Tutorial – The Constraint Satisfaction Problem Dichotomy Theorem. Lecture 2

Ross Willard

Waterloo (Canada)

Assoc. Sym. Logic meeting – Ames, IA 16 May 2024

Recall $\mathbf{K}_3 = (\{0, 1, 2\}, \neq)$ and $\mathbf{M}_{3SAT} = (\{0, 1\}, R_{3SAT})$ where $R_{3SAT} = \{(x_1, \dots, x_6) : (x_1, x_2, x_3) \neq (x_4, x_5, x_6)\}.$

Here is a pp-interpretation of K_3 in M_{3SAT} .

Recall
$$\mathbf{K}_3 = (\{0, 1, 2\}, \neq)$$
 and $\mathbf{M}_{3SAT} = (\{0, 1\}, R_{3SAT})$ where
 $R_{3SAT} = \{(x_1, \dots, x_6) : (x_1, x_2, x_3) \neq (x_4, x_5, x_6)\}.$

Here is a pp-interpretation of K_3 in M_{3SAT} .

• Let α be the (atomic) formula $R_{3SAT}(x_1, x_2, 0, 1, 1, 0)$.

Then $D := \alpha^{\mathbf{M}_{3SAT}} =$

Recall
$$\mathbf{K}_3 = (\{0, 1, 2\}, \neq)$$
 and $\mathbf{M}_{3SAT} = (\{0, 1\}, R_{3SAT})$ where
 $R_{3SAT} = \{(x_1, \dots, x_6) : (x_1, x_2, x_3) \neq (x_4, x_5, x_6)\}.$

Here is a pp-interpretation of K_3 in M_{3SAT} .

• Let α be the (atomic) formula $R_{3SAT}(x_1, x_2, 0, 1, 1, 0)$.

Then $D := \alpha^{\mathsf{M}_{3SAT}} = \{(0,0), (0,1), (1,0)\}.$

Recall
$$\mathbf{K}_3 = (\{0, 1, 2\}, \neq)$$
 and $\mathbf{M}_{3SAT} = (\{0, 1\}, R_{3SAT})$ where
 $R_{3SAT} = \{(x_1, \dots, x_6) : (x_1, x_2, x_3) \neq (x_4, x_5, x_6)\}.$

Here is a pp-interpretation of K_3 in M_{3SAT} .

- Let α be the (atomic) formula $R_{3SAT}(x_1, x_2, 0, 1, 1, 0)$. Then $D := \alpha^{M_{3SAT}} = \{(0, 0), (0, 1), (1, 0)\}.$
- Let β be the formula

 $\alpha(x_1, x_2) \& \alpha(x_3, x_4) \& R_{3SAT}(x_1, x_2, 0, x_3, x_4, 0).$ Then $S := \beta^{M_{3SAT}} =$

Recall
$$\mathbf{K}_3 = (\{0, 1, 2\}, \neq)$$
 and $\mathbf{M}_{3SAT} = (\{0, 1\}, R_{3SAT})$ where
 $R_{3SAT} = \{(x_1, \dots, x_6) : (x_1, x_2, x_3) \neq (x_4, x_5, x_6)\}.$

Here is a pp-interpretation of K_3 in M_{3SAT} .

- Let α be the (atomic) formula $R_{3SAT}(x_1, x_2, 0, 1, 1, 0)$. Then $D := \alpha^{M_{3SAT}} = \{(0, 0), (0, 1), (1, 0)\}.$
- Let β be the formula

 $\alpha(x_1, x_2) \& \alpha(x_3, x_4) \& R_{3SAT}(x_1, x_2, 0, x_3, x_4, 0).$ Then $S := \beta^{M_{3SAT}} =$ "not-equals" on D.

Recall
$$\mathbf{K}_3 = (\{0, 1, 2\}, \neq)$$
 and $\mathbf{M}_{3SAT} = (\{0, 1\}, R_{3SAT})$ where
 $R_{3SAT} = \{(x_1, \dots, x_6) : (x_1, x_2, x_3) \neq (x_4, x_5, x_6)\}.$

Here is a pp-interpretation of K_3 in M_{3SAT} .

- Let α be the (atomic) formula $R_{3SAT}(x_1, x_2, 0, 1, 1, 0)$. Then $D := \alpha^{M_{3SAT}} = \{(0, 0), (0, 1), (1, 0)\}.$
- Let β be the formula

$$\alpha(x_1, x_2) \& \alpha(x_3, x_4) \& R_{3SAT}(x_1, x_2, 0, x_3, x_4, 0).$$

Then $S := \beta^{\mathbf{M}_{35AT}} =$ "not-equals" on D.

So $(D, S) \cong \mathbf{K}_3$, which proves $\mathbf{K}_3 \stackrel{pp}{\longrightarrow} \mathbf{M}_{3SAT}$.

Summary of Lecture 1

 $CSP_p(\mathbf{M})$: decision problem about satisfiability of $\wedge at-fmlas/\mathbf{M}$.

CSP Dichotomy Theorem of Bulatov and Zhuk (2017, 2020): $\mathbf{M}_{3SAT} \stackrel{pp}{\nleftrightarrow} \mathbf{M} \implies \mathrm{CSP}_{p}(\mathbf{M}) \text{ is in P.}$

Algebraic perspective

- $\mathbf{M} \mapsto \text{idempotent polymorphism algebra } \mathbb{M}$.
- Connections between $\{pp\text{-definable relations over } M\}$ and $HSP(\mathbb{M})$.

Positive characterization of $M_{3SAT} \stackrel{pp}{\not\hookrightarrow} M$ (Theorem 1):

" \mathbb{M} has a Taylor operation"

Plan for today

Intro to solving $\mathsf{CSP}_p(\mathsf{M})$ when \mathbb{M} has a Taylor operation

Preliminary remarks

- Aat-fmlas as multi-sorted structures
- Preprocessing enforcing local consistency and irreducibility.
- ► Generalized ∧at-fmlas.
- A "crazy" reduction strategy
- 3 The module-free case
- Shuk's extension/refinement to the general (Taylor) case

Part 1 – Preliminary remarks

Fix **M** (finite structure).

Fix
$$\varphi$$
 (\wedge at-fmla/**M**), say $\varphi = \bigwedge_{i=1}^{N} \alpha_i$ (α_i atomic).

(We want to know if $\varphi^{\mathsf{M}} \neq \emptyset$.)

Fix **M** (finite structure).

Fix
$$\varphi$$
 (\wedge at-fmla/**M**), say $\varphi = \bigwedge_{i=1}^{N} \alpha_i$ (α_i atomic).

(We want to know if $\varphi^{\mathsf{M}} \neq \varnothing$.)

WLOG we can assume (by modifying φ and/or **M**):

Fix **M** (finite structure).

Fix
$$\varphi$$
 (\wedge at-fmla/**M**), say $\varphi = \bigwedge_{i=1}^{N} \alpha_i$ (α_i atomic).

(We want to know if $\varphi^{\mathsf{M}} \neq \varnothing$.)

WLOG we can assume (by modifying φ and/or **M**):

• No variable occurs more than once in each α_i .

Fix **M** (finite structure).

Fix
$$\varphi$$
 (\wedge at-fmla/**M**), say $\varphi = \bigwedge_{i=1}^{N} \alpha_i$ (α_i atomic).

(We want to know if $\varphi^{\mathsf{M}} \neq \emptyset$.)

WLOG we can assume (by modifying φ and/or **M**):

- No variable occurs more than once in each α_i .
- Parameters occur only in α_i of the form x = a.

Fix **M** (finite structure).

Fix
$$\varphi$$
 (\wedge at-fmla/**M**), say $\varphi = \bigwedge_{i=1}^{N} \alpha_i$ (α_i atomic).

(We want to know if $\varphi^{\mathsf{M}} \neq \emptyset$.)

WLOG we can assume (by modifying φ and/or **M**):

- No variable occurs more than once in each α_i .
- Parameters occur only in α_i of the form x = a.
- Re-interpret x = a as $U_a(x)$ where $U_a = \{a\}$ is now a relation of **M**.
 - Now parameters don't occur at all.

Fix **M** (finite structure).

Fix
$$\varphi$$
 (\wedge at-fmla/**M**), say $\varphi = \bigwedge_{i=1}^{N} \alpha_i$ (α_i atomic).

(We want to know if $\varphi^{\mathsf{M}} \neq \emptyset$.)

WLOG we can assume (by modifying φ and/or **M**):

- No variable occurs more than once in each α_i .
- Parameters occur only in α_i of the form x = a.
- Re-interpret x = a as $U_a(x)$ where $U_a = \{a\}$ is now a relation of **M**.
 - Now parameters don't occur at all.

Atomic subformulas $\alpha_1, \ldots, \alpha_N$ now are called the **constraints** (of φ).

Microstructure hypergraph

Microstructure hypergraph

Example: $\mathbf{M} = (\{0, 1, 2\}, <, \le, E)$ where $E = \{(a, a, a) : a \in M\},\$ $\varphi = (x < y) \land (y \le z) \land E(z, u, v).$

Construct

Microstructure hypergraph

Example: $\mathbf{M} = (\{0, 1, 2\}, <, \le, E)$ where $E = \{(a, a, a) : a \in M\},$ $\varphi = (x < y) \land (y \le z) \land E(z, u, v).$

Formally: the **microstructure (multi-)hypergraph** of a \land at-fmla φ over **M** is the multi-sorted structure Φ whose:

- Sorts are indexed by the variables occurring in φ .
- Domain of each sort is *M*.
- Each constraint R(x_{i1},...,x_{ik}) of φ gives a relation R_{xi1},...,x_{ik} of Φ, which is just R interpreted as having type (x_{i1},...,x_{ik}).

Solution to φ = choice of one value in each domain of Φ collectively satisfying every relation of Φ .

Ross Willard (Waterloo)

CSP Dichotomy Theorem

- Φ' is a substructure of the original Φ .
- Φ' has the same solutions as Φ (and φ).
- Each relation of Φ' is subdirect (i.e., projects <u>onto</u> each coordinate domain).

 Φ' with this last property is called **1-consistent**.

- Φ' is a substructure of the original Φ .
- Φ' has the same solutions as Φ (and φ).
- Each relation of Φ' is subdirect (i.e., projects <u>onto</u> each coordinate domain).

 Φ' with this last property is called **1-consistent**.

- Φ' can be found efficiently (polynomial time in the size of φ).
- Each domain of Φ' is pp-definable in Φ (hence also in **M**).

Pick a domain (say x) and a value in that domain, say 1.

Pick a domain (say x) and a value in that domain, say 1.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.)

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.)

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Can't "return" to 1. \longrightarrow Returning to Φ' , delete 1 from sort x.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Can't "return" to 1. \longrightarrow Returning to Φ' , delete 1 from sort x.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Can't "return" to 1. \longrightarrow Returning to Φ' , delete 1 from sort x.

Pick a domain (say x) and a value in that domain, say 1. Pick a "cycle through relations," e.g., $x \to y \to z \to x$. (Ignore the rest.) Starting at x = 1, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Can't "return" to 1. \longrightarrow Returning to Φ' , delete 1 from sort x.

"Cycle consistency" = 1-consistency + enforcing this cycle condition.

Irreducibility; generalized fmlas

Both Bulatov's and Zhuk's proofs require one more "consistency" notion (related to the inductive nature of their algorithms).

• They are more difficult to explain, and justify.

Zhuk calls his condition **irreducibility**.

Irreducibility; generalized fmlas

Both Bulatov's and Zhuk's proofs require one more "consistency" notion (related to the inductive nature of their algorithms).

• They are more difficult to explain, and justify.

Zhuk calls his condition irreducibility.

Enforcing any/all of these conditions (1-consistency, cycle-consistency, irreducibility):

- Does not change the set of solutions.
- Might lead to empty domain(s) \rightsquigarrow "proof of inconsistency."
- Else, leads to a generalized Aat-formula or GenAat-fmla:
 <u>Substructure</u> of a microstructure hypergraph of a Aat-fmla, where the domains are pp-definable subsets of M.

Going forward, I focus entirely on Gen^At-fmlas (usually 1-consistent).

Domains D_x, D_y, \ldots and relations $R \subseteq D_x \times D_y$ etc. are pp-definable in **M**.

Going forward, I focus entirely on Gen^At-fmlas (usually 1-consistent).

Domains D_x, D_y, \ldots and relations $R \subseteq D_x \times D_y$ etc. are pp-definable in **M**.

Flipping to the algebraic perspective: domains are subalgebras $\mathbb{D}_x \leq \mathbb{M}$, and relations are subalgebras $\mathbb{R} \leq \mathbb{D}_x \times \mathbb{D}_y$.

Part 2 – Reduction Strategy

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

- Temporarily ignore the constraint relations.
- ② Pick one of the domains, say \mathbb{D}_x . Pick a proper subuniverse $B < \mathbb{D}_x$.
- **③** Throw out the elements in $D_x \smallsetminus B$. Define $\mathbb{D}'_x := \mathbb{B}$.
- Solution Bring back the relations (trimmed). Let Φ' be the new Gen \land at-fmla.
- **(** Φ' is a proxy for Φ .) **(** Φ' is a proxy for Φ .)

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

- Temporarily ignore the constraint relations.
- ② Pick one of the domains, say \mathbb{D}_x . Pick a proper subuniverse $B < \mathbb{D}_x$.
- **③** Throw out the elements in $D_x \smallsetminus B$. Define $\mathbb{D}'_x := \mathbb{B}$.
- Output Bring back the relations (trimmed). Let Φ' be the new Gen∧at-fmla.
- **(** Φ' is a proxy for Φ .) **(** Φ' is a proxy for Φ .)

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

- Temporarily ignore the constraint relations.
- ② Pick one of the domains, say \mathbb{D}_x . Pick a proper subuniverse $B < \mathbb{D}_x$.
- **③** Throw out the elements in $D_x \smallsetminus B$. Define $\mathbb{D}'_x := \mathbb{B}$.
- Output Bring back the relations (trimmed). Let Φ' be the new Gen∧at-fmla.
- **(** Φ' is a proxy for Φ .) **(** Φ' is a proxy for Φ .)

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

- Temporarily ignore the constraint relations.
- ② Pick one of the domains, say \mathbb{D}_x . Pick a proper subuniverse $B < \mathbb{D}_x$.
- **③** Throw out the elements in $D_x \smallsetminus B$. Define $\mathbb{D}'_x := \mathbb{B}$.
- **③** Bring back the relations (trimmed). Let Φ' be the new Gen \land at-fmla.
- **(** Φ' is a proxy for Φ .) **(** Φ' is a proxy for Φ .)

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

- Temporarily ignore the constraint relations.
- ② Pick one of the domains, say \mathbb{D}_x . Pick a proper subuniverse $B < \mathbb{D}_x$.
- **③** Throw out the elements in $D_x \smallsetminus B$. Define $\mathbb{D}'_x := \mathbb{B}$.
- **③** Bring back the relations (trimmed). Let Φ' be the new Gen \land at-fmla.
- **(** Φ' is a proxy for Φ .) **(** Φ' is a proxy for Φ .)

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

- Temporarily ignore the constraint relations.
- ② Pick one of the domains, say \mathbb{D}_x . Pick a proper subuniverse $B < \mathbb{D}_x$.
- **③** Throw out the elements in $D_x \smallsetminus B$. Define $\mathbb{D}'_x := \mathbb{B}$.
- **③** Bring back the relations (trimmed). Let Φ' be the new Gen \land at-fmla.
- **(** Φ' is a proxy for Φ .) **(** Φ' is a proxy for Φ .)

You are given a Gen \wedge at-fmla Φ/\mathbb{M} .

(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

<u>Proposal</u>: "Simplify" Φ , in this way:

- Temporarily ignore the constraint relations.
- ② Pick one of the domains, say \mathbb{D}_x . Pick a proper subuniverse $B < \mathbb{D}_x$.
- **③** Throw out the elements in $D_x \smallsetminus B$. Define $\mathbb{D}'_x := \mathbb{B}$.
- **③** Bring back the relations (trimmed). Let Φ' be the new Gen \land at-fmla.
- **(** Φ' is a proxy for Φ .) **(** Φ' is a proxy for Φ .)

What could possibly go wrong?

Problem: Maybe Φ has solutions, but Φ' does not.

(Because every solution to Φ passes through $D_x \smallsetminus B$.)

Problem: Maybe Φ has solutions, but Φ' does not.

(Because every solution to Φ passes through $D_x \smallsetminus B$.)

Question: Can we choose \mathbb{D}_x and "special" $B < \mathbb{D}_x$ to avoid the problem?

I.e., so that

 Φ has a solution $\implies \Phi$ has a solution passing through B (at x)?

(Without knowing the relations of Φ ?)

Problem: Maybe Φ has solutions, but Φ' does not.

(Because every solution to Φ passes through $D_x \smallsetminus B$.)

Question: Can we choose \mathbb{D}_x and "special" $B < \mathbb{D}_x$ to avoid the problem? I.e., so that

 Φ has a solution $\implies \Phi$ has a solution passing through B (at x)?

(Without knowing the relations of Φ ?)

There is a precedent (Barto, Kozik): "Yes" in the module-free case.

Part 3 – The module-free case

"Module-free case" – refers to finite structures \mathbf{M} for which

• $M_{3SAT} \stackrel{pp}{\nleftrightarrow} M$, and

• $HSP(\mathbb{M})$ contains no (idempotent reduct of a) module.

Equivalent relational characterization:

$$(\mathbb{Z}_p^n, "x-y+z-w=0") \stackrel{pp}{\nleftrightarrow} \mathbf{M}$$
 for all primes p and all $n \ge 1$.

Barto & Kozik (2009) proved CSP Dichotomy for the module-free case, by showing that the "crazy idea" strategy can be implemented.

What "special" subuniverses did they choose?

WARNING:

The Surgeon General has determined that listening to rest of this lecture may cause nausea and/or headaches

Absorbing subuniverses

Definition (Barto, Kozik)

Let \mathbb{A} be a finite idempotent algebra and $B \leq \mathbb{A}$.

Say that *B* is a **2-absorbing subuniverse** of \mathbb{A} , and write $B \triangleleft_2 \mathbb{A}$, if there exists a binary (term) operation t(x, y) of \mathbb{A} such that

 $t(A,B) \subseteq B$ and $t(B,A) \subseteq B$.

Absorbing subuniverses

Definition (Barto, Kozik)

Let \mathbb{A} be a finite idempotent algebra and $B \leq \mathbb{A}$.

Say that *B* is a **2-absorbing subuniverse** of \mathbb{A} , and write $B \triangleleft_2 \mathbb{A}$, if there exists a binary (term) operation t(x, y) of \mathbb{A} such that

 $t(A, B) \subseteq B$ and $t(B, A) \subseteq B$.

Say that *B* is a **3-absorbing subuniverse** of \mathbb{A} , and write $B \triangleleft_3 \mathbb{A}$, if there exists a ternary operation t(x, y, z) of \mathbb{A} such that

 $t(A, B, B) \subseteq B$ and $t(B, A, B) \subseteq B$ and $t(B, B, A) \subseteq B$.

Absorbing subuniverses

Definition (Barto, Kozik)

Let \mathbb{A} be a finite idempotent algebra and $B \leq \mathbb{A}$.

Say that *B* is a **2-absorbing subuniverse** of \mathbb{A} , and write $B \triangleleft_2 \mathbb{A}$, if there exists a binary (term) operation t(x, y) of \mathbb{A} such that

 $t(A, B) \subseteq B$ and $t(B, A) \subseteq B$.

Say that *B* is a **3-absorbing subuniverse** of \mathbb{A} , and write $B \triangleleft_3 \mathbb{A}$, if there exists a ternary operation t(x, y, z) of \mathbb{A} such that

 $t(A, B, B) \subseteq B$ and $t(B, A, B) \subseteq B$ and $t(B, B, A) \subseteq B$.

Similarly for *n*-absorbing subuniverse and $B \triangleleft_n \mathbb{A}$.

Examples

• $\mathbb{A} = (A, *, ...)$ with $0 \in A$ such that 0 * x = x * 0 = 0 $\forall x \in A$. {0} $\triangleleft_2 \mathbb{A}$ witnessed by x * y.

Examples

- $A = (A, *, ...) \text{ with } 0 \in A \text{ such that } 0 * x = x * 0 = 0 \quad \forall x \in A.$ $\{0\} \lhd_2 A \text{ witnessed by } x * y.$
- **2** $A = (\{0, 1\}, maj(x, y, z)).$

 \mathbbm{A} has no proper 2-absorbing subuniverse.

Examples

 $A = (A, *, ...) \text{ with } 0 \in A \text{ such that } 0 * x = x * 0 = 0 \quad \forall x \in A.$ $\{0\} \lhd_2 A \text{ witnessed by } x * y.$

2
$$A = (\{0, 1\}, maj(x, y, z)).$$

 \mathbbm{A} has no proper 2-absorbing subuniverse. But

 $\{0\}, \{1\} \lhd_3 \mathbb{A}$ both witnessed by maj(x, y, z).

Examples

• $\mathbb{A} = (A, *, ...)$ with $0 \in A$ such that 0 * x = x * 0 = 0 $\forall x \in A$. $\{0\} \lhd_2 \mathbb{A}$ witnessed by x * y.

2
$$A = (\{0, 1\}, maj(x, y, z)).$$

 \mathbbm{A} has no proper 2-absorbing subuniverse. But

 $\{0\}, \{1\} \triangleleft_3 \mathbb{A}$ both witnessed by maj(x, y, z).

3 $\mathbb{A} = (\{0, 1, 2\}, \cdot)$ where \cdot is the "rock-paper-scissors" operation.

$$\begin{array}{c|cccc} \cdot & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 2 & 0 & 2 & 2 \end{array}$$

A has no proper n-absorbing subuniverse (for any n).

Ross Willard (Waterloo)

 $B \triangleleft_2 \mathbb{A} \implies B \triangleleft_3 \mathbb{A} \implies B \triangleleft_4 \mathbb{A} \implies \cdots$

B is an **absorbing subuniverse** (written $B \triangleleft \mathbb{A}$) if it is an *n*-absorbing subuniverse for some *n*.

A good lecture would spend \geq 10 minutes talking about interesting formal properties of $\lhd.$

Here are two:

• \triangleleft propagates within pp-definitions (e.g., over Gen \land at-fmlas).

 Suppose A = the idempotent polymorphism algebra of M and B ⊲_n A. Then ∀m ≥ n, ∀ pp-formula φ(x₁,...,x_m)/M, if for every *i* there exists a solution to φ in M passing through B in all but coordinate *i*, then there exists a solution to φ in B^m.

PC algebras

A is **polynomially complete** (PC) if every operation $f : A^n \to A$ can be realized as a term operation of A with parameters:

$$f(x_1,\ldots,x_n)=t(x_1,\ldots,x_n,a_1,\ldots,a_k).$$

PC algebras

A is **polynomially complete** (PC) if every operation $f : A^n \to A$ can be realized as a term operation of A with parameters:

$$f(x_1,\ldots,x_n)=t(x_1,\ldots,x_n,a_1,\ldots,a_k).$$

Examples

• A = (A, all idempotent operations on A).

The only proper subuniverses are singletons $\{0\}$. All are absorbing subuniverses.

PC algebras

A is **polynomially complete** (PC) if every operation $f : A^n \to A$ can be realized as a term operation of A with parameters:

$$f(x_1,\ldots,x_n)=t(x_1,\ldots,x_n,a_1,\ldots,a_k).$$

Examples

• A = (A, all idempotent operations on A).

The only proper subuniverses are singletons $\{0\}$. All are absorbing subuniverses.

2
$$\mathbb{A} = (\{0, 1, 2\}, \cdot)$$
 where \cdot is the "rock-paper-scissors" operation.

Every subset of A is a subuniverse. No proper subset is an absorbing subuniverse.

Ross Willard (Waterloo)

Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

- ullet $\mathbb M$ is finite, idempotent, and has a Taylor operation.
- $\mathsf{HSP}(\mathbb{M})$ is module-free. (i.e., congruence meet-semidistributive, i.e., omits 1,2)
- Φ is a Gen \land at-fmla over \mathbb{M} , and is cycle-consistent.

Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

- $\bullet~\mathbb{M}$ is finite, idempotent, and has a Taylor operation.
- $\mathsf{HSP}(\mathbb{M})$ is module-free. (i.e., congruence meet-semidistributive, i.e., omits 1,2)
- Φ is a Gen^at-fmla over $\mathbb M$, and is cycle-consistent.

Then:

() If \mathbb{D}_x is a domain and $B \lhd \mathbb{D}_x$, then B "works" for the red. strategy:

 Φ has a solution $\implies \Phi$ has a solution passing through *B*.

Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

- ullet $\mathbb M$ is finite, idempotent, and has a Taylor operation.
- $\mathsf{HSP}(\mathbb{M})$ is module-free. (i.e., congruence meet-semidistributive, i.e., omits 1,2)
- Φ is a Gen^at-fmla over $\mathbb M$, and is cycle-consistent.

Then:

() If \mathbb{D}_x is a domain and $B \lhd \mathbb{D}_x$, then B "works" for the red. strategy:

 Φ has a solution $\implies \Phi$ has a solution passing through B.

② If no \mathbb{D}_y has a proper absorbing subuniverse, then for every \mathbb{D}_x with $|D_x| > 1$ and for every maximal congruence θ of \mathbb{D}_x ,

(a) (Zhuk) \mathbb{D}_x/θ is PC, and

(b) Every θ -class works for the reduction strategy.

Part 4 – Zhuk's extension/refinement

Left centers, Zhuk centers

 \mathbb{A},\mathbb{C} -idempotent algebras

Suppose $R \leq_{sd} \mathbb{A} \times \mathbb{C}$.

Left centers, Zhuk centers

 \mathbb{A},\mathbb{C} idempotent algebras

Suppose $R \leq_{sd} \mathbb{A} \times \mathbb{C}$.

The **left center** of R is

 $\lambda(R) := \{ a \in A : \{ a \} \times C \subseteq R \}.$

Left centers, Zhuk centers

 \mathbb{A},\mathbb{C} idempotent algebras

Suppose $R \leq_{sd} \mathbb{A} \times \mathbb{C}$.

The left center of R is

$$\lambda(R) := \{a \in A : \{a\} \times C \subseteq R\}.$$

Definition

Suppose \mathbb{A} is finite and idempotent, and $B \leq \mathbb{A}$.

Say *B* is a **Zhuk center** of \mathbb{A} , and write $B \leq_{ZC} \mathbb{A}$, if

 $B = \lambda(R)$ for some $R \leq_{sd} \mathbb{A} \times \mathbb{C}$, where \mathbb{C} is finite, idempotent,

and $|\mathbb{C}$ has no proper 2-absorbing subuniverse .

has no proper 2-absorbing subuniverse .

Example. $\mathbb{A} = (\{0, 1\}, \text{maj})$ $B = \{0\}.$

has no proper 2-absorbing subuniverse .

Example. $\mathbb{A} = (\{0, 1\}, \mathsf{maj})$

$$B = \{0\}.$$

maj(x, y, z) is monotone, so \leq is a subuniverse of \mathbb{A}^2 :

has no proper 2-absorbing subuniverse .

Example. $\mathbb{A} = (\{0, 1\}, \mathsf{maj})$

 $B = \{0\}.$

maj(x, y, z) is monotone, so \leq is a subuniverse of \mathbb{A}^2 :

 \leq is subdirect, and we saw \mathbb{C} $(=\mathbb{A})$ has no proper 2-absorb. subuniverse.

has no proper 2-absorbing subuniverse .

Example. $\mathbb{A} = (\{0, 1\}, \mathsf{maj})$

 $B = \{0\}.$

maj(x, y, z) is monotone, so \leq is a subuniverse of \mathbb{A}^2 :

 \leq is subdirect, and we saw $\mathbb{C}~(=\mathbb{A})$ has no proper 2-absorb. subuniverse. The left center of \leq is

$$\lambda(\leq) = \{0\}.$$

 \therefore {0} is a Zhuk center of A.

A good lecture would spend \geq 10 minutes talking about interesting formal properties of $\leq_{ZC}.$

Here are two (from Zhuk).

$$B\leq_{ZC}\mathbb{A}\implies B\triangleleft_{3}\mathbb{A}.$$

Unlike absorbing subuniverses, Zhuk centers are fragile under adding extra operations to $\mathbb{A}.$

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

- $\bullet~\mathbb{M}$ is finite, idempotent, and has a Taylor operation.
- $HSP(\mathbb{M})$ is module-free.
- Φ is a Gen \land at-fmla over \mathbb{M} , and is cycle-consistent.

Then:

() If \mathbb{D}_x is a domain and $B \lhd \mathbb{D}_x$, then B "works" for the red. strategy:

 Φ has a solution $\implies \Phi$ has a solution passing through B.

② If no \mathbb{D}_y has a proper absorbing subuniverse, then for every \mathbb{D}_x with $|D_x| > 1$ and for every maximal congruence θ of \mathbb{D}_x ,

(a) $\mathbb{D}_x/ heta$ is PC, and

every heta-class works for the reduction strategy.

(b)

Theorem 3 (Kozik 2016, improving Barto-Kozik 2009) Zhuk 2017/20 Suppose • M is finite, idempotent, and has a Taylor operation. • HSP(M) is module-free. • Φ is a Gen \wedge at-fmla over \mathbb{M} , and is cycle-consistent and irreducible. Then: $B \triangleleft_2 \mathbb{D}_x$ or $B <_{ZC} \mathbb{D}_x$ **1** If \mathbb{D}_x is a domain and $\mathcal{B} = \mathbb{D}_x$, then B "works" for the red. strategy: Φ has a solution $\implies \Phi$ has a solution passing through B. 2-absorbing subuniverse or Zhuk center 2 If no \mathbb{D}_{V} has a proper absorbing subuniverse, then for every \mathbb{D}_{X} with $|D_x| > 1$ and for every maximal congruence θ of \mathbb{D}_x , (a) \mathbb{D}_{x}/θ is PC or a simple module, and

(b) If PC, then every θ -class works for the reduction strategy.