Tutorial - The Constraint Satisfaction Problem Dichotomy Theorem. Lecture 2

Ross Willard

Waterloo (Canada)

Assoc. Sym. Logic meeting - Ames, IA 16 May 2024

Example of a pp-interpretation

Recall $\mathbf{K}_{3}=(\{0,1,2\}, \neq)$ and $\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\} .
$$

Here is a pp-interpretation of \mathbf{K}_{3} in $\mathbf{M}_{3 S A T}$.

Example of a pp-interpretation

Recall $\mathbf{K}_{3}=(\{0,1,2\}, \neq)$ and $\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

Here is a pp-interpretation of \mathbf{K}_{3} in $\mathbf{M}_{3 S A T}$.

- Let α be the (atomic) formula $R_{3 S A T}\left(x_{1}, x_{2}, 0,1,1,0\right)$.

Then $D:=\alpha^{\mathrm{M}_{3 S A T}}=$

Example of a pp-interpretation

Recall $\mathbf{K}_{3}=(\{0,1,2\}, \neq)$ and $\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

Here is a pp-interpretation of \mathbf{K}_{3} in $\mathbf{M}_{3 S A T}$.

- Let α be the (atomic) formula $R_{3 S A T}\left(x_{1}, x_{2}, 0,1,1,0\right)$.

$$
\text { Then } D:=\alpha^{\mathrm{M}_{3 S A T}}=\{(0,0),(0,1),(1,0)\}
$$

Example of a pp-interpretation

Recall $\mathbf{K}_{3}=(\{0,1,2\}, \neq)$ and $\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

Here is a pp-interpretation of \mathbf{K}_{3} in $\mathbf{M}_{3 S A T}$.

- Let α be the (atomic) formula $R_{3 S A T}\left(x_{1}, x_{2}, 0,1,1,0\right)$. Then $D:=\alpha^{\mathrm{M}_{3 S A T}}=\{(0,0),(0,1),(1,0)\}$.
- Let β be the formula

$$
\alpha\left(x_{1}, x_{2}\right) \& \alpha\left(x_{3}, x_{4}\right) \& R_{3 S A T}\left(x_{1}, x_{2}, 0, x_{3}, x_{4}, 0\right)
$$

Then $S:=\beta^{\mathbf{M}_{3 \text { SAT }}}=$

Example of a pp-interpretation

Recall $\mathbf{K}_{3}=(\{0,1,2\}, \neq)$ and $\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

Here is a pp-interpretation of \mathbf{K}_{3} in $\mathbf{M}_{3 S A T}$.

- Let α be the (atomic) formula $R_{3 S A T}\left(x_{1}, x_{2}, 0,1,1,0\right)$. Then $D:=\alpha^{\mathrm{M}_{3 S A T}}=\{(0,0),(0,1),(1,0)\}$.
- Let β be the formula

$$
\alpha\left(x_{1}, x_{2}\right) \& \alpha\left(x_{3}, x_{4}\right) \& R_{3 S A T}\left(x_{1}, x_{2}, 0, x_{3}, x_{4}, 0\right)
$$

Then $S:=\beta^{M_{3 S A T}}=$ "not-equals" on D.

Example of a pp-interpretation

Recall $\mathbf{K}_{3}=(\{0,1,2\}, \neq)$ and $\mathbf{M}_{3 S A T}=\left(\{0,1\}, R_{3 S A T}\right)$ where

$$
R_{3 S A T}=\left\{\left(x_{1}, \ldots, x_{6}\right):\left(x_{1}, x_{2}, x_{3}\right) \neq\left(x_{4}, x_{5}, x_{6}\right)\right\}
$$

Here is a pp-interpretation of \mathbf{K}_{3} in $\mathbf{M}_{3 S A T}$.

- Let α be the (atomic) formula $R_{3 S A T}\left(x_{1}, x_{2}, 0,1,1,0\right)$. Then $D:=\alpha^{\mathrm{M}_{3 S A T}}=\{(0,0),(0,1),(1,0)\}$.
- Let β be the formula

$$
\alpha\left(x_{1}, x_{2}\right) \& \alpha\left(x_{3}, x_{4}\right) \& R_{3 S A T}\left(x_{1}, x_{2}, 0, x_{3}, x_{4}, 0\right)
$$

Then $S:=\beta^{M_{3 S A T}}=$ "not-equals" on D.
So $(D, S) \cong \mathbf{K}_{3}$, which proves $\mathbf{K}_{3} \xrightarrow{p p} \mathbf{M}_{3 S A T}$.

Summary of Lecture 1

$\mathrm{CSP}_{p}(\mathbf{M})$: decision problem about satisfiability of \wedge at-fmlas $/ \mathbf{M}$.
CSP Dichotomy Theorem of Bulatov and Zhuk (2017, 2020):

$$
\mathbf{M}_{3 S A T} \stackrel{p p}{\nmid} \mathbf{M} \Longrightarrow \operatorname{CSP}_{p}(\mathbf{M}) \text { is in } \mathrm{P} .
$$

Algebraic perspective

- $\mathbf{M} \mapsto$ idempotent polymorphism algebra \mathbb{M}.
- Connections between $\{p p-$ definable relations over $\mathbf{M}\}$ and $\operatorname{HSP}(\mathbb{M})$.

Positive characterization of $\mathbf{M}_{3 S A T} \stackrel{p p}{\nmid} \mathrm{M}$ (Theorem 1):
" \mathbb{M} has a Taylor operation"

Plan for today

Intro to solving $\operatorname{CSP}_{p}(\mathbb{M})$ when \mathbb{M} has a Taylor operation

(1) Preliminary remarks

- ^at-fmlas as multi-sorted structures
- Preprocessing - enforcing local consistency and irreducibility.
- Generalized \wedge at-fmlas.
(2) A "crazy" reduction strategy
(3) The module-free case
(9) Zhuk's extension/refinement to the general (Taylor) case

Part 1 - Preliminary remarks

Simplifying assumptions

Fix \mathbf{M} (finite structure).
Fix φ (\wedge at-fmla/M), say

$$
\varphi=\bigwedge_{i=1}^{N} \alpha_{i} \quad\left(\alpha_{i} \text { atomic }\right)
$$

(We want to know if $\varphi^{\mathrm{M}} \neq \varnothing$.)

Simplifying assumptions

Fix \mathbf{M} (finite structure).
Fix φ (\wedge at-fmla/M), say

$$
\varphi=\bigwedge_{i=1}^{N} \alpha_{i} \quad\left(\alpha_{i} \text { atomic }\right)
$$

(We want to know if $\varphi^{\mathrm{M}} \neq \varnothing$.)

WLOG we can assume (by modifying φ and/or \mathbf{M}):

Simplifying assumptions

Fix \mathbf{M} (finite structure).
Fix φ (\wedge at-fmla/M), say

$$
\varphi=\bigwedge_{i=1}^{N} \alpha_{i} \quad\left(\alpha_{i} \text { atomic }\right)
$$

(We want to know if $\varphi^{\mathrm{M}} \neq \varnothing$.)

WLOG we can assume (by modifying φ and/or \mathbf{M}):

- No variable occurs more than once in each α_{i}.

Simplifying assumptions

Fix \mathbf{M} (finite structure).
Fix φ (\wedge at-fmla/M), say

$$
\varphi=\bigwedge_{i=1}^{N} \alpha_{i} \quad\left(\alpha_{i} \text { atomic }\right)
$$

(We want to know if $\varphi^{M} \neq \varnothing$.)

WLOG we can assume (by modifying φ and/or \mathbf{M}):

- No variable occurs more than once in each α_{i}.
- Parameters occur only in α_{i} of the form $x=a$.

Simplifying assumptions

Fix \mathbf{M} (finite structure).
Fix φ (\wedge at-fmla/ \mathbf{M}), say

$$
\varphi=\bigwedge_{i=1}^{N} \alpha_{i} \quad\left(\alpha_{i} \text { atomic }\right)
$$

(We want to know if $\varphi^{\mathrm{M}} \neq \varnothing$.)

WLOG we can assume (by modifying φ and/or \mathbf{M}):

- No variable occurs more than once in each α_{i}.
- Parameters occur only in α_{i} of the form $x=a$.
- Re-interpret $x=a$ as $U_{a}(x)$ where $U_{a}=\{a\}$ is now a relation of \mathbf{M}.
- Now parameters don't occur at all.

Simplifying assumptions

Fix \mathbf{M} (finite structure).
Fix φ (\wedge at-fmla/ \mathbf{M}), say

$$
\varphi=\bigwedge_{i=1}^{N} \alpha_{i} \quad\left(\alpha_{i} \text { atomic }\right)
$$

(We want to know if $\varphi^{M} \neq \varnothing$.)

WLOG we can assume (by modifying φ and/or \mathbf{M}):

- No variable occurs more than once in each α_{i}.
- Parameters occur only in α_{i} of the form $x=a$.
- Re-interpret $x=a$ as $U_{a}(x)$ where $U_{a}=\{a\}$ is now a relation of \mathbf{M}.
- Now parameters don't occur at all.

Atomic subformulas $\alpha_{1}, \ldots, \alpha_{N}$ now are called the constraints (of φ).

Microstructure hypergraph

Microstructure hypergraph

Example: $\quad \mathbf{M}=(\{0,1,2\},<, \leq, E)$ where $E=\{(a, a, a): a \in M\}$,

$$
\varphi=(x<y) \wedge(y \leq z) \wedge E(z, u, v)
$$

Construct

Microstructure hypergraph

Example: $\quad \mathbf{M}=(\{0,1,2\},<, \leq, E)$ where $E=\{(a, a, a): a \in M\}$,

$$
\varphi=(x<y) \wedge(y \leq z) \wedge E(z, u, v)
$$

Construct

Formally: the microstructure (multi-)hypergraph of a \wedge at-fmla φ over \mathbf{M} is the multi-sorted structure Φ whose:

- Sorts are indexed by the variables occurring in φ.
- Domain of each sort is M.
- Each constraint $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ of φ gives a relation $R_{x_{i_{1}}, \ldots, x_{i_{k}}}$ of Φ, which is just R interpreted as having type $\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$.

Solution to $\varphi=$ choice of one value in each domain of Φ collectively satisfying every relation of Φ.

Preprocessing: 1-consistency

- Φ^{\prime} is a substructure of the original Φ.
- Φ^{\prime} has the same solutions as Φ (and φ).
- Each relation of Φ^{\prime} is subdirect (i.e., projects onto each coordinate domain).
Φ^{\prime} with this last property is called 1 -consistent.

Preprocessing: 1-consistency

- Φ^{\prime} is a substructure of the original Φ.
- Φ^{\prime} has the same solutions as $\Phi($ and $\varphi)$.
- Each relation of Φ^{\prime} is subdirect (i.e., projects onto each coordinate domain).
Φ^{\prime} with this last property is called 1 -consistent.
- Φ^{\prime} can be found efficiently (polynomial time in the size of φ).
- Each domain of Φ^{\prime} is pp-definable in Φ (hence also in \mathbf{M}).

Cycle consistency

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.)

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 . Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.)

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.
Can't "return" to $1 . \longrightarrow$ Returning to Φ^{\prime}, delete 1 from sort x.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.
Can't "return" to $1 . \longrightarrow$ Returning to Φ^{\prime}, delete 1 from sort x.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.
Can't "return" to $1 . \longrightarrow$ Returning to Φ^{\prime}, delete 1 from sort x.

Cycle consistency

Pick a domain (say x) and a value in that domain, say 1 .
Pick a "cycle through relations," e.g., $x \rightarrow y \rightarrow z \rightarrow x$. (Ignore the rest.) Starting at $x=1$, find the value(s) in y consistent with the (x, y) relation. Continue along the cycle.
Can't "return" to $1 . \longrightarrow$ Returning to Φ^{\prime}, delete 1 from sort x.
"Cycle consistency" = 1-consistency + enforcing this cycle condition.

Irreducibility; generalized fmlas

Both Bulatov's and Zhuk's proofs require one more "consistency" notion (related to the inductive nature of their algorithms).

- They are more difficult to explain, and justify. Zhuk calls his condition irreducibility.

Irreducibility; generalized fmlas

Both Bulatov's and Zhuk's proofs require one more "consistency" notion (related to the inductive nature of their algorithms).

- They are more difficult to explain, and justify.

Zhuk calls his condition irreducibility.

Enforcing any/all of these conditions (1-consistency, cycle-consistency, irreducibility):

- Does not change the set of solutions.
- Might lead to empty domain(s) \rightsquigarrow "proof of inconsistency."
- Else, leads to a generalized \wedge at-formula or Gen \wedge at-fmla:

Substructure of a microstructure hypergraph of a ^at-fmla, where the domains are pp-definable subsets of \mathbf{M}.

Going forward, I focus entirely on Gen^at-fmlas (usually 1-consistent).

Domains D_{x}, D_{y}, \ldots and relations $R \subseteq D_{x} \times D_{y}$ etc. are pp-definable in \mathbf{M}.

Going forward, I focus entirely on Gen^at-fmlas (usually 1-consistent).

Domains D_{x}, D_{y}, \ldots and relations $R \subseteq D_{x} \times D_{y}$ etc. are pp-definable in \mathbf{M}.

Flipping to the algebraic perspective: domains are subalgebras $\mathbb{D}_{x} \leq \mathbb{M}$, and relations are subalgebras $\mathbb{R} \leq \mathbb{D}_{x} \times \mathbb{D}_{y}$.

Call Φ a Gen \wedge at-fmla over \mathbb{M}.

Part 2 - Reduction Strategy

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}.
(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}.
(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

Proposal: "Simplify" Φ, in this way:
(1) Temporarily ignore the constraint relations.
(2) Pick one of the domains, say \mathbb{D}_{x}. Pick a proper subuniverse $B<\mathbb{D}_{x}$.
(3) Throw out the elements in $D_{x} \backslash B$. Define $\mathbb{D}_{x}^{\prime}:=\mathbb{B}$.
(9) Bring back the relations (trimmed). Let Φ^{\prime} be the new Gen^at-fmla.
(5) Just answer the question for Φ^{\prime}.
(Φ^{\prime} is a proxy for Φ.)

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}.
(Assume cycle-consistent, irreducible,)

Question: does Φ have a solution?

Proposal: "Simplify" Φ, in this way:
(1) Temporarily ignore the constraint relations.
(2) Pick one of the domains, say \mathbb{D}_{x}. Pick a proper subuniverse $B<\mathbb{D}_{x}$.
(3) Throw out the elements in $D_{x} \backslash B$. Define $\mathbb{D}_{x}^{\prime}:=\mathbb{B}$.
(9) Bring back the relations (trimmed). Let Φ^{\prime} be the new Gen^at-fmla.
(3) Just answer the question for Φ^{\prime}.
(Φ^{\prime} is a proxy for Φ.)

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}.
(Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

Proposal: "Simplify" Φ, in this way:
(1) Temporarily ignore the constraint relations.
(2) Pick one of the domains, say \mathbb{D}_{x}. Pick a proper subuniverse $B<\mathbb{D}_{x}$.
(3) Throw out the elements in $D_{x} \backslash B$. Define $\mathbb{D}_{x}^{\prime}:=\mathbb{B}$.
(9) Bring back the relations (trimmed). Let Φ^{\prime} be the new Gen^at-fmla.
(3) Just answer the question for Φ^{\prime}.
(Φ^{\prime} is a proxy for Φ.)

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}. (Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

Proposal: "Simplify" Φ, in this way:
(1) Temporarily ignore the constraint relations.
(2) Pick one of the domains, say \mathbb{D}_{x}. Pick a proper subuniverse $B<\mathbb{D}_{x}$.
(3) Throw out the elements in $D_{x} \backslash B$. Define $\mathbb{D}_{x}^{\prime}:=\mathbb{B}$.
((Bring back the relations (trimmed). Let Φ^{\prime} be the new Gen^at-fmla.
(3) Just answer the question for Φ^{\prime}.
(Φ^{\prime} is a proxy for Φ.)

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}. (Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

Proposal: "Simplify" Φ, in this way:
(1) Temporarily ignore the constraint relations.
(2) Pick one of the domains, say \mathbb{D}_{x}. Pick a proper subuniverse $B<\mathbb{D}_{x}$.
(3) Throw out the elements in $D_{x} \backslash B$. Define $\mathbb{D}_{x}^{\prime}:=\mathbb{B}$.
((Bring back the relations (trimmed). Let Φ^{\prime} be the new Gen^at-fmla.
(3) Just answer the question for Φ^{\prime}.
(Φ^{\prime} is a proxy for Φ.)

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}. (Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

Proposal: "Simplify" Φ, in this way:
(1) Temporarily ignore the constraint relations.
(2) Pick one of the domains, say \mathbb{D}_{x}. Pick a proper subuniverse $B<\mathbb{D}_{x}$.
(3) Throw out the elements in $D_{x} \backslash B$. Define $\mathbb{D}_{x}^{\prime}:=\mathbb{B}$.
(9) Bring back the relations (trimmed). Let Φ^{\prime} be the new Gen^at-fmla.
(3) Just answer the question for Φ^{\prime}.
(Φ^{\prime} is a proxy for Φ.)

Crazy Idea

You are given a Gen^at-fmla Φ / \mathbb{M}. (Assume cycle-consistent, irreducible, ...)

Question: does Φ have a solution?

Proposal: "Simplify" Φ, in this way:
(1) Temporarily ignore the constraint relations.
(2) Pick one of the domains, say \mathbb{D}_{x}. Pick a proper subuniverse $B<\mathbb{D}_{x}$.
(3) Throw out the elements in $D_{x} \backslash B$. Define $\mathbb{D}_{x}^{\prime}:=\mathbb{B}$.
(9) Bring back the relations (trimmed). Let Φ^{\prime} be the new Gen^at-fmla.
(3) Just answer the question for Φ^{\prime}.
(Φ^{\prime} is a proxy for Φ.)
What could possibly go wrong?

Problem: Maybe Φ has solutions, but Φ^{\prime} does not.
(Because every solution to Φ passes through $D_{x} \backslash B$.)

Problem: Maybe Φ has solutions, but Φ^{\prime} does not.
(Because every solution to Φ passes through $D_{x} \backslash B$.)

Question: Can we choose \mathbb{D}_{x} and "special" $B<\mathbb{D}_{x}$ to avoid the problem?
I.e., so that
Φ has a solution $\Longrightarrow \Phi$ has a solution passing through $B($ at $x)$?
(Without knowing the relations of Φ ?)

Problem: Maybe Φ has solutions, but Φ^{\prime} does not.
(Because every solution to Φ passes through $D_{x} \backslash B$.)

Question: Can we choose \mathbb{D}_{x} and "special" $B<\mathbb{D}_{x}$ to avoid the problem?
I.e., so that

$$
\Phi \text { has a solution } \Longrightarrow \Phi \text { has a solution passing through } B(\text { at } x) ?
$$

(Without knowing the relations of Φ ?)

There is a precedent (Barto, Kozik): "Yes" in the module-free case.

Part 3 - The module-free case

"Module-free case" - refers to finite structures \mathbf{M} for which

- $\mathbf{M}_{3 S A T} \stackrel{\text { pp }}{\hookrightarrow} \mathbf{M}$, and
- $\operatorname{HSP}(\mathbb{M})$ contains no (idempotent reduct of a) module.

Equivalent relational characterization:

$$
\left(\mathbb{Z}_{p}^{n}, \quad " x-y+z-w=0 "\right) \stackrel{p p}{\hookrightarrow} \mathbf{M} \text { for all primes } p \text { and all } n \geq 1 .
$$

Barto \& Kozik (2009) proved CSP Dichotomy for the module-free case, by showing that the "crazy idea" strategy can be implemented.

What "special" subuniverses did they choose?

WARNING:

The Surgeon General has determined that listening to rest of this lecture may cause nausea and/or headaches

Absorbing subuniverses

Definition (Barto, Kozik)

Let \mathbb{A} be a finite idempotent algebra and $B \leq \mathbb{A}$.
Say that B is a 2-absorbing subuniverse of \mathbb{A}, and write $B \triangleleft_{2} \mathbb{A}$, if there exists a binary (term) operation $t(x, y)$ of \mathbb{A} such that

$$
t(A, B) \subseteq B \quad \text { and } \quad t(B, A) \subseteq B
$$

Absorbing subuniverses

Definition (Barto, Kozik)

Let \mathbb{A} be a finite idempotent algebra and $B \leq \mathbb{A}$.
Say that B is a 2-absorbing subuniverse of \mathbb{A}, and write $B \triangleleft_{2} \mathbb{A}$, if there exists a binary (term) operation $t(x, y)$ of \mathbb{A} such that

$$
t(A, B) \subseteq B \quad \text { and } \quad t(B, A) \subseteq B
$$

Say that B is a 3-absorbing subuniverse of \mathbb{A}, and write $B \triangleleft_{3} \mathbb{A}$, if there exists a ternary operation $t(x, y, z)$ of \mathbb{A} such that

$$
t(A, B, B) \subseteq B \quad \text { and } \quad t(B, A, B) \subseteq B \quad \text { and } \quad t(B, B, A) \subseteq B
$$

Absorbing subuniverses

Definition (Barto, Kozik)

Let \mathbb{A} be a finite idempotent algebra and $B \leq \mathbb{A}$.
Say that B is a 2-absorbing subuniverse of \mathbb{A}, and write $B \triangleleft_{2} \mathbb{A}$, if there exists a binary (term) operation $t(x, y)$ of \mathbb{A} such that

$$
t(A, B) \subseteq B \quad \text { and } \quad t(B, A) \subseteq B
$$

Say that B is a 3-absorbing subuniverse of \mathbb{A}, and write $B \triangleleft_{3} \mathbb{A}$, if there exists a ternary operation $t(x, y, z)$ of \mathbb{A} such that

$$
t(A, B, B) \subseteq B \quad \text { and } \quad t(B, A, B) \subseteq B \quad \text { and } \quad t(B, B, A) \subseteq B
$$

Similarly for n-absorbing subuniverse and $B \triangleleft_{n} \mathbb{A}$.

Examples

(1) $\mathbb{A}=(A, *, \ldots)$ with $0 \in A$ such that $0 * x=x * 0=0 \quad \forall x \in A$. $\{0\} \triangleleft_{2} \mathbb{A}$ witnessed by $x * y$.

Examples

(1) $\mathbb{A}=(A, *, \ldots)$ with $0 \in A$ such that $0 * x=x * 0=0 \quad \forall x \in A$. $\{0\} \triangleleft_{2} \mathbb{A}$ witnessed by $x * y$.
(2) $\mathbb{A}=(\{0,1\}, \operatorname{maj}(x, y, z))$.
\mathbb{A} has no proper 2-absorbing subuniverse.

Examples

(1) $\mathbb{A}=(A, *, \ldots)$ with $0 \in A$ such that $0 * x=x * 0=0 \quad \forall x \in A$. $\{0\} \triangleleft_{2} \mathbb{A}$ witnessed by $x * y$.
(2) $\mathbb{A}=(\{0,1\}, \operatorname{maj}(x, y, z))$.
\mathbb{A} has no proper 2-absorbing subuniverse. But
$\{0\},\{1\} \triangleleft_{3} \mathbb{A}$ both witnessed by $\operatorname{maj}(x, y, z)$.

Examples

(1) $\mathbb{A}=(A, *, \ldots)$ with $0 \in A$ such that $0 * x=x * 0=0 \quad \forall x \in A$.

$$
\{0\} \triangleleft_{2} \mathbb{A} \quad \text { witnessed by } x * y
$$

(2) $\mathbb{A}=(\{0,1\}, \operatorname{maj}(x, y, z))$.
\mathbb{A} has no proper 2-absorbing subuniverse. But

$$
\{0\},\{1\} \triangleleft_{3} \mathbb{A} \quad \text { both witnessed by } \operatorname{maj}(x, y, z)
$$

(3) $\mathbb{A}=(\{0,1,2\}, \cdot)$ where \cdot is the "rock-paper-scissors" operation.

.	0	1	2
0	0	1	0
1	1	1	2
2	0	2	2

\mathbb{A} has no proper n -absorbing subuniverse (for any n).
$B \triangleleft_{2} \mathbb{A} \Longrightarrow B \triangleleft_{3} \mathbb{A} \Longrightarrow B \triangleleft_{4} \mathbb{A} \Longrightarrow \cdots$
B is an absorbing subuniverse (written $B \triangleleft \mathbb{A}$) if it is an n-absorbing subuniverse for some n.

A good lecture would spend ≥ 10 minutes talking about interesting formal properties of \triangleleft.

Here are two:
(1) \triangleleft propagates within pp-definitions (e.g., over Gen^at-fmlas).
(2) Suppose $\mathbb{A}=$ the idempotent polymorphism algebra of \mathbf{M} and $B \triangleleft_{n} \mathbb{A}$. Then $\forall m \geq n, \forall$ pp-formula $\varphi\left(x_{1}, \ldots, x_{m}\right) / \mathbf{M}$, if for every i there exists a solution to φ in \mathbf{M} passing through B in all but coordinate i, then there exists a solution to φ in B^{m}.

PC algebras

\mathbb{A} is polynomially complete (PC) if every operation $f: A^{n} \rightarrow A$ can be realized as a term operation of \mathbb{A} with parameters:

$$
f\left(x_{1}, \ldots, x_{n}\right)=t\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{k}\right)
$$

PC algebras

\mathbb{A} is polynomially complete (PC) if every operation $f: A^{n} \rightarrow A$ can be realized as a term operation of \mathbb{A} with parameters:

$$
f\left(x_{1}, \ldots, x_{n}\right)=t\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{k}\right)
$$

Examples
(1) $\mathbb{A}=(A$, all idempotent operations on $A)$.

The only proper subuniverses are singletons $\{0\}$. All are absorbing subuniverses.

PC algebras

\mathbb{A} is polynomially complete (PC) if every operation $f: A^{n} \rightarrow A$ can be realized as a term operation of \mathbb{A} with parameters:

$$
f\left(x_{1}, \ldots, x_{n}\right)=t\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{k}\right)
$$

Examples
(1) $\mathbb{A}=(A$, all idempotent operations on $A)$.

The only proper subuniverses are singletons $\{0\}$. All are absorbing subuniverses.
(2) $\mathbb{A}=(\{0,1,2\}, \cdot)$ where \cdot is the "rock-paper-scissors" operation.

Every subset of A is a subuniverse. No proper subset is an absorbing subuniverse.

Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

- \mathbb{M} is finite, idempotent, and has a Taylor operation.
- $\operatorname{HSP}(\mathbb{M})$ is module-free. (i.e., congruence meet-semidistributive, i.e., omits $\mathbf{1 , 2}$)
- Φ is a Gen^at-fmla over \mathbb{M}, and is cycle-consistent.

Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)
Suppose

- \mathbb{M} is finite, idempotent, and has a Taylor operation.
- $\operatorname{HSP}(\mathbb{M})$ is module-free. (i.e., congruence meet-semidistributive, i.e., omits $\mathbf{1 , 2}$)
- Φ is a Gen^at-fmla over \mathbb{M}, and is cycle-consistent.

Then:
(1) If \mathbb{D}_{x} is a domain and $B \triangleleft \mathbb{D}_{x}$, then B "works" for the red. strategy: Φ has a solution $\Longrightarrow \Phi$ has a solution passing through B.

Reduction strategy (module-free case)

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

- \mathbb{M} is finite, idempotent, and has a Taylor operation.
- $\operatorname{HSP}(\mathbb{M})$ is module-free. (i.e., congruence meet-semidistributive, i.e., omits $\mathbf{1 , 2}$)
- Φ is a Gen^at-fmla over \mathbb{M}, and is cycle-consistent.

Then:
(1) If \mathbb{D}_{x} is a domain and $B \triangleleft \mathbb{D}_{x}$, then B "works" for the red. strategy: Φ has a solution $\Longrightarrow \Phi$ has a solution passing through B.
(2) If no \mathbb{D}_{y} has a proper absorbing subuniverse, then for every \mathbb{D}_{x} with
$\left|D_{x}\right|>1$ and for every maximal congruence θ of \mathbb{D}_{x},
(a) (Zhuk) \mathbb{D}_{x} / θ is $P C$, and
(b) Every θ-class works for the reduction strategy.

Part 4 - Zhuk's extension/refinement

Left centers, Zhuk centers

\mathbb{A}, \mathbb{C} idempotent algebras
Suppose $R \leq_{s d} \mathbb{A} \times \mathbb{C}$. $s d=$ "subdirect," i.e., $\operatorname{proj}_{1}(R)=A$ and $\operatorname{proj}_{2}(R)=C$

Left centers, Zhuk centers

\mathbb{A}, \mathbb{C} idempotent algebras
Suppose $R \leq_{s d} \mathbb{A} \times \mathbb{C} . \quad s d=$ "subdirect," i.e., $\operatorname{proj}_{1}(R)=A$ and $\operatorname{proj}_{2}(R)=C$
The left center of R is

$$
\lambda(R):=\{a \in A:\{a\} \times C \subseteq R\} .
$$

Left centers, Zhuk centers

\mathbb{A}, \mathbb{C} idempotent algebras
Suppose $R \leq_{s d} \mathbb{A} \times \mathbb{C} . \quad s d=$ "subdirect," i.e., $\operatorname{proj}_{1}(R)=A$ and $\operatorname{proj}_{2}(R)=C$
The left center of R is

$$
\lambda(R):=\{a \in A:\{a\} \times C \subseteq R\} .
$$

Definition

Suppose \mathbb{A} is finite and idempotent, and $B \leq \mathbb{A}$.
Say B is a Zhuk center of \mathbb{A}, and write $B \leq_{z C} \mathbb{A}$, if
$B=\lambda(R)$ for some $R \leq_{\text {sd }} \mathbb{A} \times \mathbb{C}$, where \mathbb{C} is finite, idempotent, and \mathbb{C} has no proper 2-absorbing subuniverse
B is a Zhuk center of $\mathbb{A} \Longleftrightarrow B=\lambda(R)$ for some $R \leq_{s d} \mathbb{A} \times \mathbb{C}$, where \mathbb{C} has no proper 2-absorbing subuniverse.

Example. $\quad \mathbb{A}=(\{0,1\}$, maj $)$

$$
B=\{0\}
$$

B is a Zhuk center of $\mathbb{A} \Longleftrightarrow B=\lambda(R)$ for some $R \leq_{s d} \mathbb{A} \times \mathbb{C}$, where \mathbb{C} has no proper 2-absorbing subuniverse.

Example. $\quad \mathbb{A}=(\{0,1\}$, maj $)$

$$
B=\{0\}
$$

$\operatorname{maj}(x, y, z)$ is monotone, so \leq is a subuniverse of \mathbb{A}^{2} :

B is a Zhuk center of $\mathbb{A} \Longleftrightarrow B=\lambda(R)$ for some $R \leq_{\text {sd }} \mathbb{A} \times \mathbb{C}$, where \mathbb{C} has no proper 2-absorbing subuniverse.

Example. $\quad \mathbb{A}=(\{0,1\}$, maj $)$

$$
B=\{0\}
$$

$\operatorname{maj}(x, y, z)$ is monotone, so \leq is a subuniverse of \mathbb{A}^{2} :

\leq is subdirect, and we saw $\mathbb{C}(=\mathbb{A})$ has no proper 2-absorb. subuniverse.
B is a Zhuk center of $\mathbb{A} \Longleftrightarrow B=\lambda(R)$ for some $R \leq_{s d} \mathbb{A} \times \mathbb{C}$, where \mathbb{C} has no proper 2-absorbing subuniverse.

Example. $\quad \mathbb{A}=(\{0,1\}$, maj $)$

$$
B=\{0\}
$$

$\operatorname{maj}(x, y, z)$ is monotone, so \leq is a subuniverse of \mathbb{A}^{2} :

\leq is subdirect, and we saw $\mathbb{C}(=\mathbb{A})$ has no proper 2-absorb. subuniverse.
The left center of \leq is

$$
\lambda(\leq)=\{0\}
$$

$\therefore\{0\}$ is a Zhuk center of \mathbb{A}.

A good lecture would spend ≥ 10 minutes talking about interesting formal properties of $\leq z c$.

Here are two (from Zhuk).
(1) If \mathbb{A} has a Taylor operation, then

$$
B \leq z c \mathbb{A} \Longrightarrow B \triangleleft_{3} \mathbb{A} .
$$

(2) $\leq_{z C}$ propagates within pp-definitions.

Unlike absorbing subuniverses, Zhuk centers are fragile under adding extra operations to \mathbb{A}.

Theorem 2 (Kozik 2016, improving Barto-Kozik 2009)

Suppose

- \mathbb{M} is finite, idempotent, and has a Taylor operation.
- $\operatorname{HSP}(\mathbb{M})$ is module-free.
- Φ is a Gen^at-fmla over \mathbb{M}, and is cycle-consistent.

Then:
(1) If \mathbb{D}_{x} is a domain and $B \triangleleft \mathbb{D}_{x}$, then B "works" for the red. strategy: Φ has a solution $\Longrightarrow \Phi$ has a solution passing through B.
(2) If no \mathbb{D}_{y} has a proper absorbing subuniverse, then for every \mathbb{D}_{x} with $\left|D_{x}\right|>1$ and for every maximal congruence θ of \mathbb{D}_{x},
(a) \mathbb{D}_{x} / θ is PC , and
(b) every θ-class works for the reduction strategy.

Theorem 3 (Kozik 2016, improving Barto-Kozik 2009) Zhuk 2017/20

Suppose

- \mathbb{M} is finite, idempotent, and has a Taylor operation.
- HSP(M) is molue-free
- Φ is a Gen^at-fmla over \mathbb{M}, and is cycle-consistent and irreducible.

Then:

$$
\underbrace{B \triangleleft_{2} \mathbb{D}_{x} \text { or } B<z c \mathbb{D}_{x}}
$$

(1) If \mathbb{D}_{x} is a domain and $B \mathbb{D}_{x}$, then B "works" for the red. strategy:
Φ has a solution $\Longrightarrow \Phi$ has a solution passing through B.

2-absorbing subuniverse or Zhuk center

(2) If no \mathbb{D}_{y} has a proper absoriverse, then for every \mathbb{D}_{x} with $\left|D_{x}\right|>1$ and for every maximal congruence θ of \mathbb{D}_{x},
(a) \mathbb{D}_{x} / θ is PC or a simple module, and
(b) If PC, then every θ-class works for the reduction strategy.

