Tutorial - The Constraint Satisfaction Problem Dichotomy Theorem. Lecture 3

Ross Willard

Waterloo (Canada)

Assoc. Sym. Logic meeting - Ames, IA 17 May 2024

Summary of Lecture 2

" $\operatorname{CSP}_{p}(\mathbf{M})$ when \mathbb{M} has a Taylor operation"

Representation of \wedge at-fmla/ \mathbf{M} by its microstructure hypergraph Φ.

- Preprocessing: 1-consistency, cycle-consistency, irreducibility.
- Generalized \wedge at-fmlas/M.
"Crazy" reduction strategy (for solving satisfiability of Gen \wedge at-fmlas)
Previous success in the module-free case (Theorem 2, Kozik)
Theorem 3 (Zhuk): success "up to modules" in the general (Taylor) case:
(1) 2-absorbing subuniverses
(2) Zhuk centers (special kind of 3-absorbing)
(3) PC congruence classes (when (1) and (2) not available)

Plan for today

"One aspect of Zhuk's proof: linear equations"

(1) Examples
(2) Definitions: SIs, similarity
(3) Definitions: Linear constraints

- Rectangular relations, linear relations
- Adjacency, components
(9) Weakening inconsistent formulas
- Critical relations, crucial weakenings
- Expanded covers
- A "crucial" theorem of Zhuk
(5) Postscript (time permitting)
- Proof sketch of Theorem 3 (2-absorbing case)
- Lies that I have told

Part 1 - Examples

Linear equations manifest in Gen^at-fmlas in two ways:

- Explicitly - via a single constraint.
- Implicitly - via a combination of constraints (= pp-definition).

Example 1 (explicit).

$$
\begin{aligned}
\mathbb{Z}_{2} & :=(\{0,1\}, x+y+z), \quad R \leq_{s d} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
R & :=\left\{(a, b, c) \in\left(Z_{2}\right)^{3}: a+b+c=0\right\} .
\end{aligned}
$$

(No more fancy pictures of 3-ary relations.)

Linear equations manifest in Gen^at-fmlas in two ways:

- Explicitly - via a single constraint.
- Implicitly - via a combination of constraints (= pp-definition).

Example 1 (explicit).

$$
\begin{aligned}
\mathbb{Z}_{2} & :=(\{0,1\}, x+y+z), \quad R \leq_{s d} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
R & :=\left\{(a, b, c) \in\left(Z_{2}\right)^{3}: a+b+c=0\right\}
\end{aligned}
$$

(No more fancy pictures of 3-ary relations.)

Linear equations manifest in Gen^at-fmlas in two ways:

- Explicitly - via a single constraint.
- Implicitly - via a combination of constraints (= pp-definition).

Example 1 (explicit).

$$
\begin{aligned}
\mathbb{Z}_{2} & :=(\{0,1\}, x+y+z), \quad R \leq_{s d} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
R & :=\left\{(a, b, c) \in\left(Z_{2}\right)^{3}: a+b+c=0\right\}
\end{aligned}
$$

(No more fancy pictures of 3-ary relations.)

Linear equations manifest in Gen^at-fmlas in two ways:

- Explicitly - via a single constraint.
- Implicitly - via a combination of constraints (= pp-definition).

Example 1 (explicit).

$$
\begin{aligned}
\mathbb{Z}_{2} & :=(\{0,1\}, x+y+z), \quad R \leq_{s d} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
R & :=\left\{(a, b, c) \in\left(Z_{2}\right)^{3}: a+b+c=0\right\} .
\end{aligned}
$$

(No more fancy pictures of 3-ary relations.)

Linear equations manifest in Gen^at-fmlas in two ways:

- Explicitly - via a single constraint.
- Implicitly - via a combination of constraints (= pp-definition).

Example 1 (explicit).

$$
\begin{aligned}
\mathbb{Z}_{2} & :=(\{0,1\}, x+y+z), \quad R \leq_{s d} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
R & :=\left\{(a, b, c) \in\left(Z_{2}\right)^{3}: a+b+c=0\right\} .
\end{aligned}
$$

(No more fancy pictures of 3-ary relations.)

Linear equations manifest in Gen^at-fmlas in two ways:

- Explicitly - via a single constraint.
- Implicitly - via a combination of constraints (= pp-definition).

Example 1 (explicit).

$$
\begin{aligned}
\mathbb{Z}_{2} & :=(\{0,1\}, x+y+z), \quad R \leq_{s d} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
R & :=\left\{(a, b, c) \in\left(Z_{2}\right)^{3}: a+b+c=0\right\} .
\end{aligned}
$$

(No more fancy pictures of 3-ary relations.)

Example 2 (explicit). $\quad \mathbb{Q}=\left(Q_{8}, x y^{-1} z\right)$ where $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$.
Define

$$
\begin{aligned}
& S \leq_{s d} \mathbb{Q} \times \mathbb{Q} \times \mathbb{Z}_{2} \text { by } \\
& S=\left\{(a, b, c) \in Q_{8} \times Q_{8} \times Z_{2}: a b^{-1}=(-1)^{c}\right\}
\end{aligned}
$$

Example 2 (explicit). $\quad \mathbb{Q}=\left(Q_{8}, x y^{-1} z\right)$ where $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$.
Define

$$
S \leq_{s d} \mathbb{Q} \times \mathbb{Q} \times \mathbb{Z}_{2} \text { by }
$$

$$
S=\left\{(a, b, c) \in Q_{8} \times Q_{8} \times Z_{2}: a b^{-1}=(-1)^{c}\right\}
$$

The point here is that:

- We have a minimal congruence E of \mathbb{Q}, whose classes are $\cong \mathbb{Z}_{2}$.
- S imposes a linear equation on each "branch" through E-classes.

Example 3 (implicit). Recall $R \leq_{\text {sd }} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ from Example 1 .
Consider R as an algebra \mathbb{R}.
Define

$$
\begin{aligned}
\operatorname{proj}_{i} & : \mathbb{R} \rightarrow \mathbb{Z}_{2} \quad \text { for } i=1,2,3 \\
S_{i} & :=\operatorname{graph}^{\left(\operatorname{proj}_{i}\right)} \leq_{\text {sd }} \mathbb{R} \times \mathbb{Z}_{2}
\end{aligned}
$$

Let Φ be the Gen^at-fmla

$$
S_{1}\left(u, x_{1}\right) \& S_{2}\left(u, x_{2}\right) \& S_{3}\left(u, x_{3}\right)
$$

Example 3 (implicit). Recall $R \leq_{\text {sd }} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ from Example 1 .
Consider R as an algebra \mathbb{R}.
Define

$$
\begin{aligned}
\operatorname{proj}_{j} & : \mathbb{R} \rightarrow \mathbb{Z}_{2} \quad \text { for } i=1,2,3 \\
S_{i} & :=\operatorname{graph}\left(\operatorname{proj}_{i}\right) \leq_{\text {sd }} \mathbb{R} \times \mathbb{Z}_{2}
\end{aligned}
$$

Let Φ be the Gen^at-fmla

$$
S_{1}\left(u, x_{1}\right) \& S_{2}\left(u, x_{2}\right) \& S_{3}\left(u, x_{3}\right)
$$

This gadget implicitly defines the linear relation $R\left(x_{1}, x_{2}, x_{3}\right)$, yet each individual constraint relation is "simple."

- Each constraint "is simply" a homomorphism from \mathbb{R} to \mathbb{Z}_{2}
- ... and so in essence "is" nothing more than an isomorphism between two copies of $\mathbb{Z}_{2}\left(\mathbb{R} / E_{i}\right.$ and \mathbb{Z}_{2} where where $\left.E_{i}=\operatorname{ker}\left(S_{i}\right)\right) \ldots$
- ... yet the implied constraint $\exists u \Phi$ on x_{1}, x_{2}, x_{3} is linear. This can be explained by lattice-theoretic relationships between E_{1}, E_{2}, E_{3} in the congruence lattice of \mathbb{R}.

- Each constraint "is simply" a homomorphism from \mathbb{R} to \mathbb{Z}_{2}
- ... and so in essence "is" nothing more than an isomorphism between two copies of $\mathbb{Z}_{2}\left(\mathbb{R} / E_{i}\right.$ and \mathbb{Z}_{2} where where $\left.E_{i}=\operatorname{ker}\left(S_{i}\right)\right) \ldots$
- ... yet the implied constraint $\exists u \Phi$ on x_{1}, x_{2}, x_{3} is linear. This can be explained by lattice-theoretic relationships between E_{1}, E_{2}, E_{3} in the congruence lattice of \mathbb{R}.
$\operatorname{Con}(\mathbb{R})$

- Each constraint "is simply" a homomorphism from \mathbb{R} to \mathbb{Z}_{2}
- ... and so in essence "is" nothing more than an isomorphism between two copies of $\mathbb{Z}_{2}\left(\mathbb{R} / E_{i}\right.$ and \mathbb{Z}_{2} where where $\left.E_{i}=\operatorname{ker}\left(S_{i}\right)\right) \ldots$
- ... yet the implied constraint $\exists u \Phi$ on x_{1}, x_{2}, x_{3} is linear. This can be explained by lattice-theoretic relationships between E_{1}, E_{2}, E_{3} in the congruence lattice of \mathbb{R}.

Con (R)

- Each constraint "is simply" a homomorphism from \mathbb{R} to \mathbb{Z}_{2}
- ... and so in essence "is" nothing more than an isomorphism between two copies of $\mathbb{Z}_{2}\left(\mathbb{R} / E_{i}\right.$ and \mathbb{Z}_{2} where where $\left.E_{i}=\operatorname{ker}\left(S_{i}\right)\right) \ldots$
- ... yet the implied constraint $\exists u \Phi$ on x_{1}, x_{2}, x_{3} is linear. This can be explained by lattice-theoretic relationships between E_{1}, E_{2}, E_{3} in the congruence lattice of \mathbb{R}.

Con (\mathbb{R})

- Each constraint "is simply" a homomorphism from \mathbb{R} to \mathbb{Z}_{2}
- ... and so in essence "is" nothing more than an isomorphism between two copies of $\mathbb{Z}_{2}\left(\mathbb{R} / E_{i}\right.$ and \mathbb{Z}_{2} where where $\left.E_{i}=\operatorname{ker}\left(S_{i}\right)\right) \ldots$
- ... yet the implied constraint $\exists u \Phi$ on x_{1}, x_{2}, x_{3} is linear. This can be explained by lattice-theoretic relationships between E_{1}, E_{2}, E_{3} in the congruence lattice of \mathbb{R}.

Fuzzification

Both explicit and implicit linear constraints can be "fuzzified."

Example 4 (explicit, fuzzified). Let $R^{\prime} \leq_{s d} \mathbb{Z}_{6} \times \mathbb{Z}_{6} \times \mathbb{Z}_{6}$ be

$$
R^{\prime}=\left\{(a, b, c) \in Z_{6} \times Z_{6} \times Z_{6}: a+b+c \equiv 0 \quad(\bmod 2)\right\} .
$$

Fuzzification

Both explicit and implicit linear constraints can be "fuzzified."

Example 4 (explicit, fuzzified). Let $R^{\prime} \leq_{s d} \mathbb{Z}_{6} \times \mathbb{Z}_{6} \times \mathbb{Z}_{6}$ be

$$
R^{\prime}=\left\{(a, b, c) \in Z_{6} \times Z_{6} \times Z_{6}: a+b+c \equiv 0 \quad(\bmod 2)\right\} .
$$

Example 4 is the "pullback" of Example 1 via the obvious homomorphism $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2}$.

Part 2 - Definitions: SIs, similarity

In the examples, the "essential" algebras were

$$
\mathbb{Z}_{2}=\left(Z_{2}, x+y+z\right) \quad \text { and } \quad \mathbb{Q}=\left(Q_{8}, x y^{-1} z\right) .
$$

Both are examples of "SI algebras with abelian monolith."

An algebra \mathbb{A} is subdirectly irreducible (SI) if $|A|>1$ and \mathbb{A} has a unique smallest nontrivial congruence μ (called the monolith).

Examples: $\operatorname{Con}(\mathbb{Q})=$

$\operatorname{Con}\left(\mathbb{Z}_{2}\right)=\int_{0}^{1=\mu}$

$\operatorname{Con}(\mathbb{A})$

The monolith μ is abelian if \ldots blah blah

Necessary condition (assuming \mathbb{A} is idempotent and has a Taylor op):

- Each μ-class C is a module ${ }^{1}$ (as $\mathbb{C} \leq \mathbb{A}$). Moreover, the underlying group of C is elementary p-abelian (same prime p for each class).

[^0]$$
\operatorname{Con}(\notin)
$$

The monolith μ is abelian if \ldots blah blah
Necessary condition (assuming \mathbb{A} is idempotent and has a Taylor op):

- Each μ-class C is a module ${ }^{1}$ (as $\mathbb{C} \leq \mathbb{A}$). Moreover, the underlying group of C is elementary p-abelian (same prime p for each class).

We'll also need to know about the annihilator of μ. It is blah blah...

-a congruence $\operatorname{ann}(\mu) \geq \mu$.
- ...akin to the "centralizer of an abelian normal subgroup."

${ }^{1}$ I.e., there exists a unital R-module structure on C with respect to which the term operations of \mathbb{A} are exactly the R-linear operations $\sum_{1}^{n} r_{i} x_{i}$ satisfying $\sum_{i} r_{i}=1$.

In both explicit Examples 1 and 2, the linear equations were supported on "branches through μ-classes."

This is also true of the binary constraints S_{i} in the implicit Example 3: after defuzzification, they were

Similarity

Not all pairs of SIs with abelian monolith can "jointly participate" in a linear constraint.

For example:
(1) The sizes of the monolith classes for \mathbb{A} and \mathbb{B} must be powers of the same prime p.

The "can-jointly-participate" relation was previously worked out in the "classical" (congruence modular) case.

Theorem 4 (Freese 1983)
Blah blah blah. (He worked it out in the "congruence modular" case.)

Much of Freese's theorem extends to the Taylor case (next slide).

Theorem 5 (Zhuk $+3 \varepsilon$. Bulatov proves something similar)

Suppose \mathbb{M} is finite and $\operatorname{HSP}(\mathbb{M})$ is Taylor.
There exists an equivalence relation \sim on the class \mathcal{K} of finite Sls in HSP(M) with abelian monolith, defined by blah blah blah and satisfying:
(1) If $\mathbb{A} \sim \mathbb{B}$, then $\mathbb{A} / \operatorname{ann}\left(\mu_{\mathbb{A}}\right) \cong \mathbb{B} / \operatorname{ann}\left(\mu_{\mathbb{B}}\right)$.
(2) (Coordinatization) Each ~-class contains a privileged member...
(See slide 15 of my Siena 2019 lecture)
Special case: If $\mathbb{A} \in \mathcal{K}$ satisfies ann $(\mu)=1_{A}$, then

- There exists a simple module $\mathbb{U} \sim \mathbb{A}$, say with $|U|=p^{k}$, a surjective homomorphism $h: \mu \rightarrow \mathbb{U}$, and an element $u \in U$ such that $h^{-1}(u)=\{(a, a): a \in A\}=0_{A}$.
- For each μ-class C and element $c \in C$, the map $h(-, c) \mid c$ is an embedding $(C, x-y+z) \hookrightarrow(U, x-y+z)$. Thus $|C|=p^{\ell}(\ell \leq k)$.

(Theorem 5 continued)

(3) (Internal witnesses) Suppose $\mathbb{A}, \mathbb{B} \in \mathscr{K}$. If there exist $\mathbb{C} \in \operatorname{HSP}(\mathbb{M})$ and $\alpha, \beta, \sigma, \tau \in \operatorname{Con}(\mathbb{C})$ such that $\mathbb{A} \cong \mathbb{C} / \alpha, \quad \mathbb{B} \cong \mathbb{C} / \beta, \sigma \prec \tau$, and

$$
\begin{gathered}
\alpha \wedge \tau=\sigma \\
\alpha \vee \tau=\alpha^{*} \\
e+c
\end{gathered}
$$

(Theorem 5 continued)
(3) (Internal witnesses) Suppose $\mathbb{A}, \mathbb{B} \in \mathcal{K}$. If there exist $\mathbb{C} \in \operatorname{HSP}(\mathbb{M})$ and $\alpha, \beta, \sigma, \tau \in \operatorname{Con}(\mathbb{C})$ such that $\mathbb{A} \cong \mathbb{C} / \alpha, \quad \mathbb{B} \cong \mathbb{C} / \beta, \sigma \prec \tau$, and

$$
\begin{gathered}
\alpha \wedge \tau=\sigma \\
\alpha \vee \tau=\alpha^{*} \\
e+c .
\end{gathered}
$$

then $\mathbb{A} \sim \mathbb{B}$.
(Say that $(\alpha, \beta, \sigma, \tau)$ witness $\mathbb{A} \sim \mathbb{B}$ in \mathbb{C}.)
(The converse is also true.)

Part 3 - Definitions: Linear constraints

Suppose $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$.
R is completely functional if "any $n-1$ coordinates determine the last."
(I.e., for every $i=1, \ldots, n$ and all $\mathbf{a}, \mathbf{b} \in R$, if $a_{j}=b_{j}$ for all $j \neq i$, then $a_{i}=b_{i}$.

Example: $\quad R \leq_{s d} \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{n}$ given by

$$
R=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}+\cdots+a_{n}=0\right\} .
$$

Suppose $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$.
R is completely functional if "any $n-1$ coordinates determine the last."
(I.e., for every $i=1, \ldots, n$ and all $\mathbf{a}, \mathbf{b} \in R$, if $a_{j}=b_{j}$ for all $j \neq i$, then $a_{i}=b_{i}$.

Example: $\quad R \leq_{s d} \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{n}$ given by

$$
R=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}+\cdots+a_{n}=0\right\}
$$

Example: Let \mathbb{A} be any algebra.

$$
\text { Let } R=\{(a, a): a \in A\} \quad\left(=0_{A}\right) \text {. }
$$

Call this example stupid.

$R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$.

R is rectangular ${ }^{1}$ if it is the "fuzzification" (pullback to $\mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$) of some completely functional

$$
\bar{R} \leq_{s d}\left(\mathbb{D}_{1} / \delta_{1}\right) \times \cdots \times\left(\mathbb{D}_{n} / \delta_{n}\right)
$$

for some (necessarily unique) $\delta_{i} \in \operatorname{Con}\left(\mathbb{D}_{i}\right)$.
(I will call $\mathbb{D}_{1} / \delta_{1}, \ldots, \mathbb{D}_{n} / \delta_{n}$ the reduced domains of R.)

[^1]$R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$.
R is rectangular ${ }^{1}$ if it is the "fuzzification" (pullback to $\mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$) of some completely functional
$$
\bar{R} \leq_{s d}\left(\mathbb{D}_{1} / \delta_{1}\right) \times \cdots \times\left(\mathbb{D}_{n} / \delta_{n}\right)
$$
for some (necessarily unique) $\delta_{i} \in \operatorname{Con}\left(\mathbb{D}_{i}\right)$.
(I will call $\mathbb{D}_{1} / \delta_{1}, \ldots, \mathbb{D}_{n} / \delta_{n}$ the reduced domains of R.)

Example: $\quad R \leq_{s d} \underbrace{\mathbb{Z}_{6} \times \cdots \times \mathbb{Z}_{6}}_{n}$ given by

$$
R=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}+\cdots+a_{n} \equiv 0 \quad(\bmod 2)\right\} .
$$

${ }^{1}$ Or has the (1, $n-1$)-parallelogram property.

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

- R is rectangular, say via $\bar{R} \leq_{s d}(\underbrace{\mathbb{D}_{1} / \delta_{1}}_{\mathbb{A}_{1}}) \times \cdots \times(\underbrace{\mathbb{D}_{n} / \delta_{n}}_{\mathbb{A}_{n}})$

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

- R is rectangular, say via $\bar{R} \leq_{s d}(\underbrace{\mathbb{D}_{1} / \delta_{1}}_{\mathbb{A}_{1}}) \times \cdots \times(\underbrace{\mathbb{D}_{n} / \delta_{n}}_{\mathbb{A}_{n}})$
- Each \mathbb{A}_{i} is SI with abelian monolith. ("the SI of R at coord i ")

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

- R is rectangular, say via $\bar{R} \leq_{s d}(\underbrace{\mathbb{D}_{1} / \delta_{1}}_{\mathbb{A}_{1}}) \times \cdots \times(\underbrace{\mathbb{D}_{n} / \delta_{n}}_{\mathbb{A}_{n}})$
- Each \mathbb{A}_{i} is SI with abelian monolith. ("the SI of R at coord i ")
- $\mathbb{A}_{1} \sim \cdots \sim \mathbb{A}_{n}$.

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

- R is rectangular, say via $\bar{R} \leq_{s d}(\underbrace{\mathbb{D}_{1} / \delta_{1}}_{\mathbb{A}_{1}}) \times \cdots \times(\underbrace{\mathbb{D}_{n} / \delta_{n}}_{\mathbb{A}_{n}})$
- Each \mathbb{A}_{i} is SI with abelian monolith.
- $\mathbb{A}_{1} \sim \cdots \sim \mathbb{A}_{n}$.
- For each i define the congruences $\eta_{i}, \alpha_{i} \in \operatorname{Con}(\mathbb{R})$ by

$$
\eta_{i}:=\text { the kernel of } \operatorname{proj}_{i}: \mathbb{R} \rightarrow \mathbb{D}_{i} \quad\left(\text { so } \mathbb{R} / \eta_{i} \cong \mathbb{D}_{i}\right)
$$

$\alpha_{i}:=$ the congruence above η_{i} corresponding to $\delta_{i} \in \operatorname{Con}\left(\mathbb{D}_{i}\right)$

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

- R is rectangular, say via $\bar{R} \leq_{s d}(\underbrace{\mathbb{D}_{1} / \delta_{1}}_{\mathbb{A}_{1}}) \times \cdots \times(\underbrace{\mathbb{D}_{n} / \delta_{n}}_{\mathbb{A}_{n}})$
- Each \mathbb{A}_{i} is SI with abelian monolith.
- $\mathbb{A}_{1} \sim \cdots \sim \mathbb{A}_{n}$.
- For each i define the congruences $\eta_{i}, \alpha_{i} \in \operatorname{Con}(\mathbb{R})$ by $\eta_{i}:=$ the kernel of $\operatorname{proj}_{i}: \mathbb{R} \rightarrow \mathbb{D}_{i} \quad\left(\right.$ so $\left.\mathbb{R} / \eta_{i} \cong \mathbb{D}_{i}\right)$
$\alpha_{i}:=$ the congruence above η_{i} corresponding to $\delta_{i} \in \operatorname{Con}\left(\mathbb{D}_{i}\right)$

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

- R is rectangular, say via $\bar{R} \leq_{s d}(\underbrace{\mathbb{D}_{1} / \delta_{1}}_{\mathbb{A}_{1}}) \times \cdots \times(\underbrace{\mathbb{D}_{n} / \delta_{n}}_{\mathbb{A}_{n}})$
- Each \mathbb{A}_{i} is SI with abelian monolith.
- $\mathbb{A}_{1} \sim \cdots \sim \mathbb{A}_{n}$.
- For each i define the congruences $\eta_{i}, \alpha_{i} \in \operatorname{Con}(\mathbb{R})$ by $\eta_{i}:=$ the kernel of $\operatorname{proj}_{i}: \mathbb{R} \rightarrow \mathbb{D}_{i} \quad\left(\right.$ so $\mathbb{R} / \eta_{i} \cong \mathbb{D}_{i}$)
$\alpha_{i}:=$ the congruence above η_{i} corresponding to $\delta_{i} \in \operatorname{Con}\left(\mathbb{D}_{i}\right)$

(Tentative definition)

A subdirect relation $R \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ is linear if:

- R is rectangular, say via $\bar{R} \leq_{s d}(\underbrace{\mathbb{D}_{1} / \delta_{1}}_{\mathbb{A}_{1}}) \times \cdots \times(\underbrace{\mathbb{D}_{n} / \delta_{n}}_{\mathbb{A}_{n}})$
- Each \mathbb{A}_{i} is SI with abelian monolith.
- $\mathbb{A}_{1} \sim \cdots \sim \mathbb{A}_{n}$.
- For each i define the congruences $\eta_{i}, \alpha_{i} \in \operatorname{Con}(\mathbb{R})$ by

$$
\begin{aligned}
& \eta_{i}:=\text { the kernel of } \operatorname{proj}_{i}: \mathbb{R} \rightarrow \mathbb{D}_{i} \quad\left(\text { so } \mathbb{R} / \eta_{i} \cong \mathbb{D}_{i}\right) \\
& \alpha_{i}:=\text { the congruence above } \eta_{i} \text { corresponding to } \delta_{i} \in \operatorname{Con}\left(\mathbb{D}_{i}\right)
\end{aligned}
$$

Then $\mathbb{A}_{1} \sim \mathbb{A}_{2}$ is witnessed in \mathbb{R} by α_{1}, α_{2}, and some congruences $\sigma \prec \tau$ with $\alpha_{1} \wedge \cdots \wedge \alpha_{n} \leq \sigma . \quad$ (And similarly for all $\mathbb{A}_{i} \sim \mathbb{A}_{j}$.)

Adjacency

Suppose Φ is a Gen^at-fmla.
Supppose $R(u, v, x)$ and $S(x, y, z)$ are two linear constraints sharing x.

Adjacency

Suppose Φ is a Gen^at-fmla.
Supppose $R(u, v, x)$ and $S(x, y, z)$ are two linear constraints sharing x.

Congruence lattices of the domains

Adjacency

Suppose Φ is a Gen^at-fmla.
Supppose $R(u, v, x)$ and $S(x, y, z)$ are two linear constraints sharing x.

$$
\mathbb{D}_{u} / \delta_{u}^{R} \sim \mathbb{D}_{v} / \delta_{v}^{R} \sim \mathbb{D}_{x} / \delta_{x}^{R} \text { witnessed in } R
$$

Congruence lattices of the domains

\mathbb{D}_{x}

Adjacency

Suppose Φ is a Gen^at-fmla.
Supppose $R(u, v, x)$ and $S(x, y, z)$ are two linear constraints sharing x.

$\mathbb{D}_{u} / \delta_{u}^{R} \sim \mathbb{D}_{v} / \delta_{v}^{R} \sim \mathbb{D}_{x} / \delta_{x}^{R}$ witnessed in R $\mathbb{D}_{z} / \delta_{z}^{S} \sim \mathbb{D}_{y} / \delta_{y}^{S} \sim \mathbb{D}_{x} / \delta_{x}^{S}$ witnessed in S

Congruence lattices of the domains

\mathbb{D}_{x}

Adjacency

Suppose Φ is a Gen^at-fmla.
Supppose $R(u, v, x)$ and $S(x, y, z)$ are two linear constraints sharing x.

$\mathbb{D}_{u} / \delta_{u}^{R} \sim \mathbb{D}_{v} / \delta_{v}^{R} \sim \mathbb{D}_{x} / \delta_{x}^{R}$ witnessed in R $\mathbb{D}_{z} / \delta_{z}^{S} \sim \mathbb{D}_{y} / \delta_{y}^{S} \sim \mathbb{D}_{x} / \delta_{x}^{S}$ witnessed in S

Congruence lattices of the domains

D_{x}

Say that $R(u, v, x)$ and $S(x, y, z)$ are adjacent at x if $\mathbb{D}_{x} / \delta_{x}^{R} \sim \mathbb{D}_{x} / \delta_{x}^{S}$ witnessed in \mathbb{D}_{x} by $\delta_{x}^{R}, \delta_{x}^{S}$ and some $\sigma \prec \tau$ in $\operatorname{Con}\left(\mathbb{D}_{x}\right)$.

Components

Let Φ be a Gen^at-fmla/M.

A (linear) component of Φ is a set Ω of linear constraints in Φ which is connected by the adjacency relation.

Heuristic: if Φ is cycle-consistent, then components "coherently encode" systems of linear equations.

Part 3 - Weakening inconsistent formulas

Suppose a given Gen^at-fmla Φ is inconsistent (has no solutions).

Do: for each constraint $R\left(x_{1}, \ldots, x_{n}\right)$ in Φ :

Suppose a given Gen^at-fmla Φ is inconsistent (has no solutions).

Do: for each constraint $R\left(x_{1}, \ldots, x_{n}\right)$ in Φ :

- If $R=S \cap T$ for some $S, T \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ with $R \subset S, T$: - replace $R(\mathbf{x})$ with $S(\mathbf{x}) \& T(\mathbf{x})$.

Suppose a given Gen^at-fmla Φ is inconsistent (has no solutions).
Do: for each constraint $R\left(x_{1}, \ldots, x_{n}\right)$ in Φ :

- If $R=S \cap T$ for some $S, T \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ with $R \subset S, T$: - replace $R(\mathbf{x})$ with $S(\mathbf{x}) \& T(\mathbf{x})$.
- Else (R is \cap-irreducible): if R does not depend on coordinate i, - let $R^{\prime}=\operatorname{proj}_{[n] \backslash\{i\}}(R)$ and replace $R(\mathbf{x})$ with $R^{\prime}\left(\mathbf{x} \backslash x_{i}\right)$.

Suppose a given Gen^at-fmla Φ is inconsistent (has no solutions).

Do: for each constraint $R\left(x_{1}, \ldots, x_{n}\right)$ in Φ :

- If $R=S \cap T$ for some $S, T \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ with $R \subset S, T$: - replace $R(\mathbf{x})$ with $S(\mathbf{x}) \& T(\mathbf{x})$.
- Else (R is \cap-irreducible): if R does not depend on coordinate i, - let $R^{\prime}=\operatorname{proj}_{[n] \backslash\{i\}}(R)$ and replace $R(\mathbf{x})$ with $R^{\prime}\left(\mathbf{x} \backslash x_{i}\right)$.
- Else (R is critical): let R^{*} be the unique smallest subuniverse of $\mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ properly containing R.
If " Φ with $R(\mathbf{x})$ replaced by $R^{*}(\mathbf{x})$ " is still inconsistent,
- replace $R(\mathbf{x})$ with $R^{*}(\mathbf{x})$.

Suppose a given Gen^at-fmla Φ is inconsistent (has no solutions).

Do: for each constraint $R\left(x_{1}, \ldots, x_{n}\right)$ in Φ :

- If $R=S \cap T$ for some $S, T \leq_{s d} \mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ with $R \subset S, T$: - replace $R(\mathbf{x})$ with $S(\mathbf{x}) \& T(\mathbf{x})$.
- Else (R is \cap-irreducible): if R does not depend on coordinate i, - let $R^{\prime}=\operatorname{proj}_{[n] \backslash\{i\}}(R)$ and replace $R(\mathbf{x})$ with $R^{\prime}\left(\mathbf{x} \backslash x_{i}\right)$.
- Else (R is critical): let R^{*} be the unique smallest subuniverse of $\mathbb{D}_{1} \times \cdots \times \mathbb{D}_{n}$ properly containing R.
If " Φ with $R(\mathbf{x})$ replaced by $R^{*}(\mathbf{x})$ " is still inconsistent, - replace $R(\mathbf{x})$ with $R^{*}(\mathbf{x})$.

Repeat.
The final Gen^at-fmla Ψ is called a crucial weakening of Φ. It is still inconsistent, every relation is critical, and replacing any relation R by R^{*} makes Ψ consistent.

Expanded covering

Assume Φ inconsistent, Ψ a crucial weakening of Φ.
An expanded covering of Ψ is blah blah blah...
Basically, you are allowed to "create multiple copies of variables, and of constraints"

Expanded covering

Assume Φ inconsistent, Ψ a crucial weakening of Φ.
An expanded covering of Ψ is blah blah blah...
Basically, you are allowed to "create multiple copies of variables, and of constraints"

and optionally, add binary reflexive constraints (e.g., congruences) between multiple copies of the same variable.

Expanded covering

Assume Φ inconsistent, Ψ a crucial weakening of Φ.
An expanded covering of Ψ is blah blah blah...
Basically, you are allowed to "create multiple copies of variables, and of constraints"

and optionally, add binary reflexive constraints (e.g., congruences) between multiple copies of the same variable.

If equality relations were added between all copies of the same variable, the expanded covering would be "equivalent" to the original Ψ.

Not adding all equalities creates something formally "weaker" than Ψ.

Theorem 6 (Zhuk)

Assume

- \mathbb{M} is finite, idempotent, and has a Taylor operation.
- Φ is a Gen^at-fmla over \mathbb{M}.
- Φ is cycle-consistent, irreducible, and inconsistent.
- Ψ is a crucial weakening of Φ.

Then
(1) Every constraint relation of Ψ is critical and rectangular.
(2) Hence (extending Kearnes, Szendrei 2012) every constraint relation of Ψ is either linear or stupid.
(3) There exists an expanded covering Ψ^{\prime} of Ψ which is still inconsistent (hence crucial), and which has a component Ω of Ψ^{\prime} such that
(Full annihilators) If \mathbb{A} is an SI of some constraint of Ω, with abelian monolith μ, then $\operatorname{ann}(\mu)=1_{A}$. (Implicit reduction) The solution set of Ω is not subdirect.

Postscript

Zhuk's Theorem 3

Theorem 3 - part (1), 2-absorbing case Suppose

- \mathbb{M} is finite, idempotent, and has a Taylor operation.
- Φ is a Gen^at-fmla over \mathbb{M}.
- Φ is cycle-consistent and irreducible.
- \mathbb{D}_{x} is a domain of Φ.
- B is a proper 2 -absorbing subuniverse of \mathbb{D}_{x}.

Then reducing \mathbb{D}_{x} to B "works" for the reduction strategy:
Φ has a solution $\Longrightarrow \Phi$ has a solution passing through B.

Proof sketch.

Can assume that every constraint relation of Φ is critical.
Assume that Φ has no solution passing through B.
$B \triangleleft_{2} \mathbb{D}_{x}$. Fix $t(x, y)$ witnessing this.
Notation: $B \triangleleft_{2}^{t} \mathbb{D}_{x}$

Exercize: every \mathbb{D}_{y} has a unique \subseteq-minimal 2-absorbing subuniverse witnessed by t. Call it $D_{y}^{(1)}$.

In particular, $D_{X}^{(1)} \subseteq B$

Let $D^{(1)}=\left(D_{y}^{(1)}: \mathbb{D}_{y}\right.$ is a domain of $\left.\Phi\right)$. "Minimal 2-absorbing reduction" Say that an assignment to the domains passes through $D^{(1)}$ if its value at every variable y is in $D_{y}^{(1)}$.
By assumption, Φ has no solution passing through $D^{(1)}$.
Φ has no solution passing through $D^{(1)}$.
Weaken Φ to get Ψ which is "crucial for having no solutions passing through $D^{(1)}$."

Zhuk proves an extension of his Theorem 6 for this type of "crucial relative to $D^{(1)}$ formula."

- Get an expanded covering Ψ^{\prime} of Ψ, still crucial relative to having no solution passing through $D^{(1)}$ (if y was split into $y^{\prime}, y^{\prime \prime}, \ldots$, this means ψ^{\prime} has no solutions whose values at $y^{\prime}, y^{\prime \prime}, \ldots$ all lie in $D_{y}^{1)}$), and a component Ω of Ψ^{\prime} with full annihilators (and non-subdirect solution set, but we don't need this).

Pick a constraint, say $R(x, y, z)$, in Ω.
Let $\mathbb{A}=\mathbb{D}_{x} / \delta_{x}^{R}$ be the SI with abelian monolith corresponding to R at x.

- For simplicity, assume $\delta_{x}^{R}=0$, so $\mathbb{A}=\mathbb{D}_{x}$.
- Let μ be its monolith.

Let $R^{*}(x, y, z)$ be $\exists x^{\prime}\left[R\left(x^{\prime}, y, z\right) \& x^{\prime} \stackrel{\mu}{=} x\right]$.
$R^{*}(x, y, z)=\exists x^{\prime}\left[R\left(x^{\prime}, y, z\right) \& x^{\prime} \stackrel{\mu}{=} x\right]$.
$R(x, y, z)$ is a constraint in $\Omega \subseteq \Psi^{\prime}, R^{*}(x, y, z)$ is strictly weaker, and Ψ^{\prime} is "crucial for not having solutions in $D^{(1)}$." Thus if we were to replace $R(x, y, z)$ with $R^{*}(x, y, z)$ in Ψ^{\prime}, the resulting weakening will has a solution in $D^{(1)}$.

Also recall (Theorem 5) that there exists a simple module $\mathbb{U} \sim \mathbb{A}$ and a surjective homomorphism $h: \mu \rightarrow \mathbb{U}$ such that $h^{-1}(u)=0_{D_{x}}$ ("equality") for some $u \in U$.

Now assume that Φ has a solution. Then Ψ^{\prime} also has a solution.
Leveraging:

- Ψ^{\prime} has a solution, but no solution through $D^{(1)}$,
- Ψ^{\prime} with $R(x, y, z)$ relaxed to $R^{*}(x, y, z)$ has a solution through $D^{(1)}$,
- $h^{-1}(U)=\mu$ but $h^{-1}(u)=$ equality,

Zhuk obtains a pp-formula with one free variable of sort \mathbb{U}, whose quantified variables range over the sorts of Ψ^{\prime}, such that

- The pp-formula defines some subset $V \subseteq U$ (with $u \in V$), but
- When the domains of the quantified variables are restricted to $D^{(1)}$, the formula defines a proper subset $W \subset V$ (with $u \notin W)$.

By the relation-algebra correspondence, \mathbb{V} is a subalgebra of \mathbb{U} (so is also a module) and W is a proper subuniverse of \mathbb{V}.

Recall that $D_{y}^{(1)} \triangleleft_{2}^{t} \mathbb{D}_{y}$ for all y.
" 2 -absorbing witnessed by $t(x, y)$ "
Fact: \triangleleft_{2}^{t} propagates under pp-definitions.
Hence $W \triangleleft_{2}^{t} \mathbb{V}$.
But a module has no proper 2-absorbing subuniverse (exercize).
Contradiction!

Lies I have told

(1) Much of my terminology is nonstandard.
(2) Theorem 2 clearly follows from Kozik's proof, but is not explicitly in his paper; Theorem 5 is within 3ε of "morally" being in Zhuk's paper; Theorem 6 doesn't appear in Zhuk's paper, but a more complicated variant occurs there.
(3) Zhuk only proved Theorems 3, 5 and 6 for "weak" Taylor algebras \mathbb{M} :

Those having a weak near unanimity operation $w\left(x_{1}, \ldots, x_{n}\right)$ which generates all other operations via composition.
(This was sufficient to prove the CSP Dichotomy Theorem.) Only Theorem 5 needs work to extend to arbitrary Taylor algebras, and I did that.
(9) The proof sketch of Theorem 3 (in the Postscript) used Theorem 6. Zhuk's proof of Theorem 6 used Theorem 3!

- Zhuk proved both by a very complicated simultaneous induction.

Annotated Bibliography

Manuel Bodirsky, The complexity of infinite-domain constraint satisfaction, Lect. Notes Log., 52, Cambridge U. Press, 2021.

- Chapters 1-3 give excellent an introduction to CSP, pp-definability, and the algebraic perspective.

Libor Barto, Andrei Krokhin, R.W., "Polymorphisms and how to use them," in The constraint satisfaction problem: complexity and approximability, 1-44, Dagstuhl Follow-Ups, 7, 2017.

- Survey paper on polymorphisms and CSP (pre-Bulatov/Zhuk's solution).

Marcin Kozik, "Weak consistency notions for all the CSPs of bounded width," LICS 2016. Full paper at arXiv:1605.00565.

- Full proof of Theorem 2 (success of "crazy strategy" in "module-free" case).

Dmitriy Zhuk, "A proof of the CSP Dichotomy Conjecture," J. ACM 67 (2020), 78 pp.

- Zhuk's full proof. Complete, but not for the faint of heart.

Andrei Bulatov, "A dichotomy theory for nonuniform CSPs simplified," arXiv:2007.09099 (2020).

- A good starting point for those wanting to understand Bulatov's algorithm and proof. Full details are spread across several papers on arXiv. Also not for the faint of heart.

Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin Kozik, Dmitriy Zhuk, "Minimal Taylor algebras as a common framework for the three algebraic approaches to the CSP," LICS 2021. Full paper at arXiv:2104.11808.

- A very interesting first work aiming to harmonize Bulatov's and Zhuk's "reduction" strategies in their algorithms.

Andrei Bulatov, "A dichotomy theory for nonuniform CSPs simplified," arXiv:2007.09099 (2020).

- A good starting point for those wanting to understand Bulatov's algorithm and proof. Full details are spread across several papers on arXiv. Also not for the faint of heart.

Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin Kozik, Dmitriy Zhuk, "Minimal Taylor algebras as a common framework for the three algebraic approaches to the CSP," LICS 2021. Full paper at arXiv:2104.11808.

- A very interesting first work aiming to harmonize Bulatov's and Zhuk's "reduction" strategies in their algorithms.

Thank you!

[^0]: ${ }^{1}$ I.e., there exists a unital R-module structure on C with respect to which the term operations of \mathbb{A} are exactly the R-linear operations $\sum_{1}^{n} r_{i} x_{i}$ satisfying $\sum_{i} r_{i}=1$.

[^1]: ${ }^{1}$ Or has the (1, $n-1$)-parallelogram property.

