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ABSTRACT. We introduce differential arc spaces in analogy to the algebraic
arc spaces and show that a differential variety in characteristic zero is de-
termined by its arcs at a point. Using differential arcs, we show that if
(K,+, X,01,...,0n) is a differentially closed field of characteristic zero with n
commuting derivations and p € S(K) is a regular type over K, then either p
is locally modular or there is a definable subgroup G < (K, +) of the additive
group having a regular generic type that is nonorthogonal to p.

1. INTRODUCTION

In many contexts, one may reduce the study of general partial differential equa-
tions to the study of linear PDEs. For example, when working with germs of
meromorphic functions as coefficients and potential solutions, it is possible to con-
struct from a general system of PDEs a corresponding system of linear PDEs whose
solvability is equivalent to the solvability of the original system. However, this
transformation requires an analytic reparametrization and does not make sense in
the category of algebraic differential equations. Nevertheless, there is a technical
sense in which the complexity of general algebraic partial differential equations is
reducible to that of linear equations.

Recall that a (partial) differential field (with n derivations) is a field K given
together with n commuting derivations 0; : K — K. (One could relax the com-
mutation condition by requiring merely that the Lie algebra spanned by 01, ...,0,
is finite dimensional. Provided that one can solve enough differential equations
on K, by a change of variables one may regard a differential field with initially
noncommuting derivations as a differential field with commuting derivations.) By
a system of (algebraic) partial differential equations over K we mean a system
of equations of the form Fy ({07 --- 9% (x;)}) = 0,..., Fe({07" --- 05~ (z;)}) = 0
where F1,...,Fp € K[{Xj.a,.....an F1<j<k;aenn] are polynomials over K in variables
appropriate for coordinates x1, ...,z and their derivatives. A solution to a system
of differential equations is given by a differential field extension L > K and a point
a € L* for which all of these differential polynomials vanish when evaluated at a.

As with fields and ordinary algebraic equations, one can find differential fields
in which every system of differential equations which could have a solution does:
Speaking in the language of mathematical logic, in which we shall converse almost
exclusively for the statement and proof of our main theorem, and specializing to
characteristic zero, the theory of differential fields of characteristic zero with n
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commuting derivations, DF ,, has a model completion, DCFg ,,, the theory of dif-
ferentially closed fields of characteristic zero with n commuting derivations. We
regard the study of DCFy ,, as being synonomous with the study of algebraic dif-
ferential equations.

Even for ordinary algebraic differential equations, it is not the case that every
such differential equation is analyzable in terms of linear differential equations. For
example, there are many differential equations whose solution sets are orthogonal
to the solution sets of linear equations in the sense that if X C K is the set
of solutions to the equation in some differentially closed field K and V C K™ is a
(finite dimensional over the constants) vector space of solutions to a system of linear
differential equations, then for any I' C X x V defined itself by differential equations,
if both projections are (generically) surjective, then I' = X x V. Nevertheless,
at least in the case of ordinary differential equations, such a situation is always
explained by the geometric simplicity of X. What exactly we mean by this will be
explained in a moment.

While it is not the case that every ordinary differential equation may be analyzed
in terms of linear differential equations, they may be analyzed in terms of minimal
equations (to be honest, it may be necessary to include infinitely many inequations
as well). Here, we say that the subset X C K of a differentially closed field defined
by differential equations and inequations is minimal if it is infinite but for any
polynomial P(zg,...,x,) € Klxo,...,zy] either every element a of X satisfies
P(a,d(a),...,0™(a)) = 0 or only finitely many do. Note that if K is a differential
field, then every differential equation on the constant field, Cx := {a € K : 9(a) =
0}, is simply a polynomial equation. Hence, Cx is minimal.

If X and Y are two minimal sets, then it is not hard to see that X and Y
are nonorthogonal just in case there is a generically finite-to-finite correspondence
I' € X x Y defined by differential equations. It follows from this observation and
the quantifier elimination theorem that nonorthogonality defines an equivalence
relation on the class of minimal sets.

In theories of “finite rank” minimal sets play a fundamental role. We need
a bit more notation to explain this: if X and Y are two definable sets we say
that X is internal to Y if there is a definable map from some cartesian power of
Y onto X (maybe definable with more parameters than those used to define X
and Y). For example the solution set X to a linear ODE is a finite dimensional
vector space over the constants Cg of the ambient differentially closed field K, and
hence X is internal to Ck: in fact it is in definable bijection with Cj after fixing
a basis. Simplifying matters somewhat, if the ambient theory is stable, then for
every definable set X of finite rank there is a sequence of definable surjective maps
and sets X = X,,, > X;n_1 — --+ = Xo, where X is finite, such that each fibre of
each map is internal to some minimal set. Thus the classification and structure of
minimal sets in a given theory has great impact on the classification and structure
of finite rank definable sets in that theory. Now although there are definable sets
of infinite rank (dimension) in DCFy i, such as affine 1-space over the ambient
differentially closed field K, and there do exist nontrivial questions about infinite
rank definable sets, the structure of finite rank definable sets is where most of the
model-theoretic complexity lies in the case of DCFy ;.

A fundamental conjecture or conjectural dichotomy due to Boris Zilber says that
any minimal set X (or type) in a stable theory either has essentially a definable
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algebraically closed field structure or is geometrically very simple; we say locally
modular. Local modularity of X says more or less that there is no “rich” family
of definable subsets of X x X. The local modularity of @/l minimal sets in a
theory has strong global consequences, for example that any finite rank definable
group must be abelian-by-finite. Although this Zilber conjecture was shown to
be false, it turns out to be true in many “natural” theories. In particular the
dichotomy holds in DCFg ; where it specialises to the statement that every non-
locally modular minimal set is nonorthogonal to the constants Cx. This was proved
by Hrushovski and Sokolovié [5], and lies at the heart of the model-theoretic proof
of the characteristic zero function field version of the Mordell-Lang conjecture [4].
The Hrushovski-Sokolovié proof made crucial use of the central theorem on Zariski
geometries of Hrushovski and Zilber [6]. Recently, Pillay and Ziegler [12] found a
direct proof of this result (the Zilber conjecture for minimal types in DCFy ;) using
“differential jet spaces” (higher dimension versions of differential tangent spaces).
We should say that these methods and results also apply to minimal types of finite
transcendence degree in DCFy ,, for n > 1.

Everything we have said above applies only to finite rank definable sets (and
types). However there are also infinite rank versions of minimal types. We call these
regular types. In a superstable theory, arbitrary (possibly infinite rank) definable
sets can be analysed as above but with minimal types replaced by regular types. So
in an arbitrary superstable theory, the classification of regular types is fundamental.
One can formulate the Zilber conjecture for regular types too (local modularity
makes sense, see [11] for example). It is in general even more false than for minimal
types, but in specific natural theories one may expect it to be true. In the case
of DCFy; there is only one infinite rank regular type (up to nonorthogonality),
namely the generic type of the ambient differentially closed field, for which Zilber’s
conjecture clearly holds. However in the case of PDE’s | that is in the case of
DCFy,, for n > 1 (which is superstable [9, 16]), there will be many infinite rank
regular types. It is worth saying at this point what regularity amounts to in DCFg ,:
The generic type of an irreducible differential variety X will be regular if whenever
(Y, : a € Z) is a differential algebraic family of irreducible proper differential
subvarieties of X, whose union is Kolchin dense in X, then any generic member Y,
of the family is orthogonal to X.

The “natural” regular types in DCFg, come from the definable fields of con-
stants: Suppose 01, ..., 0, are the distinguished commuting derivations, and V is a
d-dimensional subspace of the Lie algebra @, KJ; spanned by these derivations,
then the common constant field of V, Cy := {z € K | 9(z) =0 for all 0 € V'}, is
a definable subfield of K whose generic type is regular (of U-rank w"~%). Zilber’s
conjecture for regular types in DCFy , has the concrete form: “any non-locally
modular regular type is nonorthogonal to the generic type of such a definable field
of constants”. We have not succeeded in proving this conjecture. But what we
have proved is that every non-locally modular reqular type is nonorthogonal to a
reqular type which is the generic type of a definable subgroup of the additive group.
As all such groups are defined by linear homogeneous differential equations, this
gives some rigorous sense to the assertion that the geometric complexity of general
algebraic differential equations is reducible to that of linear differential equations.

Our methods are heavily influenced by those of Pillay and Ziegler [12]. However
when passing to our infinite-dimensional situation technical difficulties obstructed
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a smooth application of higher differential jet spaces. However, “differential arc
spaces” work beautifully and we employ them to prove the above version of the
dichotomy. In particular, we define the differential arc bundle A% (X) of a differ-
ential algebraic variety X. The fibre A% (X), at a sufficiently general point a € X,
while not itself a definable group, will be fibred by definable groups, in fact by dif-
ferential tangent spaces. Using these differential arc spaces we prove that a regular
non-locally modular type p in DCF ,, is nonorthogonal to a type realized in a suit-
able differential tangent space G. In the case of DCF( ; with p minimal, we recover
the Hrushovski-Sokolovi¢ and Pillay-Ziegler results: G will be finite dimensional
over the constants, and so p will be nonorthogonal to the constants.

Simplifying matters somewhat the proof of our main result on regular types in
DCFy,,, essentially goes through the following steps:

(I) If X is a differential algebraic variety defined over k, a € X, and ¢ is some tuple
such that ¢ is the canonical base of tp(a/k,c), then there is m < w and tuple d
from A% (X), such that ¢ € dcl(k, a, d).

(I1) If p = tp(a/k) is a non-locally modular regular type, then there is b € p¢? such
that tp(b/k) has positive p-weight, and such that p is nonorthogonal to tp(e/k,b)
for some e in the differential tangent space T2 (X);, of the differential locus X of b
at b.

(IIT) Show that in (II) e can be chosen to be the regular generic of a definable
subgroup of T2 (X ).

Step (III) is somewhat involved, and depends on some additional data related to
A-types in the sense of Kolchin, as well as the structure of definable subgroups of
powers of the additive group.

The authors would like to thank Eric Rosen as well as the referees for pointing
out several inaccuracies in an earlier version of this paper.

2. DIFFERENTIAL ARCS

In this section we recall the construction of algebraic arc spaces and some of their
properties, introduce differential arc spaces, and then demonstrate that differential
varieties are determined by their arcs. Arc spaces were introduced by Nash to
study resolution of singularities [10]. Kontsevich revived interest in arc spaces by
using them as the basis for his theory of motivic integration and Denef and Loeser
have systematically used these ideas [2]. The reader may wish to consult [8] for a
discussion of the current state of research on arcs and their applications.

We recall the Weil trace construction, following [1]. If 7 : T — S is a map
of schemes, then for any scheme Y over T" we obtain a set-valued functor on the
category of schemes over S via §' — Y (5" xgT). By Y (S’ xgT) we mean the set
of (S’ xg T)-valued points of Y over T'; that is, the set of morphisms from S’ x ¢ T
to Y over T'. If this functor is representable, then the Weil restriction of Y from T
to S, denoted Ry,5(Y'), is the representing object. That is, Ry, g(Y) is a scheme
over S such that for any scheme S” over S, the S’-valued points of Rp/s(Y") over S
can be identified with the (S’ x g T')-valued points of Y over T'. The Weil restriction
exists under various hypotheses, the relevant ones for us are T being finite over S
and Y having the property that every finite set of points is contained in an affine
open subset.
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Note that the hypothesis on a scheme that each finite set of points lies in an
affine open subset follows from being a quasi-projective variety. As we will only
need to consider affine varieties in our applications, we will implicitly assume this
hypothesis whenever necessary.

We specialise to the case when S is the spectrum of a field k, T = Spec(k‘(m))
where k(™) := k[e]/(em*?!) for a natural number m, and Y = X @, k(™ for X
an algebraic variety over k. We view k(™ as a k-algebra under the natural map
ar a+0e+...4+0em™. The m' arc bundle of X over k is Ryomy (X @ k),
the Weil restriction of X ®j k(™ from Spec(k(™) to Spec(k). We denote it by
A (X/k), or just A, X when there is no confusion. Note that A4,,X is a scheme
over k (not necessarily reduced or irreducible).

For any k-algebra R, A,, X(R) can be identified with X (R[e]/(¢™T1)). Indeed,
by definition the R-points of A,, X correspond to the (R®yk("))-points of X @ k(™)
over k(™) and the latter are canonically the R[e]/(e™*!)-points of X over k.

In particular, A,, X (k) is identified with X (k™). So in the case that X C A’ is
an affine variety we can write down the equations for A,, X C Af"+D as follows:
If X = Spec(klz1,...,z¢]/({fj}jes)), then

A X = Spec(k[{ws}1<i<eo<s<ml/({ fit}jes0<t<m)

where f;; € k[{zi s}i<i<ro<s<m] is defined by the identity

fj((z Ti€)1<i<e) = Z fir€
t=0 t=0

in the ring k[{z; s h1<i<r,0<s<m, €]/(€™T1).

If f: X — Y is a regular map of algebraic varieties over k, then A,,(f) :
AnX — A,Y is the natural map which on k-points is given by f evaluated on
X (Kk[e]/(em*1)). More explicitly, working locally assume that X C Af Y C A"
and f = (f1,...,fr). Viewing b € A, X(k) as an element of A’(k[e]/(e™*1)) we
have that A, (f)(b) = (f1(b),..., fr(b)) where the f;(b) are computed in the ring
Klel/(em ).

For £ > m, the quotient map k) — k(™) corresponds to a natural transformation
pem A = Ay, Identifying A with the identity we write pg o as pe. For a € X (k),
the 0% arc space AyX, of X at a is the fibre of pe.x : AeX — X over a.

We recall some basic properties of algebraic arc spaces.

Lemma 2.1. Let X be an algebraic variety over a field k and a € X (k) a smooth
point, then for any pair of natural numbers £ > m > 0 the restriction of the map
Pem + AeX = A X to Ae Xy (k) is surjective onto Ay, X (k).

Proof. This is essentially Hensel’s Lemma. The problem is local, so we may and
do assume that X is affine. As a is a smooth point, we may further assume that
X = V(gi,..-,9,) € A" where d = dim, X. Working by induction on ¢, it
suffices to show that if @ € X (k[e]/(e™T1)) is a lifting of a, then there is a point
a € X(k[e]/(em™*?)) lifting a. Let o’ € A" (k[e]/(€™*?)) be any lifting of a.
Letting g := (g1,...,9,), note that g(a’) mod(e™*!) = g(a) = 0 (working in the
ring k(™). So there is b € k" such that g(a’) = be™ . To find @ one need only solve
dg.(y) = —bin k" (which is possible since dg, has rank r), and set @ = a’+ye™*1.
Indeed, g(a’ + ye™*1) = g(a’) + dga(y)e™™ =0, and so @ € X (k[e]/(e™T2)). O
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The proof of Lemma 2.1 reveals the structure of the relative arc spaces as is
made explicit in the following lemma. In particular, Lemma 2.2 will show that for
a € X (k) smooth, A,, X, is reduced and irreducible. In particular, if X is a smooth
irreducible variety then A,,X is an irreducible variety.

Lemma 2.2. Let f : X — Y be a regular map of algebraic varieties over the field
k. Let m be a natural number and a,, € AnX (k) such that a = pp(am) is a
smooth point of X and f(a) is a smooth point of Y. Let X be the fibre of pmy1.m :
A1 X — AnX over an, and Y the fibre of pmtim @ Amt1Y — ApY over
A (f)(an). Then there are biregular maps ¥x : X 5 ToX and by 1 Y — Tra)Y
so that the following diagram is commutative

X Ami1(f) v

o o

T, X L) Tf(a)Y
Proof. Working locally, we may write X = V(g1,...,9-) € A and have Y C
A, Since pp(am) = a € X(k) is smooth, a, € X(k[e]/(e™T!)) has a lifting
a' € X(k[e]/(em™*?)). If b € Al(kle]/(€™F?)) is another lifting, then we may write
b=a + yet! for some y € k. Let g := (g1,...,9-). In order to have b €
X (k[€]/(e€mF2)) we need

0=g(b) = g(a' + " y) = g(a') + dga(y)e™ ™ = dga(y)e™ .

That is, y € T, X. Conversely, this equation shows that any such point in 7, X
gives rise to an element of X. Likewise, we identify Y with T,)Y. Writing an
element of X (k) as b = o’ 4+ ye™!, we see that

Am+1(£)(b) = fa' +ye"™) = f(d') + dfaly)e™ ™,

which proves the claimed commutivity of the diagram. O

As a consequence of Lemma 2.2, we see that arcs of dominant maps are them-
selves dominant. More precisely, we have the following lemma.

Lemma 2.3. Let f : X — Y be a dominant map of algebraic varieties over the
field k. Suppose a € X(k) is smooth on X, f(a) € Y (k) is smooth on'Y, and the
rank of the differential of f at a is equal to dimY . Then for every natural number
m, the map Ap(f) : AmXa(k) = AnYy(a) (k) is surjective.

Proof. We prove this lemma by induction on m with the case of m = 0 being
trivial. In the case of m + 1, let y € Api1Yf(q)(k). By induction, there is some
T € AnXo(k) such that A, (f)(Z) = pm+1,m(y). By Lemma 2.1 there is a point
T € Apy1Xo(k) with ppg1,m(Z) = Z. By Lemma 2.2, we may identify pfni_lm{f}
with T, X, pfnil’m{pmﬂym(y)} with Tf(4)Y’, and the restriction of A, 1(f) to this
fibre with df,. As such, the map is surjective between these fibres so that y is in
the range of A,,+1(f) as claimed. O

Note that when the characteristic of k is zero, the hypotheses of Lemma 2.3 hold
for sufficiently general a whenever f is dominant.
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With the next lemma we note that subvarieties are determined by their arc
spaces, at least in characteristic zero. We expect that this result has a straight-
forward characteristic-free algebraic proof and that it may even be well-known,
but we could find no such proof in the literature. Our proof will make use of
some model theory of algebraically closed valued fields, due essentially to Robin-
son [14]. Consider the following 3-sorted language L, for valued fields: the field
sort with the language of rings, the value group sort with the language of ordered
groups, the residue field sort with the language of rings, and also the value map
| — | from the field sort to the value group sort, and a 2-ary map Res from the
field sort to the residue field sort, which takes (z,y) to the residue of zy~! (and
taking value 0 if |x| > |y|. Then in the language L4, (i) the complete theory
of an algebraically closed nontrivially valued field (K, T, k) is determined by the
pair (char(K), char(k)), and (ii) the theory of any algebraically closed nontrivially
valued field has quantifier-elimination. We refer the reader to Theorem 2.1.1 of [3].

Lemma 2.4. Let k be an algebraically closed field of characteristic zero and X,Y C
Z irreducible algebraic varieties over k. If a € X (k) NY (k) is a k-point on both X
and Y, then X =Y if and only if AnXa(k) = A Yo (k) for all m > 0.

Proof. Working locally, we may and do assume that Z = A™ is an affine space.
Suppose that X # Y. Without loss of generality X is not a subvariety of Y, hence
there is f € Iy, f ¢ Ix. The function field of X, k(X), is the field of fractions
of k[z1,...,2m]/Ix. Extend the natural evaluation map klzi,...,zn]/Ix — k
given by Z +— a to a k-place on k(X) and let v be the corresponding valuation.
Let w be an extension of v to L := k(X)22, the algebraic closure of k(X). On
the other hand, let K = (J,2, k((€%)), where the union is naturally a direct limit.
Let w’ be the natural valuation on K (with valuation ring [ J,= k[[e?]] and residue
field k). As k is algebraically closed of characteristic 0, K is algebraically closed.
By points (i) and (ii) preceding the statement of this lemma, the valued fields
(L,w) and (K,w') are elementarily equivalent over their common residue field k
(in the 3-sorted language mentioned above). By construction, we have a point
b € X(Op,) for which Res(b,1) = a and f(b) # 0. Indeed, b is just Zmod Ix.
Thus there is ¢ € X (Ok ) with Res(c, 1) = a and such that f(c) # 0. For some ¢,
¢ € X(k[[eH )\ Y (k[[e? ). As {le) = k{le}]], we can find o € X (k[[e]) \ ¥ (k{l])
which specialises to a. Considering the finite truncations of «, it follows that for
some m, there exists d € X (k[e]/(e™*1)) \ Y (k[e]/(e™T1)) which specialises to a.
That is, A, Xa(k) # AnYa(k). This proves the lemma. O

By a A-ring we will always mean a ring of characteristic zero equipped with n
commuting deriations A = {01,...,0,}.

The arc space construction is very closely related to that of the prolongation
spaces in differential algebraic geometry. Suppose R is a A-ring. Then the ring
Ry =R, ..,na]/(1, ... ,1mn)™ ! may be regarded an R-algebra via the “expo-
nential” map E : R — R,, given by

1
a— Z 7@1!”{“”!8?1"'63”(@77?1”'773"-

0<ai++an,<m

For X an algebraic variety over a A-field k (or indeed any scheme over k), the
m™ prolongation 7,,X of X is the Weil restriction of X ®g k,,, from Spec(k,,) to
Spec(k). That is, 7, X = Ry, /(X ®p k). Note that we are taking the base
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change X ®p k,,, with respect to the exponential map while we are taking the Weil
restriction with respect to the standard k-algebra structure on k,, given by the
inclusion k — k,,,. So when n =1 and 0, =0, 7, and A,,, agree.

From the reduction (or quotient) maps k¢ — k,,, (for £ > m) we see that the
prolongations form a projective system 7., : 7¢ — 7T,,. Identifying 79 with the
identity, we write m¢ o as m, and have a map 7 : 77X — X. The map on k-points
given by x — Z %.4'8?1 ce O (x)nyt - gives a section to

n!

al! ..
0<ar+-+an<m

Tm, which we denote by V,, : X (k) — 7, X (k).

The connections between the arc and prolongation spaces run deeper than merely
the fact that the arc spaces may be regarded as prolongation spaces relative to a
trivial derivation. Indeed, an analogue of Lemma 2.2 holds for prolongation spaces.
That is, the fibres of the (m + 1) prolongation space over the m'" prolongation
space are biregularly isomorphic with torsors of cartesian powers of the tangent
space of the base. For the sake of completeness, we state this result precisely.
Before doing so, let us fix some notation. For a pair of natural numbers (m,n),
let ppn = #{(l1,...,0,) € N* : 3" | £; = m} be the number of partitions of m
into n parts. For N a natural number and f : X — Y a map of varieties, we write
X*¥N for the N*" cartesian power of X over Y.

Lemma 2.5. Suppose X is an algebraic variety over a A-field k and m is a positive
integer. There is a functorial action

Mx - ((TX)XXpm+1’n Xx TmX) Xrm X Tm+1X — Tm+1X

over T, X. Moreover, for any point a € 1, X (k) if the fibre of Ty41 X — T X
over a is nonempty, then this action makes that fibre into a principal homogeneous
space for (Tr, (@) X)Pm+m. In particular, if X is a smooth, irreducible variety then
Tm+1X 18 a smooth, irreducible (reduced) variety.

Proof. We describe the action of (T'X)*XPm+in on points of 7,41 X in terms of
the functor represented by the Weil trace construction which identifies 7,41 X (R)
with (X ®g kmt1)(Rm+1). It suffices to consider the case that X is affine. Suppose
that X = Spec(k[z1,...,2:]/(g1,...,9s)). Fix a k-algebra R, a point ¢ € X(R),
a sequence of points v, € T.X(R) of the tangent space indexed by o € N™ with
Sor a; =m, and a point b € (X ®p kp41)(Rm+1) which reduces to ¢ under the
reduction map. Then the proposed action is given by b +— b+ > v,n*. Indeed,

gl +> van®) = gf®)+ > (dgF)e(va)n®
= g7 () + Z(dgi)C(va)na

= 0

as gf(b) = 0 (since b € (X ®g kmt1)(Rmt1)) and (dgi)c(va) = 0 (since v, €
T.X(R)). Since b and b+ > van® reduce to the same point in (X ®g kn,)(Rim),
this action is over 7,,.X.

The same computations establish functoriality and show that the difference of
two points in (X @g kpmt1)(Rpmy1) with the same image in (X ®g k) (Rp,) has the
form > van®™ where each v, belongs to T.X (R). O
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Remark 2.6. We have already pointed out that in general the arc bundles and
prolongation bundles need not be reduced. This will not pose a problem for us for
the following two reasons: 1) we will mostly be considering arc and prolongation
spaces at smooth points where they are reduced and irreducible, and 2) we will
be working with the k-rational points of these spaces, where k is a field, and such
points depend only on the underlying reduced variety.

Lemma 2.7. 7, A, (X) = A7 (X).

Proof. Let k() := K[e]/(e)"t" viewed as a k-algebra via the inclusion k& — k(). Let
K=k @4k, (here s stands for standard) and Kg := k" @g k,,,. We have the
following two commuting squares:

k(r) —_— KE

|

k———k

E m

k) — = K,

|

k——Fk,
Now, given any scheme U over k
T Ar(X)(U) = Homg, (U @k km, R 1 (X @1 k™)) @ ki)
o (U @k ki, Ricp ks, (X @ ET @ Kg))
= Homg, (U ® kn @, K&, X @4 kT @y Kg)

m

= Homg, (U Rk km Ok, Kg, X ®p by Qk,, KE)

= Homk

where the second equality is by the fact that Weil restrictions are compatible with
base change, and the final equality uses the first commuting square above. On the
other hand

A7 (X)(U) = Homyo (U @k k™), Ry, 1(X @ ki) @5 k™)
= Homyw (U®k k"), R, jpir (X ®p km @, Ks))
= Homg, (U ® D @y Ky, X @p ki @, K)
= Hompg, (U Qk km Ok, Ks, X @5 kn Q% Ks)

m m

where again the second equality is by the fact that Weil restrictions are compatible
with base change and the last equality uses the second commuting square above.
The lemma now follows once we observe that K and K are canonically isomorphic
over k,, (they differ only as k-algebras). O

It is sometimes convenient to view the higher prolongations as canonically em-

bedded in the iterated prolongations. That is, instead of 7,,X, one might con-
m times

sider 7"X := To---o7X. The corresponding section V™ : X (k) — 77X (k)
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m times

—
is given by V™ := Vo.--oV. The map from k[ni,...,1.]/ (1, 7.)" " to
k€1, ims - 5€nts -5 €nml/ (({& g h1<icn) i< j<m) given by m; = 35, & in-
duces an embedding 7, X — 7™ X. Under this embedding, the map m¢ , : 7¢X —
{—m times
TmX (for £ > m) extends to the map 7 o---omy : 7¢X — 7™X, which we will
also denote by g .

Differentially (or A-) closed fields (of characteristic zero) may be characterized
as algebraically closed A-fields K for which given a projective system of dominant
maps of irreducible algebraic varieties over K, (g m : X¢ — Xp), for which X is
a closed subvariety of rl=mXx,  and e, is the restriction of m,_,, to X, there is
a point a € Xo(K) such that V¢(a) € X,(K) for all £.

Let us fix a sufficiently saturated differentially closed field k, which we treat as
a universal domain for differential algebraic geometry. We will treat A-varieties X
as A-closed subsets of X (k), where X is the Zariski closure of X. That is, we do
not take a scheme-theoretic approach to A-varieties.

Given an irreducible A-variety X, and a natural number ¢, consider the irre-
ducible algebraic variety

Xy := the Zariski closure of V(X) in 7,X (k).

Then X is determined, as a A-closed subset of X, by its prolongation sequence
(Tem : Xe = Xop | € > m). Indeed X = {a € X(k) : Vi(a) € X,(k), for all £ > 0}.
Conversely, suppose (X; C 7,Y | £ > 0) is a sequence of irreducible algebraic

subvarieties of an algebraic variety Y such that:

(a) met1,e restricts to a dominant map from X,y to X, and
(b) after embedding 7,Y in 7°Y and 74,1 Y in 771Y, X, is a closed subvariety
of TX@,

then there exists a (unique) A-subvariety X of Y such that 7,.X = X,.

In the remainder of this section, we work towards a differential analogue of arc
spaces for which Lemma 2.4 will hold true. Given a A-variety X over k, one
could mimic the Weil trace construction in the category of A-schemes over k, and
define the m*™ (A-)arc bundle of X to be the object which represents the functor
T — X @ E™)N(T @ k™), where k(™) is made into a A-ring by taking € to be
A-constant. To really make this work one would need to use a good theory of
A-schemes. We proceed differently however. Our approach is to assume that X is
given to us as a A-closed subset of an algebraic variety X, and then to define A% X
by defining its prolongation sequence:

Definition 2.8. Suppose X C X (k) is an irreducible A-subvariety of the algebraic
variety X over k, and m is a natural number. For each natural number ¢ let Z,
be the unique irreducible component of (A, (X¢))red that projects dominantly to
Xy. ' So Z, is an irreducible algebraic subvariety of A,,7X. Identifying the latter
with 7p.A4,,X by Lemma 2.7, we view Z, as an irreducible algebraic subvariety of
A X. We define the m** differential arc bundle of X as

ASX = {a € ApnX(k) : Vi(a) € Zy(k) for all £ > 0}.

INote that such a component exists since the generic fibres of A, X, over X, are reduced and
irreducible. Moreover, if X, is smooth then Zy = A, (Xy).
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For a € X, we deﬁn&thelnth arc space of X at a to be A% X,, the fibre above a
of the map p,, : A X — X restricted to AﬁX .

Proposition 2.9. Suppose X C X (k) is an irreducible A-subvariety of the alge-
braic variety X over k, and m is a natural number. Let Zy C 1, A X be as in
Definition 2.8. The natural maps TeAmX — T AmX for s >t restrict to produce a
prolongation sequence (Zs — Z; | s > t). Hence, A2 X is a A-subvariety of A, X
having this sequence as it’s prolongation sequence.

Moreover, if a € X is smooth in that V(a) is a smooth point on X for each s,

and d(Ts¢) v, (a) has full rank for every s > t, then V(A5 X,) = Am(Xs)v, (a)-

Proof. Viewing the higher prolongations of X as embedded in its iterated pro-
longations, we have that Xsy1 C 7(X;) for every s. As A, preserves inclusions
we have A, (Xgp1) C© A o 7(Xy) = 7ARL(X). It follows that Z,yy C 7(Z5).
Also, the maps 7m,; : X; — X; are dominant, and so by Lemma 2.3 the maps
A (m5¢) @ Am(Xs) = Ap(X:) are dominant. Hence Z, — Z; are dominant. So
(Z, — Z; | s > t) is a prolongation sequence, and from the definition of A% X we
see that it is the prolongation sequence of this A-variety.

For the “moreover” clause, note that by the smoothness of V,(a), Am(Xs)v ()
is reduced and irreducible, and that A,,,(Xs)v, (a) = (Zs)v,(a)- Hence

AS Xy ={b€ AnXa(k) : Vi(b) € Apn(Xs)v,(a)(k) for all s > 0}.

The smoothness of a also ensures that (A (Xs)v, (@) = Am(Xt)v,a) | s > 1) is a
prolongation sequence. It follows that this sequence is the prolongation sequence
of A2 X,, and so V(A2 X,) = A (Xs)v,(a), as desired. O

It should be noted that if X is an algebraic variety over k and a € X (k) is a
smooth point, then the A-arc space and algebraic arc space agree: or more precisely,
AL Xy = A Xa(k).

From Proposition 2.9 we may derive several useful corollaries.
Lemma 2.10. Suppose X and Y are irreducible A-subvarieties of an algebraic

variety over k, and a € X NY is a common smooth point (in the sense of Proposi-
tion 2.9). Then X =Y if and only if A5 X, = A2Y, for all m > 0.

Proof. If A5 X, = A5Y,, then V(A2 X,) = V4(AAY,), and so by the “moreover”
clause of Proposition 2.9, A, (Xs)v,(a)(k) = Am(Ys)v, (o) (k) for all s > 0. Fixing
s, the above equality for all m implies by Lemma 2.4 that X, = Y;. Hence X and
Y have the same prolongation sequence, and are therefore equal. ([l

The A-tangent bundle T2 X of a A-variety X was introduced by Kolchin. Ex-
plicit equations for this space can be found in section VIII.2 of [7]. The following
lemma shows that we recover the A-tangent spaces as the first A-arc spaces.

Lemma 2.11. Let X C A’ be a A-subvariety of affine space. For a € X smooth
in the sense of Proposition 2.9, A2 X, is canonically isomorphic to T>X,. o
Moreover, the map given by Lemma 2.2 which identifies the fibres of Ami1Xa —

A X, with T, X restricts to an isomorphism of the fibres of A%HXa — A2 X,
with TAX .

Proof. We can and do systematically identify the first arc bundle of an algebraic
variety with its tangent bundle.
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Suppose a € X is smooth and b € T, X (k). By definition, b € AP X if and only if
V.(a,b) € T(X,)(k) for all r > 0, where T'(X,) is viewed as an algebraic subvariety
of 7.(TX) under the identification of T(7,X) with 7,.(TX). Note that under this
last identification, V,.(a,b) becomes (V,.a, V,b). That is, (a,b) € AP X if and only

ifforallr >0
P
> %(vra) [Vebli =0

1<i<nml(r+1) i
for all P in the defining ideal of X, where [V,.b]; denotes the ith coordinate of
V,b. These are exactly the equations given by Kolchin in section VIIL.2 of [7] for
the A-tangent bundle.

The “moreover” clause now follows by inspecting the map given in Lemma 2.2.
In particular, if ¢ € A5 X, and r > 0, then by Proposition 2.9, V,.c € A,,(X,)v,a
(which is reduced and irreducible by the smoothness of V,a), and the following
diagram commutes:

(AerlXa)c E— (-AerlTTYV,,.a)V,.c

| l

T.X —s Ty (nX)
where the vertical arrows are the maps given by Lemma 2.2 (applied to X and 7, X
respectively). It follows that (A%, X, ). is identified with T X, as desired. O

Finally in this section, let us recall Kolchin’s notions of A-type and typical
A-dimension. This material is from section 0.3 of [7]. If a is some finite tuple
from k, and F' is a A-subfield of k, then there is a polynomial K,,p(y) such that
for sufficiently large natural numbers r, K, r(r) is the transcendence degree of
F(V,(a)) over F. (Note that if a is an m-tuple then V., (a) is a k-rational point
of 7.A™ and hence is itself a finite tuple from k£ — so the transcendence degree of
F(V,(a)) over F makes sense.) It bears noting that the coefficients of the Kolchin
polynomial are merely rational numbers and not necessarily integers. However, the
leading coefficient must be positive and

{(deg(P),leading coefficient(P)) | P a Kolchin polynomial}

is well-ordered as a subset of N x Q. The latter follows from the fact that the set
of Kolchin polynomials is well-ordered under eventually domination (see [15]).

The degree of K, is called the A-type of a over F' and the leading coefficient
of K,/ is called the typical A-dimension of a over F', which we write here as
dima (a/F). Note that A-type zero corresponds to the A-subfield generated by a
over F' having finite transcendence degree over F. These two quantities are A-
birational invariants of @ over F', namely if b generates over F the same A-field as
a, then a and b have the same A-type and typical A-dimension over F.

If X is an F-irreducible A-variety, then define the A-type and typical A-dimension
of X to be those of a over F' where a is a generic point of X over F. Likewise we
define the Kolchin polynomial Kx of X to be K,,r. Note that the transcendence
degree of F'(V,(a)) over F is the the dimension of the variety X,. Hence if Y C X
is a A-subvariety with the same Kolchin polynomial then ¥ = X.

Corollary 2.12. Let X C A be a A-subvariety of affine space, m a positive integer,
and a € X a smooth point in the sense of Proposition 2.9. Then K pa x, = mKx.
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Proof. By the “moreover” clause of Proposition 2.9, V,.(A5X,) = An(Xy)v, (a)-

But since V,(a) is a smooth point of the algebraic variety X, dim A.,,(X,)v, (@) =
mdim X,. O

By Lemma 2.11 one may identify A% X with the A-tangent bundle 72X of X.
Specializing Corollary 2.12 to the case of m = 1 we see that for a € X sufficiently
general, Kx = Kpax. This fact is an old theorem of Kolchin [7].

3. DICHOTOMY THEOREM

Here we complete the promised proof that if p is a non-locally modular regular
type in a A-closed field, then p is nonorthogonal to a regular generic type of a
definable subgroup of the additive group.

In what follows, we work inside a fixed universal A-closed field U. Both the state-
ment of our main results as well as the methods depend heavily on the machinery of
stability theory and its meaning in differential fields. The reader is referred to [13]
and [11], but we recall some of the key notions.

We consider U as a structure in the language of rings together with 0y, ...,0,.
The first order theory of U (namely DCFy ,,) is w-stable, so stable, and has quantifier-
elimination and elimination of imaginaries. Also U is a saturated model. Stability
provides a notion of independence: a |4 b (read as tp(a/Ab) does not fork over A)
where a, b are tuples and A is a set. In our context the meaning is: the differential
fields generated by Aa and Ab are algebraically disjoint over the differential field
generated by A. A complete type p(z) € S(A) is stationary if it has a unique
nonforking extension over any B containing A. In our context, any type over an
algebraically closed differential field is stationary. We say that stationary types
p, q (over possibly different sets of parameters) are orthogonal, written p L ¢ if
for any set C' of parameters containing dom(p) and dom(g), if @ and b realize the
nonforking extensions of p, ¢ respectively, to C, then a J¢ b. The (stationary) type
p is said to be regular if it is orthogonal to all its forking extensions. If p(z) € S(A)
is a regular type, its set of realizations forms a pregeometry with respect to forking
over A. So for a a tuple of realizations of p, dim(a) makes sense. The regular
type p(z) € S(A) is said to be locally modular if (after possibly replacing p(z) by
a nonforking extension p’(z) € S(B)), the corresponding pregeometry is modu-
lar, meaning that for finite-dimensional closed sets of realizations of p, X, Y say,
dim(X) + dim(Y) — dim(X NY) = dim(X UY). If p(z) is the generic type of a
definable field then p is non locally modular. The optimal result in our context
(DCFy,,) would be that any non locally modular regular type is nonorthogonal to
the (regular) generic type of a definable field (which would have to be a field of
constants, possibly the whole field). This is the case for types of A-type zero.

In addition to the afore-mentioned notions, we make use below of various other
notions such as domination equivalence, p-weight, and semiregular types. Chapter 7
of [11] deals with this material.

If p = tp(a/A), by m(p) we mean the A-type of a over the A-field generated
by the set A (as defined at the end of the last section). Note that m(p) = m(p’)
for p’ a nonforking extension of p. If X is an irreducible A-variety, m(X) denotes
the A-type of X. So m(X) = m(p) where p is the generic type of X. For a type
p, loc(p) denotes the Kolchin closure of the set of realization of p. We often use
m(a/A) or loc(a/A) to mean m(tp(a/A)) and loc(tp(a/A)), respectively.
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Lemma 3.1. The A-type and typical A-dimension are additive in the sense that
e m(ab) = max{m(a),m(b/a)},
e if m(a) = m(b/a) then dima (ab) = dima (a) + dima (b/a), and
o if m(a) > m(b/a) then dima (ab) = dima(a).

Proof. As the dimension functions are additive in fibrations, K.;/p(y) = Ka/r(y)+
Ky pa(y). The lemma follows by computing the degree and leading coefficient of
the sum of two polynomials. ([l

We begin by investigating some relations between A-type and regularity.

Definition 3.2. A regular type p is A-type minimal if for any other regular type
¢ ¢ £ p=m(q) =m(p).

Question 3.3. Are there regular types in A-closed fields which are not A-type
minimal?

We also consider a related, though distinct, minimality property for A-varieties.

Definition 3.4. An irreducible A-variety X is A-type minimal if m(Y) < m(X)
for any proper A-subvariety Y C X.

Lemma 3.5. Let r be a type and suppose that X := loc(r) is A-type minimal.
Then 7 is a regular type.

Proof. Our hypothesis implies already that r is stationary as if  were not station-
ary, then X would have more than one component of A-type m(X).

Let a realize a forking extension (to some algebraically closed A-field k) of r
and b realize the nonforking extension of r to k. As loc(ab/k) maps dominantly
to X via the projection to the second coordinate, we see that m(ab/k) > m(X).
However, if a J, b, then we would have m(b/k,a) < m(X) and m(a/k) < m(X) so
that m(ab/k) < m(X). O

In the next lemma, we simply observe that the analysis behind the decomposition
(up to domination equivalence) of a type as a product of regular types may be
accomplished in such a way that the resulting regular types have A-type no more
than that of the original type.

Lemma 3.6. Let q be any stationary type. Then there is a finite sequence of regular
types 11, ...,7¢ such that m(r;) < m(q) for all i and q is domination equivalent to
r - - Qryp.

Proof. Tt is enough to show that any regular type r which is nonorthogonal to g is
nonorthogonal to some regular ' with m(r’) < m(q). Suppose r is such. So (after
passing to nonforking extensions over some k) there are realizations a of ¢ and b
of r such that a [ b. Let ¢ be the canonical base of tp(a/k,b). Then ¢ ¢ acl(k)
and ¢ € acl(k,b). Thus ' = tp(c/k) is regular (as regularity is preserved by
algebraicity) and nonorthogonal to r (as ¢ Jx b). On the other hand ¢ is contained
in the definable closure of k£ together with a finite sequence of realizations of q.
Hence by Lemma 3.1, m(r') < m(q). O

Corollary 3.7. If p is a A-type minimal regular type, then for any (not necessarily
reqular) stationary type v, r L p = m(r) > m(p).
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Proof. Suppose for a contradiction that m(r) < m(p). Using Lemma 3.6 find
regular types r1,...,ry with m(r;) < m(r) <m(p) fori <land r O ® - Q7y.
Asp [ r,p [ r; for some i; but this contradicts the A-type minimality of p. O

Definition 3.8. A A-vector group is a group H definable in U which is definably
isomorphic to a subgroup of some Cartesian power of the additive group.

We note that the class of A-vector groups is closed under taking definable sub-
groups and quotients. We also note that because every A-vector group is a vector
space over the field of A-constants, every A-vector group is divisible and therefore
connected.

Lemma 3.9. Let G be a A-vector group. Then the A-tangent space of G at its
origin is definably isomorphic to G. Moreover, if H < G is a A-subgroup, then
the restriction to H of the isomorphism between G and TG is an isomorphism
between H and TS H.

Proof. Present G as a A-closed subgroup of G,? for some g. For each r > 0, 7,.(G,?)
is again some cartesian power of the additive group. Let ¢, : 7.(G,?) = T7.(G,?)
be the map given by x — (0,2) which identifies 7.(G,Y) with its tangent space
at the origin, Ty7,-(G,?). As an algebraic subgroup of 7,.(G,?), the defining ideal
of G := V,G is generated by (homogeneous) linear polynomials, and hence its
tangent space at the origin is given by the same polynomials. That is, each ¢,
restricts to an isomorphism from G, to To(G,.). Recall that under the natural iden-
tifications Tp(G,) = A1(Gr)v, o) = Vr(ALGo) and AL Gy = TLG. So (¢, | 7> 0)
identifies the prolongation sequence of G with the prolongation sequence of TOAG,
and hence identifies G with T*G as desired. The “moreover” clause follows by our
construction of the isomorphism. ([

Corollary 3.10. Suppose that G is a A-vector group such that m(H) < m(G)
for any proper definable subgroup H < G. Then m(X) < m(G) for all proper
A-subvarieties X C G. In particular, the generic type of G is reqular.

Proof. Let X C G be a A-type minimal A-subvariety of G with m(X) = m(G). Af-
ter translating X we may assume that 0 € X is smooth. By Corollary 2.12 (which
in this case is a theorem of Kolchin [7]), m(TSX) = m(X) = m(G). Visibly,
T8X < TAG, and by Lemma 3.9 TG = G. Thus, T8X = TAG. By Corol-
lary 2.12 again, the Kolchin polynomial of X and of T2 X agree (as do those of G
and T8 G). Thus, X = G as desired, by the comment preceding Corollary 2.12. By
Lemma 3.5 the generic type of G is regular. O

We now analyze the relation between arc spaces and non local modularity. First
we point out that the arcs give us information about canonical bases.

Lemma 3.11. Let k be a small algebraically closed A-field and a and c tuples. Let
X :=loc(a/k). Suppose that ¢ = Cb(a/k,c). Then there is an integer m > 0 and
a tuple d from A% X, with c € dcl(k, a, d).

Proof. LetY :=loc(a/k, c). We know that c is interdefinable over k with the canon-
ical parameter for Y. By Lemma 2.10, the latter is interdefinable over dcl(k, a) with
the sequence of canonical parameters of A%Y, (considered as subsets of A2 X,).
By stability, each ALY, is definable with parameters from A% X,,. O

m

In general, arc spaces are not groups, but they are analyzable in terms of groups.
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Lemma 3.12. Let X be a A-variety over a A-closed field k and a € X a smooth
point. Let b € A2 X, be a point in an arc space of X over a. Then there are
elements by, ..., b, = b, each in the definable closure of k\U{a,b} such that each b;
is in some k U {a, b;_1 }-definable principal homogeneous space for T>X.

Proof. By (the proofs of) Lemmas 2.2 and 2.11 each fibre of p;1q1, : AiA_HXa —
AiAXa is a principal homogeneous space for TaAX. Set b; = pim.i(b). O

Lemma 3.13. Let k be a A-closed field and p € S(k) a A-type minimal regular
type with m(p) = m. If p is not locally modular, then there are a A-vector group G
and a type q having

e m(q) =m(G) =m,

o q(vr)Fz €@, and

eptyq

Proof. Suppose p is not locally modular. We will make use of Corollary 5.2 from
Chapter 8 of [11]. This says that, working over some algebraically closed set of
parameters containing k, we can find a € p® and ¢ € p®? with w,(c/a) = 1,
wp(a/c) =1, wy(a) =2, ¢ = Ch(a/c), and such that r := tp(c/a) is p-semiregular.

Note first that m(a) = m. This is because a is in the definable closure of some
finite tuple of realizations of p, and thus by Lemma 3.1, m(a) < m. But tp(a) is
nonorthogonal to p (as wp(a) = 2), hence by the choice of p, m(a) = m.

Now let X =loc(a), and let G = T2 X. By Corollary 2.12. m(G) = m. We aim
to show that r is nonorthogonal to a type realized in G.

Claim I: r is nonorthogonal to tp(e/A) for some set A containing a and some
e € A2 X, for some s > 0.

Proof of Claim I: By Lemma 3.11 there are some integer s > 0 and elements
e1,...,eq of ASX, so that ¢ € dcl(a,es,...,e/). Since ¢ ¢ acl(a), there is i < [
such that ¢ |4 (e1,...,ei-1), but ¢ Yae,,....e;_1) € Put A ={a,e1,...,e;_1} and
e = e;, to yield the claim.

Claim II: r is nonorthogonal to tp(b/B) for some B D Aand b € TAX = G.

Proof of Claim II: Let by,...,b; = e be given by Lemma 3.12 applied to the
e € A X, in Claim I. So for some j, 7 is nonorthogonal to tp(b; /AU{b1,...,b;—_1}).
By Lemma 3.12 b; is a member of an {a,b;_; }-definable set which is in definable
bijection with G. Hence clearly r is nonorthogonal to a type realized in G, yielding
Claim II.

As wp(c/a) = 1 and r is p-semiregular, we actually have that r is regular and
nonorthogonal to p. So p is nonorthogonal to a type ¢ realized in G. As m(p) =
m(G) = m, and p is A-type minimal, this type ¢ must also be of A-type m. As we
know G to be a A-vector group, the proof of the lemma is complete. O

Lemma 3.14. Let p be a A-type minimal regular type. Suppose that there are
a A-vector group G and a type q such that p Y q, q(z) - x € G, and m(q) =
m(G) = m(p). Then there is a A-vector group whose generic type is reqular and
nonorthogonal to p.

Proof. We work by induction on ord(G) := (m(G),dima (G), U(QG)).

Claim: We may assume that if H < G is a proper definable subgroup of G,
then m(H) < m(G).

Proof of Claim: Suppose that H < G and m(H) = m(G). Let 7 : G — G/H
be the natural quotient map.
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Let us first note that ord(G/H) < ord(G): Assume G, H defined over §). Let g
be generic in G over (). Then g/H is a generic of G/H over (). By elimination of
imaginaries we may assume g/ H is a finite tuple from our universal domain, hence
m(g/H) and dima (g/H) — which note are birational invariants — make sense. Note
also that m(g) = m(g,g/H) and likewise for dima. Finally, dima (g/(g/H)) =
dima(H) # 0 (as H # 0). Hence, if m(g) = m(g/H) then by Lemma 3.1(ii),
dima (g/H) < dima(g), showing that ord(G/H) < ord(G).

Also ord(H) < ord(G) since dima (H) < dima(G) and U(H) < U(G).

Replacing ¢ with a nonforking extension, we may assume that H is definable
over dom(q). Write ¢ = tp(a/A). Set G := tp(w(a)/A) and ¢’ := tp(a/A,7(a)). Let
b € a+ H be independent from a over {A, 7(a)}. Set ¢ := tp(a—b/A,b). Note that
q" is a translation of the nonforking extension of ¢’ to AU {b}. Using transitivity,
one sees that either p £ g or p £ ¢”. In either case, we conclude by induction.
That is, if p £ g then by Corollary 3.7 m(q) > m(p). As g(x) - = € G/H we have
m(q) < m(G/H) < m(G) = m(p). Thus, m(q) = m(p) so that the hypotheses of
this lemma apply with g in place of ¢ and G/H in place of G. Likewise, in the case
of p / ¢"” we may replace q with ¢”” and G with H. Y

Let r be the generic type of G. By Corollary 3.10 and the above reduction, r
is regular. It remains to show that p Y r. Taking nonforking extensions we may
assume that p L q. Again, we suppress the base parameters. Let a = p and b = ¢
with a J/b. As r is the generic type of G, we can find ¢, co realising r such that
b € dcl(ey,c2). Hence a ) c¢1,co. Now suppose, for a contradiction, that p L r.
Then a | ¢; and so a Y., ca. As co = 7, our assumption that p L r implies that
¢z J c1. Hence loc(ca/cy1) is a proper A-subvariety of G and so m(cz2/c1) < m by
Corollary 3.10 and the reduction of Claim 1. As m = m(G) = m(p), Corollary 3.7
implies that p L tp(ca/c1). But this contradicts a Y., ¢a. So p L r, as desired. O

Corollary 3.15. Let p be a regular non locally modular type. Then there is a
A-vector group G whose generic type is reqular and nonorthogonal to p.

Proof. Let p’ be a regular type nonorthogonal to p, and of minimal A-type with
this property. By the transitivity of nonorthogonality for regular types, p’ is A-type
minimal (in the sense of Definition 3.2). Lemma 3.13 tells us that p’ satisfies the
hypotheses of Lemma 3.14, which in turn tells us that there is a A-vector group G
with a regular generic type gg such that g £ p’. Hence p Y gg. O

Lemma 3.16. Let G be a A-vector group with reqular generic type gg. There is
a definable subgroup of the additive group itself whose generic type is reqular and
nonorthogonal to g .

Proof. Realize G as a definable subgroup of G, for some g. Now one of the g
projections of G to G,, say 7, must have infinite image. Let a realize the generic
type of G (over the defining set, say k, of parameters). Then m(a) realizes the
generic type of 7(G). But ¢tp(m(a)/k) is also regular. Thus H = 7(G) is a definable
subgroup of the additive group with generic type regular and nonorthogonal to the
generic type of G. O

Combining all the results of this section, we conclude with our main theorem.

Theorem 3.17. Ifp is a regular non locally modular type, then there exists a defin-
able subgroup of the additive group whose generic type is reqular and nonorthogonal
to p.
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Proof. By Corollary 3.15 there is some A-vector group G having a regular generic
type g nonorthogonal to p. By Lemma 3.16 there is a definable subgroup H <
G, of the additive group having a regular generic gy nonorthogonal to gg. As
nonorthogonality is transitive for regular types, we have p / gg. [
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