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Abstract

Choosing an efficient time representation is an important consideration when solv-

ing short-term scheduling problems. Improving the efficiency of scheduling operations

may lead to increased yield, or reduced makespan, resulting in greater profits or cus-

tomer satisfaction. When formulating these problems, one must choose a time represen-

tation for executing scheduling operations over. We propose in this study an iterative

framework to refine an initial coarse discretization, by adding key timepoints that may

be beneficial. This framework is compared against existing static discretizations using

computational experiments on a scientific services facility. Using case studies from

other applications in chemical engineering, we compare the performance of our frame-

work against a previously reported time-discretization approach in the literature. The

results of these experiments demonstrate that when problems are sufficiently large, our

proposed dynamic method is able to achieve a better tradeoff between objective value

and CPU time than the currently used discretizations in the literature.
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1 Introduction

Scheduling is concerned with how and when to execute operations to optimize a chosen

objective such as maximizing profits, or minimizing costs, subject to operational constraints

such as deadlines, capacity, or available resource limitations. It is common practice for many

industries to make use of scheduling as an optimization problem to guide their progress and

meet various economic objectives,1–5 and proper scheduling can greatly increase efficiency

and therefore is of great practical importance. Scheduling operations over a relatively short

period of time, such as a day, a shift or a week is often referred to as short-term scheduling.

We are interested in scheduling in the context of short-term scheduling of a multipurpose

plant.

A multipurpose plant is a facility which has a set of units, such as machines or workers,

that may carry out a variety of tasks, i.e. the plant may serve more than a single purpose,

such as producing several different products. The problem of scheduling a multipurpose

plant then can be seen as a variant of the job shop scheduling problem.6,7 Orders arrive at

a multipurpose facility, and each order has a set of samples that comprise it and a sequence

of tasks that the samples must undergo in order. This sequence of tasks is called the path

of an order. The goal is to generate a schedule for the facility, which dictates what samples

to assign to which tasks over the time horizon such that an objective is optimized. This

schedule must also abide by various operational constraints of the problem such as unit

resource limitations and material balance constraints.

Throughout this work, we model these scheduling problems as mixed integer linear pro-

grams (MILP), meaning that we restrict the objective function, and constraints of the model

to be linear, and allow some variables to be integer. There are several different MILP

scheduling models that exist, and one of the key classifications of these models is the time

representation that is used.8

The time representation determines when operations may be scheduled, and can play

a critical role in determining the computational cost of solving the model and the final
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solution quality.8–10 We call each point in time where an operation may be scheduled a

timepoint. There are two main classes of time representation: continuous time representation

and discrete time representation.11,12

Continuous time representations allow events to happen at arbitrary points in time dur-

ing the scheduling horizon, with the selection of where these points should be placed being

decided by the model.13–15 Because the model is able to choose precisely where timepoints

should be located, this technique ensures that we obtain the best solutions using this repre-

sentation.8 However, one must provide the model a fixed number of timepoints to allocate as

input. If the model is allowed to allocate too few timepoints, solution quality may decrease,

however if the model is allowed to allocate many timepoints, CPU time may drastically in-

crease. In general, selecting a suitable number of timepoints to allocate for the model may

be challenging, particularly for large-scale industrial applications where the number of time

points may be relatively large.16

Discrete time models instead fix a priori the timepoints at which scheduling decisions

may be made to a subset of points during the scheduling horizon.17,18 We call the set of

timepoints that the schedule may use the time grid. The difficulty with this representation

is in choosing a suitable time grid to provide the model, namely instead of only selecting

the number of timepoints and allowing the model to choose the placement, we also give

the placement of timepoints as input. There is once again a tradeoff between how coarse

or fine the discretization used is, the quality of the resulting schedule and the amount of

CPU time required to solve the model. Despite the continuous time formulation allowing

the model to use precise points in time, multiple works have concluded that using a discrete

time representation results in better performance than using a continuous time representa-

tion for scheduling multipurpose facilities.9,12,19 Moreover, these works have shown that the

continuous time formulation version of the problem may be very computationally expensive

to solve beyond using only a few timepoints, for large scale applications. However, recent

work has shown promise in using the unit-specific event-based continuous time formulation
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for large scale applications.20 In this work we limit ourselves to models using a discrete time

representation.

Depending on the specific details of the plant being scheduled (e.g. the number of orders

that arrive, the size of the plant, and the time horizon), scheduling industrial-scale multi-

purpose facilities may require solving very large models. Therefore, the question naturally

arises: how do we solve these large scheduling problems more efficiently? This question

prompts us to take a look at timepoint representations in more detail. In general, if we knew

exactly which timepoints were needed to achieve the optimal solution obtained by using a

continuous time representation, we would be able to greatly reduce the size of the model by

using only these necessary timepoints. However, it is unlikely that we know this information

beforehand, yet we must still choose a time grid to use for a discrete model.

As mentioned above, choosing which timepoints to include in the time grids is in general

not obvious and can greatly impact the performance of the model. Furthermore, there

have been a very limited number of works that have considered how to tailor time grids for

individual problem instances.10,21,22 Here we mean an instance of a problem to be a problem

with given input data, as opposed to the general problem itself. The purpose of this work

is to study this issue of choosing an appropriate time grid. Below we briefly summarize

the aforementioned works that consider this issue and how our approach differs from those

studies.

Dash et al.21 studied the traveling salesperson problem with time windows. They con-

sidered partitioning their time windows into smaller sub-windows, which may be thought

of as discretizing the time windows, and presented cutting planes which are more effective

than those found in the literature by exploiting their window division. They then iteratively

solved a linear program to find a good partition for the time windows as a pre-processing

routine before solving their instance of the traveling salesperson problem with time win-

dows. By using their method, those authors were able to solve several previously unsolved

benchmark instances.
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Velez and Maravelias10 showed that they are able to generate non uniform time grids

based on the instance input data such that the optimal solution obtained by using these time

grids has equal objective value to the optimal solution obtained by using an arbitrarily fine

uniform discretization. Furthermore, they show that this method of choosing non uniform

time grids leads to a much smaller problem size than that obtained by using a super-fine

uniform discretization. However, to ensure that this guarantee holds, their algorithm may

include many timepoints making the resulting model very computationally taxing to solve,

especially for large problem instances. We will refer to these non uniform discrete (NUD)

time grids throughout this work. The NUD time grids allow each process considered to

operate using its own set of timepoints. This offers benefits by allowing processes which

operate on different time scales to have different time grids, e.g. a process that takes days

and a process that takes minutes can both use suitable time grids.

Boland et al.22 presented a method for iteratively refining the set of timepoints that they

considered for solving the service network design problem. They used a different approach

than that of Velez and Maravelias, by beginning with only a few timepoints initially and then

determining where to add timepoints based on the obtained solution from solving a relaxation

of their problem. They are able to show that their method will also terminate with an optimal

solution whose objective value is equal to that obtained by using an arbitrarily fine uniform

discretization. Moreover, they showed that their method performs well in practice through

a computational study.

Though those three works aim to address the issue of time discretization, their pro-

posed approaches are either tailored to their specific application,21,22 or are computationally

expensive for large-scale problems10.

In this work, we present a generalized framework for iteratively refining time grids for

scheduling multipurpose facilities. We propose several heuristics for deciding where to add

and remove timepoints from the scheduling model’s time grid between iterations of the

framework. The proposed approach does not depend much on the particular application,
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but rather on the fact that a time-discretized representation of the scheduling process is used.

The efficacy of this framework is evaluated through computational experiments comparing its

performance against the currently used time grids for scheduling discrete time multipurpose

plants in the literature. We also compare our method against the time grid generation

algorithm and model of Velez and Maravelias23. The results of these experiments show that

the proposed method may obtain significant performance improvements over the current time

grids in use without a substantial increase in CPU time. Moreover, since the performance of

the proposed framework remain relatively stable over a range of problem sizes, this framework

provides a stepping stone toward improving instance-agnostic methods for choosing time

grids in discrete time based short-term scheduling models.

Note that the focus of this work is on developing heuristic approaches to our scheduling

problem with empirical evidence obtained through computational experiments which demon-

strate that our heuristics seem to perform well in our test cases. In particular, we base our

case studies on an industrial-scale multipurpose plant to validate the proposed method’s

performance. Consequently, we present our framework with respect to the model that we

present in section 2.2 which was used for our primary case study. However, our framework

is not dependent on this model, and may be applied to the general model presented by Velez

and Maravelias in 23 based on the STN representation which readers may be more familiar

with. We present how we applied our framework to this model and the corresponding results

in section 4.6.

The structure of this study is as follows. In section 2 we discuss the scheduling problem

we solve in more detail, present the model formulation used for our experiments, and dis-

cuss other works in the literature which have considered specialized time grids. In section

3 we present the proposed framework for dynamically constructing time grids along with

the heuristics used for selecting which timepoints to add and remove. The efficacy of the

framework is evaluated using computational experiments and the results are discussed in

section 4. Concluding remarks and future work considerations are presented in section 5.
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2 Background

2.1 Time Layered Graphs

We now present the definition of a time layered graph to establish notation, before dis-

cussing the scheduling problem in more detail and corresponding model we use in section

2.2. Time layered graphs are useful when representing problems which have a network of

states, and decisions must be made based on spatial locations in the graph and time, e.g.

routing material between states and over a time horizon. The use of these graphs typically

arises in transportation routing problems such as bus or flight routing.22,24–26 They augment

the standard static network flow models by adding an extra dimension (time) allowing flows

to change over time. This time component will be used in this work to model the schedul-

ing of when to start batch processes in a multipurpose facility. The usage of graphs and

graph-centric approaches has become more common in the chemical engineering commu-

nity in recent years. Graph approaches have been proposed to address problems related to

distribution networks27,28, hydrocarbon generation29,30, process-network synthesis31,32, and

distributed control33–35. These works have drawn from various topics and structures from

network theory such as bipartite graphs29–33,36, community detection33, cycle detection36,

and graph partitioning27 and applied these to the aforementioned topics in chemical engi-

neering. Process graphs, or “P-graphs” have even been developed as bipartite graphs with

extra structure to model process networks.37 It is clear that there are many applications

in chemical engineering that lend themselves to graphical representations and that there is

interest in the community toward these sorts of approaches.

We assume that there is an underlying directed network G = (V,A) where our node set

V is comprised of a set of “states” (e.g. physical locations such as stations or holding depots,

or tasks), and our directed arc set A indicates how we may transition from state to state.

For each state u, there is a discrete set of (state-specific) integer timepoints ε(u), indicating

at which times we may leave state u. We denote the k’th timepoint of ε(u) as ε(u, k). We
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denote the set of all sets of timepoints as ε = {ε(u) : u ∈ V }. Furthermore, we denote the

next timepoint in the timepoint set of state u after or at time t as n(u, t) = min{t′ : t′ ∈

ε(u), t′ ≥ t} if it exists, otherwise ∞. At each point in time, t, we assume that there is an

integer travel time associated with traveling from state u, to state v, denoted τ(u, v, t). Note

that restricting ourselves to integral points in time for timepoints and integer travel times is

without loss of generality (as long as the original time data is rational) as we may discretize

time as finely as needed.

With respect to any graph G = (V,A), we denote the set of arcs leaving a node q ∈ V as

δ+
G(q), and the set of arcs entering q as δ−G(q). Similarly, we denote the set of nodes that can be

reached by traversing a single arc from node q ∈ V as N+
G (q) = {v ∈ V : ∃(q, v) ∈ A}, and the

set of nodes which can reach q by traversing a single arc as N−G (q) = {v ∈ V : ∃(v, q) ∈ A}.

When the context of which graph we are discussing is clear, we will omit the subscript to

make the notation less cumbersome.

To obtain our time layered graph G∗ = (V ∗, A∗) we perform the following construction.

The set of nodes V ∗ = {(u, t) : u ∈ V, t ∈ ε(u)} is the set of all pairs of states and

timepoints for each given state. Arcs either start and end at two distinct states, representing

the transition from one state to another, or start and end at the same state, representing

staying in the same state. We denote the former set of arcs as A∗L (“leaving arcs”), and use

the next timepoint function n(v, t) and travel function τ(u, v, t) to add arcs from (u, t) to

(v, n(v, t+ τ(u, v, t))) for each neighbor v ∈ N+
G (u). The latter set of arcs are denoted as A∗H

(“holding arcs”) and is made up of arcs that go from (u, t) to (u, n(u, t+ 1)). The full set of

arcs of G∗ are A∗ = A∗L ∪ A∗H .

In the proceeding discussions, when we refer to a time layered graph we will assume

that we also have access to the underlying graph G, travel function τ and timepoint sets ε.

Moreover, we will use G to denote a graph with no time components and G∗ to denote a

time layered graph obtained from G (with travel function τ and timepoint sets ε).
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2.2 Problem Description

Using the notion of time layered graphs from section 2.1, we may now discuss our scheduling

problem and corresponding model. Assume that we start with a time layered graph G∗ =

(V ∗, A∗) with underlying network G = (V,A), timepoint sets ε, and travel function τ , as

described in section 2.1. We have a set I of orders that must be scheduled. Each order i ∈ I

is comprised of a discrete set of samples and a path Π(i) = (Π(i, 1),Π(i, 2), . . . ,Π(i,m)) of

tasks (which correspond to the “states” described in section 2.1), which order i must be

routed through, in order. The “samples” of an order correspond to the amount of material

that must be processed for a given order. Note that the samples of a single order may be

split up into discrete batches and processed at different times, as long as each individual

sample follows the order’s path. We denote the number of samples of order i that arrive at

task u at time t ∈ ε(u) as α(i, u, t).

Tasks of the underlying graph, u ∈ V , have a number of properties. We denote the

number of units that may carry out task u as ρ(u), and the capacity of each unit as κ(u).

These units can be considered to be any entities which carry out a given task, for example

machines or personnel. Note that all of these units are considered identical, and we will refer

to units that perform task u as u-units. Moreover, the previously discussed travel function

τ corresponds to the processing times of task u, which we allow to depend both on the time

that u is being used and the subsequent task v that will process the products after u. These

properties restrict how order samples may flow through the network; for instance, sending

m samples from task u to a different task v at time t requires that dm/κ(u)e u-units are

available to be utilized at time t. Note that we assume that packing samples into units is

not an issue as we allow samples from a single order to be processed by different units and

units to transport samples from different orders, as long as there is sufficient capacity. We

assume that arcs that start and end at the same state, which represent samples waiting at a

task, have unlimited capacity and do not require any unit allocation as the samples are just

being held at the task.
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Figure 1: Illustration of a time layered graph.

Units for task u that are used to process samples before they are processed by a v-unit

at time t, become available to be used again after some time ω(u, v, t). We call ω(u, v, t) the

return time of u to v at t.

Let H(i, u, t) denote the head of the arc in G∗ corresponding to samples of order i at task

u being sent to the subsequent task in its path at time t. To make this notation more clear, let

us consider the following example. ConsiderG = ({A,B,C,D}, {(A,B), (A,C), (B,D), (C,D)}),

with travel function τ(A,B, t) = 2, τ(A,C, t) = τ(B,D, t) = τ(C,D, t) = 1 ∀t, and timepoint

sets ε(A) = {1, 2, 3}, ε(B) = {1, 2, 3}, ε(C) = {2, 3}, ε(D) = {1, 3}. Following the construc-

tion of a time layered graph described above, the graph G along with the resulting time lay-

ered graph G∗ are shown in Figure 1. Suppose the path of order i is Π(i) = (A,B,D) and the

path of order j is Π(j) = (A,C,D). Then we have H(i, A, 1) = (B, 3), H(j, A, 1) = (C, 2),

H(j, A, 2) = (C, 3), and H(i, B, 1) = H(i, B, 2) = H(j, C, 2) = (D, 3). Note that even

though the travel time of task B is 1, since there is no node for task D at time 2, then the

arc from (B, 1) to D goes to (D, 3), instead of (D, 2). Moreover, depending on the choice of

parameters, G∗ may have unreachable nodes. Consider the node (B, 1), since B is obtained
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from A then any arcs coming from (B, 1) or (B, 2) cannot be used. Nevertheless, we may

still construct G∗ given G, τ, and ε using the process described in section 2.1.

We have three types of variables in the present problem. Let y(u, v, t) denote the number

of u-units dispatched to task v at time t. This allocation allows up to κ(u)y(u, v, t) samples

to be sent from task u to task v at time t. Let x(i, u, t) denote the number of samples of

order i sent from task u at time t to H(i, u, t). Note that the sum of the x variables over

all orders i, for a single task u at time t corresponds to the batch size for task u at time

t. Let z(i, u, t) denote the number of samples of order i that wait at task u at time t, i.e.

instead of proceeding to H(i, u, t), the samples proceed to (u, n(u, t + 1)). Note that the x

and z variables are flow variables on the arcs of G∗, and the resulting problem (P ) is a flow

problem. We now present the complete model (P ), based on the model presented in 38.

max
x,y

fG∗ =
∑
i∈I

∑
u∈Π(i)

∑
t∈ε(u)

f(i, u, t)x(i, u, t)−
∑
u∈V

∑
v∈N+

G (u)

∑
t∈ε(u)

c(u, v, t)y(u, v, t) (P )

s.t. x(i, u, t) + z(i, u, t)

−
∑

(w,t′):H(i,w,t′)=(u,t)

x(i, w, t′) = α(i, u, t), ∀ i ∈ I, u ∈ Π(i), t ∈ ε(u) (1)

∑
v∈N+

G (u),t′:t′≤t<t′+ω(u,v,t′)

y(u, v, t′) ≤ ρ(u), ∀ (u, t) ∈ V ∗ (2)

∑
i∈I:∃k,Π(i,k)=u,Π(i,k+1)=v

x(i, u, t)

−κ(u)y(u, v, t) ≤ 0, ∀ (u, t) ∈ V ∗, v ∈ N+
G (u) (3)∑

i∈I:∃k,Π(i,k)=u,Π(i,k+1)=v

x(i, u, t)

−κ(u)(y(u, v, t)− 1) ≥ 1, ∀ (u, t) ∈ V ∗, v ∈ N+
G (u) (4)

x(i, u, t) ≥ 0, ∀ i ∈ I, u ∈ Π(i), t ∈ ε(u) (5)

z(i, u, t) ≥ 0, ∀ i ∈ I, u ∈ Π(i), t ∈ ε(u) (6)

y(u, v, t) ≥ 0, ∀ (u, t) ∈ V ∗, v ∈ N+
G (u) (7)

x, z, y integral, (8)
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Constraints (1) are flow constraints which ensure that the in-flow that comes into a node

(u, t) is equal to the out-flow that leaves (u, t) for each order i. Constraints (2) ensure that

units are not over-allocated at any point in time. Constraints (3) ensure that enough u-

units are allocated at time t to support the amount of samples scheduled to be processed.

Constraints (4) enforce that we do not dispatch resources without need, i.e. we do not waste

unit usage in our solution. Constraints (5) - (8) are non-negativity and integrality constraints

for the variables. Note that both the z and y variables are completely determined by the

values of the x variables; hence for convenience, we will refer to a solution to (P ) as x but

assume that the z and y variables are stored and accessible as well.

The objective function is a general weighted sum on the x and y variables which resembles

maximization of throughput. f(i, u, t) is the per sample objective weight of sending samples

of order i from task u at time t to H(i, u, t), and c(u, v, t) is the per unit cost of dispatching u-

units to task v at time t. There is only one requirement on f and c. To state such requirement,

we need to first make a definition. Let us call a solution x′, a “backward time-shifted” version

of x if the following conditions hold: x and x′ are solutions to (P ) such that x′ can be obtained

from x by shifting some number of samples (δ) from a order i, scheduled to leave task u

at time t, to an earlier time t′. More precisely, ∃i ∈ I, u ∈ Π(i), t, t′ ∈ ε(u), δ ∈ Z, δ > 0

such that t′ ≤ t, x′(i, u, t′) = x(i, u, t′) + δ, x′(i, u, t) = x(i, u, t)− δ, and x′(i, u, t) = x(i, u, t)

otherwise. Now, the only assumption that is considered on the objective function is that if x′

is a backward time-shifted version of x, then fG∗(x
′) ≥ fG∗(x), i.e. the backward time-shifted

solution is no worse than the original solution. Note that this is a fairly sensible assumption

as it is natural to assume that only adding delays to a schedule without otherwise changing

it will not improve its objective value.

The model (P ) has been constructed to easily accommodate some of the features of the

particular application that we study. However, it is similar to other general process network

scheduling models proposed such as in18 and 23, and was used to model a semiconductor

12



processing plant in 39. In particular, the method for generating time grids for our model

presented in section 3 may be tailored slightly to fit the general batch scheduling model

presented in 23. In section 4.6, we obtain results comparing our method applied to Velez

and Maravelias’ model to their proposed method.

3 Timepoint Modification Framework

In this section we discuss the framework for solving our scheduling problem (P ) from section

2.2, using an iterative approach. We present Figure 2 to give an overview of how the

framework proceeds, before describing the framework in more detail below.

Start Input: G, ε, fG∗ , τ, start disc Solve (P )

Output: Set of found feasible solutions, X

Apply heuristic algorithms on x ∈ X

Output: Modifications to timepoint sets, ε+, ε−

ε = ε ∪ ε+ \ ε−

ε+ = ∅?
Out of

time?

Obj. im-

proved?

Solve (P ∗)

Add discretization fin disc to ε

Solve (P̂ )Output: Best solution foundStop

no

yes yes

no

yes

no

Figure 2: A flowchart outlining the dynamic timepoint framework.

We begin by instantiating our timepoint sets, ε, to some sufficiently coarse uniform

discretization which we will call start disc. We then use a MIP solver, e.g. Gurobi or

CPLEX, to solve problem (P ) and we record a list, X, of any feasible solutions found by

the optimization solver. Note that the parameters we use for the solver or the choice of
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solver are not discussed here, we assume that we can obtain some list of feasible solutions to

our problem using an abstract “solver”. We would like to emphasize that the need to find a

feasible solution is key to our framework; however the solution (or solutions) may be obtained

by various means. For example, one could employ a greedy approach to obtain a feasible

solution, or in fact scheduling no operations would also be a (albeit bad) feasible solution.

Depending on the specific application being solved for and any additional information known

in advance, one may be able to derive other simple algorithms for obtaining feasible solutions.

Note that the quality of the initial solutions can impact the effectiveness of the rest of the

framework. Beginning with better solutions will allow more of the search space to be cutoff,

and therefore may make the iterative solves faster.Using each obtained solution x ∈ X as

input, we proposed a series of algorithms, i.e. Get Instant Start Timepoints, Get Overloaded

Timepoints, and Get Dominated Timepoints (which will be discussed in more detail later)

to obtain a set of timepoints ε+ to add to our current timepoints and a set of timepoints ε−

to remove from our current timepoints. That is, algorithms Get Instant Start Timepoints

and Get Overloaded Timepoints produce a set of timepoints to add for each solution x ∈ X,

and Get Dominated Timepoints produces a set of timepoints to remove for each x ∈ X.

To obtain ε+, we take the union of all of the sets of timepoints to add, and to obtain ε−,

we take the intersection of all of the sets of timepoints to remove. By choosing to use the

union for added timepoints, we add all timepoints that are identified as being potentially

beneficial, and by choosing to use the intersection for removed timepoints, we remove only

those timepoints which were considered not needed for every solution x ∈ X.

We proceed to construct a new instance (P ∗) of problem (P ), by adding ε+ and/or

removing ε− from the current timepoints ε. The best solution found previously, x, is used

to generate a new solution x∗ which is feasible for our newly formed problem, (P ∗). x∗ is

given as an initial solution to our new problem (P ∗) and we repeat this process of solving

the current problem, using the solution(s) found to generate new timepoints to add and

remove, and then modifying the current set of timepoints. We provide the solution x∗ as an
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initial solution for (P ∗) so that the solver may use x∗ as a feasible solution, with the goal of

optimizing (P ∗) more quickly than if no initial solution was provided. This continues until we

reach a stopping criterion such as reaching a computational time limit, ending in an iteration

such that algorithms Get Instant Start Timepoints and Get Overloaded Timepoints do not

produce any new timepoints to add, or completing an iteration in which there is insufficient

improvement between the new solution and the previous solution. We call the allowed time

between solutions sols tl, and the time limit for the aforementioned iterative procedure

its tl. That is, suppose we are solving a single instance of (P ) and have already found

an incumbent solution. If no better solution is found within sols tl seconds of finding the

latest incumbent solution, then we quit the solution procedure for the iteration and return

with any solutions that were found. The time limit for the entire iterative procedure, its tl,

is checked between iterations and if exceeded, we stop iterating and continue. The way this

was implemented in our experiments was to call the MIP solver with the remaining time

left of the iterative procedure (its tl - (current time - start time)) as the time limit and to

provide two types of callbacks to the MIP solver. The first type of callbacks are triggered

any time a new solution is found and stores the solution in an array. These solutions are

used by the timepoint modification algorithms later to determine which timepoints to add

and remove. The second type of callbacks are triggered intermittently and check how long

it has been since the last solution was found. If too much time has elapsed then we quit the

MIP solver and proceed to the next iteration.

After this process of adding and removing timepoints iteratively has reached a stopping

criteria and terminated, we store the best solution found previously, x̂, add all of the time-

points associated with some chosen discretization (which we call fin disc) to our timepoint

sets, create a problem (P̂ ), and solve this problem with input x̂ given as an initial solution.

We call the time limit passed to the solution method for solving this final problem fin tl.

By adding all of the timepoints from a discretization which is assumed to provide acceptable

solutions, we aim to find any solutions better than x̂ we may have missed earlier during our
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iterative process. However, despite adding possibly many new timepoints during this final

step, we are still able to take advantage of the incumbent solution (x̂) to be able to optimize

(P̂ ) faster than if we optimized (P̂ ) from scratch as shown in Section 4. The framework

terminates by returning the best solution found for problem (P̂ ).

Table 1 provides a summary of the parameters used in the framework with their corre-

sponding descriptions for reference.

Table 1: Description of parameters used for the framework.

Parameter
Name

Parameter Description

start disc
The timepoint discretization to use for building the first iteration

of problem (P )

fin disc
The timepoint discretization to use for building the final solve of

problem (P ), after the iterative procedure

its tl
The total amount of time to allow for the iterative procedure

(before adding fin disc to (P ) and solving (P̂ ))

obj thresh
The required objective improvement between iterations, measured

as new objective value as a factor of old objective value

sols tl

The allowed time between solutions during a single iteration. If
more than sols tl time has passed since finding the last solution,

then quit the current iteration

fin tl
The allowed time for solving the final problem (P̂ ), after adding

fin disc to (P )

3.1 Adding/removing timepoints

We now discuss the heuristics for adding and removing timepoints. The driving idea of the

heuristics is to add timepoints such that actions from a previous schedule may be shifted to

happen earlier in time, and to remedy cases where a task’s units cannot be efficiently utilized

because of a lack of timepoint availability. Similarly, we remove timepoints which seem to be

unnecessary, from a time-shifting perspective, to reduce the size of the resulting optimiza-

tion problems. Our goal is that by applying these heuristics iteratively, we may shape the

starting coarse timepoint sets into sets which include sufficient timepoints for obtaining high

quality solutions, but without the unneeded timepoints that a fine uniform discretization
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may contain. Note that this is where we use the assumption that the objective function of

(P ) is such that backward time-shifting solutions does not result in worse objective values.

If this assumption holds, then we expect that shifting scheduled events to happen earlier

in time (possibly allowing for more events to be scheduled) will improve the best objective

value over each iteration.

We introduce the following definition: Let ωmax(u, t) := maxv∈N+
G (u) ω(u, v, t) be the

longest return time for a u-unit which is utilized at time t. Similarly, let ωmin(u, t) :=

minv∈N+
G (u) ω(u, v, t) denote the minimum return time for a u-unit which is utilized at time

t.

Algorithm Get Instant Start Timepoints describes how timepoints are added such that

samples that leave from a task w to a task u may leave u upon arrival. Figure 3a pro-

vides a graphical representation of how instant start timepoints are identified and added

to the timepoint sets. Namely, suppose a task u has units dispatched at timepoint t

(
∑

v∈N+
G (u) y(u, v, t) > 0). We then consider all vertices (w, t′) of G∗ that have an arc from

(w, t′) to (u, t) that is being used (y(w, u, t′) > 0) and whose units will arrive before time t

(t′+ τ(w, u, t′) < t). For each of these neighbors, we add a new timepoint at the actual time

that samples departing from this vertex arrive at task u (i.e. t′+ τ(w, ut′) is added to ε(u)).

This procedure is carried out over all vertices (u, t) of G∗ such that u-units are dispatched

at time t.

We call the timepoints added by this heuristic, “instant start timepoints” as they allow

samples which leave a task w and arrive at a task u to begin departing u immediately upon

arrival (t′ + τ(w, u, t′)) instead of waiting until time t to leave. The timepoints that this

heuristic adds allows samples which are being scheduled by the model to have fewer instances

where they must wait at a task before proceeding to the next one in their path. We anticipate

that by including these timepoints, future schedules may obtain greater objective value by

shifting operations to happen earlier, possibly allowing more operations to be scheduled later

in the horizon.
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Algorithm 1 Get Instant Start Timepoints

1: function Get Instant Start Timepoints(G,G∗, ε, x)
2: ε+ ← {ε+(u) = ∅ : u ∈ V } . Instantiate set of timepoints to add
3: for all u ∈ V do
4: for all t ∈ ε(u) do
5: if

∑
v∈N+

G (u) y(u, v, t) > 0 then . Samples are leaving (u, t) in the solution

6: for all (w, t′) ∈ N−G∗((u, t)) : t′ + τ(w, u, t′) < t do . Consider neighbors
such that samples departing from that neighbor arrives at u before t

7: if y(w, u, t′) > 0 then . Arc from (w, t′) to (u, t) that is being used in
solution

8: ε+(u)← ε+(u) ∪ {t′ + τ(w, u, t′)} . Set t′ + τ(w, u, t′) to be added
to ε(u)

9: ε+ ← ε+ ∪ {ε+(u)}
10: return ε+ . Return set of instant start timepoints to add

Instant Start Timepoints:

0 Ht

t′ + τ(w, u, t′)

y(w, u, t
′) ≥ 1

y(u, v, t)
≥ 1

0 Ht

t′ + τ(w, u, t′) added to ε+

(a) New instant start timepoints.

Overloaded Timepoints:
ωmax(u, t)ωmax(u, t∗)

0 Ht t∗ t′∑
v∈N+

G (u) y(u, v, t) = ρ(u)

0 H

t

t∗ added

t∗ + ωmax(u, t∗) added

(b) New overloaded timepoints.

Figure 3: Addition of new timepoints. Time flows along axis, with “X” representing the
presence of a timepoint in ε(u).

Algorithm Get Overloaded Timepoints describes how timepoints are added for tasks

which are heavily utilized but whose timepoint sets is lacking potentially useful timepoints.

Figure 3b demonstrates how overloaded timepoints are added to the timepoint sets. Suppose

a task u has all of its units dispatched at time t (
∑

v∈N+
G (u) y(u, v, t) = ρ(u)). We use this

criteria to identify times of high unit utilization for task u. We then add a timepoint for

task u at the earliest time that we can guarantee that the units will be available again, that

is after the maximum return time of u at time t, t+ ωmax(u, t) (labeled as t∗ in Figure 3b).
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Algorithm 2 Get Overloaded Timepoints

1: function Get Overloaded Timepoints(G,G∗, ε, x)
2: ε+ ← {ε+(u) = ∅ : u ∈ V } . Instantiate set of timepoints to add
3: for all u ∈ V do
4: for all t ∈ ε(u) do
5: if

∑
v∈N+

G (u) y(u, v, t) = ρ(u) then . Solution is dispatching all units of task
u at time t

6: t′ ← n(u, t+ 1)
7: while t+ ωmax(u, t) < t′ do . Current time is between t and proceeding

timepoint
8: t← t+ ωmax(u, t)
9: ε+(u)← ε+(u) ∪ {t} . Set t to be added to ε(u)

10: return ε+ . Return set of overloaded timepoints to add

We continue to repeat adding timepoints spaced by ωmax(u, t) until we reach the timepoint

proceeding t, n(u, t+ 1) (labeled as t′ in Figure 3b). Note that this heuristic will only affect

timepoints where there is extra time between when a u-unit will return to be used again,

and the next timepoint when dispatching may occur at (t + ωmax(u, t) < n(u, t + 1)). We

carry out this procedure over all vertices (u, t) of G∗ such that all u-units are dispatched at

time t.

We call the timepoints added by this heuristic “overloaded timepoints” because they are

added in cases where we identify a fully utilized resource. This heuristic aims to reduce cases

where there is a backlog of samples waiting at a task, but the task’s units are underutilized

because u has insufficient timepoints around time t. In these cases, we add timepoints for

task u so thatu-units may be used once they return from a neighboring task and become

available again, thereby allowing better unit utilization for this task.

Algorithm Get Dominated Timepoints describes how timepoints are removed in cases

when we have two adjacent timepoints that are sufficiently close. Figure 4 shows how we

identify dominated timepoints to remove from the timepoint sets. Consider a task u that

has two adjacent timepoints, t and n(u, t + 1), such that no u-units are dispatched at time

n(u, t + 1) (
∑

v∈N+
G (u) y(u, v, n(u, t + 1)) = 0). Suppose that the timepoints are also close

enough that a unit dispatched at time t may not be dispatched at time n(u, t + 1), that
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Algorithm 3 Get Dominated Timepoints

1: function Get Dominated Timepoints(G,G∗, ε, x)
2: ε− ← {ε−(u) = ∅ : u ∈ V } . Instantiate set of timepoints to remove
3: for all u ∈ V do
4: for all t ∈ ε(u) do
5: if

∑
v∈N+

G (u) y(u, v, n(u, t+ 1)) = 0 then . No samples leaving task u at time

n(u, t+ 1)
6: if n(u, t+ 1)− t < ωmin(u, t) then . We cannot allocate the same unit to

both timepoints
7: if t+ τ(u, v, t) ≤ n(u, t+ 1) + τ(u, v, n(u, t+ 1)) ∀v ∈ N+

G (u) then .
Samples leaving at time t arrives before samples leaving at time n(u, t+ 1)

8: if
∑

(w,t′)∈N−
G∗ ((u,n(u,t+1))) y(w, u, t′) = 0 then . No samples arrive

after t and at or before n(u, t+ 1)
9: ε−(u)← ε−(u) ∪ {n(u, t+ 1)} . Set n(u, t+ 1) to be removed

from ε(u)

10: return ε− . Return set of dominated timepoints to remove

is the time difference between the points (n(u, t + 1) − t) is less than the minimum return

time of u at time t, ωmin(u, t). Finally, if there are also no flows on arcs whose head is

(u, n(u, t+ 1)) (
∑

(w,t′)∈N−
G∗ ((u,n(u,t+1))) y(w, u, t′) = 0), and samples that leave task u at time

t arrive at their destination before samples which leave u at time n(u, t+ 1) (t+ τ(u, v, t) ≤

n(u, t + 1) + τ(u, v, n(u, t + 1)) ∀v ∈ N+
G (u)), then we remove n(u, t + 1) from task u’s

timepoints. Note that these criteria checks are done using the previous value of ε, before

any of the added timepoints are actually added. Therefore, we do not directly undo any

of the added timepoints before they have undergone at least one iteration of the algorithm.

However, it is possible that a timepoint added in iteration k of the algorithm may be removed

during iteration k + 1.

We call the timepoints which are removed according to the previous criteria “dominated

timepoints”. Based on the assumption that backward time shifting a solution cannot worsen

its objective value, then any solution which uses u-units at time n(u, t+ 1) could be changed

to an equal or better solution which uses the same units at time t. Identifying and removing

these timepoints helps to reduce the number of timepoints in the model, and hence the model

size with the aim of improving the CPU cost of solving the model.
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Dominated Timepoints:
No arrivals during this interval

0 Ht n(u, t+ 1)

ωmin(u, t)

0 Ht

n(u, t+ 1) removed

Figure 4: A figure demonstrating under what conditions we mark timepoints as dominated,
for removal. Time flows along axis, with “X” representing the presence of a timepoint in
ε(u).

The proposed framework described above has several limitations. Given that this is a

heuristic approach, global optimality is not guaranteed; thus, we accept practical solutions

that may be sub-optimal but can be resolved in short CPU times. The algorithms Get

Instant Start Timepoints, Get Overloaded Timepoints, and Get Dominated Timepoints used

for modifying the timepoints between iterations have no guarantees, even though the ideas

behind their development seems suitable and intuitive. With respect to the convergence of

the framework, we did not observe any cycling (timepoints being added and subsequently

removed many times) in our testing, but we do not guarantee that cycling may not occur.

However, if such cycling is possible, the various stopping criteria discussed above will still

ensure that the framework terminates.

Additionally, there are a number of parameters whose values must be chosen a priori

such as the starting discretization to use for the initial problem (start disc), the values

for the stopping criteria (its tl, obj thresh, and sols tl), and the parameters relating to

solving (P̂ ) (fin disc and fin tl). The choices for these parameters will have an influence

on the performance of the framework, and setting these parameters will depend on the

specific problem being solved and one’s solving preferences (CPU time limitations, hardware

limitations, required solution quality, etc.). We present the actual choices for the parameters

used in our experiments in section 4.1.
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4 Computational Experiments

Up to this point, we have described the problem as a scheduling problem over a time lay-

ered graph. We used this more general setting to emphasize that this method is not solely

applicable to our case study and may be used for other applications such as fermentation or

other chemical production scheduling23, railroad40,41 or truck routing22, or job shop prob-

lems6. In this section, we will introduce two case studies. The first involves a large-scale

facility in the scientific services sector, with the aim of presenting the key features of our

framework including analysing the performance and behaviour of our approach. The second

case study presented in section 4.6 is used to demonstrate the application of our framework

to other applications in chemical engineering. In this second case study, we also compare

the performance of our framework against a previously reported time-discretization in the

literature.

The scientific services sector is focused on carrying out analyses on samples that are

ordered by clients for various purposes, e.g. performing a nutritional analysis on a food item

to create the nutritional facts panel before bringing the product to market, or performing

air quality analyses to check for hazardous materials such as asbestos. Companies in the

scientific services sector may receive on the order of thousands of samples on a daily basis to

be processed at their facility and as such require a suitable and efficient method of scheduling

operations.

In particular, we have the following differences compared to the general description

of the framework above. We have a single return time for u-units used, independent of

what time the units are utilized and to which neighboring task they are dispatched to,

ω(u, v, t) = ω(u) ∀v ∈ N+(u), t ∈ ε(u). We have a single travel time from task u to

any other neighboring task v, again independent of what neighbor the samples travel to

and at what time, τ(u, v, t) = τ(u) ∀v ∈ N+(u), t ∈ ε(u). Furthermore, the u-units be-

come available immediately after the samples have been moved from task u to task v, i.e.

τ(u) = ω(u) ∀u ∈ V .
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The plant used for our experiments is based on a multipurpose industrial-scale scientific

services facility. Due to confidentiality agreements, we cannot disclose detailed data. The

facility is rather large with nearly 200 distinct tasks, each of which may have multiple

identical machines. During a thirty day timespan, the facility received orders comprising

of over 150 unique paths, using approximately 100 unique tasks. Over this timespan, they

received several hundred orders comprising of more than 20,000 samples. The capacities and

processing times of the individual tasks vary greatly. The largest capacity among all tasks

is over 1,300 times the size of the smallest capacity, similarly the processing times of the

tasks vary from a few minutes to several days. In the supplementary material, we present

normalized values for capacity, processing time, and number of units for each task considered

in the facility.

4.1 Policies Tested

Let us begin by defining the non uniform discrete M (NUDM) and uniform discrete (UDM)

discretizations. The UDM discretization is defined as having a timepoint at times S, S +

M,S + 2M, . . . , S + bH/McM for each task, where S is the start time of the horizon and

H is the length of the horizon. The NUDM discretization uses the minimum of M and the

travel time of a task as the timestep for each task’s time grid, where we assume that the

travel time of a task does not depend on the destination. The NUD60 discretization (M

= 60 minutes) was shown in 9 to have a better tradeoff between schedule performance and

CPU solving time than the other uniform discretizations that were tested. Therefore we will

refer back to this discretization several times throughout this section.

The iterative policies that were tested in this work are presented in table 2. The poli-

cies are named according to the following format: “max seconds between solutions” - “min

objective improvement between iterations” - “starting discretization used”. Therefore, for

the “60 - 1.05 - UD240” policy, we begin with a uniform discrete time grid with 240 units

space between each timepoint. During each iteration of the framework described in section
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Table 2: Descriptions of iterative policies tested.

Policy Name
Starting

Discretization

Time
Limit for
Iterative
Phase (s)
(its tl)

Min.
Objective
Change

(obj thresh)

Max. Time
Between
Solutions

(s)
(sols tl)

Time
Limit for

Final
Solve (s)
(fin tl)

5 - 0 - UD60 UD60 600 1 5 600
5 - 0 - UD120 UD120 600 1 5 600
5 - 0 - UD240 UD240 600 1 5 600

60 - 1.05 - UD240 UD240 600 1.05 60 600

3, we will only allow up to 60 seconds between solutions before proceeding to the next it-

eration. If an iteration does not produce more than a 5% improvement in objective value

compared to the output of the last iteration, then we exit. These parameter values were

chosen experimentally, as the resulting policies performed best in our testing. We test each

of UD60, UD120, and UD240 as starting discretizations (start disc) with no minimum

percent improvement between iterations (obj thresh = 1) and a five second time limit be-

tween solutions during a single iteration (sols tl = 5 seconds). By testing several different

UD starting discretizations, we may observe how this choice affects the performance of the

algorithm. These choices represent a policy which favors doing many iterations without

spending too much time on each one. Note that the tuning of some of these parameters

may need to be tuned by hand for different applications. For instance, if one wanted to

increase the amount of time spent searching for better solutions before modifying the time

grid and proceeding to the next iteration, then sols tl should be raised. Alternatively, if

one wanted to decrease the number of iterations that are performed, one could increase the

obj thresh parameter to force the process to stop as soon as the per iteration improvement

starts decreasing too much. We also test a policy which starts with the UD240 discretization

but allows sixty seconds between solutions (sols tl = 60 seconds), and requires a minimum

objective value improvement of 5% between iterations (obj thresh = 1.05). This set of

parameters represents a policy which is willing to spend more time searching for solutions

during each iteration, but also may not perform as many iterations if the amount of improve-
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ment slows. All iterative policies were given a 10 minute time limit for both the iterative

phase (its tl = 10 minutes) and the final solve after adding the known good discretization

(fin tl = 10 minutes). The NUD60 discretization was chosen as the set of timepoints to

add after the iterative process ends (fin disc = NUD60).

These iterative policies were compared against using the following discretizations without

any sort of modifications: UD60, UD120, UD240, NUD60. We will refer to the use of these

discretizations without modification as static discretizations throughout this section. These

discretizations were chosen because they provide a wide range of granularity in the timepoint

sets and so they should allow us to observe the tradeoff between computational expense and

solution quality between the different discretizations. Additionally, the NUD60 discretization

was shown to perform best among these other static discretizations in 9, and so we use it as

a benchmark for comparing the iterative policies’ performance.

4.2 Testing Procedure

Regarding the objective function of (P ), fG∗ , we use f(i, u, t) = 1 ∀i ∈ I, u ∈ Π(i), t ∈ ε(u),

and c(u, v, t) = 0 ∀u ∈ V, v ∈ N+(u), t ∈ ε(u). These choices for f and c were used so that we

may maximize the total amount of samples that is being sent through the network assuming

that the costs of utilizing units are negligible. To evaluate the efficacy of the framework

described previously in section 3 we use the following procedure. For each policy that is

being tested, we record the maximum objective value that the policy has obtained after 1

minute, 5 minutes, 15 minutes, 30 minutes, and 60 minutes have elapsed. We will refer to

these elapsed times as “checkpoints”. To normalize the results between instances, for each

policy and checkpoint, we compare the objective value at that checkpoint as a percentage

of the maximum objective value any policy obtains over the entire procedure. We chose to

report performance indicators at various intervals of time so that conclusions could be made

from a practical standpoint, based on the amount of time that could be allotted to creating

a schedule. That is, we assume that there is some external constraint which requires we have
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a schedule after a fixed amount of time. If we are given as much time as needed, we may as

well use a continuous time formulation with arbitrarily many event points to ensure that we

obtain an optimal solution. The times indicated above were chosen for comparison purposes

based on a wide range of solving requirements and based on the observed solving times of

our problems. Additionally, we also recorded the amount of time taken for each policy to

complete the procedure and report this value as a proportion of the maximum time taken

over all policies. Our intention is to present the results so that we can discuss which method

performs best under different solving time constraints.

We sort our results into three categories based on size. We measure instance size in terms

of number of variables and constraints present in the model created when using the NUD60

static discretization. Instances were categorized into small, medium, and large size problems.

Instances with less than 1,000,000 variables were considered to be small, instances with at

least 2,000,000 variables were considered to be large, and other instances were considered

medium sized. Note that all of the variables in our model are integer variables, and hence

these numbers (1,000,000 and 2,000,000) refer to the total number of (integer) variables in

the instances. More information about the sizes of the instances in each category is shown in

table 3. Columns 2 and 3 present the minimum number of variables and constraints among

all instances in each category. Similarly, columns 4 and 5 present the maximum number of

variables and constraints among all instances. Column 6 indicates how many instances were

sorted into each size category. Note that the number of instances sorted into each category

varies from 10 to 34. The reason for this is because the instances were first formulated based

on realistic horizon lengths and order arrivals using data from the industrial partner. The

instances were not sorted based on size until the results were analyzed, at which point this

discrepancy was observed.

Each instance of the problem was generated according to two parameters: the length of

the horizon that we are solving over, and the number of samples that start in the facility.

The horizon length we solve over varies from one day to seven days. The number of samples
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considered in each instance varies between 5,000 and 30,000. The paths of the orders were

sampled according to the observed frequencies of paths received at the plant over a thirty

day span. Each instance was solved assuming that the facility was able to operate constantly

over the scheduling horizon to simplify testing, that is we assume that there is no downtime.

Detailed information about each instance including model size, relative objective values at

each checkpoint, and which size category each instance was sorted into is provided in the

supplementary material. It is worth clarifying that we classify the instances’ size based on

the number of variables and constraints because tweaking the horizon length and number

of samples in the facility change the size of the problem drastically. For example, we have

one instance using a horizon length of one day and considering 30,000 samples that has

approximately the same number of variables and constraints as an instance using a horizon

length of five days that considers 5,000 samples.

Table 3: Sizes of instances in each category.

Size Category
Min.

Variables
Min.

Constraints
Max.

Variables
Max.

Constraints
Instances

Small 304,444 209,449 698,866 388,218 10
Medium 1,146,524 614,159 1,997,392 1,108,319 34

Large 2,016,628 1,117,913 3,399,906 1,880,512 16

Tests were run using 2 threads running at 3.2 GHz on a machine with access to 8 GB of

RAM. The implementation was done using the Julia programming language (version 0.6.2),

along with the Gurobi.jl (version 0.4.1) and JuMP.jl42 (version 0.18.2) packages. Gurobi43

(version 8.0.1) was used for solving the problems. The optimality tolerance given to Gurobi

was set to stop solving when the best found solution was within 0.5% of the optimal solution.

The rest of Gurobi’s settings were left at their defaults.

4.3 Performance on Small Size Problems

The experiments described in this section consist of instances which were categorized as being

small. Figure 5 depicts the results over the small instances. We immediately observe that
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the values of the various policies are approximately equal at each checkpoint, so we focus

on the 1 minute checkpoint. As expected among the fixed time discretizations, the finer

discretizations obtain better objective values than the coarser discretizations. Interestingly,

the dynamic discretizations are able to match the performance of the NUD60 policy, However,

the finish time results indicate that these dynamic policies take much more time to complete

than the NUD60 for these problem instances.

By examining the results for the dynamic timepoint policies, we observe that the per-

formance obtained using any of the dynamic variants is approximately equal to that of the

NUD60 after 1 minute has elapsed. This demonstrates that we may find better solutions by

applying the framework to a starting discretization compared to doing no timepoint modifi-

cations. Furthermore, the performance of the dynamic timepoint policies increases, slightly

surpassing the NUD60 policy, after 5 minutes have elapsed. However, the final cluster of

bars depicting the amount of time required for each policy to finish demonstrates that on

these instances, the dynamic policies take much longer to terminate compared to the static

policies. This extra time may be attributed to the iterative process of adding timepoints

and solving several models. From a tradeoff standpoint, the static NUD60 discretization

offers nearly the best performance, at a fraction of the computational cost that the dynamic

policies have.

This efficient tradeoff between objective value and solving time was presented in9 and

demonstrates that when instances are small, the NUD60 discretization is a good performer

on the present scheduling problem. In these cases where the problem size is relatively small

and the NUD60 policy may finish quickly, the dynamic framework appears to be unnecessary

as it may improve the solution quality only marginally but may also incur a comparatively

large computational cost.
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Figure 5: Results for small instances.

4.4 Performance on Medium Size Problems

The results on the set of medium sized instances presented by Figure 6 indicate a different

story, however. Observing the performance after 1 minute, we no longer see the NUD60

discretization being the best performer. In fact, the UD240 and UD120 static discretizations

both have performance better than the UD60 and NUD60 static policies after 1 minute. This

can be attributed to the instances being larger, and hence the solver not being able to make

as much progress as quickly, on the problems with more dense timepoint sets, compared to

those with coarser timepoint sets. This demonstrates the weakness of using a fine discretiza-

tion and the tradeoff between computational cost, solution quality, and discretization used.

Furthermore, by comparing the coarser dynamic policies against their static counterparts,

e.g. the 60 - 0 - UD240 dynamic policy and the UD240 static policy, after 1 minute has

elapsed, we observe that even in cases where we desire solutions very quickly, and hence

are forced to use coarse discretizations, there may still be a benefit to using an iterative

approach. In this case, the 60 - 0 - UD240 dynamic policy is able to obtain approximately
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77% of the greatest solution after 1 minute, while the UD240 obtains approximately 61% of

the greatest solution on average. It is worth reiterating that we could stop our framework as

needed to meet solving time constraints, as long as a solution has been obtained. Therefore,

even given only one minute, there are cases where applying the framework may improve

objective value.

We observe that all of the dynamic policies perform better than the static policies after

5 minutes have elapsed and that the NUD60 policy does not attain the same performance

until 30 minutes have elapsed. Furthermore, at each checkpoint in time, a dynamic policy

is performing best relative to the other static policies. This difference between the best

performing static policy and the best performing dynamic policy ranges from 0% (at 30 or

60 minutes) - 20% (at 5 minutes). This demonstrates that for obtaining strictly the best

performance, these policies were suitable on these medium sized problems. However, the

same observation discussed above still applies. As the problems are larger, the policies which

use a more fine initial discretization must solve larger problems and hence we see that the

5 - 0 - UD60 policy does not attain similar performance to the other dynamic policies until

the 15 minute checkpoint. This observation highlights the need to pick the parameters used

for the dynamic policies suitably depending on the problem specifications, e.g. if solutions

must be attained within 1 minute, then using a more coarse starting discretization would be

preferable to starting with the UD60 discretization. However, after 15 minutes, the 5 - 0 -

UD60 policy performs best, so if it is acceptable to spend longer amounts of time to solve a

particular problem, this policy may be preferable.

Most of the dynamic policies are still taking the longest to complete, and are taking

longer than the NUD60 policy, but the amount of extra time spent is less significant than

when the instances were small. Overall, over these instances, it appears that the 60 - 1.05

- UD240 policy is able to remain one of the best performers at each check point and also

terminates sooner than the other dynamic policies and NUD60.

Depending on the user’s preferences, on medium size instances it appears to be beneficial
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to use a dynamic timepoint policy over a static discretization. However, this decision will

be influenced by how large the problems to solve are, the amount of performance the user

must obtain, and the time restrictions the problems must be solved within.

Figure 6: Results for medium instances.

4.5 Performance on Large Size Problems

Figure 7 shows the performance results on the large instances. It is at this point that we

observe the breaking point of the NUD60 policy. On these instances, the NUD60 policy does

not become competitive with the other policies until the 30 minute mark, and furthermore

does not obtain a feasible solution within 1 minute on any of the large instances. The dy-

namic policies again offer good performance relative to the other policies at all checkpoints

in time. The extra time cost associated with the dynamic policies compared to their fixed

discretization counterparts is further reduced compared to the small and medium size in-

stances. Over these instances, our iterative method offers a better alternative to the NUD60

discretization for users who require higher performance than a uniform discretization may
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offer by either being equal to or exceeding the performance of the NUD60 policy at each

checkpoint and by terminating in less than 30% of the time.

Furthermore, we note a benefit to increasing the amount of time to allow between solu-

tions in these instances between the 60 - 1.05 - UD240 and the 5 - 0 - UD240 policies. In these

instances, the extra time spent per iteration translates to an overall improvement in solution

quality at each of the checkpoints, whereas this performance difference between these two

policies was not the same over the smaller instances. In fact, over the smaller instances,

we observed that by spending less time per iteration, but performing more iterations, the

5 - 0 - UD240 policy outperformed the 60 - 1.05 - UD240 policy. This observation highlights

again the importance of the parameter selection discussed in section 4.1.

Figure 7: Results for large instances.

We also performed some experiments observing the performance of our framework, ana-

lyzed by iteration. This was not the focus of this work, so we include detailed discussion in

the supporting information. The conclusions of this analysis were as follows. Using coarser

discretizations lead to more iterations being done, however these extra iterations could be
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limited by setting the obj thresh to a value greater than one to ensure that we do not per-

form too many iterations with minimal improvement. Finer grids may actually decrease the

total number of timepoints in early iterations because many of them are unnecessary, which

supports the idea of beginning with a coarser discretization and adding only timepoints which

seem promising. Moreover, the magnitude of the timepoint modifications between iterations

drops off quickly after a few iterations, suggesting that setting other stopping criteria based

on the number of timepoints added or removed may be beneficial to avoid continuing to

iterate without much benefit.

4.6 Comparison to Previous Case Studies

In this section, we present some results comparing our method against that presented by

Velez and Maravelias23. These experiments were done to compare the performance of our

method of iteratively refining time grids against an existing alternate method of selecting

timepoints statically. These experiments also demonstrate that our framework is not de-

pendent on the model (P ) presented in section 2.2, and may be applied to another general

model. The approach of Velez and Maravelias23 was proposed for use on process networks

with varying time scales, such as for fermentation processes, or multi-site facilities. The

application that Velez and Maravelias investigate23 is a general batch scheduling problem.

We test two process networks from their experiments. Process network 1 models a fermen-

tation process where the time taken for different stages, (i.e. fermentation, purification, and

processing) varies from a few days to a few minutes. Process network 2 models a process

with different facilities whereby each facility is using its own time scale, and facilities 1 and

2 supply materials to facility 3. Note that Velez and Maravelias selected those networks

because “they represent the types of process for which the multi-grid model can reduce the

number of time points significantly while still finding the optimal solution”, and so we also

use them to compare against our model. Diagrams of Velez and Maravelias’ process networks

that were used for testing are included in the appendix as figure 9.
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To compare these methods, two different experiments were constructed. Firstly, we

compare the performance of our methods detailed in section 3 applied to the instances pre-

sented23, using their model. The second set of experiments also used Velez and Maravelias’

model, however the instances are from section 4.3 which have been transformed into instances

that are compatible with Velez and Maravelias’ model. Note that this can be done because

Velez and Maravelias presented a generic batch scheduling problem and corresponding model.

The model that was implemented and used for testing purposes is given in 23, pages 77-79.

Any notation which is used in the context of Velez and Maravelias’ model throughout this

section is in reference to the notation used in 23. To implement our framework in this model,

we adapted the heuristics presented in section 3, to fit the context of this other model. The

heuristics that were used for the following experiments are presented as algorithms 4, 5, and

6 and discussed in appendix A.

The implementation was performed using Julia, and the JuMP.jl and Gurobi.jl packages

with the same versions as described in section 4.2. The instances were solved using Gurobi

(version 8.0.1) with default values, on a 48 core machine running at 2.3GHz, with access to

256GB of RAM. We tracked the best objective value found over time, starting time at the

moment that Gurobi begins its solve. That is, we do not include the time spent generating

the models when reporting time values. A summary of the parameters that were used for

the experiments we conducted is shown by table 4.

Table 4: Summary of parameters used for comparison experiments.

Figure Network
Description

Common Parameters Our Parameters VM Parameters

Discretized
By

Horizon
Length
(hours)

Time
Limit

(seconds)

Obj.
Function

Used

start disc

(hours)
obj thresh

sols tl

(seconds)
(µ, ν) Tested

8a
VM Fermentation

Process
hours 120 1,800

VM Max
Profit

NUD5 1.01 30 (1,1), (2,2), (4,4)

8b
VM Multi-Site

Process
hours 120 1,800

VM Max
Profit

NUD5 1.01 30 (1,1), (2,2), (4,4)

8c
Small

Instance
#1

minutes 6 21,600 Max fG∗ NUD1 1.05 60 (1,1), (2,2), (4,4)

8d
Small

Instance
#2

minutes 6 21,600 Max fG∗ NUD1 1.05 60 (1,1), (2,2), (4,4)
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The results of these experiments are presented in Figure 8. Figures 8a and 8b present

the results comparing both methods when solving the problem instances from 23. Based

on the results from 23, we used their instances with the smallest processing times and used

their profit maximization function as our objective function. We used these instances as we

expected them to be the most difficult instances to solve, since none of the instances using

profit maximization as their objective were solved to optimality in 23, and we expect that

decreasing processing times should increase the space of feasible schedules. We tested the

performance of Velez and Maravelias’ method using parameters: (µ = 1, ν = 1), (µ = 2, ν =

2), and (µ = 4, ν = 4), represented by the data points “VM - 1, 1”, “VM - 2, 2”, and “VM -

4, 4” respectively. The µ, and ν parameters are used by Velez and Maravelias to introduce

approximations into the time grids generated by their algorithms. µ determines “how much

the step size can vary between tasks in the same unit”, and ν determines “how much the step

size can increase moving downstream”. As these parameters are increased, the approximation

allowed in the time grids increases. We choose these values for µ and ν as they were used by

Velez and Maravelias23 and provided various tradeoffs between time and objective quality.

For our method we used parameters start disc = NUD5 (hours), obj thresh = 1.01, and

sols tl = 30 seconds, with no fin disc and corresponding final solve. A 30 minute time

limit was imposed on these problems. The graphs presented by figures 8a and 8b show that

at any given time while solving these instances, the best objective value found using each

method are approximately equal. This is particularly evident in figure 8b where the graphs

of all four methods are almost completely overlapping. Whereas in figure 8a there is an

exception as VM - 1, 1 takes approximately 200 more seconds to improve its objective value

from 7,355 to 7,370, compared to the other methods. These results demonstrate that our

method may perform similarly to that of Velez and Maravelias over these instances.

Figures 8c and 8d present the results when solving some of the small instances we previ-

ously discussed in section 4.3. We used the same objective function as discussed in section

4.2, and a 6 hour horizon. We tested these instances using the same parameters for Velez and
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Maravelias’ method as before, however we set the time limit passed to Gurobi to be 21,600

seconds (6 hours). For our method we used parameters start disc = NUD60 minutes,

obj thresh = 1.05, and sols tl = 60 seconds. Similarly to the previous experiment, we do

not add a final discretization fin disc. After we reach an initial stopping criteria during

the iterative improvement phase of our method, we cease the procedure and return with the

best objective found. The results presented by figures 8c and 8d show that when the size of

the input data grows large, the models generated by Velez and Maravelias’ method can grow

to significantly large sizes, and therefore the time to solve these models can also increase

greatly. This increase in solving time can be attributed to the large number of timepoints

that are added by Velez and Maravelias’ method to ensure that the optimal solution is not

cutoff. Note that in figure 8c, our method achieves the greatest objective (11,387) after 647

seconds, which is only matched by the VM - 4, 4 approximation after 21,400 seconds. The

VM - 1, 1 method achieves its greatest objective of 10,977 after 20,907 seconds and the VM -

2, 2 method achieves 11,134 after 20266 seconds. The results are slightly different in figure

8d. In this experiment, our method finishes with an objective of 11,545 after 509 seconds,

which is surpassed by VM - 4, 4 after 3,458 seconds (objective 11,598), and finishes with an

objective of 11,722 found after 20,935 seconds. Similarly to before, VM - 1, 1 achieves 11,248

after 17,484 seconds and VM - 2, 2 achieves 11,399 after 17,881 seconds. These two meth-

ods are unable to achieve the same objective values during the duration of our experiment

because of the increased problem size, and therefore increased computational requirements.

Even though our method does not obtain the greatest objective value in this experiment, it

is still able to find an objective which is within 2% of the greatest objective found and it

finds this objective in less than 15% the time taken to find a better objective by the VM -

4, 4 method. Note that this disparity in computation times is compounded when the time

spent to generate the problems is considered. Our implementation of Velez and Maravelias’

algorithms required a considerable amount of time to be spent simply selecting which time-

points to include in the model, however it may be possible to improve the speed of these
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algorithms through more sophisticated implementations, therefore as mentioned before, we

do not consider these times in our experiments.

These results highlight the advantage of our approach of beginning with a coarse dis-

cretization and refining it compared to that of generating a fine initial discretization. When

instances are small, we are able to perform roughly as well as when using Velez and Mar-

avelias’ method. However as instance size increases, our method is able to start reaping

benefits. Comparing our method against that of Velez and Maravelias, we observe that their

method generates problems which become computationally expensive in some cases, while

ours continues to find good, but not necessarily optimal solutions in comparatively short

timespans.

(a) Objective value over time on instance us-
ing Process Network 123.

(b) Objective value over time on instance us-
ing Process Network 223.

(c) Objective value over time on small in-
stance 1, converted to be compatible with
Velez and Maravelias’ model.

(d) Objective value over time on small in-
stance 2, converted to be compatible with
Velez and Maravelias’ model.

Figure 8: Performance comparison against Velez and Maravelias’ method23.
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5 Conclusion

This work presents a practical framework for iteratively refining time grids for the scheduling

of a multipurpose facility. The general framework was presented along with a discussion

on the motivating ideas used to choose new timepoints. Computational experiments were

conducted which showed that by refining the time grids of our scheduling problem with

the proposed framework, we were able to improve performance over the conventionally used

discretizations without substantially increasing the computational cost.

We observed the impact that the parameter selection for the algorithm can have on

the results. One should use their requirements to guide the selection of the parameters for

the algorithm, e.g. if short solving times are required, then beginning with a more coarse

starting discretization may be advisable. However, if longer solve times are acceptable,

then increasing the granularity of the starting discretization or increasing the duration of

sols tl may improve solution quality. In general, we would advise operators to begin with a

coarser discretization so that an initial, sub-optimal solution can be obtained quickly. Then,

the framework can be used to add only those timepoints which the heuristics suggest may

improve objective value. The goal of this approach is to improve the objective value to be

comparable with a fine discretization, while saving on the computational cost of obtaining

the final solution by solving smaller problems.

The performance of the iterative policies stayed relatively stable across various prob-

lem sizes, but with improved tradeoff as problems became large. Moreover, analyzing the

performance of the framework over each iteration showed that most of the performance im-

provements and timepoint modifications occur in the first few iterations. The results of

these experiments show that using a refinement strategy can improve solution quality over

the conventionally used uniform discretizations even when very short solving times are re-

quired. It is also worth noting that the proposed method is a general strategy which may

be applied to other scheduling applications with similar requirements, bypassing the need to

experimentally determine efficient time grids on a per problem basis. It is worth emphasizing
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that the algorithms presented are heuristics and have no guarantee about performing well

for all applications, even though they seemed to perform well in our case studies. Overall, we

expect them to be more well suited to applications for which it is computationally difficult

to solve the resulting problem when using a fine uniform discretization.

Regarding future work, there are a number of ways the framework presented may be

augmented. Investigations into selecting a more specialized initial time grid could help

the iterative method converge even more quickly. Additional heuristics for choosing which

timepoints to add or remove during the method could be proposed and their efficacy tested.

This could be especially useful when the performance differences between iterations become

small to further improve performance. Finally, more research into how to fine tune the

framework parameters, particularly for different problem applications, would be a worthwhile

endeavor. In this work the values for these parameters were chosen experimentally, but an

algorithmic method of selecting these values would be helpful when applying this method to

other applications or facilities.
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Nomenclature

Graph Symbols

V A set of nodes in a graph with no time component

A A set of arcs between nodes in a graph with no time component

G A graph G = (V,A) with no time component
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V ∗ A set of nodes in a time layered graph

A∗ A set of arcs between nodes in a time layered graph

G∗ A time layered graph G∗ = (V ∗, A∗)

u, v, w A particular node of V

ε(u) A set of integer timepoints for a node u ∈ V

n(u, t) The timepoint t′ ∈ ε(u), proceeding t ∈ ε(u)

τ(u, v, t) Time taken to go from node u to v at time t

δ+
G(q) Set of arcs in G leaving node q

δ−G(q) Set of arcs in G entering node q

N+
G (q) Set of nodes in G that can reach q by using a single arc

N−G (q) Set of nodes in G that can be reached by q by using a single arc

A∗L Set of arcs in G∗ that go between distinct nodes in V

A∗H Set of arcs in G∗ that start and end at the same node in V

Problem Symbols

I Set of orders to be scheduled

i A particular order in I

Π(i) The path of an order i indicating the sequence of processes that must be performed

on i

α(i, u, t) The number of samples of order i that arrive at task u ∈ Π(i) at time t ∈ ε(u)

u-unit A unit that can carry out task u

40



ρ(u) The number of units that carry out task u

κ(u) The capacity of each u-unit

ω(u, v, t) The amount of time needed before a u-unit which is used at time t to bring samples

to task v, can be used again

H(i, u, t) The head of the arc in G∗ corresponding to samples of order i at task u being sent

to the subsequent task in its path at time t

Model Symbols

y(u, v, t) The number of u-units dispatched to task v at time t

x(i, u, t) The number of samples of order i that begin processing by a u-unit at time t

z(i, u, t) The number of samples of order i that do not begin processing by a u-unit at time

t

f(i, u, t) The per sample weight of processing samples of order i on task u at time t

c(u, v, t) The per unit cost of dispatching u-units to task v at time t

Timepoint Symbols

UDM , M ∈ N The uniform discretization such that timepoints are spaced by M units of

time

NUDM , M ∈ N The non uniform discretization such that timepoints for task u are spaced

by the minimum of M , and the processing time of u, τ(u)

Supporting Information Available

As supporting information, we include further results and analysis on the performance of

our framework with respect to each iteration. We also present normalized process parameter
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values for the case study using the scientific services facility, and precise performance results

for each of the instances tested in sections 4.3 - 4.5. This information is available free of

charge via the Internet at http://pubs.acs.org/.
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Algorithm 4 Get Instant Start Timepoints (VM)

1: function Get Instant Start Timepoints
2: Y + ← {Y +(i, j) = ∅ : i ∈ I, j ∈ Ji} . Instantiate set of timepoints to add
3: for all i ∈ I do . Task i
4: for all j ∈ Ji do . Unit j can perform i
5: for all n ∈ N IJ

ij do . Timepoints of unit j, task i
6: if Xijn > 0 then . Samples processed at εn by unit j for task i
7: z ← εn + τij . z is the finishing time of this operation
8: for all k ∈ K+

i do . k is material output from i
9: for all i′ ∈ I−k do . i′ is task which uses k as input

10: for all j′ ∈ Ji′ do . Unit j′ can perform i′

11: n′ ← Get T imepoint(N, z) . Get timepoint associated with
actual time z

12: Y +(i′, j′)← Y +(i′, j′) ∪ {n′} . Add n′ to timepoints of unit
j′, task i′

13: return Y + . Return set of instant start timepoints to add

(42) Dunning, I.; Huchette, J.; Lubin, M. JuMP: A Modeling Language for Mathematical

Optimization. SIAM Review 2017, 59, 295–320.

(43) Gurobi Optimization, L. Gurobi Optimizer Reference Manual. 2018; http://www.

gurobi.com.

A Adapted Heuristics for Velez and Maravelias’ Model

Algorithms 4, 5, and 6 present the algorithms that were used for the experiments run in

section 4.6. These heuristics were created to be analogous to those presented in section 3 for

the model (P ), presented in section 2.2.

Algorithm 4 is adapted from algorithm 1. It states that if we process materials in unit j

of task i at time εn, then we find out when this operation will finish, call this time z. Any

materials k which are produced from task i will be available at time z. For each of these

materials k, we lookup any tasks i′ that consume material k and corresponding units j′ of i′

and allow processing of the newly created material to begin in unit j′ of task i′ at time z.
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Algorithm 5 Get Overloaded Timepoints (VM)

1: function Get Overloaded Start Timepoints
2: Y + ← {Y +(i, j) = ∅ : i ∈ I, j ∈ Ji} . Instantiate set of timepoints to add
3: for all i ∈ I do . Task i
4: for all j ∈ Ji do . Unit j can perform i
5: for all n ∈ N IJ

ij do . Timepoints of unit j, task i
6: if Xijn > 0 then . Samples processed at εn by unit j of task i
7: mats =

∑
k∈K−i

Skn . mats is the total amount of material that can
be consumed by task i that is available at time εn

8: cap =
∑

j∈Ji β
max
j . cap is the sum of max capacities of all units that

can process task i
9: if mats > capacity then . Current inventory of material k exceeds

the max processing capacity of task i
10: start← εn . Time associated with timepoint n
11: step← τij . Processing time of unit j doing task i
12: end← actual time of subsequent timepoint of N IJ

ij

13: current← start+ step . Step ahead
14: while current < end do
15: n′ ← Get T imepoint(N, current) . Get timepoint associated

with actual time current
16: Y +(i, j)← Y +(i, j) ∪ {n′} . Add n′ to timepoints of unit j,

task i
17: current← current+ step . Step ahead

18: return Y + . Return set of overloaded timepoints to add

Algorithm 5 is adapted from algorithm 2. If material is processed in unit j of task i at

time εn, then we calculate the total amount of material in inventory that could be processed

by task i at that time. This is an upper bound on the amount of demand of task i at this

time. We compare this value against the total maximum capacity of task i, assuming all

units j that could process i were used at the same time. If the possible demand exceeds the

capacity, then we add timepoints spaced apart by τij, until we reach the next timepoint that

was already present.

Algorithm 6 is adapted from algorithm 3. If unit j of task i is used at time εn, then

we consider the subsequent timepoint for unit j processing task i. Call this subsequent

timepoint n′. If the duration of time between n′ and n is small enough such that only one of

them can be used in a schedule, because of processing time constraints, then we remove n′

48



Algorithm 6 Get Dominated Timepoints (VM)

1: function Get Dominated Timepoints
2: Y − ← {Y −(i, j) = ∅ : i ∈ I, j ∈ Ji} . Instantiate set of timepoints to remove
3: for all i ∈ I do . Task i
4: for all j ∈ Ji do . Unit j can perform i
5: for all n ∈ N IJ

ij do . Timepoints of unit j, task i
6: if Xijn > 0 then . Samples processed at εn by unit j of task i
7: if (Subsequent timepoint n′ ∈ N IJ

ij is such that εn′ − εn < τij) then .
The next timepoint is close enough that not both n and n′ could be used by unit j

8: Y −(i, j)← Y −(i, j) ∪ {n′} . Remove n′ from timepoints of unit j,
task i

9: return Y − . Return set of dominated timepoints to add

from the grid for task i, unit j. The reasoning is to remove timepoints that we do not need,

if it is wanted again in the future, it may still be re-added by the instant start or overloaded

timepoint heuristics.

B Process Networks
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(a) Velez and Maravelias’ Fermentation Process Network.

(b) Velez and Maravelias’ Multi-Site Network.

Figure 9: Velez and Maravelias’ Process Networks.
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Graphical TOC Entry
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