sorts are indexed by the variables occurring in ϕ.

Domain of each sort is M.

Each constraint R(xi1 , . . . , xik ) of ϕ gives a relation Rxi1 ,...,xik
of Φ, which is just R

interpreted as having type (xi1 , . . . , xik ).

Solution to ϕ = choice of one value in each domain of Φ collectively
satisfying every relation of Φ.
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Preprocessing: 1-consistency

=: Φ

=: Φ′
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z
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2

Φ′ is a substructure of the original Φ.

Φ′ has the same solutions as Φ (and ϕ).

Each relation of Φ′ is subdirect (i.e., projects onto each coordinate
domain).

Φ′ with this last property is called 1-consistent.

Φ′ can be found efficiently (polynomial time in the size of ϕ).

Each domain of Φ′ is pp-definable in Φ (hence also in M).
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Cycle consistency

0

1

0

2
1

2

2

3x z

y

w

= Φ′ (1-consistent)

= Φ′′

Pick a domain (say x) and a value in that domain, say 1.

Pick a “cycle through relations,” e.g., x → y → z → x . (Ignore the rest.)

Starting at x = 1, find the value(s) in y consistent with the (x , y) relation.

Continue along the cycle.

Can’t “return” to 1. −→ Returning to Φ′, delete 1 from sort x .

“Cycle consistency” = 1-consistency + enforcing this cycle condition.
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Irreducibility; generalized fmlas

Both Bulatov’s and Zhuk’s proofs require one more “consistency” notion
(related to the inductive nature of their algorithms).

They are more difficult to explain, and justify.

Zhuk calls his condition irreducibility.

Enforcing any/all of these conditions (1-consistency, cycle-consistency,
irreducibility):

Does not change the set of solutions.

Might lead to empty domain(s)  “proof of inconsistency.”

Else, leads to a generalized ∧at-formula or Gen∧at-fmla :

Substructure of a microstructure hypergraph of a ∧at-fmla,
where the domains are pp-definable subsets of M.
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Going forward, I focus entirely on Gen∧at-fmlas (usually 1-consistent).

Φ =
Dx

Dy Dz Dv

Du

0

1 1

2

1 1

1

2 2

2

Domains Dx ,Dy , . . . and relations R ⊆ Dx ×Dy etc. are pp-definable in M.

Flipping to the algebraic perspective: domains are subalgebras Dx ≤M,
and relations are subalgebras R ≤ Dx × Dy .

Φ =
Dx

Dy Dz Dv

Du

0

1 1

2

1 1

1

2 2

2

Call Φ a Gen∧at-fmla over M .
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Part 2 – Reduction Strategy
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Crazy Idea
You are given a Gen∧at-fmla Φ/M. (Assume cycle-consistent, irreducible, . . . )

Φ =

Φ′ =

· · · · · ·

Dw Dx Dy Dz

D′
x

B

Question: does Φ have a solution?

Proposal: “Simplify” Φ, in this way:

1 Temporarily ignore the constraint relations.

2 Pick one of the domains, say Dx . Pick a proper subuniverse B < Dx .

3 Throw out the elements in Dx r B. Define D′
x := B.

4 Bring back the relations (trimmed). Let Φ′ be the new Gen∧at-fmla.

5 Just answer the question for Φ′. (Φ′ is a proxy for Φ.)

What could possibly go wrong?
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Problem: Maybe Φ has solutions, but Φ′ does not.

(Because every solution to Φ passes through Dx r B.)

Question: Can we choose Dx and “special” B < Dx to avoid the problem?

I.e., so that

Φ has a solution =⇒ Φ has a solution passing through B (at x)?

(Without knowing the relations of Φ?)

There is a precedent (Barto, Kozik): “Yes” in the module-free case.
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Part 3 – The module-free case
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“Module-free case” – refers to finite structures M for which

M3SAT

pp

↪→6 M, and

HSP(M) contains no (idempotent reduct of a) module.

Equivalent relational characterization:

(Zn
p, “x−y+z−w = 0”)

pp

↪→6 M for all primes p and all n ≥ 1.

Barto & Kozik (2009) proved CSP Dichotomy for the module-free case, by
showing that the “crazy idea” strategy can be implemented.

What “special” subuniverses did they choose?
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WARNING:

The Surgeon General has determined

that listening to rest of this lecture

may cause nausea and/or headaches
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Absorbing subuniverses

Definition (Barto, Kozik)

Let A be a finite idempotent algebra and B ≤ A.

Say that B is a 2-absorbing subuniverse of A, and write B C2 A, if there
exists a binary (term) operation t(x , y) of A such that

t(A,B) ⊆ B and t(B,A) ⊆ B.

Say that B is a 3-absorbing subuniverse of A, and write B C3 A, if there
exists a ternary operation t(x , y , z) of A such that

t(A,B,B) ⊆ B and t(B,A,B) ⊆ B and t(B,B,A) ⊆ B.

Similarly for n-absorbing subuniverse and B Cn A.
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Examples
1 A = (A, ∗ , . . .) with 0 ∈ A such that 0 ∗ x = x ∗ 0 = 0 ∀x ∈ A.

{0}C2 A witnessed by x ∗ y .

2 A = ({0, 1}, maj(x , y , z)).

A has no proper 2-absorbing subuniverse. But

{0}, {1}C3 A both witnessed by maj(x , y , z).

3 A = ({0, 1, 2}, · ) where · is the “rock-paper-scissors” operation.

· 0 1 2

0 0 1 0
1 1 1 2
2 0 2 2

A has no proper n-absorbing subuniverse (for any n).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 18 / 26



Examples
1 A = (A, ∗ , . . .) with 0 ∈ A such that 0 ∗ x = x ∗ 0 = 0 ∀x ∈ A.

{0}C2 A witnessed by x ∗ y .

2 A = ({0, 1}, maj(x , y , z)).

A has no proper 2-absorbing subuniverse.

But

{0}, {1}C3 A both witnessed by maj(x , y , z).

3 A = ({0, 1, 2}, · ) where · is the “rock-paper-scissors” operation.

· 0 1 2

0 0 1 0
1 1 1 2
2 0 2 2

A has no proper n-absorbing subuniverse (for any n).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 18 / 26



Examples
1 A = (A, ∗ , . . .) with 0 ∈ A such that 0 ∗ x = x ∗ 0 = 0 ∀x ∈ A.

{0}C2 A witnessed by x ∗ y .

2 A = ({0, 1}, maj(x , y , z)).

A has no proper 2-absorbing subuniverse. But

{0}, {1}C3 A both witnessed by maj(x , y , z).

3 A = ({0, 1, 2}, · ) where · is the “rock-paper-scissors” operation.

· 0 1 2

0 0 1 0
1 1 1 2
2 0 2 2

A has no proper n-absorbing subuniverse (for any n).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 18 / 26



Examples
1 A = (A, ∗ , . . .) with 0 ∈ A such that 0 ∗ x = x ∗ 0 = 0 ∀x ∈ A.

{0}C2 A witnessed by x ∗ y .

2 A = ({0, 1}, maj(x , y , z)).

A has no proper 2-absorbing subuniverse. But

{0}, {1}C3 A both witnessed by maj(x , y , z).

3 A = ({0, 1, 2}, · ) where · is the “rock-paper-scissors” operation.

· 0 1 2

0 0 1 0
1 1 1 2
2 0 2 2

A has no proper n-absorbing subuniverse (for any n).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 18 / 26



B C2 A =⇒ B C3 A =⇒ B C4 A =⇒ · · ·

B is an absorbing subuniverse (written B C A) if it is an n-absorbing
subuniverse for some n.

A good lecture would spend ≥ 10 minutes talking about interesting formal
properties of C.

Here are two:

1 C propagates within pp-definitions (e.g., over Gen∧at-fmlas).

2 Suppose A = the idempotent polymorphism algebra of M and BCnA.

Then ∀m ≥ n, ∀ pp-formula ϕ(x1, . . . , xm)/M, if for every i there
exists a solution to ϕ in M passing through B in all but coordinate i ,
then there exists a solution to ϕ in Bm.
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PC algebras

A is polynomially complete (PC) if every operation f : An → A can be
realized as a term operation of A with parameters:

f (x1, . . . , xn) = t(x1, . . . , xn, a1, . . . , ak).

Examples

1 A = (A, all idempotent operations on A).

The only proper subuniverses are singletons {0}. All are absorbing
subuniverses.

2 A = ({0, 1, 2}, · ) where · is the “rock-paper-scissors” operation.

Every subset of A is a subuniverse. No proper subset is an absorbing
subuniverse.
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Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

M is finite, idempotent, and has a Taylor operation.

HSP(M) is module-free. (i.e., congruence meet-semidistributive, i.e., omits 1, 2)

Φ is a Gen∧at-fmla over M, and is cycle-consistent.

Then:

1 If Dx is a domain and B C Dx , then B “works” for the red. strategy:

Φ has a solution =⇒ Φ has a solution passing through B.

2 If no Dy has a proper absorbing subuniverse, then for every Dx with
|Dx | > 1 and for every maximal congruence θ of Dx ,

(a) (Zhuk) Dx/θ is PC, and

(b) Every θ-class works for the reduction strategy.
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Φ is a Gen∧at-fmla over M, and is cycle-consistent.

Then:

1 If Dx is a domain and B C Dx , then B “works” for the red. strategy:

Φ has a solution =⇒ Φ has a solution passing through B.

2 If no Dy has a proper absorbing subuniverse, then for every Dx with
|Dx | > 1 and for every maximal congruence θ of Dx ,

(a) (Zhuk) Dx/θ is PC, and

(b) Every θ-class works for the reduction strategy.
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Part 4 – Zhuk’s extension/refinement
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Left centers, Zhuk centers

A,C idempotent algebras

Suppose R ≤sd A× C. sd = “subdirect,” i.e., proj1(R) = A and proj2(R) = C

⑮

The left center of R is

λ(R) := {a ∈ A : {a} × C ⊆ R}. n
A

Definition

Suppose A is finite and idempotent, and B ≤ A.

Say B is a Zhuk center of A, and write B ≤ZC A, if

B = λ(R) for some R ≤sd A× C, where C is finite, idempotent,

and C has no proper 2-absorbing subuniverse .
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B is a Zhuk center of A ⇐⇒ B = λ(R) for some R ≤sd A×C, where C

has no proper 2-absorbing subuniverse .

Example. A = ({0, 1},maj)

B = {0}.

maj(x , y , z) is monotone, so ≤ is a subuniverse of A2:

0

1

0

1

A C := A

≤ is subdirect, and we saw C (= A) has no proper 2-absorb. subuniverse.

The left center of ≤ is
λ(≤) = {0}.

∴ {0} is a Zhuk center of A.
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A good lecture would spend ≥ 10 minutes talking about interesting formal
properties of ≤ZC .

Here are two (from Zhuk).

1 If A has a Taylor operation, then

B ≤ZC A =⇒ B C3 A.

2 ≤ZC propagates within pp-definitions.

Unlike absorbing subuniverses, Zhuk centers are fragile under adding extra
operations to A.
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Theorem 2

3

(Kozik 2016, improving Barto-Kozik 2009)

Zhuk 2017/20

Suppose

M is finite, idempotent, and has a Taylor operation.

HSP(M) is module-free.

Φ is a Gen∧at-fmla over M, and is cycle-consistent.

and irreducible.

Then:

B C2 Dx or B <ZC Dx︸ ︷︷ ︸

1 If Dx is a domain and B C Dx , then B “works” for the red. strategy:

Φ has a solution =⇒ Φ has a solution passing through B.

2-absorbing subuniverse or Zhuk center︸ ︷︷ ︸

2 If no Dy has a proper absorbing subuniverse, then for every Dx with
|Dx | > 1 and for every maximal congruence θ of Dx ,

(a) Dx/θ is PC, and

or a simple module, and

(b)

If PC, then

every θ-class works for the reduction strategy.
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