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Abstract. Recent work using the model theory of differentially closed fields

to answer questions having to do with the Dixmier-Moeglin equivalence for
(noncommutatve) finitely generated noetherian algebras, and for (commuta-

tive) finitely generated Poisson algebras, is here surveyed, with an emphasis

on the model-theoretic and differential-algebraic-geometric antecedents.
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1. Introduction

In the last five years1 a small body of work has arisen around a certain application
of model theory to algebra. It appears in the papers [2, 3, 18, 20] authored by,
in various combinations, Jason Bell, Stéphane Launois, Omar León Sánchez, and
myself. It is my intention in this article to survey that work, but also to trace its
model-theoretic roots and to discuss other related recent developments.

The model theory involved has to do with the structure of finite rank definable
sets in differentially closed fields of characteristic zero, and revolves around the
stability-theoretic notions of internality and orthogonality. However, in the context
of differentially closed fields, the necessary stability-theoretic ideas have almost en-
tirely algebro-geometric characterisations, and my approach here will be to express
things as much as possible in this way. I hope the survey will thereby be more
generally accessible (though I may be trading in stability-theoretic prerequisites for
algebro-geometric ones).
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The algebra to which this model theory is being applied is somewhat surprising:
it arises from the work of Dixmier and Moeglin in the Nineteen Seventies on the
representation theory of noncommutative algebras. (The “DME” of the title stands
for “Dixmier-Moeglin equivalence”.) The specific problems are explained in some
detail in the last section, where the main results obtained are stated explicitly
with proof outlines sketched. Let me only say now that they have to do with the
structure of prime ideals in noncommutative finitely generated noetherian algebras
on the one hand, and the structure of prime Poisson ideals in commutative finitely
generated Poisson algebras on the other.

I will spend much of this survey narrating a particular line of work in the model
theory of differentially closed fields that begins with Hrushovski’s interpretation,
in the Nineteen Nineties, of a theorem of Jouanolou on algebraic foliations. This
is a finiteness theorem on codimension one subsets of certain differential-algebraic
varieties. I will give several variations and generalisations of this theorem, and then
explain how certain well-studied constructions in differential-algebraic geometry,
like that of the Manin kernel, show that the theorem cannot in general be extended
to higher codimension. However, under the additional constraint of “analysability
to the constants”, a higher codimension extension of the Jouanolou-type theorems
does hold. In particular, I will explain why it holds for finite rank definable groups
over the constants. These results, both positive and negative, will then be applied
to the Dixmier-Moeglin equivalence problem.

Two asides that take us away from differentially closed fields are included; one
in the abstract setting of finite rank types in stable theories, and the other on an
analogue of these ideas in the difference-algebraic setting.

1.1. Acknowledgements. This survey is based on a pair of talks I gave on the
subject; one during the Model theory and applications workshop at the Institut
Henri Poincaré in 2018, and the other at the workshop on Interactions between
representation theory and model theory at the University of Kent in 2019. I thank
both institutions, and the programme organisers, for their hospitality. I also thank
Jason Bell for many useful discussions.

2. Differential-algebraic preliminaries

The preliminaries here are intended to help familiarise the reader with the relevant
notions from differential-algebraic geometry that will be necessary to continue. In
particular, we discuss D-varieties. For a more detailed introduction to differential
algebra we suggest [22]. We encourage the reader with even a small amount of
exposure to the subject to skip to the next section, and only look back when they
comes across something unfamiliar.

All the fields in this paper will be of characteristic zero.
By a derivation we mean an additive operator that satisfies the Leibniz rule

δ(xy) = xδ(y) + δ(x)y.
Fix a differential field (K, δ). For each n > 0, the derivation induces on Kn a

topology that is finer than the Zariski topology, called the Kolchin topology. Its
closed sets are the zero sets of differential-polynomials, that is, expressions of the
form P (x, δx, . . . , δℓx) where x = (x1, . . . , xn), δ

ix = (δix1, . . . , δ
ixn), and P is an

ordinary polynomial over K in (ℓ + 1)n variables. A differential-rational function
is then a ratio of differential-polynomials.
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The geometry of Kolchin closed sets is only made manifest when we work in an
existentially closed differential field, that is, a differentially closed field (K, δ). This
means that any finite system of differential-polynomial equations and inequations
over K that has a solution in some differential field extension of (K, δ), already
has a solution in (K, δ). In particular, K is algebraically closed, as is its field of
constantsKδ := {a ∈ K : δa = 0}. The class of differentially closed fields is axioma-
tisable in the language {0, 1,+,−,×, δ} of differential rings, and the corresponding
theory is denoted by DCF0. It serves as the appropriate theory in which to study
differential-algebraic geometry, and enjoys a number of tameness properties making
it particularly accessible to model-theoretic analysis. It admits quantifier elimina-
tion (all definable sets are finite boolean combinations of Kolchin closed sets) and
the elimination of imaginaries (the class of definable sets is closed under taking
quotients by definable equivalence relations). Moreover, it is an ω-stable theory,
meaning that over any countable set of parameters there are at most countably
many distinct types. This last leads to a rich theory of independence.

The Kolchin topology is noetherian and we have, therefore, that every Kolchin
closed set has an irreducible decomposition. Recall that a closed set is irreducible
if it cannot be written as the union of two proper closed subsets. Moreover, to an
irreducible Kolchin closed set over a differential subfield k, we can associate the
generic type p(x) over k which asserts that x ∈ X but x /∈ Y for every proper
Kolchin closed subset Y ⊂ X over k.

The Kolchin closed sets we will be mostly interested in will arise in a very
particular way from algebraic varieties equipped with a “twisted vector field”. Fix
a differential subfield k of parameters. In what follows we, somewhat naively,
identify affine algebraic varieties over k with algebraic subsets of Kn, zero sets of
systems of polynomial equations with coefficients in k. If V ⊆ Kn is an irreducible
affine algebraic variety over k, then the prolongation of V is the algebraic variety
τV ⊆ K2n over k whose defining equations are

P (x1, . . . , xn) = 0

P δ(x1, . . . , xn) +

n∑
i=1

∂P

∂xi
(x1, . . . , xn) · yi = 0

for each P vanishing on V . Here P δ denotes the polynomial obtained by applying
δ to the coefficients of P . The projection onto the first n coordinates gives us a
surjective morphism π : τV → V .

Note that if δ = 0 on k, that is, V is defined over Kδ, then the equations for the
prolongation reduce to the equations for the tangent bundle TV . In general, τV
will be a torsor for TV ; for each a ∈ V the fibre τaV is an affine translate of the
tangent space TaV .

Taking prolongations is a functor which acts on morphisms by acting on their
graphs. Moreover, the prolongation construction extends to abstract varieties by
patching over an affine cover in a natural and canonical way.

The following notion extends that of an algebraic vector field:

Definition 2.1. A D-variety over k is a pair (V, s) where V is an irreducible
algebraic variety over k and s : V → τV is a regular section to the prolongation
defined over k. A D-subvariety of (V, s) is then a D-variety (W, t) where W is a
closed subvariety of V and t = s|W .
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Let I(V ) ⊆ k[x1, . . . , xn] be the ideal of polynomials vanishing on an irreducible
affine variety V over k, and let k[V ] = k[x1, . . . , xn]/I(V ) be the co-ordinate ring.
Then the possible affine D-variety structures on V correspond bijectively to the
extensions of δ to a derivation on k[V ]. Indeed, given s : V → τV , write s(x) =(
x, s1(x), . . . , sn(x)

)
in variables x = (x1, . . . , xn). There is a unique derivation

on the polynomial ring k[x] that extends δ and takes xi → si(x). The fact that
s maps V to τV will imply that this induces a derivation on k[V ] = k[x]/I(V ).
Conversely suppose we have an extension of δ to a derivation on k[V ], which we
will also denote by δ. Then we can write δ

(
xi + I(V )

)
= si(x) + I(V ) for some

polynomials s1, . . . , sn ∈ k[x]. The fact that δ is a derivation on k[V ] extending
that on k will imply that s = (id, s1, . . . , sn) is a regular section to π : τV → V . It is
not hard to verify that these correspondences are inverses of each other. Moreover,
the usual correspondence between subvarieties of V defined over k and prime ideals
of k[V ], restricts to a correspondence between the D-subvarieties of (V, s) defined
over k and the prime differential ideals of k[V ], that is, the prime ideals that are
closed under the action of δ.

Suppose, now, that (V, s) is a D-variety over k. The equations defining the
prolongation are such that if a ∈ V (K) then ∇(a) := (a, δa) ∈ τV (K). Consider,
therefore, the Kolchin closed set

(V, s)♯(K) := {a ∈ V (K) : s(a) = ∇(a)}.
To say that s(a) = ∇(a) is to say, writing s = (id, s1, . . . , sn) in an affine chart, that
δai = si(a) for all i = 1, . . . , n. That is, (V, s)♯(K) is a Kolchin closed set defined
by order 1 differential-polynomial equations.

The reason that the Kolchin closed sets (V, s)♯(K) are of particular importance
is that every finite-dimensional Kolchin closed set is, up to differential-rational
bijection, of this form. Here, a Kolchin closed set X over k is finite-dimensional if
for every a ∈ X the transcendence degree of k(a, δa, δ2a, . . . ) over k is finite.

Finally, we will be concerned at times with the group objects in this category.
Suppose (G, s) is a D-variety where G happens to be an algebraic group. (An
algebraic group is an algebraic variety G with a morphism G×G → Gmaking it into
a group.) Note that by the functoriality of τ , and the fact that τ(G×G) = τG×τG,
there is an algebraic group structure on τG induced by that onG. We say that (G, s)
is a D-group if s : G → τG is a homomorphism of algebraic groups. In that case,
(G, s)♯(K) will be a definable group in (K, δ), and in fact every finite-dimensional
definable group will be, up to definable isomorphism, of this form.

3. Jouanalou-type theorems

Extending and interpreting a theorem of Jouanalou [16] on algebraic foliations,
Hrushovski proved, in the unpublished manuscript [13] dating from the mid Nine-
teen Nineties, the following striking fact in differential-algebraic geometry.

Theorem 3.1 (Hrushovski). Working in a saturated model (K, δ) of DCF0 with
constant field C, suppose that X ⊆ Kn is an irreducible Kolchin closed subset over
a subfield k ⊆ C. If X admits no nonconstant differential rational functions to C
over k then it has only finitely many differential hypersurfaces over k.2

2For a published proof of this theorem see [11, Theorem 5.7] where it is also generalised to
several commuting derivations and to the case when the parameters are possibly nonconstant.
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Here, by a differential hypersurface we mean an irreducible Kolchin closed Y ⊂ X
such that for generic x ∈ X and y ∈ Y ,

trdegk k(y, δy, . . . , δ
ty) = trdegk k(x, δx, . . . , δ

tx)− 1

for all sufficiently large t.
The model-theoretic content here, besides the fact that one works in DCF0 as the

ambient theory in which to do differential-algebraic geometry, is that X admitting
no nonconstant differential rational functions to C over k is equivalent to the generic
type of X over k being weakly orthogonal to the constants: every realisation of this
type is independent over k from any finite tuple of constants. Indeed, it is not hard
to see that if f : X → C were a nonconstant differential rational function over k
then x and f(x) would be dependent over k. The converse, that any dependence
is witnessed by such a function, is a standard useful fact in differential algebraic
geometry that comes from the fact that C is “stably embedded” in K.

What is required for the intended application to the Dixmier-Moeglin equiva-
lence problem, however, is a slight variant of Hrushovski’s theorem. First, we are
only interested in finite-dimensional Kolchin closed sets. Therefore, we can restrict
attention to those X of the form (V, s)♯(K) for some affine D-variety (V, s) over k.
The assumption in Hrushovski’s theorem of no nonconstant differential rational
functions to the constants translates to the D-variety being “δ-rational” in the
following terminology of [3].

Definition 3.2. An affine D-variety (V, s) over k is called δ-rational if the constant
field of the induced derivation on k(V ) is k.

Indeed, any rational function f on V restricts to a differential rational function
on X = (V, s)♯(K), whose values will be in C if the derivative of f in k(V ) is zero.
Conversely, any differential rational function f on X extends to a rational function
on V because X is given by order one equations, and this rational function on V
will have derivative zero if f(X) ⊆ C.

The conclusion of Hrushovski’s theorem, that of having only finitely many differ-
ential hypersurfaces, becomes the statement that (V, s) has only finitely many D-
subvarieties over k of codimension one, or expressed algebraically, that (k[V ], δ) has
only finitely many height one prime differential ideals. So in this finite-dimensional
setting Hrushovski’s theorem becomes a rather concrete statement in differential
algebra. On the other hand, the intended application does require the more general
context of several (possibly noncommuting) derivations. Such a version appears
in [2, Theorem 6.1] as follows:

Theorem 3.3 (Bell, Launois, León Sánchez, Moosa). Suppose A is a finitely gener-
ated commutative integral k-algebra, where k is an algebraically closed field of char-
acteristic zero, and δ1, . . . , δm are k-linear derivations on A. If (A, δ1, . . . , δm) has
infinitely many height one prime differential ideals then there is some f ∈ Frac(A)\k
with δi(f) = 0 for all i = 1, . . . ,m.

There are now two rather distinct proofs of this in the literature: the one appear-
ing in [2] is entirely algebraic while another following the method of Hrushovski (so
relying on an extension of Jouanolou’s theorem) appeared later in [11, Theorem 4.2],
where it is generalised to the infinite-dimensional setting.

It turns out that the phenomena exhibited by the above theorems are not specific
to differential-algebraic geometry. A difference-algebraic analogue was proved in
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2010 (independently) by Bell-Rogalski-Sierra [5] and Cantat [10]. We will say more
about that in §7 below. More recently it has been shown that such finiteness
theorems are truly ubiquitous, and a very general unifying version appeared in [6].
The language of schemes, which I do not explain here, is required to state the result
because non-reduced schemes are essential to the unification.

Theorem 3.4 (Bell, Moosa, Topaz). Let X be an algebraic variety, Z an irreducible
algebraic scheme of finite type, and ϕ1, ϕ2 : Z → X rational maps whose restrictions
to Zred are dominant, all over an algebraically closed field k of characteristic zero.
Suppose there exist nonempty Zariski open subsets V ⊆ Z and U ⊆ X such that
the restrictions ϕV

1 , ϕ
V
2 : V → U are dominant regular morphisms, and there exist

infinitely many algebraic hypersurfaces H on U satisfying

(ϕV
1 )

−1(H) = (ϕV
2 )

−1(H).

Then there exists g ∈ k(X) \ k such that gϕ1 = gϕ2.

Let us point out how Theorem 3.3 is a special case of Theorem 3.4. Given an inte-
gral differential k-algebra (A, δ1, . . . , δm), consider X = Spec(A) and Z = Spec(R)
where R := A[ϵ1, . . . , ϵm]/(ϵ1, . . . , ϵm)2. (This Z is our non-reduced scheme.) We
have ϕ1 : Z → X coming from the natural k-algebra inclusion of A in R and
ϕ2 : Z → X coming from the k-algebra homomorphism given by a 7→ a+ δ1(a)ϵ1 +
· · · + δm(a)ϵm. Applying Theorem 3.4 to this yields Theorem 3.3. (The proof of
Theorem 3.4 goes via a reduction to Theorem 3.3, and hence does not constitute a
new proof of the latter.)

4. Counterexamples in higher codimension

The Jouanolou-type theorems discussed above assert that under certain conditions
(weak orthogonality to the constants, or δ-rationality) there are only finitely many
hypersurfaces. In this section we survey some constructions showing that these
theorems cannot in general be extended beyond hypersurfaces.

To begin with, note that for an algebraic D-variety to have infinitely many
D-hypersurfaces is equivalent to having Zariski-dense many D-hypersurfaces. The
algebraic counterpart of this equivalence is that there are only finitely many height 1
prime differential ideals if and only if the intersection of all height 1 prime differ-
ential ideals is nontrivial. It is not hard to see that this equivalence is no longer
true in higher codimension. In thinking about stregthenings of Jouanalou-type
theorems, therefore, one would certainly not expect to be able to conclude the exis-
tence of only finitely many D-subvarieties, but one might speculate that the union
of the proper D-subvarieties is not Zariski dense. The following terminology was
introduced in [3].

Definition 4.1. An affine D-variety (V, s) over an algebraically closed field k is
called δ-locally closed if the union of all its proper D-subvarieties over k is not
Zariski dense.

Remark 4.2. Algebraically, this is equivalent to saying that in the induced differ-
ential ring (k[V ], δ) the intersection of all nontrivial prime differential ideals is not
trivial. Model-theoretically, being δ-locally closed means that the Kolchin generic
type of (V, s)♯ over k is isolated. See [3, §2.4] for proofs of these equivalences.
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The higher codimension analogues of Theorems 3.1 and 3.3, at least in one
derivation and in the finite-dimensional case, would assert that δ-rational implies
δ-locally closed for an affine D-variety over the constants. The constructions we now
exhibit show that this is not the case. More precisely, they will show the following
fact, which should be contrasted with Theorem 3.3.

Fact 4.3. In every dimension d ≥ 3, there are δ-rational but not δ-locally closed
affine D-varieties over k. Expressed algebraically, there exists a finitely generated
integral k-algebra A of Krull dimension d equipped with a derivation δ such that the
constants of Frac(A) is k but the intersection of the nontrivial prime differential
ideals is trivial.

4.1. Parametrised Manin kernels. Manin kernels were used by both Buium and
Hrushovski in their proofs of the function field Mordell-Lang conjecture. There are
several expositions of this material available, so we will be brief. See Marker [21]
and Bertrand-Pillay [7] for more details on Manin kernels, and [2] for more details
on how they witness Fact 4.3.

Fix an algebraically closed field k and consider the differential field L = k(t) with
δ = d

dt . Let E be an elliptic curve over L. So E is a one-dimensional projective
algebraic group. (A similar construction works in higher dimensions, namely with
abelian varieties rather than elliptic curves.) The universal vectorial extension of E,

denoted by Ê, is a 2-dimensional connected commutative algebraic group over L

equipped with a surjective morphism of algebraic groups p : Ê → E whose kernel is
an algebraic vector group, satisfying the universal property that p factors uniquely
through every such extension of E by a vector group. Here, by a vector group
we mean an algebraic group isomorphic to the additive group structure on affine

n-space for some n. By functoriality, the prolongation τÊ inherits the structure

of a connected commutative algebraic group in such a way that π : τÊ → Ê is a

morphism with kernel the Lie algebra T0Ê. The composition p◦π : τÊ → E is thus
again an extension of E by a vector group, and so by the universal property there

is a unique morphism of algebraic groups s : Ê → τÊ over L such that p = p◦π ◦s.
It follows that s is a section to π and so (Ê, s) is a D-group over L. An important

property of this D-group is that (Ê, s)♯(Lalg) is Zariski-dense in Ê, which follows

from the fact that the torsion on Ê, like that on E itself, is Zariski-dense. If we
make the further assumption that E is not isomorphic to an elliptic curve over k,
that is, E does not descend to the constants, then it can be shown that the field of

constants of
(
L(Ê), δ

)
is k.

At this point we can forget the group structure. Letting V be an appropriate

affine open subset of Ê, what we have obtained is an affine algebraic D-variety
(V, s) over L of dimension 2 for which (V, s)♯(Lalg) is Zariski-dense in V while the
constant field of the induced derivation δ on L(V ) is k.

Now, because L is a one-dimensional function field over k we can witness V as
the generic fibre of a morphism X → C from a three-dimensional irreducible affine
algebraic variety onto an affine curve, all defined over the base field k. Moreover,
we can arrange it so that the section s on V extends to a D-variety structure
sX : X → TX on the total space. (Note that as X is defined over the constants
the prolongation is just the tangent bundle.) Since k(X) = L(V ), we have that the
induced derivation on k(X) has constant field k. So (X, sX) is δ-rational. But X
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has many D-curves. Indeed, each Lalg-point of (V, s)♯ gives rise to a D-subvariety
of X over k that projects finitely onto C. As the set of such points is Zariski-dense
on the generic fibre V , the union of these D-curves is Zariski-dense in X. Note
that the D-curves are of codimension 2 in X. In any case, (X, sX) is not δ-locally
closed and therefore witnesses Fact 4.3.

The construction can de adjusted to produce higher Krull dimension examples
– by replacing L with higher dimensional function fields though still equipped with
a derivation whose constants are k.

4.2. The j function. The j function is a classically known analytic function on
the upper half complex plane that parametrises elliptic curves over C. It satisfies
a certain order three algebraic differential equation of the form δ3x = f(x, δx, δ2x)
where f is a rational function over Q. Its set of solutions in a model (K, δ) |= DCF0

is therefore, up to generic definable bijection, of the form X := (V, s)♯(K) for some
D-variety (V, s) over k := Qalg with dimV = 3. This Kolchin closed set was
studied from the model-theoretic point of view by Freitag and Scanlon in [12] using
Pila’s Ax-Lindemann-Weierstrass with derivatives theorem [24]. They show that
X is a strongly minimal set (every definable subset is either finite or cofinite) with
trivial pregeometry (there are no rich families of definable subsets of X2) but whose
induced structure from (K, δ) is not ω-categorical; a first such example. The failure
of ω-categoricity is due to Hecke correspondences which ensure that for any generic
a ∈ X there are infinitely many k(a)alg-points on X. By strong minimality this
is a Zariski-dense set in V . We are led to consider, therefore, the 6-dimensional
D-variety (V 2, s2). The triviality of the pregeometry on X ensures that

(
k(V 2), δ

)
has k as its field of constants. That is, (V 2, s2) is δ-rational. Now, consider the first
co-ordinate projection V 2 → V . Fixing generic a ∈ X, each k(a)alg-point of X,
viewed as living on the fibre of V 2 → V over a, gives rise to a D-subvariety of V 2

over k that projects finitely onto V . As the set of such points is Zariski-dense on
the fibre above a, the union of these D-subvarieties is Zariski-dense in V 2. Notice
that these D-subvarieties are of dimension (and codimension) 3. In any case, this
example witnesses again Fact 4.3.

5. Analysability in the constants and D-groups

The counterexamples of the previous section notwithstanding, it is reasonable to ask
for which D-varieties do higher codimension strengthenings of the Jouanolou-type
theorems hold. One theorem along these lines from [3] is:

Theorem 5.1 (Bell, León Sánchez, Moosa). For D-subvarieties of affine D-groups
over the constants, δ-rational does imply δ-locally closed.

Theorem 5.1 is a consequence of combining known structural results about finite
rank groups definable in DCF0 with a more general sufficient condition on D-
varieties for when δ-rationality implies δ-local-closedness. This latter condition, in
the terminology of [3], is “compound isotriviality”.

Definition 5.2. Fix a differential field (k, δ) and a D-variety (V, s) over k.
We say that (V, s) is isotrivial if there is some differential field extension F ⊇ k

such that (V, s) is D-birationally equivalent over F to a D-variety of the form (W, 0)
where W is defined over the constants and 0 is the zero section.
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We say that (V, s) is compound isotrivial if there exists a sequence of D-varieties
(Vi, si) over k, for i = 0, . . . , ℓ, with dominant D-rational maps over k

V = V0
f0 // V1

f1 // · · · // Vℓ−1

fℓ−1 // Vℓ = 0

such that the generic fibres of each fi are isotrivial. We say in this case that (V, s)
is compound isotrivial in ℓ steps.

Remark 5.3. These notions have model-theoretic characterisations, which, indeed,
are where they come from. The model-theoretic meaning of isotriviality is that that
the Kolchin generic type of (V, s)♯ over k is internal to the constants. Compound
isotriviality says that generic type is analysable in the constants. We point the
reader to [25] for the definitions of internality and analysability in stable theories.
There is also, of course, an algebraic characterisation in terms of the differential
structure on k[V ], but it is not very illuminating and we leave it to the reader to
work out if he desires.

Stated informally, compound isotriviality is saying that the D-variety is built up
via a finite sequence of fibrations by D-varieties that at least after base change are
trivial vector fields. This is a much more rich class of D-varieties than one may at
first glance expect, as witnessed, for example, by the constructions of Jin in [14].

In any case, for such D-varieties we do have the desired strengthening of the
Jouanalou-type theorems; Proposition 2.13 of [3] says that for a compound isotrivial
D-variety, δ-rationality implies δ-local-closedness. Model-theoretically, this says
that for types analysable in the constants, being weakly orthogonal to the constants
implies isolation. We do not expose the proof here, but it may be worth pointing
out to the model-theorist why it is true in at least the base case when the D-variety
is isotriviality: If a stationary type is internal to the constants then by ω-stability
we have a definable binding group action which must be transitive if the type is in
addition weakly orthogonal to the constants. As a result, such types define an orbit
of a definable group action and hence are isolated.

Now, it is well known that D-groups over the constants, and their D-subvarieties,
are compound isotrivial. Indeed, given (G, s) with Z the center of G and

H = {g ∈ G : s(g) = 0},
one considers the normal sequence of D-subgroups

0 ≤ Z ∩H ≤ Z ≤ G.

Since the section is zero on H by definition, Z ∩H is isotrivial. That Z/(Z ∩H) is
isotrivial follows from the theory of the logarithmic derivative homomorphism on a
connected commutative algebraic group over the constants, see [21]. Finally, that
G modulo its center is isotrivial is a theorem of Buium [9]. We therefore have the
3-step analysis given by the sequence of fibrations

G → G/(Z ∩H) → G/Z → 0.

This will restrict to an analysis of any D-subvariety of (G, s). Theorem 5.1 follows.

Remark 5.4. The assumption in Theorem 5.1 that the affine D-group be defined
over the constants can be removed. This is because the result that G modulo its
center is isotrivial does not require it, and once we are working with a commu-
tative affine algebraic group then we are talking about a product of additive and
multiplicative groups (which are over the constants).
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6. An abstract resolution?

As we have noted along the way, strengthening the Jouanolou-type theorems to all
codimensions requires proving that δ-rational implies δ-locally closed. We know
this is not the case for all D-varietes. Instead of restricting our attention to certain
D-varieties – as we did in the previous section – here we will describe work that finds
the right condition to replace δ-rationality with in order to get a characterisation
of δ-local-closedness. While everything can be translated into differential algebra
and differential-algebraic geometry, the condition we are after is best expressed in
the language of geometric stability theory, with which we will therefore assume
familiarity in this section.

Working in a saturated model (K, δ) |= DCF0 with constant field Kδ = C, let us
fix a type p = tp(a/A) of finite rank. Up to definable bijection these are precisely
the Kolchin generic types associated to D-varieties. Local-closedness of the D-
variety is equivalent to p being isolated. In [20] the following characterisation of
isolation was established.

Theorem 6.1 (León Sánchez, Moosa). Suppose p = tp(a/A) is of finite rank.
Then p is isolated if and only if the following hold:

(i) a |⌣
A

C; and

(ii) a |⌣
Ab

G♯ for every b ∈ acl(Aa) and G a simple abelian variety over acl(Ab)

that does not descend to the constants, where G♯ denote the Kolchin closure
of torsion in G; and

(iii) a |⌣
Ab

q(K) for every b ∈ acl(Aa) and q a nonisolated U -rank 1 type over Ab

with trivial associated pregeometry.

Maybe a few words of explanation are in order. First, condition (i) is precisely
weak C-orthogonality of p – which, recall, captures the δ-rationality of the corre-
sponding D-variety. So this theorem adds further conditions to δ-rationality in
order to characterise δ-closedness (i.e., isolation). Moreover, those further condi-
tions are in the same spirit as δ-rationality; conditions (ii) and (iii) both say that
the “fibrations” of p must be weakly orthogonal to certain other (type) definable
sets. While condition (ii) is rather concrete and in practice verifiable, condition (iii)
remains more elusive with no complete characterisation of trivial minimal types in
DCF0 as yet known.

We have referred above to tp(a/Ab) when b ∈ acl(Aa) as a “fibration” of tp(a/A).
This terminology comes from considering the special case when b ∈ dcl(Aa). In
that case one does obtain a rational map on the D-variety corresponding to p and
tp(a/Ab) is the Kolchin generic type of the generic fibre of that map. As it turns
out, however, there are examples showing that it does not suffice to consider only
b ∈ dcl(Aa), the algebraic closure is necessary.

Theorem 6.1 itself follows from a more general characterisation of isolated finite
rank types: working in a saturated model U of an arbitrary totally transcendental
theory satisfying an additional technical condition3, a finite rank type p = tp(a/A)
is isolated if and only if

3That every complete non-locally-modular minimal type is nonorthogonal to a nonisolated
minimal type over the empty set.
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(†) for all b ∈ acl(Aa) and q ∈ S(Ab) nonisolated and minimal, a |⌣
Ab

q(U).

Conditions (i)–(iii) of Theorem 6.1 is how (†) is manifested in DCF0 due to the
form the Zilber trichotomy takes in that theory. One obtains also analogous results
for CCM, the theory of compact complex manifolds in the langauge of analytic sets.

7. An aside on the difference case

We are focusing in this paper on differential algebra, but we would like to briefly
mention here an analogue of the Jouanalou-type theorems and their possible higher
codimension strengthenings in the difference setting. That is, instead of D-varieties
we consider a σ-variety; an irreducible algebraic variety V over an algebraically
closed field k equipped with a regular automorphism4 also over k, ϕ : V → V . Then
ϕ induces a k-linear automorphism of the rational function field, σ : k(V ) → k(V ).
Let us say that (V, ϕ) is σ-rational if the fixed field of

(
k(V ), σ

)
, namely the set of

f ∈ k(V ) such that σ(f) = f , is just k itself. (This is often expressed by saying
that ϕ does not preserve any nonconstant fibration on V over k.) The analogy
being drawn here is between derivations with their constants and automorphisms
with their fixed points.

We mentioned toward the end of §3 that there is a version of the Jouanolou the-
orem in this context, though it was discovered much later. The role of a differential
(or D-) subvarieties is played now by that of a ϕ-invariant subvariety; namely a
subvariety W ⊂ V such that ϕ(W ) ⊆ W . There is a subtle variance here from the
differential case: the subvariety W need not be irreducible, nor need it break up
into a union of irreducible ϕ-invariant subvarieties. For example, if a point a ∈ V (k)
is periodic but not fixed then it has finite but nontrivial orbit under ϕ, and that
orbit is a ϕ-invariant subvariety that is not the union of irreducible ϕ-invariant sub-
varieties. The following Jouanolou-type theorem is a special case of Theorem 3.4
that appeared originally in [5] and [10], independently.

Theorem 7.1 (Bell, Rogalski, Sierra; Cantat). Suppose (V, ϕ) is a σ-variety over k.
If (V, ϕ) is σ-rational then there are only finitely many codimension one ϕ-invariant
subvarieties over k on V .

What about higher codimensions? That is, if, inspired by the differential case, we
were to call (V, ϕ) σ-locally closed if the union of all proper ϕ-invariant subvarieties
over k is not Zariski dense in V ; it would be natural to ask:

Question 7.2. Does σ-rational imply σ-locally closed?

There is an interesting connection here with a conjecture in arithmetic dynamics.
Note that if (V, ϕ) is σ-locally closed, then any point in V (k) that is outside the
Zariski closure of the union of all proper ϕ-invariant subvarieties over k will have
a Zariski-dense orbit under ϕ. Indeed, the Zariski closure of that orbit will be ϕ-
invariant and hence cannot be proper. So, an affirmative answer to Question 7.2
would imply the following conjecture from [23].

Conjecture 7.3 (Medvedev, Scanlon). Suppose (V, ϕ) is a σ-variety over k. If
(V, ϕ) is σ-rational then there exists a k-point with Zariski-dense orbit.

4It is is possible to work with dominant rational self-maps instead but the statements would
have to be modified somewhat, and we stick to this context for the sake of economy of exposition.
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When k is uncountable the conjecture is known to be true by an older theorem of
Amerik and Campana [1] – so the conjecture is really about countable algebraically
closed fields, where it remains open.

Question 7.2, however, is not open, even for uncountable k: as explained in [5,
Theorem 8.8], work of Jordan [15] on Henon automorphisms ϕ : A2 → A2 of the
affine plane over C shows that they have no invariant curves but infinitely many
periodic points. Since the level sets of a nonconstant rational function on A2 that
is fixed by σ would be invariant curves, it follows that there are no such rational
functions and (A2, ϕ) is σ-rational. On the other hand, the orbit of a periodic
point is a (finite) ϕ-invariant subvariety, but the union of these orbits as you range
through the infinitely many periodic points is Zariski-dense as its Zariski closure
would otherwise be an invariant curve. Hence (A2, ϕ) is not σ-locally closed.

The obstacle here seems to be the nature of the induced action of ϕ on the divisors
of V modulo numerical equivalence. This is a finitely generated free abelian group,
and the action is said to be quasi-unipotent if all of its eigenvalues are roots of
unity. In [17] it is shown that quasi-unipotence is equivalent to the existence of
a “ϕ-ample divisor on X”, which was the condition isolated in [5] as relevant to
higher codimension analogues of Theorem 7.1. Conjecture 8.5 of [5] can therefore
be expressed as follows:

Conjecture 7.4 (Bell, Rogalski, Sierra). Suppose (V, ϕ) is a projective σ-variety
over k for which the action of ϕ on the numerical equivalence classes of divisors is
quasi-unipotent. If (V, ϕ) is σ-rational then it is σ-locally closed.

They prove a number of cases including when dimV ≤ 2 or ϕ is part of the
action of an algebraic group acting on V .

8. The Dixmier-Moeglin Equivalence

We will now describe how the narrative we have been pursuing about δ-rationality
and δ-local-closedness of D-varieties has been applied in recent years to answer
some long standing questions in noncommutative and Poisson algebra. We begin by
introducing the Dixmier-Moeglin equivalence in first the classical noncommutative
setting, and then its (commutative) Poisson analogue.

8.1. The classical Dixmier-Moeglin equivalence. Fix an uncountable alge-
braically closed field k of characteristic zero, and a finitely generated noetherian
associative k-algebra, A, not necesarily commutative. Suppose P ⊆ A is a prime
ideal. We consider three well-studied conditions on P .

The first is algebraic. Goldie’s theorem tells us that the ring A/P has a simple
artinian ring of fractions, which we denote by Frac(A/P ). Mimicking the commu-
tative case, it is a ring composed of elements of the form αβ−1 where α ∈ A/P and
β ∈ A/P is neither a left nor a right zero divisor. By the Artin-Wedderburn theo-
rem, Frac(A/P ) is a matrix algebra over a division ring. The center of Frac(A/P )
is therefore the center of that division ring, and so a field extension of k. We say
that P is rational if the center of Frac(A/P ) is k itself.5

5Here we are assuming k is algebraically closed. In general, rational would just ask that the
center be an algebraic extension of k.
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The second is representation-theoretic: we say that P is primitive if it annhilates
a simple left A-module.

The final condition is Zariski-topological. As in the commutative case, the set
of prime ideals of A, Spec(A), is endowed with a Zariski topology. We say that
P is locally closed if {P} is a locally closed subset of Spec(A). Equivalently, the
intersection of all prime ideals properly containing P is not equal to P .

Note that if A were commutative then these three conditions on P would be
equivalent; they would all say that P is a maximal ideal. In general, the algebra A
is said to satisfy the Dixmier-Moeglin equivalence (DME) if a prime ideal of A is
rational if and only if it is primitive if and only if it is locally closed. This termi-
nology, and the question of which algebras satisfy the DME, arises out of the work
of Dixmier and Moeglin in the early Nineteen Seventies on the representations of
universal enveloping algebras of finite-dimensional Lie algebras (which they showed
do satisfy the DME). Following their work it has been shown that locally closed im-
plies primitive implies rational (at least in our context of A being finitely generated
and noetherian and k being uncountable). So the DME problem is the question
of whether rational implies locally closed. (At this point the reader will see at
least a linguistic connection to the subject matter of the previous sections.) Several
counterexample were exhibited in the late Nineteen Seventies by Irving and Lorenz,
while for a number of other classes of algebras the DME has been established in
the intervening decades.

8.2. The Poisson Dixmier-Moeglin equivalence. It is often the case that there
is an analogy between noncommutative rings and commutative rings equipped with
additional (often differential) structure. One such structure, arising from deforma-
tion quantization, is that of an affine Poisson algebra: a finitely generated commuta-
tive integral k-algebra A equipped with a Lie bracket {, } that is also a biderivation,
that is, for each x ∈ A the operators {x, ·} and {·, x} are k-linear derivations on A.
By a Poisson ideal is meant an ideal I ⊆ A such that {a, x} ∈ I for all a ∈ I and
x ∈ A. (The same then holds for {x, a} by skew-symmetry.) Let us fix a Poisson
prime ideal P in an affine Poisson algebra A, and consider the Poisson analogue of
the conditions considered above.

The Poisson structure on A induces a canonical Poisson structure on A/P which
then extends uniquely to the fraction field Frac(A/P ). By the Poisson-center of
Frac(A/P ) is meant the subfield {f ∈ Frac(A/P ) : {f, ·} = 0}, which is an extension
of k. The Poisson prime P is said to be Poisson rational if the Poisson-center of
Frac(A/P ) is just k itself.

We say that P is Poisson primitive if for some maximal ideal m, P is the largest
Poisson ideal contained in m.6

Finally, P is Poisson locally closed if the intersection of all Poisson prime ideals
that properly contain P is not equal to P .

An affine Poisson algebra A is said to satisfy the Poisson Dixmier-Moeglin equiv-
alence (PDME) if, for every Poisson prime ideal, these three notions coincide. As in
the classical case, it is known that Poisson locally closed implies Poisson primitive

6A more direct analogue with primitivity in the classical case would ask instead for P to be the
annihilator of a simple Poisson A-module. The relationship between this and Poisson primitivity

is fruitfully clarified in recent work of Launois and Topley [19].
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which implies Poisson rational; so that the question is really about Poisson rational-
ity implying Poisson local-closedness. Unlike the classical case, no counterexamples
were found (prior to the work being surveyed here). The PDME was established in
several important contexts over the last twenty years, and Brown and Gordon [8]
asked explicitly whether it holds for all affine Poisson algebras.

8.3. Negative results. The constructions of §4 yield new negative results for both
the DME and the PDME, which we now describe.

The counterexamples of Irving and Lorenz to the classical DME were all of
infinite Gelfand-Kirrilov (GK) dimension. This is a noncommutative analogue
to Krull dimension in the sense that it agrees with Krull dimension on finitely
generated commutative k-algebras. For a finitely generated (noncommutative) k-
algebra A the GK-dimension can be defined as follows: choose a finite-dimensional
k-subspace V ⊆ A that contains 1 and a set of generators for A, and let V n denote
the k-span of the set of n-fold products of elements of V . Then GKdim(A) :=

lim sup
n→∞

log(dim(V n))

log n
. Intuitively, GKdim(A) = d < ∞ means that dim(V n) grows

like Cnd for some positive constant C. The GK-dimension does not depend on the
choice of V .

The first finite GK-dimension algebras not satisfying the DME were found in [2]:

Theorem 8.1 (Bell, Launois, León Sánchez, Moosa). For each integer d ≥ 4
there exists a finitely generated noetherian associative (noncommutative) k-algebra
of GK-dimension d that does not satisfy the DME.

Proof outline. By Fact 4.3 there is a Krull dimension d−1 commutative finitely gen-
erated integral k-algebra R equipped with a derivation δ such that the δ-constants
of Frac(R) is k while the intersection of all nontrivial prime differential ideals in R is
trivial. Let A be the one-variable skew-polynomial ring R[x; δ] where xr = rx+δ(r)
for all r ∈ R. Then GKdim(A) = d. The fact that the δ-constants of Frac(R) is k
implies that the center of the Goldie ring of fractions of A is k. That is, (0) is a
rational prime ideal of A. On the other hand, it can be shown that if P ⊂ R is a
prime differential ideal then PA is a prime ideal of A. Moreover, one observes that
because the intersection of the nontrivial such P s are trivial, the intersection of all
such PA is trivial. So (0) is not locally closed. □

Similar methods give, also in [2], a negative answer to Brown and Gordon’s
question on the PDME:

Theorem 8.2 (Bell, Launois, León Sánchez, Moosa). For each d ≥ 4 there exists
a (commutative) affine Poisson algebra of Krull dimension d that does not satisfy
the PDME.

Proof outline. Again, we start with the Krull dimension d− 1 commutative finitely
generated integral differential k-algebra R given to us by Fact 4.3. Let A be the
commutative one-variable polynomial ring R[x] equipped with the Poisson bracket
{p(x), q(x)} := pδ(x)q′(x) − p′(x)qδ(x). Here pδ(x) again denotes the polynomial
obtained by applying δ to the coefficients of p, and p′(x) is the formal derivative
of p with respect to x. On shows that the Poisson-center of Frac(A) is the field
of δ-constants of Frac(R), which in this case is k. That is, (0) is Poisson rational.
Also, if P ⊂ R is a prime differential ideal then PA is a prime Poisson ideal, and
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again the intersection of all nontrivial such will be trivial. Hence (0) is not Poisson
locally closed. □

8.4. A corrected PDME. The model-theoretic and differential-algebraic geomet-
ric methods also provide some positive results. First, the Jouanolou-type finiteness
theorems described in §3 suggest a correction to the PDME that appears in [2].
The key is to replace Poisson locally closed by a codimension 1 weakening:

Theorem 8.3 (Bell, Launois, León Sánchez, Moosa). Suppose k is uncountable
and A is a (commutative) affine Poisson k-algebra. For a Poisson prime ideal P
of A the following are equivalent:

(1) P is Poisson rational,
(2) P is Poisson primitive, and
(3) the set of Poisson prime ideals Q ⊃ P with ht(Q) = ht(P ) + 1 is finite.

Proof outline. The new contributions here are really that (1) implies (2) and (3).
The proof that Poisson rational implies Poisson primitive is differential-algebraic
but not model-theoretic and outside the main focus of the present survey. (It is also
the part that uses the uncountability of k.) So we only describe how (1) implies (3)
is obtained from the Jouanolou-type theorems.

Taking quotients we may assume that P = (0) is Poisson rational. Fixing genera-
tors x1, . . . , xn for A we consider the k-linear derivations δi := {·, xi} on A. Poisson
rationality of (0) implies that the field of (total) constants of (Frac(A), δ1, . . . , δn)
is k. Hence, Theorem 3.3 implies that (A, δ1, . . . , δn) has only finitely many prime
differential ideals of height 1. But the differential ideals of (A, δ1, . . . , δn) are pre-
cisely the Poisson ideals of A. So (0) satisfies condition (3). □

In particular, the PDME does hold for affine Poisson algebras of Krull dimension
at most 3, and so the counterexamples of Theorem 8.2 are smallest possible.

8.5. Positive results in the Hopf setting. In §5 we showed how strengthenings
of the Jouanolou-type theorems to higher codimension were possible in the setting
of algebraic D-groups. One might expect that the methods initiated in [2] could
therefore be used to translate these results into positive contributions to both the
classical and Poisson DME in the context of Hopf algebras. This was done in a pair
of papers afterwards, whose main accomplishments we now describe.

We do not define Hopf algebras here, except to recall that it is additional struc-
ture on a k-algebra A in the form of a coproduct ∆ : A → A ⊗k A, a counit
ϵ : A → k, and an antipode S : A → A, satisfying various properties that come
from reversing the categorical identities defining a group. In the finitely generated
commutative setting, they are precisely the structure induced on A from an alge-
braic group structure on Spec(A). The following theorem, which appeared in [3],
says that the classical DME holds for Hopf Ore extensions. It can be seen as ev-
idence for the conjecture of Bell and Leung [4] that the DME holds for all Hopf
algebras of finite GK-dimension.

Theorem 8.4 (Bell, León Sánchez, Moosa). Suppose R is a (commutative) finitely
generated integral Hopf k-algebra, σ is a k-linear automorphism of R, and δ is a
k-linear σ-derivation on R – that is δ(rs) = σ(r)δ(s) + δ(r)s. Let A = R[x;σ, δ] be
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the twisted polynomial ring where xr = σ(r)x + δ(r) for all r ∈ R. If A admits a
Hopf algebra structure extending that on R then A satisfies the DME.

Proof outline. Let us restrict our attention to the case when σ = id so that δ is a
derivation on R and A = R[x; δ] is the twisted polynomial ring we were considering
before. Let us also make the simplifying assumption that (R, δ) is a differential-
Hopf algebra in the sense that δ commutes with the coproduct – where the action
of δ on R⊗kR is given by δ(r⊗ s) = δr⊗ s+ r⊗ δs. In this case R = k[G] for some
affine algebraic group G and δ is the derivation induced by a D-group structure
s : G → TG. Now suppose P is a rational prime ideal of A. Then I = P ∩ R is a
prime differential ideal of R and so V = V (I) is a D-subvariety of (G, s). One shows
that the rationality of P implies the δ-rationality of V , and hence, by Theorem 5.1,
V is δ-locally closed. Finally, one argues that this forces P to be locally closed in A.

In general, we cannot assume that δ commutes with the coproduct on R. How-
ever, the assumption that A = R[x; δ] admits a Hopf algebra structure extending
that on R does force δ to “almost commute” with the coproduct: for some a ∈ R,
if ∆(r) =

∑
j rj,1 ⊗ rj,2 then ∆(δr) =

∑
j δrj,1 ⊗ rj,2 + arj,1 ⊗ δrj,2. If a were 1

this would be the commuting of δ with ∆. But in general we can only ensure that
a is group-like in the sense that ∆(a) = a⊗ a (equivalently, a : G → Gm is a group
homomorphism). That is, δ is an a-coderivation on R. Geometrically this means
that that (G, s) is not necessarily a D-group, but only an “a-twisted D-group”.
The extension of Theorem 5.1 from D-groups to a-twisted D-groups is one of the
technically challenging aspects of [3], but the approach is the same: one shows that
every D-subvariety of an a-twisted D-group over the constants is compound isotriv-
ial (though now in at most five, rather than three, steps) and hence δ-rationality
implies δ-local-closedness. □

What about in the Poisson setting? If we assume some added Hopf structure
can we prove the DME?

Question 8.5. Suppose A is an affine (commutative) Poisson k-algebra equipped
with a Hopf algebra structure where the coproduct commutes with the Poisson
bracket.7 Does A satisfy the PDME?

This remains an open and intriguing question in general, the state of the art
being the following theorem from [18]:

Theorem 8.6 (Launois, León Sánchez). The answer to the above question is “yes”
if we assume in addition that the coproduct is cocommutative.

Proof outline. We have that A = k[G] for some affine algebraic group G. The as-
sumption that the coproduct on A is cocommutative means that G is commutative.
There are two main steps in the proof.

The first step is to extend Theorem 5.1 to the context of several (possibly non-
commuting) derivations, D. Much of the formalism of D-varieties and D-groups
goes through here, giving rise to D-varieties and D-groups. In [18], compound
isotriviality for D-groups (over the total constants) is only established when the
underlying algebraic group is commutative, but since then it has become clear (in
private communications with Omar León Sánchez) that the commutativity of G is
not required in this step.

7Here for ∆ to commute with the Poisson bracket means that ∆({a, b}) = {∆a,∆b} where
A⊗A is endowed with the Poisson bracket {a1 ⊗ b1, a2 ⊗ b2} := {a1, a2}⊗ b1b2 + a1a2 ⊗{b1, b2}.
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The next step is to find a finite set of k-linear derivations D on A that has
the same span as the derivations {·, a} for a ∈ A, and such that each derivation
in D commutes with the coproduct on A. Finding such a D in this case is relatively
straightforward because of the structure of G; being an affine commutative algebraic
group it is isomorphic to a product of additive and multiplicative tori. Recently
Jason Bell provided (in private communication) an example showing that such D
do not exist in general. In any case, in the commutative case we get a D-group
structure on G that controls the Poisson structure. The PDME for A then follows
from the extension of Theorem 5.1 to D-groups. □
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