A CORRIGENDUM TO "D-GROUPS AND THE DME"

REMI JAOUI AND RAHIM MOOSA

The purpose of this note, which is not intended for publication, is to fill a small gap that appears in the proof of Proposition 3.5 of [1]. At the bottom of page 364 of the published version there is a mistake: when addressing the case of n = 1; that is, the case when a and $\log \delta a := \frac{\delta a}{a}$ are algebraically dependent over k; it is claimed that something forces the polynomial $P_0(x)$ to be trivial. In fact, $P_0(x) = d(1-x)$ for any $d \in k$ is possible, and should have been dealt with.

Instead of following the details in [1] we will give a direct and more conceptual proof of Proposition 3.5 of [1] in this special case:

Proposition. Suppose k is a field of characteristic zero, R is a commutative affine Hopf k-algebra, and δ is a k-linear derivation on R that is an a-coderivation for some group-like $a \in R$. If a and $\log \delta a$ are algebraically dependent over k then $\log \delta a = d(1-a)$ for some $d \in k$.

In particular, the conclusion of [1, Proposition 3.5] holds with $c := -\frac{d^2}{2}$.

Proof. There is an affine algebraic group G, a nontrivial character $a : G \to \mathbb{G}_m$, and an *a*-twisted *D*-group structure $s : G \to TG$, all over k, such that R = k[G] and δ is the derivation on k[G] induced by s.

Consider the map $\pi := (a, \log \delta a) : G \to \mathbb{G}_m \ltimes \mathbb{G}_a$ that appears in [1] where it is shown, by an easy computation at the beginning of the proof of Proposition 3.8, that, since *a* is a character and *s* is *a*-twisted, π is a morphism of algebraic groups. Since $\{a, \log \delta a\}$ is algebraically dependent over *k*, and $a \neq 1$, the (connected) algebraic subgroup $H := \pi(G) \leq G_m \ltimes \mathbb{G}_a$ must be 1-dimensional. Hence the coordinate projection $\pi_1 : H \to \mathbb{G}_m$ is surjective with finite kernel. It follows that π_1 factors as $\rho_n \phi$, for some n > 0, where $\phi : H \to \mathbb{G}_m$ is an isomorphism of algebraic groups and $\rho_n : \mathbb{G}_m \to \mathbb{G}_m$ is given by $\rho_n(x) = x^n$. Let $\mathbb{G}_m \ltimes_n \mathbb{G}_a$ be the semidirect product where \mathbb{G}_m acts on \mathbb{G}_a by $(x, y) \mapsto x^n y$.

We first claim that $F: H \to \mathbb{G}_m \ltimes_n \mathbb{G}_a$ given by $(x, y) \mapsto (\phi(x, y), y)$, is a group homomorphism. Indeed,

$$F((x,y)(x',y')) = F(xx', y + xy')$$

$$= (\phi(xx', y + xy'), y + xy')$$

$$= (\phi(x,y)\phi(x',y'), y + xy') \text{ as } \phi \text{ is a group homomorphism}$$

$$= (\phi(x,y)\phi(x',y'), y + \phi(x,y)^n y') \text{ as } \phi(x,y)^n = x$$

$$= (\phi(x,y), y) (\phi(x',y'), y')$$

$$= F(x,y)F(x',y')$$

as desired.

Next, we claim that $\chi := \pi_2 \phi^{-1} : \mathbb{G}_m \to \mathbb{G}_a$ is a ρ_n -twisted additive character. That is, that $\chi(xx') = \chi(x) + x^n \chi(x')$. Indeed, note that the image H' = F(H) is

Date: February 26, 2020.

the graph of χ . So for $x, x' \in \mathbb{G}_m$ we have $(xx', \chi(xx')) \in H'$. But as F is a group homomorphism, H' is a subgroup of $\mathbb{G}_m \ltimes_n \mathbb{G}_a$, and so

$$(x,\chi(x))(x',\chi(x')) = (xx',\chi(x) + x^n\chi(x')) \in H',$$

as well. It follows that $\chi(xx') = \chi(x) + x^n \chi(x')$, as desired. Choose $b \in k$ such that $b^n \neq 1$. We have, for $x \in \mathbb{G}_m$,

$$\chi(xb) = \chi(x) + x^n \chi(b)$$
 and
 $\chi(bx) = \chi(b) + b^n \chi(x)$

so that $\chi(x)(1-b^n) = \chi(b)(1-x^n)$. Letting $d := \frac{\chi(b)}{1-b^n}$ we get $\chi(x) = d(1-x^n)$. So, for all $g \in G$, we have

$$\log \delta a(g) = \pi_2 \pi(g)$$

= $\chi \phi \pi(g)$ as $\chi = \pi_2 \phi^{-1}$
= $d(1 - \phi \pi(g)^n)$
= $d(1 - \pi_1 \pi(g))$ as $\pi_1 = \rho_n \phi$
= $d(1 - a(g)).$

That is, $\log \delta a = d(1-a)$, as desired.

For the "in particular" clause, a direct computation shows that for $c := -\frac{d^2}{2}$ we have the identity $a\delta^2 a = \frac{3}{2}(\delta a)^2 + c(a^2 - a^4)$ as claimed in Proposition 3.5 of [1]. \Box

It may be worth pointing out that what $\log \delta a = d(1-a)$ says geometrically is that we have the short exact sequence

 $1 \longrightarrow (\ker(a), u) \longrightarrow (G, s) \xrightarrow{a} (\mathbb{G}_m, t_d) \longrightarrow 1$

where $u := s \upharpoonright_{\ker(a)}$ makes $(\ker(a), u)$ a *D*-group, $t_d(x) := d(x - x^2)$ makes (\mathbb{G}_m, t_d) an id-twisted *D*-group, and the morphisms are algebraic group homomorphisms that are also morphisms of *D*-varieties.

References

Jason Bell, Omar León Sánchez, and Rahim Moosa. D-groups and the Dixmier-Moeglin equivalence. Algebra Number Theory, 12(2):343–378, 2018.