
MODEL THEORY AND COMPLEX GEOMETRY

RAHIM MOOSA

Model theory is a branch of mathematical logic whose techniques have proven to
be useful in several disciplines, including algebra, algebraic geometry and number
theory. The last fifteen years have also seen the application of model theory to
bimeromorphic geometry, which is the study of compact complex manifolds up to
bimeromorphic equivalence. In this article I will try to explain why logic should
have anything to say about compact complex manifolds. My primary focus will
be on the results in bimeromorphic geometry obtained by model-theoretic methods
and the questions about compact complex manifolds that model theory poses.

1. Structures and definable sets

Besides being a discipline in its own right, model theory is also a way of doing
mathematics. Given a mathematical object, such as a ring or a manifold, we begin
by stating explicitly what structure on that object we wish to investigate. We then
study those sets that can be described using formal expressions that refer only to
the declared structure, and whose syntax is dictated by first-order logic. Let me
give a few details.

A structure consists of an underlying set M together with a set of distinguished
subsets of various cartesian powers of M called the basic relations. It is assumed
that equality is a basic (binary) relation in every structure. One could also allow
basic functions from various cartesian powers of M to M , but by replacing them
with their graphs I will, without loss of generality, restrict myself to relational
structures. For example, a ring can be viewed as a structure where the underlying
set is the set of elements of the ring and there are, besides equality, two basic
relations: the ternary relations given by the graphs of addition and multiplication.
If the ring also admits an ordering that we are interested in, then we can consider
the new structure where we add the ordering as another basic binary relation.
The definable sets of a structure are those subsets of cartesian powers of M that
are obtained from the basic relations in finitely many steps using the following
operations:

• intersection,
• union,
• complement,
• cartesian product,
• image under a co-ordinate projection, and
• fibre of a co-ordinate projection.

I am avoiding talking about the logical syntax here, but the reader familiar with
some first-order logic will recognize that the basic relations form the language of
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the structure and the various operations correspond to logical symbols such as con-
junction, disjunction, and negation. The operation of taking the image under a
co-ordinate projection corresponds to existential quantification, while that of tak-
ing a fibre of a co-ordinate projection corresponds to substituting parameters for
variables (that is, specialisation). The definable sets are then the sets described by
first-order formulae. This way of viewing definable sets is an essential feature of
model theory, even though many expositions (including this one) avoid formulae by
introducing definability set-theoretically just as I have done here.

In any case, given a structure we have an associated collection of definable sets.
When (R,+,×) is a commutative unitary ring for example, it is not hard to see
that if f1, . . . , f` are polynomials in R[x1, . . . , xn] then the algebraic set they define,
namely their set of common zeros in Rn, is definable. Hence the finite boolean
combinations of such sets, that is the Zariski constructible sets, are all definable.
It is an important fact that if R is an algebraically closed field then these are the
only definable sets.1

But we are interested in a somewhat different sort of example. Fix a compact
complex manifold X and consider the structure A(X) where the basic relations are
the complex analytic subsets of Xn, for all n > 0. By a complex analytic subset
I mean a subset A such that for all p ∈ Xn there is a neighbourhood U of p and
finitely many holomorphic functions f1, . . . , f` on U such that A∩U is the common
zero set of {f1, . . . , f`}. Note that the local data of U and f1, . . . , f` are not part
of our structure; only the global set A is named as a basic relation. The model
theory of compact complex manifolds was begun by Zilber’s [15] observation in the
early nineties that A(X) is “tame”. In particular, as a consequence of Remmert’s
proper mapping theorem, Zilber shows that every definable set in A(X) is a finite
boolean combination of complex analytic subsets. But the tameness goes much
further, making the geometry of complex analytic sets susceptible to a vast array
of model-theoretic techniques.

Zilber’s analysis of individual compact complex manifolds extends to the many-
sorted structure A which includes all compact complex manifolds at once, and
where all complex analytic subsets are named as basic relations. Note that algebraic
geometry is part of this structure; amongst the compact complex manifolds in A
are the complex projective spaces, and so all quasi-projective algebraic varieties are
definable in A. But there are also nonalgebraic compact complex manifolds, and
in some sense the model-theoretic analysis focuses on those. Let me discuss two
examples that we will see again later.

Suppose {α1, . . . α2n} is an R-basis for Cn, and Λ = Zα1 + · · · + Zα2n is the
real 2n-dimensional lattice it generates. Then the quotient T = Cn/Λ is a compact
complex manifold of dimension n, called a complex torus, that inherits a holomor-
phic group structure from (Cn,+). While some complex tori can be embedded
into projective space, if Λ is chosen sufficiently generally then the resulting torus is
nonalgebraic. For example, if the real and imaginary parts of {α1, . . . α2n} form an
algebraically independent set over Q, then T will not contain any proper infinite
complex analytic subsets. In particular, such tori, which are called generic complex
tori, cannot be projective varieties if n > 1. Another example of a nonalgebraic

1This is quantifier elimination for algebraically closed fields, or equivalently Chevellay’s theo-
rem that over an algebraically closed field the projection of a constructible set is constructible.
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compact complex manifold is the following Hopf surface: fix a pair of complex num-
bers α = (α1, α2) with 0 < |α1| ≤ |α2| < 1, and consider the infinite cyclic group Γ
of automorphisms of C2 \ {(0, 0)} generated by (u, v) 7→ (α1u, α2v). The quiotient
Hα = C2 \ {(0, 0)}/Γ is a compact complex surface that is never algebraic. Indeed,
this can already be deduced from its underlying differentiable structure; Hα is dif-
feomorphic to S1 × S3, something that is never the case for a projective surface.
Unlike complex tori, Hopf surfaces always contain proper infinite complex analytic
subsets: the images of the punctured axes in C2 \ {(0, 0)} give us at least two ir-
reducible curves on Hα. If α is chosen sufficiently generally then these will be the
only curves. In that case, like generic complex tori, Hα will have no nonconstant
meromorphic functions.

In model theory there are several notions, of varying resolution, that describe
the possible interaction between two definable sets. These notions, specialised to
the structure A, have relevant counterparts in bimeromorphic geometry. Suppose
that X and Y are irreducible complex analytic sets in A. The strongest possible in-
teraction is if X and Y are biholomorphic. This can be weakened to bimeromorphic
equivalence: there exists an irreducible complex analytic subset G ⊂ X × Y such
that both projections G → X and G → Y are generically bijective. By “generically
bijective” I mean that off a countable union of proper complex analytic subsets
of X the fibres of G → X are singletons, and similarly for G → Y . If G → X
and G → Y are only assumed to be generically finite-to-one, then we say that G
is a generically finite-to-finite correspondence between X and Y . Finally, we can
weaken the condition much further by merely asking that there exist some proper
complex analytic subset of X × Y that projects onto both X and Y . In that case
we say that X and Y are nonorthogonal. For example, any two projective varieties
are nonorthogonal. On the other hand, any compact complex manifold without
nonconstant meromorphic functions is orthogonal to any projective variety. Indeed,
nonorthogonality to some projective variety implies nonorthogonality to the projec-
tive line P1, and if G ⊂ X×P1 witnesses this then G has nonconstant meromorphic
functions, and as G → X will necessarily be generically finite-to-one, so does X.

2. Classifying simple compact complex manifolds

One way for a structure to be considered “tame” is if the definable sets have a
dimension theory, that is, if a certain intrinsic model-theoretically defined dimension
function, called the rank, takes on ordinal values on all definable sets. Zilber’s initial
analysis of A showed that every complex analytic subset of a compact complex
manifold is of finite rank. In fact, this rank is bounded by, but typically not equal to,
the complex dimension. I will not define rank here, but I will in a moment explain
what it means for a compact complex manifold to have rank 1. This reticence
is partially justified by the fact that there is general model-theoretic machinery
available, due mostly to Shelah, that analyses arbitrary finite-rank definable sets
in terms of rank 1 sets. In particular, and this is only the starting point of such
an analysis in A, every complex analytic set will be nonorthogonal to one of rank
1. It follows that the study of rank 1 sets is central to understanding compact
complex manifolds in general. Note that this is not true of complex dimension:
understanding compact complex curves tells us essentially nothing about compact
complex surfaces that contain no curves.
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So what does it mean for a compact complex manifold X to be of “rank 1”? Here
is a geometric characterisation: there does not exist a definable family of proper
infinite complex analytic subsets of X that covers X. Pillay [10] observed that such
manifolds were already of interest to complex geometers and were called simple.
More precisely,

Definition 2.1. A compact complex manifold X is said to be simple if dim X > 0
and whenever Y is a compact complex manifold, A ⊂ Y ×X is a complex analytic
subset, and E ⊂ Y is a proper complex analytic subset such that the fibres of A
above Y \E are proper infinite subsets of X, then the union of all the fibres above
Y \ E is a proper subset of X.

Projective curves are simple; indeed, they are the only simple projective varieties.
But so is a generic complex torus, or indeed any compact complex manifold with-
out proper infinite complex analytic subsets. The generic Hopf surfaces, having
precisely two curves on them, are also simple. It is not hard to see that simplicity
is a bimeromorphic invariant; in fact it is preserved by generically finite-to-finite
correspondences. In a sense that I have hinted at above and will return to again
later, simple manifolds are the building blocks for all compact complex manifolds.

The contribution of model theory to bimeromorphic geometry begins with the
following dichotomy for simple compact complex manifolds, which is a consequence
of the deep results of Hrushovski and Zilber from [5]. It says that a simple compact
complex manifold is either algebraic or its cartesian powers have no “rich” definable
families of complex analytic subsets. More precisely, if X is a simple compact
complex manifold then exactly one of the following holds:

I. X is a projective curve, or
II. X is modular: whenever Y is a compact complex manifold with dim Y > 0,

and A ⊆ Y ×X2 is a complex analytic subset whose generic fibres over Y
are distinct proper infinite irreducible complex analytic subsets of X2 that
project onto each co-ordinate, then Y is simple.

While the condition of modularity only explicitly mentions X2, it actually restricts
the rank of definable families of complex analytic subsets of Xn for all n. All
projective curves are nonmodular. For example, the family of lines y = ax + b is a
two-parameter algebraic family; it gives rise to a family of subvarieties of P1 × P1

that is paramaterised by a two-dimensional projective variety, and two-dimensional
projective varieties are not simple.

So every simple manifold of dimension at least two is modular. As we have seen,
examples can be found among the complex tori and the Hopf surfaces. In fact
the model-theoretic analysis goes further, providing us with another dichotomy
which distinguishes sharply between these two examples. Very roughly speaking, a
modular manifold that is not a complex torus admits only binary definable relations.
More precisely, if X is a simple modular compact complex manifold then exactly
one of the following holds:

I. X is in generically finite-to-finite correspondence with a complex torus, or
II. X is relationally trivial: if A ⊆ Xn is an irreducible complex analytic

subset that projects onto X in each co-ordinate, and if {π1, . . . , π`} is an
enumeration of all the co-ordinate projections from Xn to X2, then A is

an irreducible component of
⋂̀
i=1

π−1
i

(
πi(A)

)
.
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Note that complex tori are not relationally trivial: being complex Lie groups they
admit a truly ternary complex analytic relation, namely the graph of the group law.
Simple Hopf surfaces are relationally trivial. Actually one can be more precise in
case I: there exists a generically finite-to-one meromorphic surjection from X to a
Kummer manifold, a manifold of the form T/Γ where T is a complex torus and Γ
is a finite group of holomorphic automorphisms of T .

The above characterisation of simple modular compact complex manifolds was
suggested by Hrushovski in his 1998 address to the International Congress of Math-
ematicians [4]. It was proved by Pillay and Scanlon in [13], building on some unpub-
lished work of Scanlon. The result is obtained as a corollary to the main theorem
in that paper which I would at least like to state in brief. Meromorphic groups are
complex Lie groups that are “compactifiable” in an appropriate sense. They are a
natural generalisation of algebraic groups to the complex analytic category. What
Pillay and Scanlon actually prove, using model-theoretic methods and building on
work of Fujiki, is that every meromorphic group is the extension of a complex torus
by a linear algebraic group.

In any case, putting the two dichotomies together we get:

Theorem 2.2. If X is a simple compact complex manifold then

• X is a projective curve, or
• X is in generically finite-to-finite correspondence with a simple complex

torus of dimension > 1, or
• X is relationally trivial.

It remains then to understand the relationally trivial compact complex manifolds.
In dimension one there are none because all compact curves are algebraic (this is
by the Riemann existence theorem), and it is not hard to see that projective curves
are not relationally trivial. Besides Hopf surfaces, examples of relationally trivial
surfaces can also be found among the K3 and Inoue surfaces. Relationally trivial
manifolds remain quite elusive, and except for the case of surfaces there are only
conjectural results. These conjectures are restricted to Kähler manifolds, which
also play a special role from the model-theoretic point of view, and to which I now
turn.

3. Compact cycle spaces and Kähler manifolds

One of the obstacles to the full application of model-theoretic techniques to compact
complex manifolds is the size of the language, the fact that every complex analytic
set is a basic relation. Let me point out that in the algebraic case there is a
more economical choice of structure. Consider, for example, the compact complex
manifold X = Pm, projective m-space over the complex numbers. Instead of A(X)
we can consider the structure AQ(X) where we only include as basic relations the
algebraic subsets of Xn that are defined by polynomials with rational coefficients.
Then AQ(X) has only countably many basic relations. But all complex analytic
subsets of Xn are still definable in AQ(X). This is because every complex analytic
subset of projective space is algebraic (Chow’s theorem), and every algebraic set is
obtained by specialisation from an algebraic set over Q. Hence A(X) and AQ(X)
have the same definable sets, even though the latter has a much reduced collection
of basic relations.
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This motivates the following definition: A compact complex manifold X is called
essentially saturated if there exists a countable collection L0 of complex analytic
subsets of cartesian powers of X such that every complex analytic set is definable
in the reduct where only the sets in L0 are named as basic relations. Essentially
saturated compact complex manifolds are significantly more amenable to a model-
theoretic analysis. Exactly why is described in [7] and is somewhat beyond the
scope of this article. Instead, I would like to focus on a very suggestive geometric
characterisation of essential saturation.

Recall that a k-cycle of a compact complex manifold X is a finite linear com-
bination Z =

∑
i niZi where the Zi are distinct k-dimensional irreducible complex

analytic subsets of X and each ni is a positive integer. In particular, every irre-
ducible complex analytic subset is itself a cycle. The set of all k-cycles is denoted
by Bk(X), and B(X) denotes the disjoint union of all the Bk(X). In the seven-
ties Barlet endowed B(X) with a natural structure of a complex analytic space. If
X is algebraic then B(X) coincides with the Chow scheme. With this terminol-
ogy in place we can characterise essential saturation as follows: X is essentially
saturated if and only if all the irreducible components of B(Xn) are compact, for
all n ≥ 0. This follows from [7] where the universal family of complex analytic
subspaces (the Douady spaces) were used instead of Barlet’s cycle spaces. In any
case, it is important here that the condition is on all the cartesian powers; if H
is a Hopf surface then B(H) has only compact components but B(H × H) has a
noncompact component. In particular, Hopf surfaces are not essentially saturated.
While the property of B(X) having only compact components is one that appears
often in bimeromorphic geometry, it seems that the extension of this condition to
all cartesian powers of X has not been studied. For example, is essential saturation
preserved under cartesian products and bimeromorphic equivalence?

How does one check if a component of the Barlet space is compact? In the late
seventies Lieberman [6] gave the following differential geometric criterion: a set
of cycles is relatively compact in the cycle space if and only if the volume of the
cycles in that set (with respect to some hermitian metric) is bounded. This gives us
many examples of essentially saturated manifolds. Recall that a Kähler manifold
is one that admits a (hermitian) metric which locally approximates to order 2 the
standard euclidean metric on Cn. With respect to such a metric the volume of the
cycles in any given component of the Barlet space is constant, and this remains true
of cartesian powers because kählerianity is preserved under cartesian products. It
follows from Lieberman’s theorem that all compact Kähler manifolds are essentially
saturated. Moroever, any compact complex analytic space that is bimeromorphic
to a Kähler manifold – this is Fujiki’s class C – is also essentially saturated. While
C does not include all essentially saturated manifolds (Inoue surfaces of type SM

are counterexamples, see [8]), it is a large class of manifolds that contains all pro-
jective varieties and complex tori, and is preserved under various operations includ-
ing meromorphic images and generically finite-to-finite correspondences. Compact
Kähler manifolds play a prominent role in bimeromorphic geometry largely because
they are susceptible to many of the techniques of algebraic geometry. Because of
essential saturation, they are also important to the model-theoretic approach.

Let us return to the classification problem for simple compact complex manifolds.
In the previous section I explained how this reduces to understanding the relation-
ally trivial manifolds. We can restrict the problem further and ask: What are the
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relationally trivial simple Kähler manifolds? We have already seen that there are
none in dimension one. In dimension two, inspecting the Enriques-Kodaira classifi-
cation we see that all relationally trivial simple Kähler surfaces are bimeromorphic
to K3 surfaces. These surfaces (introduced by Weil and named in honour of Kum-
mer, Kodaira, Kähler and the mountain K2) are by definition simply connected
compact surfaces with trivial canonical bundle. In higher dimensions the correct
generalisation of K3 seems to be irreducible hyperkähler: simply connected com-
pact Kähler manifolds with the property that their space of holomorphic 2-forms
is spanned by an everywhere nondegenerate form. Pillay has conjectured that all
relationally trivial simple Kähler manifolds are in generically finite-to-finite corre-
spondence with an irreducible hyperkähler manifold. Since irreducible hyperkähler
manifolds are always even-dimensional, Pillay’s conjecture, coupled with Theo-
rem 2.2 above, would imply that every odd-dimensional simple Kähler manifold
is in generically finite-to-finite correspondence with a complex torus. In dimension
three this is essentially a conjecture of Campana and Peternell, namely that every
simple Kähler threefold is Kummer.

4. Variation in families

In justifying our focus on simple manifolds I have already mentioned the fact that
every compact complex manifold is nonorthogonal to a simple one. From this one
can deduce that for every compact complex manifold X there exists a meromorphic
surjection f : X → Y , where Y is in generically finite-to-finite correspondence with
some cartesian power of a simple manifold. The same is then also true of each
generic fibre Xy of f . At least in the Kähler case, using essential saturation, one
can show that the corresponding meromorphic surjections on Xy vary uniformly
in the parameter y. Since the dimension of Xy is strictly less than that of X,
such an analysis must stop after finitely many iterations. It is in this sense, via
sequences of meromorphic fibrations, that simple manifolds control the structure
A. Of course this does not reduce the classification problem (even up to generically
finite-to-finite correspondence) to the case of simple manifolds; at the very least one
needs to also understand how such manifolds fit into meromorphic fibrations and
how they interact with each other. I want to state one conjecture that is central to
this question.

First of all, from the definition of simplicity it follows that two simple manifolds
are nonorthogonal to each other if and only if they are in generically finite-to-finite
correspondence. The three classes of compact complex manifolds appearing in
Theorem 2.2 – projective curves, simple complex tori of dimension > 1, and simple
relationally trivial manifolds – are all mutually orthogonal in the sense that any
two manifolds coming from different classes will be orthogonal. Moreover, while all
curves are nonorthogonal to each other, there exist orthogonal pairs within each of
the other two classes.

One fundamental question is whether or not there exist entire definable families
of simple manifolds any two of which are orthogonal. Actually, it follows from
observations of Pillay and Scanlon [12] that such families do exist, but not among
the Kähler manifolds according to their 2001 conjecture. More precisely, the con-
jecture is that if f : X → Y is a meromorphic surjection between compact Kähler
manifolds with simple generic fibres, then any two generic fibres are in generically
finite-to-finite correspondence. In 2005 Campana [2] proved an isotriviality result
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which proves the conjecture, with the stronger conclusion of isomorphism rather
than correspondence, in the following cases: when the generic fibres are surfaces,
when the generic fibres are “general” complex tori, and when the generic fibres are
irreducible hyperkähler.

5. Analogies

By way of conclusion, I want to discuss the special role of model theory as a medium
between different geometric contexts. Certain results from bimeromorphic geometry
have informed advances in abstract model theory which can then be reapplied in
other areas. In this way model theory acts as a conduit between bimeromorphic
geometry and, in the case I want to discuss, differential-algebraic geometry. I need
to say a few words about differential-algebraic geometry.

Like bimeromorphic geometry, differential-algebraic geometry is an “expansion”
of algebraic geometry. A differential field is a field K equipped with a derivation;
an additive map δ : K → K such that δ(xy) = xδ(y) + yδ(x). For example,
(C(t), d

dt ) is a differential field. Differential algebra is then commutative algebra in
the presence of this derivation. The role of polynomials is played by differential
polynomials: functions of the form P

(
x, δ(x), . . . , δr(x)

)
where P ∈ K[X0, . . . , Xr]

is an ordinary polynomial. A differential field (K, δ) is differentially closed if any
system of differential polynomial equations and inequations having a solution in
some differential field extension, already has a solution in K. The model theory of
differentially closed fields of characteristic zero is also tame. In particular, every
definable set in (K, +,×, δ) is a finite boolean combination of differential-algebraic
sets: zero sets of systems differential polynomial equations. These are the objects
of study in differential-algebraic geometry.

Many of the model-theoretic techniques that apply to the structure A also ap-
ply to (K, +,×, δ). In fact, there is a fruitful analogy between these structures
whereby complex analytic sets correspond to finite-rank differential-algebraic sets
(see [10]). This analogy can lead to transferring results between the two disci-
plines that these structures represent. The example I have in mind is based on
the following theorem of Campana [1], due also independently to Fujiki [3], from
the early eighties. Suppose X is a compact complex manifold and C is a compact
complex analytic subset of the cycle space B(X). Then for any a ∈ X, the set
of cycles in C that pass through a is (up to bimeromorphism) an algebraic set.
Moreover this happens uniformly as a varies. In 2001 Pillay [11] observed that this
theorem could be used to give a more direct proof of the first dichotomy; the fact
that every simple manifold is either a curve or modular. Pillay’s argument involves
formulating an abstract model-theoretic counterpart to Campana’s theorem, which
replaces the difficult and much more general results of Hrushovski and Zilber [5].
Pillay and Ziegler [14] then show that this model-theoretic counterpart also holds
in differentially closed fields. As a result one has an analogue of Campana’s theo-
rem in differential-algebraic geometry, as well as a direct proof of the corresponding
dichotomy for rank 1 differential-algebraic sets. Another related example of this
phenomenon can be found in [9] where Campana’s “algebraic connectedness” is
abstracted from bimeromorphic geometry to model theory, and then applied to
differentially closed fields. The outcome in that case is a criterion for when a finite-
rank differential-algebraic set is in generically finite-to-finite correspondence with
the CK-points of an algebraic variety, where CK = {x ∈ K : δ(x) = 0}.
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The kind of transfer of ideas that we see in the above examples, and the role that
model theory plays here of recognising, formalising, and facilitating analogies be-
tween different geometric settings, is not something new or unique to its interaction
with bimeromorphic geometry. This has been a defining feature of model theory
since the 1970s, and continues to fuel the internal development of the subject.
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