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Summary of Lecture 2

“CSPp(M) when M has a Taylor operation”

Representation of ∧at-fmla/M by its microstructure hypergraph Φ.

Preprocessing: 1-consistency, cycle-consistency, irreducibility.

Generalized ∧at-fmlas/M.

“Crazy” reduction strategy (for solving satisfiability of Gen∧at-fmlas)

Previous success in the module-free case (Theorem 2, Kozik)

Theorem 3 (Zhuk): success “up to modules” in the general (Taylor) case:

1 2-absorbing subuniverses

2 Zhuk centers (special kind of 3-absorbing)

3 PC congruence classes (when (1) and (2) not available)
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Plan for today

“One aspect of Zhuk’s proof: linear equations”

1 Examples

2 Definitions: SIs, similarity

3 Definitions: Linear constraints

I Rectangular relations, linear relations
I Adjacency, components

4 Weakening inconsistent formulas
I Critical relations, crucial weakenings
I Expanded covers
I A “crucial” theorem of Zhuk

5 Postscript (time permitting)
I Proof sketch of Theorem 3 (2-absorbing case)
I Lies that I have told
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Part 1 – Examples
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Linear equations manifest in Gen∧at-fmlas in two ways:

Explicitly – via a single constraint.

Implicitly – via a combination of constraints (= pp-definition).

Example 1 (explicit).

Z2 := ({0, 1}, x+y+z), R ≤sd Z2 × Z2 × Z2,

R := {(a, b, c) ∈ (Z2)3 : a + b + c = 0}.

x y z

0

1

0

1

0

1

(No more fancy pictures of 3-ary relations.)
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Example 2 (explicit). Q = (Q8, xy
−1z) where Q8 = {±1,±i ,±j ,±k}.

Define S ≤sd Q×Q× Z2 by

S = {(a, b, c) ∈ Q8 × Q8 × Z2 : ab−1 = (−1)c}.

Ist =
① ⑫

The point here is that:

We have a minimal congruence E of Q, whose classes are ∼= Z2.

S imposes a linear equation on each “branch” through E -classes.
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Example 3 (implicit). Recall R ≤sd Z2 × Z2 × Z2 from Example 1.

Consider R as an algebra R.

Define proji : R→ Z2 for i = 1, 2, 3

Si := graph(proji ) ≤sd R× Z2.

Let Φ be the Gen∧at-fmla

S1(u, x1) & S2(u, x2) & S3(u, x3)

IR
U

r

proj proj
Proj2

L V -
X
, Xz X3

Iz Xz Xz

This gadget implicitly defines the linear relation R(x1, x2, x3), yet each
individual constraint relation is “simple.”
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Φ =

IR
U

S
, S

Se
L W -

X
, Xz X3

Iz Xz Xz

Each constraint “is simply” a homomorphism from R to Z2

. . . and so in essence “is” nothing more than an isomorphism between
two copies of Z2 (R/Ei and Z2 where where Ei = ker(Si )) . . .

. . . yet the implied constraint ∃u Φ on x1, x2, x3 is linear. This can be
explained by lattice-theoretic relationships between E1,E2,E3 in the
congruence lattice of R.

(R(=R
·

-
EsCon(R) · Es · Ez 8

·

Op (equality)
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Fuzzification
Both explicit and implicit linear constraints can be “fuzzified.”

Example 4 (explicit, fuzzified). Let R ′ ≤sd Z6 × Z6 × Z6 be

R ′ = {(a, b, c) ∈ Z6 × Z6 × Z6 : a + b + c ≡ 0 (mod 2)}.

....................y
-

4
D

02 20242024
- S - S - S

7↳6 Ib Is

Example 4 is the “pullback” of Example 1
via the obvious homomorphism Z6 → Z2.

....................y
-

4
D
24-0240 2 < 0

- S - S - S

7 I↳6 Ib 16

e
--"'I-↳
O O

Iz De Iz
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Part 2 – Definitions: SIs, similarity
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In the examples, the “essential” algebras were

Z2 = (Z2, x+y+z) and Q = (Q8, xy
−1z).

Both are examples of “SI algebras with abelian monolith.”

An algebra A is subdirectly irreducible (SI) if |A| > 1 and A has a
unique smallest nontrivial congruence µ (called the monolith).

·A

Con(A)
-

O M

!
& & &

·m)= "E")
·
O

· l =p

·

Examples: Con(Q) =

·A

Con(A) · ann (p)

·M

O

!
& & &

·m)= "E")
·
O

· l =p

·

Con(Z2) =

·A

Con(A) · ann (p)

·M

O

!
& & &

·m)= "E")
·
O

· l =p

·
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·A

Con(A)
-

O M

!
& & &

·m)= "E")
·
O

· l =p

·

The monolith µ is abelian if . . . blah blah

Necessary condition (assuming A is idempotent and has a Taylor op):

Each µ-class C is a module1 (as C ≤ A). Moreover, the underlying
group of C is elementary p-abelian (same prime p for each class).

We’ll also need to know about the annihilator of µ. It is blah blah. . .

. . . a congruence ann(µ) ≥ µ.

. . . akin to the “centralizer of
an abelian normal subgroup.”

· A

Con(A) · ann ()

C·- M

O

1I.e., there exists a unital R-module structure on C with respect to which the term
operations of A are exactly the R-linear operations

∑n
1 rixi satisfying

∑
i ri = 1.
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In both explicit Examples 1 and 2, the linear equations were supported on
“branches through µ-classes.”

....................y
-

4
D
24-0240 2 < 0

- S - S - S

7 I↳6 Ib 16

e
--"'I-↳
O O

Iz De Iz

Ist =
① ⑫

This is also true of the binary constraints Si in the implicit Example 3:
after defuzzification, they were

-
--

0-0
W W
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Similarity

Not all pairs of SIs with abelian monolith can “jointly participate” in a
linear constraint.

For example:

1 The sizes of the monolith classes for A and B must be powers of the
same prime p.

The “can-jointly-participate” relation was previously worked out in the
“classical” (congruence modular) case.

Theorem 4 (Freese 1983)

Blah blah blah. (He worked it out in the “congruence modular” case.)

Much of Freese’s theorem extends to the Taylor case (next slide).
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Theorem 5 (Zhuk + 3ε. Bulatov proves something similar)

Suppose M is finite and HSP(M) is Taylor.

There exists an equivalence relation ∼ on the class K of finite SIs in
HSP(M) with abelian monolith, defined by blah blah blah and satisfying:

1 If A ∼ B, then A/ ann(µA) ∼= B/ ann(µB).

2 (Coordinatization) Each ∼-class contains a privileged member. . .

(See slide 15 of my Siena 2019 lecture)

Special case: If A ∈ K satisfies ann(µ) = 1A, then

There exists a simple module U ∼ A, say with |U| = pk , a
surjective homomorphism h : µ→ U, and an element u ∈ U
such that h−1(u) = {(a, a) : a ∈ A} = 0A.

For each µ-class C and element c ∈ C , the map h(−, c)|C is an
embedding (C , x−y+z) ↪→ (U, x−y+z). Thus |C | = p` (` ≤ k).
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(Theorem 5 continued)

3 (Internal witnesses) Suppose A,B ∈ K. If there exist C ∈ HSP(M)
and α, β, σ, τ ∈ Con(C) such that A ∼= C/α, B ∼= C/β, σ ≺ τ , and

Con(C):

·
le

215 = 2
-

** 8 au
* B
* av + = 2

*

⑧ j etc
.8 ③

2
:

T
S

B
" A i
·

then A ∼ B. (Say that (α, β, σ, τ) witness A ∼ B in C.)

(The converse is also true.)
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Part 3 – Definitions: Linear constraints
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Suppose R ≤sd D1 × · · · × Dn.

R is completely functional if “any n − 1 coordinates determine the last.”

(I.e., for every i = 1, . . . , n and all a, b ∈ R, if aj = bj for all j 6= i , then ai = bi .

Example: R ≤sd Z2 × · · · × Z2︸ ︷︷ ︸
n

given by

R = {(a1, . . . , an) : a1 + · · ·+ an = 0}.

Example: Let A be any algebra.

Let R = {(a, a) : a ∈ A} (= 0A).

Call this example stupid.
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R ≤sd D1 × · · · × Dn.

R is rectangular1 if it is the “fuzzification” (pullback to D1 × · · · ×Dn) of
some completely functional

R ≤sd (D1/δ1)× · · · × (Dn/δn)

for some (necessarily unique) δi ∈ Con(Di ).

(I will call D1/δ1, . . . ,Dn/δn the reduced domains of R.)

Example: R ≤sd Z6 × · · · × Z6︸ ︷︷ ︸
n

given by

R = {(a1, . . . , an) : a1 + · · ·+ an ≡ 0 (mod 2)}.

1Or has the (1, n − 1)-parallelogram property.

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 18 / 34



R ≤sd D1 × · · · × Dn.

R is rectangular1 if it is the “fuzzification” (pullback to D1 × · · · ×Dn) of
some completely functional

R ≤sd (D1/δ1)× · · · × (Dn/δn)

for some (necessarily unique) δi ∈ Con(Di ).

(I will call D1/δ1, . . . ,Dn/δn the reduced domains of R.)

Example: R ≤sd Z6 × · · · × Z6︸ ︷︷ ︸
n

given by

R = {(a1, . . . , an) : a1 + · · ·+ an ≡ 0 (mod 2)}.

1Or has the (1, n − 1)-parallelogram property.

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 18 / 34



(Tentative definition) (Invented for this lecture)

A subdirect relation R ≤sd D1 × · · · × Dn is linear if:

R is rectangular, say via R ≤sd (D1/δ1︸ ︷︷ ︸
A1

)× · · · × (Dn/δn︸ ︷︷ ︸
An

)

Each Ai is SI with abelian monolith. (“the SI of R at coord i”)

A1 ∼ · · · ∼ An.

For each i define the congruences ηi , αi ∈ Con(R) by

ηi := the kernel of proji : R→ Di (so R/ηi ∼= Di )

αi := the congruence above ηi corresponding to δi ∈ Con(Di )

> &

(P·S
*

Con (Con(ID) LDDa Con(D)

R

22-⑭DCon(IR)
Mi &

*

T & & 23

(
- A [↳S

> &

(P·S
*

Con (Con(ID) LDDa Con(D)

R

22-⑭DCon(IR)
Mi &

*

T & & 23

(
- A [↳S

Then A1 ∼ A2 is witnessed in R by α1, α2, and some congruences
σ ≺ τ with α1 ∧ · · · ∧ αn ≤ σ. (And similarly for all Ai ∼ Aj .)
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)× · · · × (Dn/δn︸ ︷︷ ︸
An

)

Each Ai is SI with abelian monolith. (“the SI of R at coord i”)

A1 ∼ · · · ∼ An.

For each i define the congruences ηi , αi ∈ Con(R) by

ηi := the kernel of proji : R→ Di (so R/ηi ∼= Di )

αi := the congruence above ηi corresponding to δi ∈ Con(Di )
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(
- A [↳S

Then A1 ∼ A2 is witnessed in R by α1, α2, and some congruences
σ ≺ τ with α1 ∧ · · · ∧ αn ≤ σ. (And similarly for all Ai ∼ Aj .)
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Adjacency
Suppose Φ is a Gen∧at-fmla.

Supppose R(u, v , x) and S(x , y , z) are two linear constraints sharing x .

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Du/δ
R
u ∼ Dv/δ

R
v ∼ Dx/δ

R
x witnessed in R

Dz/δ
S
z ∼ Dy/δ

S
y ∼ Dx/δ

S
x witnessed in S

Congruence
lattices of
the domains

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence latticesSay that R(u, v , x) and S(x , y , z) are adjacent at x if Dx/δ
R
x ∼ Dx/δ

S
x

witnessed in Dx by δRx , δSx and some σ ≺ τ in Con(Dx).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 20 / 34



Adjacency
Suppose Φ is a Gen∧at-fmla.

Supppose R(u, v , x) and S(x , y , z) are two linear constraints sharing x .

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Du/δ
R
u ∼ Dv/δ

R
v ∼ Dx/δ

R
x witnessed in R

Dz/δ
S
z ∼ Dy/δ

S
y ∼ Dx/δ

S
x witnessed in S

Congruence
lattices of
the domains

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Say that R(u, v , x) and S(x , y , z) are adjacent at x if Dx/δ
R
x ∼ Dx/δ

S
x

witnessed in Dx by δRx , δSx and some σ ≺ τ in Con(Dx).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 20 / 34



Adjacency
Suppose Φ is a Gen∧at-fmla.

Supppose R(u, v , x) and S(x , y , z) are two linear constraints sharing x .

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Du/δ
R
u ∼ Dv/δ

R
v ∼ Dx/δ

R
x witnessed in R

Dz/δ
S
z ∼ Dy/δ

S
y ∼ Dx/δ

S
x witnessed in S

Congruence
lattices of
the domains

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Say that R(u, v , x) and S(x , y , z) are adjacent at x if Dx/δ
R
x ∼ Dx/δ

S
x

witnessed in Dx by δRx , δSx and some σ ≺ τ in Con(Dx).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 20 / 34



Adjacency
Suppose Φ is a Gen∧at-fmla.

Supppose R(u, v , x) and S(x , y , z) are two linear constraints sharing x .

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Du/δ
R
u ∼ Dv/δ

R
v ∼ Dx/δ

R
x witnessed in R

Dz/δ
S
z ∼ Dy/δ

S
y ∼ Dx/δ

S
x witnessed in S

Congruence
lattices of
the domains

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Say that R(u, v , x) and S(x , y , z) are adjacent at x if Dx/δ
R
x ∼ Dx/δ

S
x

witnessed in Dx by δRx , δSx and some σ ≺ τ in Con(Dx).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 20 / 34



Adjacency
Suppose Φ is a Gen∧at-fmla.

Supppose R(u, v , x) and S(x , y , z) are two linear constraints sharing x .

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence lattices

Du/δ
R
u ∼ Dv/δ

R
v ∼ Dx/δ

R
x witnessed in R

Dz/δ
S
z ∼ Dy/δ

S
y ∼ Dx/δ

S
x witnessed in S

Congruence
lattices of
the domains

IDDr I

8 00 8
Du

R Ix S IDz
I

,S
⑧⑧· /
⑲

C e ·R

B ⑤

Du Dr
Dx IDy 1Dz

Congruence latticesSay that R(u, v , x) and S(x , y , z) are adjacent at x if Dx/δ
R
x ∼ Dx/δ

S
x

witnessed in Dx by δRx , δSx and some σ ≺ τ in Con(Dx).

Ross Willard (Waterloo) CSP Dichotomy Theorem Ames 2024 20 / 34



Components

Let Φ be a Gen∧at-fmla/M. M has a Taylor op

A (linear) component of Φ is a set Ω of linear constraints in Φ which is
connected by the adjacency relation.

Heuristic: if Φ is cycle-consistent, then components “coherently encode”
systems of linear equations.
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Part 3 – Weakening inconsistent formulas
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Suppose a given Gen∧at-fmla Φ is inconsistent (has no solutions).

Do: for each constraint R(x1, . . . , xn) in Φ:

If R = S ∩ T for some S ,T ≤sd D1 × · · · × Dn with R ⊂ S ,T :

– replace R(x) with S(x) & T (x).

Else (R is ∩-irreducible): if R does not depend on coordinate i ,

– let R ′ = proj[n]r{i}(R) and replace R(x) with R ′(xr xi ).

Else (R is critical): let R∗ be the unique smallest subuniverse of
D1 × · · · × Dn properly containing R.

If “Φ with R(x) replaced by R∗(x)” is still inconsistent,

– replace R(x) with R∗(x).

Repeat.

The final Gen∧at-fmla Ψ is called a crucial weakening of Φ. It is still
inconsistent, every relation is critical, and replacing any relation R by R∗

makes Ψ consistent.
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Expanded covering

Assume Φ inconsistent, Ψ a crucial weakening of Φ.

An expanded covering of Ψ is blah blah blah. . .

Basically, you are allowed to “create multiple copies of variables, and of
constraints”

· Z

&· F %% *
&

X

·

y
·

y

Z

·&
·

y

· Z

&· F %% *
&

X

·

y
·

y

Z

·&
·

y

and optionally, add binary reflexive constraints (e.g., congruences) between
multiple copies of the same variable.

If equality relations were added between all copies of the same variable,
the expanded covering would be “equivalent” to the original Ψ.

Not adding all equalities creates something formally “weaker” than Ψ.
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Theorem 6 (Zhuk)

Assume

M is finite, idempotent, and has a Taylor operation.

Φ is a Gen∧at-fmla over M.

Φ is cycle-consistent, irreducible, and inconsistent.

Ψ is a crucial weakening of Φ.

Then

1 Every constraint relation of Ψ is critical and rectangular.

2 Hence (extending Kearnes, Szendrei 2012) every constraint relation of
Ψ is either linear or stupid.

3 There exists an expanded covering Ψ′ of Ψ which is still inconsistent
(hence crucial), and which has a component Ω of Ψ′ such that

I (Full annihilators) If A is an SI of some constraint of Ω, with abelian
monolith µ, then ann(µ) = 1A.

I (Implicit reduction) The solution set of Ω is not subdirect.
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Postscript
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Zhuk’s Theorem 3

Theorem 3 – part (1), 2-absorbing case

Suppose

M is finite, idempotent, and has a Taylor operation.

Φ is a Gen∧at-fmla over M.

Φ is cycle-consistent and irreducible.

Dx is a domain of Φ.

B is a proper 2-absorbing subuniverse of Dx .

Then reducing Dx to B “works” for the reduction strategy:

Φ has a solution =⇒ Φ has a solution passing through B.
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Proof sketch.

Can assume that every constraint relation of Φ is critical.

Assume that Φ has no solution passing through B.

B C2 Dx . Fix t(x , y) witnessing this. Notation: B Ct
2 Dx

Exercize: every Dy has a unique ⊆-minimal 2-absorbing subuniverse

witnessed by t. Call it D
(1)
y . In particular, D

(1)
x ⊆ B

Let D(1) = (D
(1)
y : Dy is a domain of Φ). “Minimal 2-absorbing reduction”

Say that an assignment to the domains passes through D(1) if its value

at every variable y is in D
(1)
y .

By assumption, Φ has no solution passing through D(1).
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Φ has no solution passing through D(1).

Weaken Φ to get Ψ which is “crucial for having no solutions passing
through D(1).”

Zhuk proves an extension of his Theorem 6 for this type of “crucial
relative to D(1) formula.”

Get an expanded covering Ψ′ of Ψ, still crucial relative to having no
solution passing through D(1) (if y was split into y ′, y ′′, . . ., this means Ψ′ has

no solutions whose values at y ′, y ′′, . . . all lie in D
1)
y ), and a component Ω of Ψ′

with full annihilators (and non-subdirect solution set, but we don’t need this).

Pick a constraint, say R(x , y , z), in Ω.

Let A = Dx/δ
R
x be the SI with abelian monolith corresponding to R at x .

For simplicity, assume δRx = 0, so A = Dx .

Let µ be its monolith.

Let R∗(x , y , z) be ∃x ′[R(x ′, y , z) & x ′
µ
≡ x ].
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R∗(x , y , z) = ∃x ′[R(x ′, y , z) & x ′
µ
≡ x ].

R(x , y , z) is a constraint in Ω ⊆ Ψ′, R∗(x , y , z) is strictly weaker, and Ψ′

is “crucial for not having solutions in D(1).” Thus if we were to replace
R(x , y , z) with R∗(x , y , z) in Ψ′, the resulting weakening will has a
solution in D(1).

Also recall (Theorem 5) that there exists a simple module U ∼ A and a
surjective homomorphism h : µ→ U such that h−1(u) = 0Dx (“equality”)
for some u ∈ U.

Now assume that Φ has a solution. Then Ψ′ also has a solution.

Leveraging:

Ψ′ has a solution, but no solution through D(1),

Ψ′ with R(x , y , z) relaxed to R∗(x , y , z) has a solution through D(1),

h−1(U) = µ but h−1(u) = equality,

Zhuk obtains a pp-formula with one free variable of sort U, whose
quantified variables range over the sorts of Ψ′, such that
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The pp-formula defines some subset V ⊆ U (with u ∈ V ), but

When the domains of the quantified variables are restricted to D(1),
the formula defines a proper subset W ⊂ V (with u 6∈W ).

By the relation-algebra correspondence, V is a subalgebra of U (so is also
a module) and W is a proper subuniverse of V.

Recall that D
(1)
y Ct

2 Dy for all y . “2-absorbing witnessed by t(x , y)”

Fact: Ct
2 propagates under pp-definitions.

Hence W Ct
2 V.

But a module has no proper 2-absorbing subuniverse (exercize).

Contradiction!
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Lies I have told

1 Much of my terminology is nonstandard.

2 Theorem 2 clearly follows from Kozik’s proof, but is not explicitly in
his paper; Theorem 5 is within 3ε of “morally” being in Zhuk’s paper;
Theorem 6 doesn’t appear in Zhuk’s paper, but a more complicated
variant occurs there.

3 Zhuk only proved Theorems 3, 5 and 6 for “weak” Taylor algebras M:

Those having a weak near unanimity operation w(x1, . . . , xn)
which generates all other operations via composition.

(This was sufficient to prove the CSP Dichotomy Theorem.) Only Theorem 5
needs work to extend to arbitrary Taylor algebras, and I did that.

4 The proof sketch of Theorem 3 (in the Postscript) used Theorem 6.

Zhuk’s proof of Theorem 6 used Theorem 3!

I Zhuk proved both by a very complicated simultaneous induction.
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