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Abstract

We present a largely self-contained exposition of Ehud Hrushovski’s proof of the func-
tion field Mordell-Lang conjecture beginning from the Zilber Dichotomy for differentially
closed fields and separably closed fields. Our account is based on notes from a series of lec-
tures given by Rahim Moosa at a MODNET workshop at Humboldt Universität in Berlin
in September 2007. We treat the characteristic 0 and characteristic p cases uniformly as
far as is possible, then specialize to characteristic p in the final stages of the proof. We also
take this opportunity to work out the extension of Hrushovski’s “Socle Theorem” from the
finite Morley rank setting to the finite U -rank setting, as is in fact required for Hrushovski’s
proof of Mordell-Lang to go through in positive characteristic.
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Chapter 1

Model-Theoretic Preliminaries

We hope to keep the model-theoretic prerequisites of this thesis to a first graduate course
in model theory. Toward that end, in this chapter we review and summarise some of the
more advanced results from model theory that we will need. A more detailed discussion
of all of this material may be found in [25]. The reader desiring additional background
could also consult [24] and [9]. Some additional model-theoretic notions will be introduced
later, as they are needed, and we provide in Appendix B.1 proofs of some further results
which, though elementary, do not seem to be available in the literature. Since much of our
work will eventually be carried out in two specific theories, most of the abstract notions
discussed here will have rather concrete manifestations when we use them.

1.1 Saturation and the Universal Domain

Let ℒ be a first-order language, T a complete ℒ-theory. For convenience of exposition we
assume that ℒ is one-sorted, although all of what we describe here can be developed in
the general case as well. Let � be an infinite cardinal, and let ℳ ∣= T . Recall that ℳ
is �-saturated if, for every A ⊆ M with ∣A∣ < � and every n ≥ 1, every n-type over A
is realized in M . ℳ is called saturated if it is ∣M ∣-saturated. We say that ℳ is strongly
�-homogeneous if whenever f : A → M is a partial elementary map with A ⊆ M and
∣A∣ < � then f extends to an automorphism of M . We say ℳ is strongly homogeneous if
it is strongly ∣M ∣-homogeneous.

Every model ℳ has elementary extensions which are �-saturated and strongly �-
homogeneous for any � ≥ ∣M ∣. Saturation implies strong homogeneity (although this
is not true of �-saturation and strong �-homogeneity), so we often omit mention of strong
homogeneity when discussing saturated models.
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Now suppose that T is a complete first-order theory. A model U ∣= T which is �-
saturated and strongly �-homogeneous is �+-universal, in the sense that if N ∣= T has
∣N ∣ ≤ � then then there is an elementary embedding of N into U . In particular, if U
is saturated then every model of smaller or equal cardinality can be identified with an
elementary substructure of U . By a universal domain for T we mean a model which
is �-saturated and strongly �-homogeneous for some infinite cardinal � larger than any
parameters or models we are interested in. We usually do not specify in advance how large
� must be; rather, we note that we could keep track of the sizes of every parameter set
and model we use, and then later go back to fix an appropriately large �.

As has become standard in model theory, we work in a fixed universal domain U of
our complete first-order theory T . All parameter sets are assumed to be subsets of U of
cardinality less than �, and all models of T are assumed to be elementary submodels of
U of of cardinality less than �, except when we explicitly state otherwise. In particular,
types are always types over parameters of size less than �. By a global type, however, we
mean a type over U itself. We usually write ∣= �(a) instead of U ∣= �(a).

A key benefit of working in a universal domain is that we can detect when an element is
algebraic or definable over a set of parameters using automorphism arguments, as follows:
Let A be a set of parameters (of cardinality less than �). Then for any tuple a, we have
a ∈ acl(A) if and only if the orbit of a under AutA(U) is finite, if and only if tp(a/A)
has only finitely many realizations. Similarly, a ∈ dcl(A) if and only if f(a) = a for all
f ∈ AutA(U), if and only if tp(a/A) has only one realization.

A set is type-definable over A if it is the set of a realizations of a type over A. If X
is type-definable we will say that Y ⊆ X is (relatively) definable in X (or is a definable
subset of X) if Y = X ∩D where D is definable. Given type-definable sets X and Y , by
a definable map f : X → Y we mean a function whose graph is a definable subset of the
type-definable set X × Y .

1.2 Elimination of Imaginaries

The automorphism arguments described in the previous section can be extended from
tuples to definable sets in theories with elimination of imaginaries. If D is a definable
set and d is a tuple then we say that d is a code for D if, for all f ∈ Aut(U), we have
f(d) = d ⇐⇒ f(D) = D. Equivalently, d is a code for D if and only if there is a formula
�(x, y) such that �(x, d)U = X and for any d′ if �(x, d′)U = X then d = d′. We say that T
has elimination of imaginaries if every definable set in U has a code.

We can force elimination of imaginaries by passing to the theory T eq, defined as follows.
Let ℰ be the set of all ℒ-formulae E(x, y) (where x and y are nE-tuples of variables for
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some nE ∈ ℕ) such that in every model of T , E defines an equivalence relation. We form a
many-sorted language Leq by taking the symbols from L as symbols on the sort S=, adding
a new sort SE for each E ∈ ℰ , and adding function symbols fE : SnE

= → SE for each
E ∈ ℰ . The theory T eq is then the theory whose axioms are the axioms of T restricted to
the sort S=, together with axioms expressing that each fE is a surjective map from SnE

= to
SE such that for all a, b we have fE(a) = fE(b) ⇐⇒ E(a, b). We expand U into a model
U eq ∣= T eq in the natural way, where the sort SE is interpreted as Un/E. Then U eq is a
universal domain for T eq. The theory T eq is complete and has elimination of imaginaries,
but gains no structure not already present in T . For example, every automorphism of U
extends uniquely to an automorphism of U eq. Further, if we identify U with the sort S=

of U eq, then any subset of Un definable in U eq is already definable in U . If T already has
elimination of imaginaries (and dcl(∅) has at least two elements) then for any 0-definable
equivalence relation E on Un there is a definable function fE such that uEv if and only if
fE(u) = fE(v). We can thus identify fE(Un) as the quotient Un/E, and hence do not need
T eq. Nevertheless, we generally work in U eq without mentioning it explicitly. In particular,
from now on when we write acl or dcl we mean it in the sense of U eq.

1.3 Stability and Definability of Types

We now describe a hierarchy of tameness properties that a theory may possess, and indicate
some relationships between them.

A type-definable set X ⊆ Un is called minimal if every set definable in X is either finite
or cofinite. A complete theory is called strongly minimal if the universe of every model
is minimal. This condition has very strong consequences for the theory. In particular,
in a strongly minimal theory the algebraic closure relation satisfies the Steinitz exchange
property: if a ∈ acl(A∪{b})∖acl(A) then b ∈ acl(A∪{a}). A model of T is then a matroid
with acl as the closure relation. This gives rise to the notion of acl-independence: We say
that Y is acl-independent over A if a ∕∈ acl(A ∪ (Y ∖ {a})) for all a ∈ Y . Given any set
Y ⊆ U , all maximally acl-independent subsets of Y over A have the same cardinality, and
this cardinality is called the acl-dimension of Y over A. If a = (a1, . . . , an) ∈ Un then
by acl-dim(a/A) we mean acl-dim({a1, . . . , an} /A), which is no greater than n. By the
acl-dimension of a type we mean the acl-dimension of any of the realizations of that type.
In a strongly minimal theory there is, for each n, a unique n-type over A of acl-dim n over
A. This type is called the generic n-type over A.

Definition 1.1. Let � be an infinite cardinal. The complete theory T is called �-stable if,
for every ℳ ∣= T and every A ⊆M such that ∣A∣ ≤ �, we have

∣∣Sℳn (A)
∣∣ ≤ �.

Every strongly minimal theory is �-stable for all �. Theories which are ℵ0-stable are
referred to as !-stable. Under the assumption that the language ℒ is countable such
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theories also possess a rank function, called the Morley rank, which is ordinal-valued on
all definable sets. We omit the definition here, and only mention that it agrees with
acl-dimension in the strongly minimal case.

A theory which is �-stable for all sufficiently large cardinals � is called superstable. As,
!-stability implies �-stability for all infinite �, !-stable theories are superstable. Super-
stable theories also admit a rank function, defined on complete types, which is ordinal-
valued for all complete types. This rank is Lascar’s U -rank, which we will define in the
next section, and which need not agree with Morley rank in !-stable theories.

The theory T is called stable if it is �-stable for some infinite �. Stability has significant
consequences for a theory. One useful fact is that if T is stable then T has saturated models
of arbitrarily large cardinality. (Hence when we are working in a stable theory we can take
a saturated, rather than merely �-saturated, model for our universal domain.)

A key property of stable theories is that every complete type in a stable theory is
definable, in the following sense:

Definition 1.2. Suppose that p(x) ∈ Sn(B) where x = (x1, . . . , xn), and suppose A ⊆ B.
We say that p is A-definable if, for every ℒ-formula �(x, y) with y = (y1, . . . , ym) there is
an ℒA-formula dp�(y) such that for all b,

�(x, b) ∈ p(x) ⇐⇒ ∣= dp�(b)

We say that p is definable if it is definable over some A ⊆ B.

Besides definability of types, the other key, and related, use of stability is that in stable
theories there is a very well-behaved notion of independence.

1.4 Independence and U-rank

In this section T is assumed to be stable. Recall that we work in T eq, so in particular
acl is to be understood as acl in U eq. The stability of T gives rise to a useful notion of
a tuple a being independent of a (small) set B over a (small) set A, denoted by a ∣⌣A

B
(or a ∣⌣B when A = ∅). The idea is that a is not substantially more related to B ∪ A
than it is to A. Rather than present the technical definition of independence in terms of
Shelah’s non-forking, we give the following axioms which characterize it. If b = (b1, . . . , bn)
is a tuple we write a ∣⌣A

b to mean a ∣⌣A
{b1, . . . , bn}.

1. (Finite Character) a ∣⌣A
B ⇐⇒ a ∣⌣A

b for all finite tuples b from B.

2. ∣⌣ is automorphism-invariant.
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3. (Symmetry) a ∣⌣A
b ⇐⇒ b ∣⌣A

a.

4. (Transitivity and Monotonicity) a ∣⌣A
bc ⇐⇒ a ∣⌣A

b and a ∣⌣Ab
c.

5. (Existence) For any a,A,B there is a′ ∣= tp(a/A) with a′ ∣⌣A
B.

6. (Local Character) For any a,A there is A0 ⊆ A with ∣A0∣ ≤ ∣ℒ∣ such that a ∣⌣A0
A.

7. (Stationarity) If A = acl(A), B ⊇ A, a ∣⌣A
B, b ∣⌣A

B and tp(a/A) = tp(b/A) then
tp(a/B) = tp(b/B).

It is a fact that there is a unique such notion in a stable theory, and that it coincides with
Shelah’s non-forking. If a ∣⌣C

b we say that tp(a/Cb) is a free or non-forking extension of
tp(a/C). We say that p ∈ Sn(A) does not fork over B ⊆ A if p is a non-forking extension
of its restriction to B. Given p ∈ Sn(A) and B ⊇ A there always exists at least one
non-forking extension of p to B, this is axiom (4). The type p is called stationary if it
has a unique non-forking extension to each B ⊇ A. Types over algebraically closed sets
are stationary (this is axiom (6)). If T is strongly minimal then a ∣⌣C

b if and only if
acl-dim(a/Cb) = acl-dim(a/C).

There is a natural dimension associated to non-forking in superstable theories, which
we can now define:

Definition 1.3. The U-rank of a complete type p ∈ Sn(A) is defined inductively, as
follows:

∙ U(p) ≥ 0.

∙ If � is a limit ordinal then U(p) ≥ � if and only if U(p) ≥ � for all � < �.

∙ For any ordinal �, U(p) ≥ � + 1 if and only if there exists B ⊇ A and q ∈ Sn(B)
such that q is a forking extension of p (i.e., an extension which is not non-forking)
and U(q) ≥ �.

We define U(p) = � if U(p) ≥ � and U(p) ∕≥ � + 1. We define U(p) = ∞ if U(p) ≥ �
for every ordinal �. We write U(a/A) for U(tp(a/A)). The U -rank of a partial type Φ is
defined to be the supremum of the U -ranks of all of the completions of Φ in S(B).

We commented earlier that when T is superstable every complete type has ordinal-
valued U -rank. Moreover, independence can be understood in terms of U -rank: If T is
superstable then a ∣⌣C

b if and only if U(a/Cb) = U(a/C). A key property of U -rank
which we will frequently need are the Lascar inequalities:
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Fact 1.4. For any parameters A and any tuples a, b such that U(b/Aa), U(a/A), U(ab/A) <
∞ we have

U(b/Aa) + U(a/A) ≤ U(ab/A) ≤ U(b/Aa)⊕ U(a/A),

where + is the ordinary ordinal sum and ⊕ is the natural (or Hessenberg) sum. In partic-
ular, when U(b/Aa) and U(a/A) are both finite the ordinal sum and the natural sum agree,
and we have

U(b/Aa) + U(a/A) = U(ab/A)

In Section 1.3 we defined the generic n-type over parameters A in a strongly minimal
theory as the (unique) n-type whose realizations are acl-independent over A. We now
extend this notion of generic to the superstable setting. Suppose that X is type-definable
over A with U(X) <∞. We say that a complete type p ∈ S(A) extending X is a generic
type of X over A if U(p) = U(X). Such a generic type always exists. Since non-forking
extensions preserve U -rank a non-forking extension of a generic type is again generic. We
say that a ∈ X is generic in X over A if tp(a/A) is generic in X. Observe that if A ⊆ B
then a is generic in X over B if and only if a is generic in X over A and a ∣⌣A

B.

1.5 Canonical Bases

In Section 1.2 we described the code of a definable set X as an element (in U eq) fixed by
exactly those automorphisms that fix X as a set. We would like to have an analogous
notion for complete types.

Definition 1.5. Let p ∈ Sn(U) be a complete global type. We say A ⊆ U eq is a canonical
base for p if, for all � ∈ Aut(U) we have �(p) = p ⇐⇒ � fixes A pointwise.

In a stable theory every global type has a (small) canonical base. Given a global type
p and canonical bases A,B for p we have dcl(A) = dcl(B). We can therefore define
cb(p) = dcl(A) where A is any canonical base for p. We can extend the definition of
canonical bases from global types to stationary types in a straightforward way: Given
a stationary type p, let p be its unique global non-forking extension. Then we define
cb(p) = cb(p). We write cb(a/A) for cb(tp(a/A)) when tp(a/A) is stationary. In general
we do not have that an automorphism fixes p if and only if it fixes cb(p), but we do have
that an automorphism � fixes cb(p) if and only if p and �(p) have a common non-forking
extension. The canonical base has many useful properties, which we summarize below:

Fact 1.6. Let p ∈ Sn(A) be a stationary type. Then

1. cb(p) ⊆ dcl(A).
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2. For any B ⊆ A, cb(p) ⊆ acl(B) if and only if p does not fork over B.

3. For any B ⊆ A, cb(p) ⊆ dcl(B) if and only if p does not fork over B and the
restriction of p to B is stationary.

1.6 Stable Groups

In this final section we review some of the theory of stable groups. We continue to work in
a complete stable theory T (or, rather, T eq). The reader desiring more information about
this material should consult [25, Chapter 1 Section 6] and [29, Chapter 5]. The material
on superstable groups is found in [2].

Definition 1.7. A type-definable group is a type-definable set G together with definable
maps ⋅ : G×G→ G and −1 : G→ G such that (G, ⋅,−1 ) is a group.

We note that in the definition of a type-definable group it might appear more natural
to allow the operations ⋅ and −1 to be type-definable, rather than relatively definable. In
fact this does not offer a more general setting, as a compactness argument shows that if the
group operations are type-definable then they are relatively definable (see Lemma B.3).

Fact 1.8. 1. If G is a type-definable group over A then there exists an A-definable
group H and A-definable subgroups Hi ≤ H for each i ∈ I such that G =

∩
i∈I Hi.

Moreover, the Hi’s can be chosen “canonically”, in the sense that any automorphism
fixing G setwise fixes each Hi setwise (see [25, Lemma I.6.18 and Remark I.6.20]).

2. If G is a type-definable subgroup of the type-definable group G′ then there exist (rel-
atively) definable subgroups Hi of G′ such that G =

∩
i∈I Hi. Again the Hi’s can be

chosen so that every automorphism fixing G setwise fixes each Hi setwise.

It follows from this fact that in the !-stable case, in which one has the descending chain
condition on definable subgroups, that every type-definable group is, in fact, definable.
Another consequence of the above fact is that all cosets of a type-definable subgroup have
“canonical parameters”:

Proposition 1.9. Let G be a type-definable group over A, and let H ≤ G be a type-
definable subgroup. Then for all a ∈ G there exists B ⊇ A such that a+H is type-definable
over B, and for all � ∈ AutA(U), �(a+H) = a+H if and only if �∣B = id.

Proof. By Fact 1.8 G is a type-definable subgroup of an A-definable group G′, so we may
replace G by G′, and hence assume that G is definable.
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Write H =
∩
i∈I Hi, where each Hi is an A-definable subgroup of G and each Hi is fixed

by all automorphisms fixing H. For each i ∈ I let bi be a code for a + Hi, and let B =
{bi : i ∈ I}. Since a+H =

∩
i∈I a+Hi and each a+Hi is bi-definable, a+H is type-definable

over B. If � ∈ AutA(U) and �(a+H) = a+H then �(a+Hi) = �(a)+�(Hi) = �(a)+Hi,
and �(a) and a are in the same coset of H, namely a+H. Thus �(a+Hi) = a+Hi. Hence
�(bi) = bi, so �∣B = id, as required.

Definition 1.10. A type-definable group G is called connected if it has no proper non-
trivial definable subgroup of finite index.

Suppose that G is type-definable over parameters A. The connected component of G,
G∘, is the intersection of all (relatively) A-definable subgroups of finite index in G. It is
clearly type-definable over A. In fact, G∘ is the intersection of all finite index definable
subgroups of G over any parameters (see [25, Corollary I.6.14]). In particular, G∘ is
connected.

A (relatively) definable subset D ⊆ G is called generic if there exists a finite collection
a1, . . . , an ∈ G such that G = a1D ∪ . . . ∪ anD, where aiD is the group-theoretic translate
of D by ai. If D is any relatively definable subset of G then either D or G ∖D is generic
in G.

A complete type p extending G is generic if every formula in p defines a generic subset
of G. If G is connected then for any parameters A over which G is defined G has a unique
generic type over A. The following facts describe the interaction between genericity and
the group operation:

Fact 1.11. Let G be a type-definable group over parameters A, and a ∈ G.

1. tp(a/A) is generic if and only if for every g ∈ G such that a ∣⌣A
g we have

g ⋅ a ∣⌣A
A ∪ {g}.

2. If g ∈ G is generic in G over B and a ∈ B then g ⋅ a and g−1 are generic in G over
B.

3. If G is connected then there exist g, ℎ ∈ G, both generic over {a}, such that a = g ⋅ℎ.

Next we discuss stabilizers. Suppose that G is a type-definable group over A, and p(x)
is a complete type over some B ⊇ A extending the type “x ∈ G” (we say that p(x) is in
G). If g ∈ G ∩ dcl(B) then we can define

g ⋅ p =
{
�(g−1 ⋅ x) : � ∈ p(x)

}
We note that g ⋅ p is also a complete type in G over B. We also note that the above
definition makes sense even when B is not a small set of parameters. In particular, we will
use this in the case when B = U .
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Definition 1.12. Suppose that p(x) is a complete stationary type in G. Let p denote the
unique global non-forking extension of p to the universal domain U . The (model-theoretic)
stabilizer of p is

stab(p) = {g ∈ G : g ⋅ p = p} ≤ G.

It turns out, because of definability of types, that the stabilizer of p(x) is a type-
definable subgroup of G, defined over cb(p). Stabilizers can also be used to characterize
the generic types in G: p(x) is generic in G if and only if stab(p) = G∘.

Proposition 1.13. Let p(x) be a complete stationary type in G over B ⊇ A. Then the
following are equivalent:

1. g ∈ stab(p).

2. For some (any) a ∣= p such that a ∣⌣B
g, g ⋅ a ∣= p and g ⋅ a ∣⌣B

g.

Proof. Let p denote the unique global non-forking extension of p, and let p′ be the unique
non-forking extension of p to Bg.

(1) ⇒ (2) : By stationarity and the hypothesis a ∣⌣B
g we see p′ = tp(a/Bg), and so

p∣Bg = p′. Since g ⋅ p = p we have that p extends g ⋅ p′ ∈ S(Bg) also. Hence g ⋅ p′ = p′,
and we get that g ⋅ a ∣= p′. That is, g ⋅ a ∣= p and g ⋅ a ∣⌣B

g.

(2) ⇒ (1) : The statement (2) says that g ⋅ p′ = p′. Note that the global non-forking
extension p of p is also the unique global non-forking extension of p′. But g ⋅ p is also a
global non-forking extension of g ⋅ p′ = p′, so g ⋅ p = p. Hence g ∈ stab(p).

We conclude with a few remarks concerning the superstable case when U(G) < ∞.
First, the notion of generic given here agrees with the one introduced in Section 1.4. That
is, p is generic in G if and only if U(p) = U(G). For a (relatively) definable subgroup
H of G, U(H) = U(G) if and only if [G : H] is finite. In particular, since U(G∘) is an
intersection of definable subgroups of G of finite index, U(G∘) = U(G). When H ⊴ G
is a definable subgroup the Lascar inequalities described earlier take on the particularly
convenient form

U(H) + U(G/H) ≤ U(G) ≤ U(H)⊕ U(G/H).

Finally, in the superstable setting we also have the following stronger characterisation of
stabilizers:

Proposition 1.14. Suppose that U(G) < ∞, and let p(x) be a complete stationary type
in G over B ⊇ A. Then the following are equivalent:

1. g ∈ stab(p).
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2. For some (any) a ∣= p such that a ∣⌣B
g, g ⋅ a ∣= p.

Proof. We actually show that if a ∣⌣B
g and tp(g ⋅ a/B) = tp(a/B) then g ⋅ a ∣⌣B

g. The
result then follows from Proposition 1.13. So suppose a ∣⌣B

g and tp(g ⋅ a/B) = tp(a/B).
Then

U(g ⋅ a/Bg) = U(a/Bg)

= U(a/B) since a ∣⌣
B

g

= U(g ⋅ a/B) since tp(g ⋅ a/B) = tp(a/B).

So g ⋅ a ∣⌣B
g.
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Chapter 2

Introduction

In this thesis we describe a striking application of the tools of model theory to a problem
in diophantine geometry. Ehud Hrushovski’s 1996 proof of the function field Mordell-Lang
conjecture differs from previous applications of model theory both because no purely alge-
braic proof of the result is known, and because of the depth of the model-theoretic methods
and results it employs. This thesis is devoted to presenting Hrushovski’s argument, start-
ing from the Zilber Dichotomy. Except where explicitly noted otherwise, our exposition is
an elaboration on the notes from a series of lectures given by Rahim Moosa ([21]). The
other exception is Appendix A, which contains new material. We assume that the reader
has a background in model theory and algebraic geometry equivalent to a first graduate
course in each of these subjects.

2.1 Motivation : From Mordell to Mordell-Lang

We begin with a conjecture formulated by Mordell in the 1920’s for curves over ℚ, and
proved by Faltings for curves over any number field in the 1980’s.

Theorem 2.1 (Mordell Conjecture). Let k be a number field, and let C be an algebraic
curve over k. If genus(C) ≥ 2 then C(k) is finite.

To facilitate the generalisations we are interested in we reformulate the theorem. Recall
that an abelian variety is a connected projective algebraic group; that is, an irreducible
projective variety A equipped with regular morphisms ⋅ : A × A → A and −1 : A → A
which make A into a group. See [20] or [14] for detailed discussions of abelian varieties.

Theorem 2.2 (Reformulated Mordell Conjecture). Let A be an abelian variety over a
number field k, and let C ⊆ A be an algebraic curve over k. Then C(k) is a finite union
of translates of subgroups of A(k).

11



Proposition 2.3. Theorem 2.1 is equivalent to Theorem 2.2.

Proof. First, a word about the Jacobian varieties. For every curve of genus > 0 there is an
abelian variety J(C) such that dim(J(C)) = genus(C), and a canonical regular embedding
f : C → J(C) such that the following universal property holds: Let A be any abelian
variety, and let ℎ : C → A be a rational map. Then there is a unique morphism of
algebraic groups � : J(C)→ A and a constant a such that ℎ = �f + a.

C
ℎ−a //

f ""DD
DD

DD
DD

A

J(C)

�

==z
z

z
z

Moreover, if C is defined over a field k and has a k-rational point, then J(C) and f
can be chosen to be defined over k. If the map ℎ : C → A is also defined over k then � is
defined over k and a is a k-rational point. See [14, Theorems 2.2.8 and 2.2.9].

Suppose that the reformulated Mordell conjecture holds. We may assume that C is
irreducible, since if not then we carry out the following proof for each of the (finitely
many) irreducible components of C. Suppose that C(k) is infinite. We must show that
genus(C) is either 0 or 1, so we suppose that genus(C) ∕= 0 and show that genus(C) = 1.
Recall that having genus 1 is equivalent to having an algebraic group structure. Now
embed C in its Jacobian J . As noted above, since we are assuming C has (infinitely
many) k-rational points, J is an abelian variety defined over k. Then by the reformulated
Mordell conjecture there exist a1, . . . , an ∈ J(k) and G1, . . . , Gn subgroups of J(k) such
that C(k) = ∪ni=1ai +Gi. Since C(k) is infinite it is Zariski-dense in C. Thus we have

C = C(k)

=
n∪
i=1

ai +Gi

=
n∪
i=1

ai +Gi

= ai0 +Gi0 for some i0, since C is irreducible

= ai0 +Gi0

Since Gi0 ≤ J(k) it follows from the general theory of algebraic groups that Gi0 is an
algebraic subgroup of A. So we have seen that C is a translate of an algebraic group,
and hence can be given the structure of an algebraic group itself. Hence genus(C) = 1 as
required.
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For the converse, suppose that the Mordell conjecture holds, and C ⊆ A is a curve
contained in an abelian variety, both over k. The case C(k) = ∅ is trivial, so we assume
that C has a k-rational point. If genus(C) = 0 then C is birationally equivalent to ℙ1,
which cannot be embedded into any abelian variety (see [20, Proposition III.3.9]). So the
hypotheses of the reformulated Mordell conjecture force genus(C) > 0. If genus(C) ≥ 2
then, by the Mordell conjecture, C(k) is finite, and hence a finite union of translates of
the subgroup {0} of A. Otherwise, if genus(C) = 1 then C = J(C), in which case by the
universal property of Jacobians there exists a such that J(C) + a is a subgroup of A.

Definition 2.4. Let A be an abelian variety over ℂ, and let Γ ≤ A(ℂ) be any subgroup.
Let div(Γ) = {g ∈ A(ℂ) : ng ∈ Γ for some n > 0} be the divisible hull of Γ. We say that Γ
has finite rank if there exists a finitely generated group Γ′ ≤ A(ℂ) such that Γ ≤ div(Γ′).

Example 2.5. It is clear that if Γ is itself finitely generated then Γ is of finite rank. The
Mordell-Weil Theorem says that A(k) is a finitely generated subgroup of A(ℂ), and so is
an example of a finite rank group.

Example 2.6. Let Tor(A) = {g ∈ A(ℂ) : ∃n > 0 such that ng = 0}. Then Tor(A) =
div({0}), so Tor(A) is of finite rank. Tor(A) is not finitely generated, however, as we
now show. Suppose to the contrary that Tor(A) is finitely generated, say by a1, . . . , am.
So any element of Tor(A) is of the form n1a1 + . . . + nmam for some n1, . . . , nm ∈ ℤ. Let
∣ai∣ denote the order of ai, and let l = lcm(∣a1∣ , . . . , ∣am∣). Observe that lai = 0 for all i,
since l ≥ ∣ai∣ for all i. Thus l(n1a1 + . . .+ nmam) = n1(la1) + . . .+ nm(lam) = 0. It follows
that ∣n1a1 + . . .+ nmam∣ ≤ l. But an abelian variety has torsion elements of arbitrarily
high order, so there is an element of Tor(A) of order at least l + 1, contradicting Tor(A)
being generated by a1, . . . , am.

We can now generalize Theorem 2.2 in several ways:

Generalize the geometric object: Rather than considering only curves C we can con-
sider arbitrary, perhaps higher-dimensional, subvarieties of A.

Generalize the arithmetic object: Observe that C(k) = C∩A(k), so Theorem 2.2 can
be seen as describing the structure of the intersection of C with the finitely generated
subgroup A(k). We saw in Example 2.5 that A(k) is a finite rank subgroup of A.
Instead of A(k) we can consider intersections with arbitrary finite rank subgroups of
A.

Generalize the ambient algebraic group: We can replace the abelian variety A by a
semiabelian variety S. A semiabelian variety is a connected commutative algebraic
group over a field k such that there exists a short exact sequence

0 // T // S // A // 0
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where A is an abelian variety, and T ∼= Gs
m for some s ∈ ℕ, where Gm denotes the

multiplicative group of k. Some details about semiabelian varieties can be found in
Appendix B.2.

Generalize the ground field: In characteristic 0 we can replace ℂ by any algebraically
closed field. We will see that this does not quite work in characteristic p, but in that
context we will weaken the conclusion to get the Mordell-Lang statement that we
will prove in these notes.

Performing the above generalizations in characteristic 0 gives the following statement,
proved by the work of Faltings, McQuillen, Raynaud, Vojta, and others:

Theorem 2.7 (Absolute Mordell-Lang in Characteristic 0). Let F be an algebraically
closed field of characteristic 0. Let S be a semiabelian variety over F , X ≤ S a subvariety
also over F . Let Γ ≤ S(F ) be a finite rank subgroup. Then X(F ) ∩ Γ is a finite union of
translates of subgroups of Γ.

As observed by Abramovich and Voloch in [1], this statement fails in positive charac-
teristic:

Proposition 2.8. Let F be an algebraically closed field of characteristic p > 0 such that
F ∕= Falg

p . Let C be a curve over Fp with an Fp-point and with genus(C) > 1. Let A denote
the Jacobian variety of C, and let K = Fp(t) for some t ∈ C(F )∖C(Falg

p ). Then A(K) is a
finite rank subgroup of A(F ), but C(K) = C(F ) ∩A(K) is not a finite union of translates
of subgroups of K.

Proof. A is defined over Fp, and K is a finitely generated extension of Fp, so the Lang-
Néron theorem (see [15, Theorem 6.1]) says that A(K) is finitely generated. Consider the
Frobenius automorphism Fr : F → F given by Fr(x) = xp. Since A and C are defined
over Fp Fr acts on both. Since t ∕∈ C(Falg

p ) we get an infinite collection of distinct points

t,Fr(t),Fr2(t), . . . ∈ C(K), so C(K) is infinite. Suppose for contradiction that C(K) is a
finite union of translates of subgroups of A(K). Then since C(K) is infinite it is Zariski-
dense in C, so as before, C admits an algebraic group structure, and hence genus(C) = 1,
contradicting our hypothesis.

So the absolute Mordell-Lang conjecture fails in positive characteristic. We can, how-
ever, weaken the conclusion to yield a correct statement.

Definition 2.9. Let S be a semiabelian variety over an algebraically closed field F . Let
X ⊆ S be a subvariety over F , and let k ⊆ F be an algebraically closed subfield. Suppose
that there exist a semiabelian variety S0 over k, a subvariety X0 also over k, an algebraic
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subgroup S ′ ⊆ S, a surjective morphism of algebraic groups ℎ : S ′ → S0 over F and a
point c ∈ S(F ) such that X = c + ℎ−1(X0). Then we say that X is k-special. If X is
Falg-special, where F is the prime field, then we say that X is special.

We observe that special subvarieties generalize translates of algebraic subgroups:

Lemma 2.10. Let S be a semiabelian variety over an algebraically closed field F , and let
X = d+ S ′ where S ′ is an algebraic subgroup of S over F . Then X is special.

Proof. Take c = d and ℎ : S ′ → 0 in the definition of special.

We consider two extreme cases:

Example 2.11. Let S be a semiabelian variety over an algebraically closed field F with
prime field F. Suppose that S has Falg-trace 0, that is, no algebraic subgroup of S has a
non-trivial regular homomorphic image over Falg. Then for any subvariety X ⊆ S, X is
special ⇐⇒ X is a translate of an algebraic subgroup of S.

Proof. If X is a translate of an algebraic subgroup of S then X is special by Lemma 2.10.
Suppose that X is special. Then by hypothesis the ℎ : S ′ → S0 in the definition of special
must be the trivial map onto 0, and so ℎ−1(X0) = S ′, an algebraic subgroup of S. Then
X = c+ ℎ−1(X0) = c+ S ′ is a translate of an algebraic subgroup of S.

Example 2.12. Let F be an algebraically closed field with prime field F. Let S be a
semiabelian variety defined over Falg. Then for any subvariety X ⊆ S, X is special ⇐⇒
X is the translate of a subvariety of S which is also defined over Falg.

Proof. If X is the translate of a subvariety of S over Falg, say X = c + X ′, then let
S0 = S ′ = S, X0 = X ′, and ℎ = id. Conversely, suppose that X is special. Then
X = c + ℎ−1(X0) as in the definition of special, where X0 is over Falg. Since ℎ is a
morphism of algebraic groups the graph of ℎ, Γ(ℎ), is an algebraic subgroup of S×S0. We
show in Appendix B.2 that semiabelian varities are rigid (Lemma B.8), so since S×S0 is a
semiabelian variety over Falg Γ(ℎ) is defined over Falg, and so ℎ is over Falg. Then ℎ−1(X0)
is also a subvariety of S defined over Falg, so X is a translate of a subvariety of S over Falg,
as required.

We now state the version of the Mordell-Lang Conjecture that Hrushovski proved in
1996 in [10], and which is the subject of the remainder of this thesis.
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Theorem 2.13 (Relative Mordell-Lang Conjecture). Let S be a semiabelian variety over
an algebraically closed field F of characteristic p (either prime or 0). Let X ⊆ S be a
subvariety over F . Let Γ′ ≤ S(F ) be a finitely generated group. Define

divp(Γ
′) =

{
div(Γ′) = {g ∈ S(F ) : ng ∈ Γ′ for some n > 0} if p = 0

{g ∈ S(F ) : ng ∈ Γ′ for some n such that p ∤ n} if p > 0

Let Γ ≤ divp(Γ
′). Then for some l ∈ ℕ there exist special subvarieties X1, . . . , Xl of S such

that Xi ⊆ X for all i, and

X(F ) ∩ Γ =
l∪

i=1

(Xi(F ) ∩ Γ)

Observe that, by Example 2.11, if S has Falg-trace 0 then the conclusion of Theorem
2.13 says that the Xi’s are translates of algebraic subgroups of S, so the conclusion is
exactly the same as the conclusion of Theorem 2.7. That is, even in characteristic p, when
S has Falg

p -trace 0 we get the full strength conclusion. In the other extreme, when S is
defined over Falg

p , Theorem 2.13 only reduces the problem of describing X(F ) ∩ Γ to the
case when X is (up to translation) also defined over Falg

p . See [22] for an analysis of that
case.

2.2 Model-Theoretic Framework

In this section we discuss the framework for the proof of Mordell-Lang. In characteristic 0
the appropriate first-order theory is differentially closed fields, while in characteristic p > 0
we use separably closed fields. Since good references for the material we will need are
readily available we present them without proof. For the proofs in the case of differentially
closed fields, see [17] and [31]. For separably closed fields, see [7] and [18]. It is possible
to unify these two theories by using the theory of Hasse closed fields (see [19]), but we
have chosen to avoid developing the Hasse formalism in favour of using the more familiar
differentially and separably closed fields. We will still be able to proceed in a characteristic-
free way for most of the proof, since the properties we will use are shared by these two
theories.

2.2.1 Characteristic 0 - Differentially Closed Fields

All of the results in this section can be found in [31].

Let R be a ring. A derivation on R is an additive map � : R → R that satisfies the
product rule �(xy) = x�(y) + y�(x). A differential ring is a pair (R, �) where R is a ring
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and � is a derivation on R. A differential field is a differential ring (R, �) where R is a
field. The constants of R are the elements of kR = {x ∈ R : �(x) = 0}. The constants
form a subring of R. The differential polynomial ring over R in the (differential) variable
X is the differential ring (R {X} , �0) where R {X} = R[X0, X1, . . .] and �0 extends � by
�0(Xn) = Xn+1. We identify � with �0, X0 with X, and Xn with �n(X). For a differential
polynomial f ∈ R {X} we define the order of f to be −1 if f ∈ R, and otherwise to be
the largest n such that �n(X) appears in f .

Let ℒ be the language of rings together with a new unary function symbol �.

Definition 2.14. The theory of differentially closed fields of characteristic 0 (DCF0) is
axiomatized as follows:

1. The axioms for ACF0.

2. ∀x, y �(x+ y) = �(x) + �(y).

3. ∀x, y �(xy) = x�(y) + y�(x).

4. For any non-constant differential polynomials f(X), g(X) such that the order of g is
less than the order of f there exists x such that f(x) = 0 and g(x) ∕= 0.

DCF0 admits quantifier elimination and elimination of imaginaries. It is a complete,
model-complete, and !-stable theory. It is the model-completion of the theory of differen-
tial fields in characteristic 0, so in particular any differential field in characteristic 0 extends
to a differentially closed field.

The constant field k in a model L ∣= DCF0 is a definable algebraically closed field. By
stability of DCF0 k is stably embedded in the sense that any subset of kn definable using
parameters from L can be defined using parameters from k. It is also a pure field, meaning
that any subset of kn definable in the language ℒ of differential rings is also definable in
the language of rings, which does not include the derivation. It follows that k is a strongly
minimal set in L. Moreover, up to definable isomorphism k is the unique infinite minimal
field type-definable in L.

Independence in DCF0, in the sense Section 1.4, can be understood in purely algebraic
terms. If F < K are differential subfields of a saturated model L ∣= DCF0 and a is a finite
tuple from L, then a ∣⌣F

K if and only if F ⟨a⟩� = F (a, �(a), �2(a), . . .) is algebraically
disjoint from K over F .

Although we will not use it directly, it is worth noting that there is a well-developed
algebraic geometry over differential fields (see [17]).
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2.2.2 Characteristic p - Separably Closed Fields

In this section we work in some fixed characteristic p > 0. We review some basic facts
about fields in positive characteristic in order to define the theory of separably closed
fields. Throughout Fr denotes the Frobenius automorphism x 7→ xp. All of the results of
this section can be found in [7].

Definition 2.15. Let K be a field, and let Kp = {xp : x ∈ K}, a subfield of K. We say
K is perfect if K = Kp.

We note that it will be clear from context when we use Kp whether we mean the set
of p-tuples of elements from K or {xp : x ∈ K}. If K is a field then for any x ∈ K there
exists a unique (since Fr is injective) y ∈ Kalg such that yp

n
= x. We denote y = xp

−n
, and

let Kp−n
=
{
xp
−n

: x ∈ K
}

. We set Kp−∞ =
∪∞
i=1K

p−n
, and call Kp−∞ the perfect closure

of K.

Definition 2.16. Let K be a field. A polynomial over K is called separable if each of its
irreducible factors has distinct roots. Let x be algebraic over K. We say x is separable
over K if its minimal polynomial over K is separable. An algebraic extension K ⊆ L is
separable if every element is separable. We say that x is purely inseparable over K if its
minimal polynomial is of the form Xpn − a for some a ∈ K ∖Kp.

The separable closure of K is Ksep =
{
x ∈ Kalg : x is separable over K

}
. K is separably

closed if K = Ksep.

Definition 2.17. Let K be a field of characteristic p > 0, A,B ⊆ K some subsets, and
x ∈ K. x is p-independent over A in K if x ∕∈ Kp(A). B is p-free over A if every b ∈ B is
p-independent over A∪B ∖ {b} in K. If we only say x is p-independent or p-free we mean
p-independent or p-free over ∅. B is said to p-generate K if K ⊆ Kp(B).

Let K be a field of characteristic p > 0 and B ⊆ K. Then the following are equivalent:
B is a minimal p-generating set; B is a maximal p-free set; B is p-free and p-generates K.
In this case we say that B is a p-basis of K. Any two p-bases have the same cardinality,
and this cardinal is called the degree of imperfection of K. We can use p-bases to form
linear bases for K as a Kp vector space, as follows. Suppose that B = {bi : i ∈ I} ⊆ K is

a p-basis. For any j : I → {0, 1, . . . , p− 1} with finite support let mj =
∏

i∈I b
j(i)
i . The

set of all such mj is a linear basis for K as a Kp vector space. Hence any x ∈ K has a
unique expansion as a Kp-linear combination of the mj’s. We call the coefficients of such
an expansion the p-components of x (with respect to B).

Now fix a � ∈ ℕ. Let ℒ denote the language of rings, ℒ� = ℒ ∪ {b1, . . . , b�} for some
new constant symbols b1, . . . , b� , and ℒp,� = ℒ� ∪ {�i : i < p�} where the �i’s are new
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unary function symbols. SCp,� is the theory of separably closed fields of characteristic p
and degree of imperfection � in the language ℒ of rings. In the language ℒ� let Sp,� be the
theory SCp,� together with axioms expressing that the bi’s form a p-basis. In ℒp,� let SCFp,�
be Sp,� together with axioms expressing that each �i maps x to its ith p-component (under
some fixed ordering of the monomials mj). Then SCFp,� is complete, model-complete, and
stable. It admits quantifier elimination and elimination of imaginaries.

Unlike the case of differentially closed fields, the theory SCFp,� is not !-stable (or even
superstable). As a consequence, since we wish to present a characteristic-free proof of
Mordell-Lang, we will be making use of general stability machinery even though DCF0 has
the much stronger property of !-stability.

There is a notion of the constants of a model of SCFp,� :

Definition 2.18. Let K ∣= SCFp,� . Let k = Kp∞ =
∩∞
i=1K

pn . We call k the constants of
K.

Since each Kpn is a 0-definable set in K it follows that the constants form a type-
definable set in K over ∅. They share many model-theoretic properties with the constants
in DCF0:

Fact 2.19. 1. Let K ∣= SCFp,� be sufficiently saturated. Then the constants k form a
stably embedded pure algebraically closed subfield of K. It is a minimal type-definable
field, and is the unique (up to definable isomorphism) minimal field type-definable in
K.

2. Let F,K be elementary submodels of a saturated model L ∣= SCFp,� with F ⊆ K, and
let a ∈ L. Let F ⟨a⟩� denote the field generated by F and all of the p-components of
a. Then a ∣⌣F

K if and only if F ⟨a⟩� and K are algebraically disjoint over K.
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Chapter 3

The Zilber Dichotomy

In this thesis we show how the relative Mordell-Lang statement (Theorem 2.13) follows
from a model-theoretic result known as the Zilber Dichotomy. In this chapter we will
explain what the Zilber Dichotomy says for differentially and separable closed fields. For an
account of Zariski geometries, which are the general setting in which the Zilber Dichotomy
holds, see [16]. The proof of the dichotomy theorem in that setting is due to Hrushovski
and Zilber, and may be found in [12].

Throughout this chapter the following conventions will be in force. T will denote either
DCF0 or SCFp,� , where p is prime and � is a positive integer. We work in a universal
domain L of T , and all parameter sets are thus assumed to be of cardinality strictly less
than ∣L∣. k ⊆ L denotes the field of constants in L - that is, k = {x ∈ L : �(x) = 0} in the
case of DCF0 or k = Lp

∞
in the case of SCFp,� . F ⊆ L denotes the prime field.

3.1 The Dichotomy in Differentially and Separably

Closed Fields

Before stating the dichotomy we will need to develop the model-theoretic notions of or-
thogonality and one-basedness.

3.1.1 One-Basedness

Definition 3.1. Let X be a type-definable set over A. We say that X is one-based if for
all a ∈ dcl(X ∪ A) and any set B ⊇ A, cb(a/B) ⊆ acl(Aa).
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The previous definition appears to depend on the parameter set A, but this dependence
is illusory (see [25, Section 4.4 and Remark 4.1.8]). It is useful to introduce the notion of
linearity as a means of explaining one-basedness for minimal sets, including the constant
field k:

Definition 3.2. LetX be a minimal type-definable set. We say thatX is linear if whenever
(a, b) ∈ X ×X and C = cb(ab/C) are such that U(ab/C) = 1 then U(C) ≤ 1.

A minimal set X is one-based if and only if it is linear (see [32, Theorems 5.12 and
5.14]). Viewing tp(ab/C) in the definition of linearity as a “plane curve” in X2, we can thus
understand one-basedness as expressing that X fails to have any rich definable families of
plane curves - all definable families of plane curves are “one-parameter” families.

Proposition 3.3. The constant field k is not one-based.

Proof. Let c1, c2 ∈ k be algebraically independent elements transcendental over Falg. Con-
sider the line Y = c1X+ c2. Intuitively this should contradict linearity, since Y = c1X+ c2
is a two-parameter definable family of plane curves. Let (a, b) be a generic solution to
Y = c1X + c2. Then tp(ab/c1c2) is of U -rank 1.

We show that C = c1c2 is the canonical base of p = tp(ab/C). Let � be any automor-
phism of L. Clearly if � fixes C pointwise then � fixes pL setwise. Conversely, suppose that
p and �(p) have a common non-forking extension q to some set D. We have “Y = c1X+c2”
∈ p and “Y = �(c1)X + �(c2)” ∈ �(p), so both of these formulae are in q. Thus any real-
ization of q must satisfy (c1−�(c1))X+ (c2−�(c2)) = 0. Since q is realized (by saturation
of L), we compare coefficients to conclude that c1 = �(c1) and c2 = �(c2), so � fixes C
pointwise, and hence C is a canonical base of p.

But U(C) = dim(c1c2) = 2 since c1, c2 are algebraically independent. This contradicts
the definition of linearity. (One could also show that c1c2 ∕∈ acl(a, b) and thus contradict
one-basedness directly.)

One-basedness for groups has very strong consequences, which we will describe in the
next section.

3.1.2 Full Orthogonality

Definition 3.4. Let X and Y be type-definable sets. We say that X is fully orthogonal
to Y , denoted X ⊥ Y , if for every a ∈ X, every b ∈ Y , and every parameter set A over
which both X and Y are defined, we have a ∣⌣A

b.
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The above definition is not entirely standard. It appears in Hrushovski’s proof of
Mordell-Lang ([10]), and is well-suited to our purposes. To avoid confusion with other
notions of orthogonality we will use the above notion of full orthogonality exclusively
throughout this thesis; that is, whenever we speak of types being orthogonal or non-
orthogonal, we mean it in the above sense. Full orthogonality is a way of expressing that
the sets X and Y are very much unrelated. In fact, X ⊥ Y implies that every tuple from
X is independent of every tuple from Y (over any set of parameters defining X and Y ):

Lemma 3.5. Let X1, . . . , Xm and Y1, . . . , Yn be type-definable sets such that Xi ⊥ Yj for
all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then X1 × ⋅ ⋅ ⋅ ×Xm ⊥ Y1 × ⋅ ⋅ ⋅ × Yn.

Proof. We begin by observing that the relation ⊥ is symmetric since non-forking indepen-
dence is symmetric. It thus suffices to consider the case when m = 1. The proof is by
induction on n. The base case n = 1 is exactly the hypothesis of the lemma. Suppose that
X ⊥ Y1 × ⋅ ⋅ ⋅ × Yl for all l < n. Consider any x ∈ X and any (y1, . . . , yn) ∈ Y1 × ⋅ ⋅ ⋅ × Yn,
and any parameter set A over which X and the Yi’s are defined. We know x ∣⌣A

yn,
and X and Yi are defined over Ayn for all 1 ≤ i ≤ n − 1, so the induction hypothesis
gives x ∣⌣Ayn

(y1, . . . , yn−1). By transitivity of non-forking independence x ∣⌣A
(y1, . . . , yn)

as required.

We now present a couple of results about orthogonality that further illuminate its
meaning. First, among minimal sets non-orthogonality is a transitive relation. Next, we
give several alternative formulations of full orthogonality:

Lemma 3.6. Let X and Y be type-definable sets in some sufficiently saturated model.
Then the following are equivalent:

1. X ⊥ Y

2. For any set A = acl(A) over which X and Y are defined, and any a ∈ X, b ∈ Y ,
tp(a/A) ∪ tp(b/A) ⊢ tp(ab/A)

3. For any set A = acl(A) over which X and Y are defined, and any a ∈ X, b ∈ Y , the
only extension of tp(a/A) to a complete type over Ab is tp(a/Ab).

Proof. (1) ⇒ (3): Suppose that X ⊥ Y , and let A = acl(A) be parameters over which X
and Y are defined. Take any a ∈ X, and any b ∈ Y . Let q be a complete type over Ab
extending tp(a/A). Since we are working in a sufficiently saturated model, q = tp(c/Ab)
for some c. Since q extends tp(a/A) we have tp(c/A) = tp(a/A), so in particular c ∈ X. By
definition of X ⊥ Y we have c ∣⌣A

b, so q = tp(c/Ab) is a non-forking extension of tp(a/A)
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to Ab. This shows that every extension of tp(a/A) to a complete type over Ab is non-
forking. Since A is algebraically closed there is a unique non-forking extension of tp(a/A)
to Ab, and hence a unique extension of tp(a/A) to Ab, which then must be tp(a/Ab).

(3)⇒ (1): Let A be parameters over which X and Y are defined, and take any a ∈ X,
b ∈ Y . By forking calculus it suffices to consider the case when A = acl(A). Then by (3)
and existence of non-forking extensions we get that tp(a/Ab) is a non-forking extension of
tp(a/A), that is, a ∣⌣A

b, as required to show X ⊥ Y .

(2) ⇒ (3): Let A = acl(A) be parameters over which X and Y are defined, a ∈ X,
b ∈ Y . Let p be any extension of tp(a/A) to Ab, and let c be a realisation of p, so
tp(c/Ab) = p. As p extends tp(a/A), c also realises tp(a/A). Hence by (2), we have
cb ∣= tp(ab/A), that is, tp(cb/A) = tp(ab/A). We have, for any ℒA-formula �(x, y),

�(x, b) ∈ tp(c/Ab) ⇐⇒ �(x, y) ∈ tp(cb/A)

⇐⇒ �(x, y) ∈ tp(ab/A)

⇐⇒ �(x, b) ∈ tp(a/Ab)

So p = tp(c/Ab) = tp(a/Ab).

(3) ⇒ (2): Let A = acl(A) be parameters over which X and Y are defined, a ∈ X,
b ∈ Y , c, d such that c ∣= tp(a/A) and d ∣= tp(b/A). We must show cd ∣= tp(ab/A). Since
tp(b/A) = tp(d/A) there exists � ∈ AutA(ℳ) such that �(b) = d. Since � fixes A pointwise
�(a) ∈ X and tp(�(a)/A) = tp(a/A) = tp(c/A). Then tp(c/Ad) and tp(�(a)/Ad) are both
extensions of tp(c/A) to Ad, so by (3) tp(c/Ad) = tp(�(a)/Ad). Thus there exists an
automorphism � ∈ AutAd(ℳ) such that �(�(a)) = c. We observe that � ∘ � ∈ AutA(ℳ),
and:

� ∘ �(a, b) = (�(�(a)), �(�(b)))

= (�(�(a)), �(d)) by our choice of �.

= (c, d) by our choice of � .

So we found an automorphism fixing A and sending ab to cd, so tp(ab/A) = tp(cd/A) as
required.

Proposition 3.7. Let X and Y be type-definable sets in a sufficiently saturated model
U , and suppose that X ⊥ Y . Then any definable subset R ⊆ X × Y is of the form
R =

∪n
i=1Xi × Yi where the Xi’s and Yi’s are definable in X and Y , respectively.

Proof. Suppose that X and Y are both defined over some parameter set A, by types p and
q, respectively. Now take any definable R ⊆ X × Y , defined over B = acl(B) ⊇ A. Let
Σ = p ∪ q ∪ {�} be such that R = ΣU .
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Take any (a, b) ∈ R. Then since X ⊥ Y , the equivalence in Lemma 3.6 gives that
tp(a/B)∪tp(b/B) ⊢ tp(ab/B). In particular, tp(a/B)∪tp(b/B) ⊢ Σ. By compactness there
are  1 ∈ tp(a/B) and  2 ∈ tp(b/B) such that p∪ q∪{ 1,  2} ⊢ Σ. Let R1 =  U1 , R2 =  U2 .
Then we have that R1 is definable in X, and R2 is definable in Y , and the above shows
that R1 ×R2 ⊆ R.

Repeating the above process for each (a, b) ∈ R gives a cover R =
∪
i∈I Xi × Yi where

the Xi’s and Yi’s are definable in X and Y , respectively. By compactness we get a finite
subcover R =

∪n
i=1Xi × Yi, as desired.

Proposition 3.8. Let X and Y be infinite type-definable sets in a strongly minimal theory
T . Then X ∕⊥ Y .

Proof. Let A be a set of parameters over which both X and Y are defined. Let ℳ ∣= T
be a sufficiently large saturated model, and suppose that X ⊆ Mn, Y ⊆ Mm. We recall
that, since T is strongly minimal, forking is determined by acl-dimension.

We first show that there is a tuple (a1, . . . , an) ∈ X such that some ai ∈ M is generic
over A. Since T is strongly minimal we have that c ∈ M is generic over A if and only if
c ∕∈ acl(A). Let Φ(x1, . . . , xn) be the type defining X. Let Ψ(x1, . . . , xn) be the collection
consisting of the negations of all the ℒA-formulae with only finitely many realizations.
Then since X is infinite Φ∪Ψ is finitely satisfiable, and hence satisfiable by compactness.
Let (a1, . . . , an) be a realization. For a contradiction suppose that a1, . . . , an are all alge-
braic over A, and let �1(x1), . . . , �n(xn) be LA-formulae witnessing this. Then (a1, . . . , an)
realizes ∧ni=1�i(xi), which has only finitely many realizations, contradicting our choice of
(a1, . . . , an). So for some i we have that ai ∕∈ acl(A). Since changing the order of variables
is an automorphism we may assume that i = 1.

In light of the above, let a = (a1, . . . , an) ∈ X be such that (without loss of generality)
a1 ∕∈ acl(A). Similarly, let b = (b1, . . . , bm) ∈ Y be such that bi ∕∈ acl(A). By the
uniqueness of generic types tp(a1/A) = tp(bi/A). There is thus some A-automorphism
� such that �(a1) = bi. For each 2 ≤ j ≤ n let a′j = �(aj). Since X is defined over
A we have �(X) = X, and so (bi, a

′
2, . . . , a

′
n) ∈ X. Moreover, (bi, a

′
2, . . . , a

′
n) is also

non-algebraic over A. Let (bi, c1, . . . , cr) be an acl-basis for (bi, a
′
2, . . . , a

′
n) over A. Then

acl-dim((bi, a
′
1, . . . , a

′
n)/A) = r, while acl-dim((bi, a

′
1, . . . , a

′
n)/A(b1, . . . , bm)) ≤ r − 1, and

hence (bi, a
′
1, . . . , a

′
n) ∕ ∣⌣A

(b1, . . . , bm), so X ∕⊥ Y .

3.1.3 The Dichotomy Statement

With the notions of one-basedness and full orthogonality at our disposal, we can now
state the Zilber Dichotomy Theorem for our separably closed or differentially closed field
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L. Recall that the constants k are not one-based. The dichotomy says that, up to non-
orthogonality, k is the only non-one-based minimal set:

Theorem 3.9 (Zilber Dichotomy). Let X be a minimal type-definable set in L. Then
either X is one-based or X ∕⊥ k.

For a proof of Theorem 3.9 see [10, Lemma 5.4] for the case L ∣= SCFp,� and [11,
Corollary 1.20] for the case L ∣= DCF0. We end this chapter by showing how the dichotomy
theorem can be extended to the wider class of semiminimal sets.

Definition 3.10. A type-definable set E is semiminimal if it is infinite and there is a
minimal set D and a finite set F such that E ⊆ acl(F ∪D).

Corollary 3.11. Let E be a semiminimal type-definable set in L. Then either E is one-
based or E ∕⊥ k.

Proof. Let E ⊆ acl(F ∪ D) with F finite and D minimal. We proceed by proving two
claims.

Claim 3.11.1. E ⊥ k if and only if D ⊥ k.

Proof of Claim 3.11.1 First, suppose that E ⊥ k. Suppose towards a contradiction that
D ∕⊥ k, so there exists d ∈ D, a ∈ k, and some set of parameters A such that d ∕ ∣⌣A

a.
By taking non-forking extensions of tp(d/A) and tp(a/A) to A ∪ F we may assume that
F ⊆ A. Since D is minimal, d ∕ ∣⌣A

a says d ∈ acl(Aa) ∖ acl(A). In particular, d is generic
in D over A. Minimality of D implies that D has a unique generic type over A, so given
any generic d′ ∈ D over A there is an automorphism fixing A and sending d to d′. Let a′

be the image of a under such an automorphism. Then d′ ∈ acl(Aa′) and a′ ∈ k.

Let e ∈ E be generic over A. Then since E ⊆ acl(F ∪D) and F ⊆ A there is a tuple
d from D such that e ∈ acl(Ad). Then since e is generic over A, e ∕∈ acl(A). Now each di
from d is either in acl(A) or is generic in D over A, and hence is in acl(Aai) for some ai
from k. Let a be the tuple of ai’s. Then e ∈ acl(Aa) ∖ acl(A), which implies e ∕ ∣⌣A

a. By
Lemma 3.5, E ∕⊥ k.

For the converse, suppose that D ⊥ k. Let A be parameters over which E and k are
defined, and take e ∈ E, a ∈ k. By taking non-forking extensions of tp(e/A) and tp(a/A)
to A∪F we may assume F ⊆ A. Since E ⊆ acl(D∪F ) there is a tuple d from D such that
e ∈ acl(d∪F ). Then since D ⊥ k we have d ∣⌣A

a. Clearly F ∣⌣A
a. Hence by transitivity

and symmetry for non-forking we get a ∣⌣A
dF , and so a ∣⌣A

e as well. So E ⊥ k. ⊣

Claim 3.11.2. If D is one-based then E is one-based.
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Proof of Claim 3.11.2 First, for notational convenience, we name the set F , along with
any parameters used to define D and E, to the language, and hence assume that F = ∅
and D, E are defined over ∅. Take any a ∈ dcl(E), and let C be such that C = cb(a/C).
We want to show that C ⊆ acl(a).

Since a ∈ acl(D) we have a ∈ acl(c1, . . . , cl) for some c1, . . . , cl from D. Since D
is minimal some subset of {c1, . . . , cl} is an acl-basis for c1, . . . , cl over a. Reindexing
if necessary, suppose that c1, . . . , cr is such a basis. Let B = {c1, . . . , cr}, and let b =
(cr+1, . . . , cl). Then a ∣⌣B by definition of acl-basis, and we have, by the choice of c1, . . . , cl,
that a ∈ acl(Bb). Conversely, by definition of acl-basis we have b ∈ acl(Ba). So acl(Ba) =
acl(Bb).

Let A realize a non-forking extension of tp(B/a) to Ca. Then we still have a ∣⌣A,
and, constructing b′ in the same manner as b above, we again get acl(Aa) = acl(Ab′),
but now also A ∣⌣a

C, so by forking calculus A ∣⌣C
a. Since C = cb(a/C) we thus have

C = cb(a/AC) as well. Moreover, since a and b′ are interalgebraic over A we also get that
tp(b′/AC) does not fork over C. It follows from this, since canonical bases are the minimal
non-forking base, that acl(C) = acl(cb(b′/AC)). Hence acl(C) = acl(cb(b′/C)) Now D is
one-based, so acl(C) ⊆ acl(b) ⊆ acl(Ab′) = acl(Aa). In particular, C ⊆ acl(Aa). Since
F ∣⌣a

C, we have C ⊆ acl(a). Hence E is one-based. ⊣

The dichotomy for semiminimal sets now follows immediately from the dichotomy for
minimal sets. This proves Corollary 3.11.

3.2 Consequences of One-Basedness

In this section we describe some consequences of one-basedness for type-definable groups.
In the next section we will consider the consequences of the other half of the dichotomy,
being non-orthogonal to the constants. Unlike the consequences of non-orthogonality to
the constants, the results in this section are a standard part of the study of stable groups,
so we omit many of the proofs. The reader desiring further background on one-based
groups should consult [25] or [29]. The results of this section do not make use of separably
or differentially closed fields, so we work temporarily in an arbitrary stable theory T .
Let G be a group type-definable over parameters A. For convenience we assume that G is
commutative, though the results stated here can be developed for non-commutative groups.
We state first a useful characterization of one-basedness for type-definable groups.

Fact 3.12. The following are equivalent:

1. G is one-based.
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2. For every n < !, every definable subset of Gn is a boolean combination of cosets of
acl(A)-definable subgroups of Gn.

3. Given two complete types p and q in G, if p and q contain the same cosets of acl(A)-
definable subgroups of Gn then p = q.

Corollary 3.13. If G is one-based then every definable subgroup of G is also one-based,
and defined over acl(A).

What Fact 3.12 tells us is that the induced structure on a one-based group G comes
entirely from the definable subgroups of G and the group structure. One particular, and
somewhat technical, formulation of this is the following theorem, which states that a type
in a one-based group is determined by its stabilizer (see Section 1.6 for a discussion of
stabilizers).

Theorem 3.14. Suppose that G is one-based, B ⊇ A, and p(x) ∈ S(B) is a complete
stationary type in G. Then stab(p) is type-definable over acl(A), and p is the generic type
of a B-definable translate of stab(p). In particular, stab(p) is connected.

A proof of the above theorem can be found in [25]. We end with the following useful
fact:

Proposition 3.15. Suppose that A and B are fully orthogonal one-based type-definable
subgroups of G. Then A+B is one-based.

Proof. We begin by showing that A × B ≤ G × G is one-based, and later will use the
map + : A × B → A + B to deduce that A + B is as well. For convenience we name the
parameters used in defining A, B, and G to the language.

By Proposition 3.7, since A ⊥ B, every definable subset X ⊆ A × B is a finite union
of sets of the form A′ × B′ where A′ ⊆ A and B′ ⊆ B are definable. Since A and B
are one-based groups Fact 3.12 gives that each A′ and B′ are boolean combinations of
cosets of acl(∅)-definable subgroups of A and B, respectively. A straightforward induction
on the complexity of the boolean combination shows that each A′ × B′ is then a boolean
combination of cosets of acl(∅)-definable subgroups of A×B, so A×B is one-based.

Now take any distinct complete types p and q in A+B. Let a1, a2 ∈ A and b1, b2 ∈ B be
such that +(a1, b1) ∣= p and +(a2, b2) ∣= q. Then tp(a1b1) ∕= tp(a2b2) since + is definable
and p ∕= q. As A × B is one-based by the characterization in Fact 3.12 there is some
acl(∅)-definable subgroup H ≤ A × B and some r such that r + H distinguishes tp(a1b1)
from tp(a2b2). Then +(r+H) is a coset of an acl(∅)-definable subgroup of A+B, namely
+(H), and it distinguishes p and q, so A+B is one-based.
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3.3 Consequences of Non-orthogonality to the Con-

stants

In this section we give concrete consequences of non-orthogonality to the constants, first
for semiminimal sets, then for semiminimal groups, and finally for semiminimal subgroups
of semiabelian varieties. We return to working in a universal domain L for DCF0 or SCFp,� ,
with k the constant field.

3.3.1 Semiminimal Sets

Proposition 3.16. Let Y be a semiminimal set type-definable over A, with Y ∕⊥ k, and p
a nonalgebraic type in Y over A. Then there exists a set B ⊇ A, a non-forking extension
q ∈ S(B) of p, and a B-definable function f : qL → kn with finite fibres.

Proof. Since Y is semiminimal there exists a finite set F and a minimal set X such that
Y ⊆ acl(F ∪X).

Claim 3.16.1. There is a parameter set B′ such that Y ⊆ acl(B′ ∪ k).

Proof of Claim 3.16.1 By Claim 3.11.1 we have X ∕⊥ k. Exactly as in the proof of that
Claim we get a parameter set B′, which we may assume contains F , such that if s ∈ X is
generic in X over B′ then there is a tuple a from k such that s ∈ acl(B′a) ⊆ acl(B′∪k). On
the other hand, if s ∈ X is not generic over B′ then, since X is minimal, s ∈ acl(B′). Hence
X ⊆ acl(B′∪ k). Then since B′ ⊇ F and Y ⊆ acl(X ∪F ) we also have Y ⊆ acl(B′∪ k). ⊣

Let a realize a non-forking extension of p to B′. Then a ∈ acl(B′c1 . . . cl) for some
c1, . . . , cl ∈ k by Claim 3.16.1. Since a realizes a non-forking extension of p to B′, a ∕∈
acl(B′), and so l ≥ 1. Since k is minimal, some subset of c1, . . . , cl is an acl-basis for
{c1, . . . , cl} over B′a. After reindexing, suppose that c1, . . . , cr is such a basis.

Let c = (cr+1, . . . , cl), and let B = B′ ∪ {c1, . . . , cr}. Then a ∣⌣B′
B, so q = tp(a/B) is

a non-forking extension of p, and acl(Ba) = acl(Bc).

Let d1, . . . , dm be the Ba-conjugates of c (under automorphisms of L). Since any
automorphism of L fixes k setwise, d1, . . . , dm are tuples from k. Since k ∣= ACFp, which
has elimination of imaginaries, there is some tuple ĉ ∈ kn which is a code for {d1, . . . , dm}.
Fix � ∈ AutBa(L). Then �({d1, . . . , dm}) = {d1, . . . , dm} since {d1, . . . , dm} is the orbit
of c under AutBa(L). Hence also �(ĉ) = ĉ. So ĉ ∈ dcl(Ba). Also, c ∈ acl(ĉ) since
c ∈ {d1, . . . , dm} and ĉ codes {d1, . . . , dm}. Hence a ∈ acl(Bĉ).
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It follows that there is a B-definable map f with finite fibres such that f(a) = ĉ.
Since a ∈ dom f , tp(a/B)L ⊆ dom f . Let a′ realise q := tp(a/B), so there exists an
automorphism � ∈ AutB(L) such that �(a) = a′. Then

f(a′) = f(�(a))

= �(f(a)) since � fixes B

= �(ĉ)

∈ kn since ĉ ∈ kn and � restricts to an automorphism of k

Thus f ∣qL : qL → kn is the desired map.

3.3.2 Semiminimal Groups

We now specialize further, to the case when our semiminimal set is also a type-definable
group.

Proposition 3.17. Let H be a semiminimal connected commutative type-definable group
such that H ∕⊥ k. Then there exists a group G, definable in (k,+,−, ⋅, 0, 1) and a definable
surjective group homomorphism ℎ : H → G with finite kernel.

Proof. From Proposition 3.16 we have a set B over which H is defined, and a B-definable
map with finite fibres f : pL → Ln where p is the (unique, since H is connected) generic
type of H over B. Note that p is stationary, since non-forking extensions of generic types
are generic.

We first extend f to all of H: Let D := dom f ∩ H. Then we have f : D → Ln

and f(pL) ⊆ kn. D is a generic definable subset of H as it contains pL. So there exist
ℎ1, . . . , ℎt ∈ H such that H = (ℎ1 +D)∪ . . .∪ (ℎt +D). On each ℎi +D we have the map
given by fi(x) = f(x−ℎi), so we have definable maps with finite fibres fi : ℎi+D → Ln. We
can thus define a new f : H → Ln by f(x) = fi(x) where i is least such that x ∈ ℎi + D.
It is clear from the definition of the fi’s that f is well-defined, has finite fibres, and is
definable over Bℎ1 . . . ℎr. We replace the f given by Lemma 3.16 with this f , and replace
B by Bℎ1 . . . ℎr to get the desired map defined on all of H. We note that, in general, f
takes values in Ln, though it generically takes values in kn.

We consider the following set:

N := {ℎ ∈ H : for some a generic over Bℎ, f(a+ ℎ) = f(a)}

Suppose that ℎ ∈ N , so for some generic a over ℎ we have f(a+ ℎ) = f(a). Then since f
is B-definable, we have that “f(x+ ℎ) = f(x)” ∈ tp(a/Bℎ). In particular, for any generic
a′ over Bℎ we have tp(a′/Bℎ) = tp(a/Bℎ), and so f(a′ + ℎ) = f(a′). Thus we have

N = {ℎ ∈ H : for all a generic over Bℎ, f(a+ ℎ) = f(a)}
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Claim 3.17.1. N is a finite subgroup of H defined over B.

Proof of Claim 3.17.1 For any a f(a + 0) = f(a), so 0 ∈ N . Suppose that ℎ1, ℎ2 ∈ N ,
and let a be generic over Bℎ1ℎ2. Then a+ ℎ1 is generic over Bℎ2. So we have

f(a+ (ℎ1 + ℎ2)) = f((a+ ℎ1) + ℎ2)

= f(a+ ℎ1) since a+ ℎ1 is generic over Bℎ2 and ℎ2 ∈ N
= f(a) since a is generic over Bℎ1 and ℎ1 ∈ N .

Hence ℎ1 +ℎ2 ∈ N . Next, if ℎ ∈ N , let a be generic over B ∪{−ℎ}. Then a is generic over
Bℎ and a− ℎ is generic over Bℎ as well. We have

f(a) = f((a− ℎ) + ℎ)

= f(a− ℎ) since a− ℎ is generic over Bℎ and ℎ ∈ N .

So −ℎ ∈ N .

To see that N is finite, let m ∈ ℕ be the size of a largest fibre of f . Such an m exists
by a standard compactness argument since every fibre is finite and we are in a saturated
model. Consider any ℎ0, . . . , ℎm ∈ N , and let a be generic over Bℎ0, . . . , ℎm. Then by
definition of N , f(a+ ℎ1) = . . . = f(a+ ℎm) = f(a), so a+ ℎ1, . . . , a+ ℎm, a all lie in the
same fibre of f . Since the largest fibre of f has size m, it follows that not all of the ℎi’s
are distinct, and hence ∣N ∣ ≤ m < !.

Finally, we show that N is defined over B. Since N is finite it is definable, so we use
an automorphism argument. Take any � ∈ AutB(L), and any ℎ ∈ H. Let a be generic
over B ∪ {�(ℎ)}. Then b = �−1(a) is generic over Bℎ. We have

f(�(ℎ) + a) = f(�(ℎ) + �(b))

= f(�(ℎ+ b))

= �(f(ℎ+ b)) since f is B-definable

= �(f(b)) since ℎ ∈ N
= f(�(b))

= f(a)

So �(ℎ) ∈ N . As � ∈ AutB(L) was arbitrary, N is defined over B. ⊣

Since H is semiminimal it has finite U -rank, say U(H) = r. Let ℎ0, . . . , ℎ2r be inde-
pendent generic elements of H over B. Define f : H → (Ln)(2r+1) by

f(ℎ) = (f(ℎ+ ℎ0), . . . , f(ℎ+ ℎ2r))

For each ℎ ∈ H define Nℎ :=
{
f(ℎ+ d) : d ∈ N

}
⊆ (Ln)(2r+1). Clearly each Nℎ is definable

over Bℎ0, . . . , ℎ2r.
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Claim 3.17.2. For all ℎ, ℎ′ ∈ H, if f(ℎ) = f(ℎ′) then ℎ− ℎ′ ∈ N

Proof of Claim 3.17.2 Suppose f(ℎ) = f(ℎ′). For any b0, b1 ∈ H, since U(H) = r, we have
U(b0b1) ≤ 2r. Since we have 2r+ 1 independent generics ℎi over B, it follows that at least
one of them remains generic over Bb0b1. To see this, we first note that U(ℎi/B) = r for all i
since each ℎi is generic. Since the ℎi’s are independent over B, we have U(ℎ0ℎ1 . . . ℎi/B) =
ir for each 0 ≤ i ≤ 2r by the Lascar equality. If none of the ℎi’s are generic over Bb0b1,
then, by repeated application of the Lascar equality, we get U(b0b1/Bt0 . . . ti) ≤ 2r− i− 1
for each 0 ≤ i ≤ 2r. In particular, U(b0b1/Bt1 . . . t2r) ≤ 2r− 2r− 1 = −1, a contradiction.

In particular, some ℎi is generic over Bℎℎ′. Then ℎi + ℎ is generic over Bℎ′, and hence
over B ∪ {ℎ− ℎ′} since ℎ− ℎ′ ∈ dcl(ℎ, ℎ′), and so

f(ℎi + ℎ+ ℎ′ − ℎ) = f(ℎi + ℎ′)

= f(ℎi + ℎ) since f(ℎ) = f(ℎ′)

So ℎ− ℎ′ ∈ N by definition of N . ⊣

Claim 3.17.3. Nℎ = Nℎ′ ⇐⇒ ℎ− ℎ′ ∈ N .

Proof of Claim 3.17.3 First,

Nℎ = Nℎ′ ⇒
{
f(ℎ+ d) : d ∈ N

}
=
{
f(ℎ′ + d) : d ∈ N

}
⇒ There exists d ∈ N such that f(ℎ) = f(ℎ′ + d)

⇒ There exists d ∈ N such that ℎ− ℎ′ − d ∈ N by Claim 3.17.2

⇒ ℎ− ℎ′ ∈ N since d ∈ N

Conversely, suppose ℎ − ℎ′ ∈ N . Then for any d ∈ N , f(ℎ + d) = f(ℎ′ + ℎ − ℎ′ + d),
where ℎ − ℎ′ + d ∈ N . Thus

{
f(ℎ+ d) : d ∈ N

}
⊆
{
f(ℎ′ + d) : d ∈ N

}
. Equality follows

by symmetry. So Nℎ = Nℎ′ . ⊣

Since both separably closed fields and differentially closed fields have elimination of
imaginaries and the family {Nℎ : ℎ ∈ H} is a definable family of definable sets, there exists
a definable function g : H → Lm for some m such that g(ℎ) is a code for Nℎ for every ℎ ∈ H,
and g(ℎ) = g(ℎ′) if and only if Nℎ = Nℎ′ (see Lemma B.1). We then have g(ℎ) = g(ℎ′) if
and only if ℎ− ℎ′ ∈ N by Claim 3.17.3.

Thus g(H) ⊆ Lm is in definable bijection, by the map g(ℎ) 7→ ℎmodN , with H/N ,
which is type-definable by elimination of imaginaries (see Lemma B.2). We use this bijec-
tion to put a group structure on g(H). In general we do not have g(H) ⊆ km, but we can
show that it is so generically:

Claim 3.17.4. If a ∈ H is generic over Bℎ0 . . . ℎ2r then g(a) ∈ km.
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Proof of Claim 3.17.4 Let a ∈ H be generic over Bℎ0 . . . ℎ2r. We recall that g(a) is a
code for {(f(a+ d+ ℎ0), . . . , f(a+ d+ ℎ2r)) : d ∈ N}. Now consider any d ∈ N and any
ℎi. Then since a is generic over Bℎi, a+ℎi is generic over B. Since N is finite and defined
over B (Claim 3.17.1), d ∈ acl(B). So a+ℎi ∣⌣B

d, and hence a+ℎi+d is also generic in H

over B. Thus f(a + d + ℎi) ∈ kn, and so
{
f(a+ d) : d ∈ N

}
⊆ (kn)(2r+1). By elimination

of imaginaries for ACF, and the stable embeddedness of k, the code for this finite subset
is itself in dcl(k). It follows that g(a) ∈ km. ⊣

Now replace B by Bℎ0 . . . ℎ2r. We then have produced a B-definable surjective group
homomorphism g : H → G′ where G′ ⊆ Lm is a type-definable connected group, namely
G′ = g(H). Since g is a homomorphism the fact that g(ℎ) = g(ℎ′) ⇐⇒ ℎ − ℎ′ ∈ N
says that ker(g) = N , which is finite by Claim 3.17.1. What is missing is that G′ lies in L
rather than in k, but we have also seen that the generics of G′ are contained in km. We
now show that we can recover all of G′ from its generic type. Let q be the generic type of
G′ over B. Recall that, for any x ∈ G′, there exist a, b ∈ qL such that x = a+ b. Let ℛ be
the definable equivalence relation on qL × qL given by

(x, y)ℛ(x′, y′) ⇐⇒ x+ y = x′ + y′

And define
G := (qL × qL)/ℛ

Then since qL ⊆ km and k is stably embedded, it follows from elimination of imaginaries for
ACFp that G is type-definable in (k,+,−, ⋅, 0, 1) (see Lemma B.2). Since ACFp is !-stable
G is in fact definable in (k,+,−, ⋅, 0, 1).

Claim 3.17.5. Define g′ : G′ → G by g′(x) = (a, x − a) modℛ, where a is generic in G′

over Bx. Then g′ is a B-definable bijective group homomorphism.

Proof of Claim 3.17.5 Note that g′ is well-defined, since a + (x− a) = x = a′ + (x− a′),
so (a, x− a)ℛ(a′, x− a′).

Next we wish to see that g′ is B-definable. It suffices to show that{
(x, a, x− a) ∈ G′ × qL × qL : x ∣⌣

B

a

}

is type-definable over B. Indeed, this implies that the graph of g is type-definable over
B, and hence B-definable (see Lemma B.3). Since − is definable it is enough to show

that
{

(x, a) ∈ G′ × qL : x ∣⌣B
a
}

is type-definable over B, which follows from definability

of types (see Lemma B.4).
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To see that g′ is a group homomorphism, consider any x, y ∈ G′, and let a, b, c be
generics in G such that a ∣⌣ x, b ∣⌣ y, c ∣⌣(x+ y). Then g′(x+ y) = (c, x+ y − c) modℛ,
and

g′(x) + g′(y) = (a, x− a) + (b, y − b) modℛ
= (a+ b, x+ y − a− b) modℛ
= (c, x+ y − c) modℛ by definition of ℛ

So g′ is a group homomorphism. Finally, the map (x, y) modR 7→ x+ y is inverse to g, so
g is bijective. ⊣ We thus have a definable group G in (k,+,−, ⋅, 0, 1) and a definable

group isomorphism g′ : G′ → G.

Define ℎ : H → G by ℎ = g′ ∘ g. Since g′ is a group isomorphism and g is a surjective
homomorphism with finite kernel, ℎ is also a surjective homomorphism with finite kernel,
and hence is the required map.

3.3.3 Semiminimal Subgroups of Semiabelian Varieties

Recall that if F is a field of characteristic p > 0 we have the Frobenius morphism given by
x 7→ xp. If X is a variety over F then this lifts to a morphism Fr : X → X, also called the
Frobenius morphism on X.

Definition 3.18. Let X and Y be varieties over a field of characteristic p > 0. We say
that a map g : X → Y is p-regular if g = Fr−n ∘f for some n ∈ ℕ and some regular map
f . In characteristic 0 a p-regular map is just a regular map.

If f : G→ H is a definable homomorphism between algebraic groups G and H then f
is p-regular (see [26, Lemma 4.9]). In particular, if f is regular (or p-regular) and bijective
then f−1 is definable, and hence p-regular as well.

Proposition 3.19. Let S be a semiabelian variety over L, and let H ≤ S(L) be a semi-
minimal connected subgroup such that H ∕⊥ k. Then there exists a semiabelian variety S0

over k and a bijective regular homomorphism g : H → S0 such that g(H) = S0(k).

Proof. By Proposition 3.17 we get a definable surjective homomorphism with finite kernel
ℎ : H → G where G is definable in (k,+,−, ⋅, 0, 1). The first step is to reverse the
homomorphism ℎ. Let n = ∣ker(ℎ)∣.

Define f : G→ H by f(x) = ny where y is such that ℎ(y) = x, which exists since ℎ is
surjective. Since ℎ is definable so is f . We observe that

ℎ(y′) = ℎ(y)⇒ y − y′ ∈ ker(ℎ)

⇒ n(y − y′) = 0 since ker(ℎ) is a group of order n

⇒ ny = ny′
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Hence f is well-defined. Clearly f is a group homomorphism.

Next we show that f is surjective. Since H is semiminimal it has finite U -rank. Since
H is a subgroup of a semiabelian variety, and semiabelian varieties have finite m-torsion
for all m (see Lemma B.6), H in particular has finite n-torsion. So the map [n] : H → H
has finite kernel. In particular, U(ker[n]) = 0, so from the Lascar equality for groups we
have U(H) = U(nH)+U(ker[n]) = U(nH). Hence [H : nH] is finite. Since H is connected
H = nH. Now for any y ∈ H, let y′ ∈ H be such that ny′ = y. Then f(ℎ(y′)) = ny′ = y,
so f is surjective.

Now let G1 = G/ ker(f). Then since G is definable in (k,+,−, ⋅, 0, 1) so is G1, by
elimination of imaginaries. Let f1 : G1 → H be the bijective homomorphism induced by
f . Then f1 is definable in the language of DCF0 or SCFp,� since f is. By the Weil-van den
Dries-Hrushovski Theorem (see [3]) we get that, up to definable isomorphism, G1 = T (k),
where T is an algebraic group over k. Since T (k) is definable in the field language and we
only look at constant points we get that f1 agrees on T (k) with a function g definable in
the field language.

We next want to extend f1 to Zariski closures in Lalg.

T (Lalg)
f2 //___ H(Lalg)

T (k)
f1 //

OO

H

OO

We first note that T (k) = T (Lalg). Next, since H is an algebraic subgroup of S(L) its
Zariski closure (in Lalg) is the set of Lalg points of an algebraic subgroup of S, which we will
also call H. To extend f1 we in fact extend g. Since g is definable in the field language it is
p-rational. Since k ⪯ Lalg as structures in the field language we have that g is also defined on
T (Lalg). Let f2 be the restriction of g to T (Lalg), so f2 is a field-language definable, hence p-
rational, map extending f1. Moreover, since the property of being a group homomorphism
is expressible (in the field language) f2 is a group homomorphism. Since f2 is a Zariski-
continuous extension of f1 from T (k) to its Zariski closure it follows from general topology
that the image of f2 is contained in H, and since f1 was surjective it follows also that f2
is surjective. We may not have that f2 is bijective, but ker(f2)(k) = ker(f1), so since f1 is
bijective ker(f2)(k) = 0.

Claim 3.19.1. ker f2 is defined over k.

Proof of Claim 3.19.1 From the theory of algebraic groups we know that there exists an
algebraic subgroup R ≤ T such that T/R is an abelian, and hence semiabelian, variety.
In fact, it can be shown that there is a unique minimal R such that T/R is semiabelian,
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and that this R is defined over k (see [30, Theorem 16]). Now T/ ker(f2) ∼= H, and H
is a semiabelian variety, so R ≤ ker(f2). Since R is over k, R(k) is Zariski-dense in R.
But R(k) ≤ ker(f2)(k) = 0, so R = 0. Thus T is already a semiabelian variety. Since
T is defined over k and ker(f2) ≤ T we get by the rigidity of semiabelian varieties (see
Proposition B.8) that ker(f2) is defined over k. ⊣

Since ker(f2) is defined over k, ker(f2)(k) is Zariski-dense in ker(f2). But ker(f2)(k) =
0, so ker(f2) = 0, and combining this with our earlier observations about f2 gives that
f2 : T → H is a definable bijective p-regular homomorphism. Since f2 is bijective and
definable in (Lalg,+,−, ⋅, 0, 1) so is f−12 , and so f−12 : H → T is a bijective p-regular
homomorphism. Let g : H → T (pn) be given by g = Frn ∘f−12 , where n is the appropriate
power of the Frobenius map Fr that makes g regular. If p = 0 then f−12 is already regular,
so this step is unnecessary.

H
g //

f−1
2 ��?

??
??

??
T (pn)

T

Frn

<<zzzzzzzz

Then g is a bijective regular homomorphism. Let S0 = T (pn). Since T is a semiabelian
variety over k, so is S0 (see Lemma B.10). All that remains to show is that g(H) = S0(k).
We compute

g(H) = Frn(f−12 (H))

= Frn(T (k)) since f2 extends the bijection f1 : T (k)→ H

= S0(k) by definition of S0.

So S0 and g are the required semiabelian variety and bijective rational homomorphism.

The above Proposition gives rise to our first statement that resembles the Mordell-Lang
statement.

Corollary 3.20. Let S be a semiabelian variety over L, and let H ≤ S(L) be a connected
semiminimal group such that H ∕⊥ k. Let X ⊆ S be a subvariety over L. Then there exist
X1, . . . , Xl such that each Xi is a k-special subvariety of X, and

X(L) ∩H =
l∪

i=1

Xi(L) ∩H

.
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Proof. Let X1, . . . , Xl be the irreducible components of X(L) ∩H. Then

l∪
i=1

Xi(L) ∩H =

(
l∪

i=1

Xi(L)

)
∩H

= X(L) ∩H ∩H
= X(L) ∩H

So it remains to show that each Xi is k-special. Fix some 1 ≤ i ≤ l.

By Proposition 3.19 there is a semiabelian variety S0 over k and a bijective regular
homomorphism g : H → S0 such that g(H) = S0(k).

Let X0 be the Zariski closure of g(Xi(L)∩H) in S0. By automorphisms, since g(Xi(L)∩
H) ⊆ S0(k), X0 is (model-theoretically) defined over k. Since k = kalg the model-theoretic
and algebraic-geometric notions of being defined over k agree.

Note that by definition of Xi, Xi(L)∩H is Zariski-dense in Xi. By definition of X0, we
have Xi(L) ∩H ⊆ g−1(X0), and so Xi(L) ∩H = Xi ⊆ g−1(X0). Conversely, g is a regular
bijection, so its inverse is p-regular, and hence is also continuous for the Zariski topology.
Hence we have

g−1(X0) = g−1(g(Xi(L) ∩H)

= g−1(g(Xi(L) ∩H))

= Xi(L) ∩H
= Xi

So Xi = g−1(X0), and hence Xi is k-special by definition.

36



Chapter 4

The Proof of Mordell-Lang

In this chapter we use the consequences of the Zilber Dichotomy discussed in the pre-
vious chapter to prove the Mordell-Lang statement. We begin with a proof in the case
of semipluriminimal type-definable subgroups of semiabelian varieties, then generalize to
finite U -rank subgroups of semiabelian varieties, and finally leave the definable category
altogether and prove the positive characteristic Mordell-Lang statement (Theorem 2.13).

The conventions of Chapter 3 are still in force : We are working in a universal domain
L for DCF0 or SCFp,� , k ⊆ L is the field of constants, and F ⊆ L is the prime field.

4.1 Semipluriminimal Subgroups of Semiabelian Va-

rieties

Definition 4.1. Let Y be a type-definable set. If there exist a finite set F and minimal
sets X1, . . . , Xl such that Y ⊆ acl(F∪X1∪. . .∪Xl) then we say that Y is semipluriminimal.

The key fact about semipluriminimal groups that we will need is the following orthog-
onal decomposition theorem:

Proposition 4.2. Let H be a connected semipluriminimal type-definable group. Then
there exist H1, . . . , Hl, connected type-definable semiminimal subgroups of H, such that
H = H1 + . . .+Hl, and for each 1 ≤ i ≤ l, Hi ⊥

∑
j ∕=iHj.

The above proposition follows directly from the basic theory of the socle of a finite U -
rank group, see Appendix A. We need the notion of the geometric stabilizer of a subvariety
of a semiabelian variety:
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Definition 4.3. Let S be a semiabelian variety, X ⊆ S a subvariety. The (geometric)
stabilizer of X is the subgroup stabg(X) = {a ∈ S : a+X = X} ≤ S.

In general this stabilizer is distinct from the model-theoretic stabilizer introduced in
Section 3.2. The two stabilizers are related, however, as the next lemma shows.

Lemma 4.4. Let S be a semiabelian variety over L. Let H ≤ S(L) be a connected type-
definable group of finite U-rank. Let X ⊆ S be an irreducible subvariety over L such that
X(L)∩H is Zariski-dense in X. Then there exists a complete type p in X(L)∩H over some
parameter set A = acl(A) such that p(x)L is Zariski-dense in X. Moreover, if p in X(L)∩H
is taken to be of minimal U-rank with pL Zariski-dense in X, then stab(p) ⊆ stabg(X).

Proof. We will need the following claim to build our complete type p:

Claim 4.4.1. Let D ⊆ S be any set, and let Z be Zariski-dense in X. Then either Z ∩D
or Z ∖D is Zariski-dense in X.

Proof of Claim 4.4.1 We have

X = Z

= (Z ∩D) ∪ (Z ∖D)

= Z ∩D ∪ Z ∖D

Since X is irreducible, it follows that X = Z ∩D or X = Z ∖D, as claimed. ⊣

Now we find the desired complete type p as follows. First, we want pL ⊆ X(L) ∩ H,

so let p0 be the type defining H ∩ X(L). So pL0 = X(L) ∩H = X, but p0 may not be
complete. Choose A = acl(A) a countable set of parameters over which H and X are
defined. Enumerate the set of all LA-formulae as �1, �2, . . .. We now construct a sequence
of types p0 ⊆ p1 ⊆ . . . inductively, starting from p0 as already defined. At the ith step
suppose that we have a type pi in X(L) ∩ H whose realizations are Zariski-dense in X.
Then either (pi ∪ {�i+1})L or (pi ∪ {¬�i+1})L is Zariski-dense in X by Claim 4.4.1, so set
pi+1 = pi ∪ {�i+1} or pi+1 = pi ∪ {¬�i+1} accordingly. Then p =

∪∞
i=1 pi is the required

complete type in X(L) ∩H whose solution set is Zariski-dense in X.

To finish the proof, suppose that p is as above, and has minimal U -rank amongst all
such complete types. Let ℎ ∈ stab(p), and let p be the unique non-forking extension of p
to L. Then p(x) extends both p(x) and ℎ+p(x) by definition of the stabilizer. Let Y = pL.
So U(Y ∩ (ℎ+ Y )) = U(Y ) = U(p). Now Y ∩ (ℎ+ Y ) ⊆ Y ∩ (ℎ+X(L) ∩H) ⊆ Y , so

U(Y ) = U(Y ∩ (ℎ+ Y ))

≤ U(Y ∩ (ℎ+X(L) ∩H))

≤ U(Y )
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So U(Y ∩ (ℎ + X(L) ∩ H)) = U(Y ), and the type defining Y ∩ (ℎ + X(L) ∩ H) is a
partial non-forking extension of p to Aℎ. Since p is stationary it has a unique complete
non-forking extension to Aℎ, which must be a completion of Y ∩ (ℎ + X(L) ∩ H). In
particular, the type defining Y ∖ (ℎ + X(L) ∩H) must be a forking extension of p to Aℎ,
so U(Y ∖ (ℎ+X(L)∩H)) < U(Y ). Then by the minimality of U(Y ), Y ∖ (ℎ+X(L)∩H)
is not Zariski-dense in X, and hence by Claim 4.4.1 Y ∩ (ℎ + X(L) ∩H) is Zariski-dense
in X. We thus have

X = Y ∩ (ℎ+X(L) ∩H)

⊆ Y ∩ ℎ+X(L) ∩H
= X ∩ (ℎ+X(L) ∩H)

= X ∩ (ℎ+X)

Hence X ⊆ ℎ+X, from which it follows that X = ℎ+X, so ℎ ∈ stabg(X).

Lemma 4.5. Let S be a semiabelian variety over L, X ⊆ S a subvariety also over L. If the
image of X under the quotient map � : S → S/ stabg(X) is k-special then X is k-special.

Proof. Let S ′ = S/ stabg(X). Then since quotients of semiabelian varieties naturally carry
the structure of semiabelian varieties themselves (see Proposition B.9), S ′ is a semiabelian
variety over L, and the canonical projection � : S → S ′ is a rational map. Let X ′ = �(X).
Since X ′ is k-special there exists c′ ∈ S ′, S∗ ≤ S ′, S0 a semiabelian variety over k, X0 ⊆ S0

a subvariety also over k, and a surjective rational homomorphism ℎ : S∗ → S0 such that
X ′ = c′ + ℎ−1(X0).

Let Ŝ = �−1(S∗). Let g : Ŝ → S0 be g = ℎ ∘ �. Since ℎ and � are both rational
and surjective, g is rational and surjective. Let c ∈ S be such that �(c) = c′. We will
show that X = c+ g−1(X0). Indeed, first observe that c+ g−1(X0) = c+ �−1(ℎ−1(X0)) =
�−1(c′ + ℎ−1(X0)). Next we see that �−1(�(X)) = X. The direction X ⊆ �−1(�(X)) is
immediate. For the converse, suppose x ∈ �−1(�(X)). Then �(x) ∈ �(X), so there exists
y ∈ X such that �(x) = �(y). Then x − y ∈ ker� = stabg(X), and so x = y + (x − y) ∈
X + stabg(X) = X. Finally, we have �(X) = c′ + ℎ−1(X0), so taking preimages on both
sides and using the two preceding observations gives X = c+ g−1(X0).

In the proof of Theorem 4.6 below the role of the Zilber Dichotomy in Mordell-Lang
begins to become clear, as we combine the results on one-basedness from Section 3.2 with
the consequences of non-orthogonality developed in the previous chapter.

Theorem 4.6. Let S be a semiabelian variety over L. Let H ≤ S(L) be a semipluriminimal
connected type-definable group. Let X ⊆ S be a subvariety over L. Then there exist
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X1, . . . , Xl, k-special subvarieties over X, such that

X(L) ∩H =
l∪

i=1

Xi(L) ∩H

Proof. Let X1, . . . , Xl be the irreducible components of X(L) ∩H. Then, as in the proof of
Corollary 3.20, X(L)∩H =

∪l
i=1Xi(L)∩H. So it remains to show that each Xi is k-special.

Fix 1 ≤ r ≤ l. Then Xr is, by definition, irreducible, and Xr(L) ∩H = Xr. We saw in
Lemma 4.5 that if the image of Xr in S/ stabg(Xr) is k-special then Xr is itself k-special, so
by taking the quotient by stabg(Xr) we may assume that stabg(Xr) = {0}. If dim(Xr) = 0
then Xr is finite and hence k-special. So we may also assume that dim(Xr) > 0.

Note that H has finite U -rank since it is semipluriminimal, so using Lemma 4.4 let p(x)
be a complete type in Xr(L)∩H over some parameters A = acl(A) such that Y = p(x)L ⊆
Xr(L)∩H is Zariski-dense in Xr. Taking p to be of minimal U -rank, the Lemma also gives
that stab(p) = {0}.

Claim 4.6.1. H is not one-based.

Proof of Claim 4.6.1 Suppose to the contrary that H is one-based. Then by Theorem 3.14
p is the the generic type of a translate of stab(p) = {0}. It follows that pL is a singleton,
contradicting that pL is Zariski-dense in Xr. ⊣

Let H1, . . . , Hm be an orthogonal decomposition of H, so each Hi is fully orthogonal
to the sum of the previous ones, and each is semiminimal and connected. By Proposition
3.15 if each Hi is one-based then so is H. As H is not one-based, some Hi is not one-based.
In fact, more is true:

Claim 4.6.2. Exactly one Hi is not one-based.

Proof of Claim 4.6.2 We have already seen that at least one Hi is not one-based. We now
show that at most one Hi is not one-based. Suppose that Hi and Hj are both not one-
based. By the Zilber Dichotomy both are not fully orthogonal to k. Hence by Proposition
3.19 each is definably isomorphic to some group definable in (k,+,−, ⋅, 0, 1). But k is
strongly minimal, so by Proposition 3.8 those two groups are not fully orthogonal. Hence
Hi ∕⊥ Hj, and so we must have Hi = Hj. ⊣

Reindexing the Hi’s if necessary, we may assume that Hm is not one-based. Let B =
H1 + . . . Hm−1. Then we have that B is one-based (by Lemma 3.15). We noted earlier that
Hm ⊥ H1 + . . .+Hm−1. That is, Hm ⊥ B.

Claim 4.6.3. There exist complete types q1 in B, q2 in Hm, both over A, such that Y =
qL1 + qL2 .
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Proof of Claim 4.6.3 Recall that Y is defined by the complete type p. Consider any y ∈ Y .
Since p is complete, p = tp(y/A). Since Y ⊆ B + Hm we can write y = u + v for some
u ∈ B and some v ∈ Hm. Let q1 = tp(u/A) and q2 = tp(v/A). Since u ∈ B and B is
type-definable, qL1 ⊆ B. Similarly, qL2 ⊆ Hm. We show that Y = qL1 + qL2 .

First, suppose that z ∈ qL1 + qL2 . So z = a + b where a ∣= q1 and b ∣= q2. Then since
B ⊥ Hm we have (by the second equivalent version of full orthogonality in Lemma 3.6)
tp(u/A)∪ tp(v/A) ⊢ tp(uv/A). So by our choice of q1 and q2, ab ∣= tp(uv/A). In particular
a+ b ∣= tp(u+ v/A) = p. That is, z = a+ b ∈ Y . So we have qL1 + qL2 ⊆ Y .

Conversely, suppose that a ∈ Y . Then tp(a/A) = p = tp(u + v/A), so there exists
� ∈ AutA(L) such that �(u+v) = a. So �(u)+�(v) = a. Since � fixes A pointwise we have
q1 = tp(u/A) = tp(�(u)/A) and q2 = tp(v/A) = tp(�(v)/A). So a = �(u) +�(v) ∈ qL1 + qL2
as required. ⊣

Now since B is one-based q1 is the generic type of a translate of stab(q1) (Theorem
3.14). We then have, since qL1 ⊆ Y , stab(q1) ⊆ stab(p) = {0}, so stab(q1) = {0}. Thus
qL1 = {u} for some element u ∈ H. Then Y = u + qL2 is a translate of qL2 . Since k-
specialness is preserved by translation, translating everything by −u we may assume that
Y = qL2 ⊆ Hm. As Y is Zariski-dense in Xr and Y ⊆ Xr(L)∩Hm, we have that Xr(L)∩Hm

is also Zariski-dense in Xr. By the Zilber Dichotomy as Hm is not one-based we must have
Hm ∕⊥ k. By Corollary 3.20 there exist Z1, . . . , Zd, k-special subvarieties of Xr, such that
Xr(L) ∩Hm =

∪d
i=1 Zi(L) ∩Hm. Then

Xr = Xr(L) ∩Hm

=
d∪
i=1

Zi(L) ∩Hm

=
d∪
i=1

Zi(L) ∩Hm

=
d∪
i=1

Zi

Then since Xr is irreducible, Xr = Zj for some 1 ≤ j ≤ d, and so Xr is k-special, as
required.
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4.2 Finite U-Rank Subgroups of Semiabelian Vari-

eties

In this section we extend Theorem 4.6 to all type-definable subgroups of finite U -rank. The
following theorem is the key model-theoretic fact we need to reduce to the semipluriminimal
case of the previous section. It says that a type-definable group H has a semipluriminimal
subgroup socle(H) which, under the assumption of rigidity, controls all of H.

Definition 4.7. Let H be a type-definable group of finite U -rank. The socle of H, de-
noted socle(H), is the subgroup of H generated by all of the connected type-definable
semiminimal subgroups of H.

If H is a type-definable group over parameters A we say that H is rigid if every relatively
definable subgroup of H is defined over acl(A).

Theorem 4.8. Let H be a type-definable group of finite U-rank. Then

1. socle(H) is the unique maximal connected type-definable semipluriminimal subgroup
of H.

2. Suppose that socle(H) is rigid. Then every complete stationary type in H with finite
stabilizer is contained in a single coset of socle(H).

Proof. For the case when H is of finite Morley rank this is an immediate consequence
of Hrushovski’s “socle theorem” which appears in [10, Proposition 4.3]. In the positive
characteristic SCFp,� setting we will be applying this theorem to a group of finite U -rank
which does not have finite Morley rank, so we give a proof of the socle theorem in the more
general finite U -rank case in Appendix A. Theorem 4.8 then follows from Proposition
A.6 and Theorem A.8, since every type-definable subgroup of H can be written as an
intersection of definable subgroups of H.

Lemma 4.9. Let H be a type-definable group over B, and let X, Y be fully orthogonal
type-definable subgroups of H over A ⊇ B. Then X + Y is rigid.

Proof. We first note that any definable subgroup of X + Y is the image of a definable
subgroup of X × Y under the A-definable map + : X × Y → X + Y , so it suffices to
show that X × Y is rigid. By Proposition 3.7, since X ⊥ Y , every definable subset of
X × Y is a finite union of sets X ′ × Y ′ with X ′ definable in X and Y ′ definable in Y .
So a connected definable subgroup of X × Y is a product of a definable subgroup of X
and a definable subgroup of Y . It follows that if Z is a definable subgroup of X × Y then
there exist X1, X2 definable subgroups of X and Y1, Y2 definable subgroups of Y such that
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X1×Y1 ≤ Z ≤ X2×Y2 and [X2×Y2 : X1×Y1] < !. Since X and Y are rigid, X1×Y1 and
X2 × Y2 are over acl(A), so Z is a finite union of acl(A)-definable translates of X1 × Y1,
and hence is itself over acl(A). So X × Y is rigid, and hence so is X + Y .

Theorem 4.10. Let S be a semiabelian variety over L. Let H ≤ S(L) be a type-definable
subgroup of finite U-rank. Let X ⊆ S be a subvariety over L. Then there exist X1, . . . , Xl,
k-special subvarieties of X, such that

X(L) ∩H =
l∪

i=1

Xi(L) ∩H

Proof. As in previous proofs, we let X1, . . . , Xl be the irreducible components of X(L) ∩H.
We fix some 1 ≤ r ≤ l and show that Xr is k-special. As in the previous section we may
assume that stabg(Xr) = {0} by working in S/ stabg(Xr). Let p be a complete type in
Xr(L) ∩H over A = acl(A) such that everything is over A, stab(p) = {0} and Y = p(x)L

is Zariski-dense in Xr. Such a p exists by Lemma 4.4.

Claim 4.10.1. socle(H) is rigid.

Proof of Claim 4.10.1 As socle(H) is semipluriminimal it has an orthogonal decomposition
socle(H) = H1 + . . . + Hm. The sum of two fully orthogonal rigid subgroups is rigid by
the previous lemma, so by induction it suffices to show that each Hi is rigid. So fix some
1 ≤ i ≤ m. If Hi is not one-based, then by Proposition 3.19 Hi is definably isomorphic
to the k-points of a semiabelian variety over k. Semiabelian varieties are rigid over k (see
Lemma B.7), and so Hi is rigid. Otherwise Hi is one-based, but one-based groups are
always rigid. ⊣

By the socle theorem p(x)L is contained in a coset of socle(H). By translating every-
thing, we may assume that Y = p(x)L ⊆ socle(H). Then

Xr = Y

⊆ Xr(L) ∩ socle(H)

⊆ Xr(L)

= Xr

So Xr(L) ∩ socle(H) is Zariski-dense in Xr. Since socle(H) is semipluriminimal we can
apply Theorem 4.6 to get that there exist Z1, . . . , Zt, k-special subvarieties of Xr, such that

Xr(L) ∩ socle(H) =
t∪
i=1

Zi(L) ∩ socle(H)
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Then

Xr = Xr(L) ∩ socle(H)

=
t∪
i=1

Zi(L) ∩ socle(H)

=
t∪
i=1

Zi(L) ∩ socle(H)

=
t∪
i=1

Zi

So as Xr is irreducible, Xr = Zj for some j, and hence Xr is k-special as required.

4.3 Mordell-Lang in Positive Characteristic

Theorem 4.10 was the Mordell-Lang statement for finite U -rank type-definable subgroups
of semiabelian varieties. Now we leave the definable category to prove the arithmetic
Mordell-Lang statement in characteristic p > 0. The characteristic 0 case follows a similar
strategy, but we focus on the positive characteristic case for two reasons: First, the positive
characteristic case is the part of Hrushovski’s proof that was not already known, and second,
the characteristic 0 case is explained in detail in [4]. We drop our standing assumptions
about the fields L and k.

Theorem 4.11. Let F be an algebraically closed field of characteristic p > 0. Let S be a
semiabelian variety over F , and let X ⊆ S be a subvariety also over F . Let Γ′ ≤ S be a
finitely generated group. Let divp(Γ

′) = {y ∈ S(F ) : ny ∈ Γ′ for some n such that p ∤ n}.
Then for any Γ ≤ divp(Γ

′) there exist X1, . . . , Xl, special subvarieties of S, such that
Xi ⊆ X for all i, and

X(F ) ∩ Γ =
l∪

i=1

Xi(F ) ∩ Γ

Proof. As usual, we let X1, . . . , Xl be the irreducible components of X(F ) ∩ Γ, fix 1 ≤ r ≤ l
and show that Xr is special.

Let k = Falg
p , and let K be a finitely generated extension of k over which S and X are

defined, and such that the coordinates of the generators for Γ′ are all from K. Such an
extension exists because Γ′ is finitely generated, and each of S, X is defined by finitely
many polynomial equations, each having only finitely many coefficients. Moreover, since
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the group operation on S is defined by polynomial equations (with, again, finitely many
coefficients), we may also assume that + and − are defined over K. Let L = Ksep.

Claim 4.11.1. k = Lp
∞

.

Proof of Claim 4.11.1 Since k is algebraically closed and K/k is finitely generated there
exists a transcendence basis �1, . . . , �m for K over k such that K/k(�1, . . . , �m) is a sep-
arably algebraic extension (that such a transcendence basis exists is a standard fact from
algebra - see [13, Corollary 2.12]).

Let �(E) denote the degree of imperfection of a field E. We recall that, for a purely
transcendental extension E ′/E we have �(E ′) = �(E)+trdeg(E ′/E), while for a separably
algebraic extension E ′/E we have �(E ′) = �(E). We thus have

�(L) = �(K)

= �(k(�1, . . . , �m))

= �(k) + trdeg(k(�1, . . . , �m))

= 0 +m since k is perfect and k(�1, . . . , �m)/k is purely transcendental

= m

Hence L ∣= SCFp,m, and so its constant field Lp
∞

is algebraically closed (see Section 2.2.2).
We then compute

�(L) = �(Lp
∞

) + trdeg(L/Lp
∞

)

= 0 + trdeg(L/Lp
∞

) since Lp
∞

is perfect.

Hence m = trdeg(L/Lp
∞

). As k = kp
∞ ⊆ Lp

∞
are algebraically closed, and trdeg(L/k) =

m, we have k = Lp
∞

. ⊣

We will show that Xr is k-special.

Claim 4.11.2. Γ ≤ S(L).

Proof of Claim 4.11.2 By our choice of L, S and its group operations are defined over L
and the generators of Γ′ are elements of S(L), so Γ′ ≤ S(L). Note that for n ∈ ℕ such
that gcd(n, p) = 1 the multiplication map [n] : S → S is a separable morphism. Suppose
g ∈ Γ. As Γ ≤ divp(Γ

′) there is some n ∈ ℕ such that gcd(n, p) = 1 and ng ∈ Γ′. Since [n]
is separable and ng ∈ S(L) we get that g ∈ S(Lsep) = S(L). Hence Γ ≤ S(L). ⊣

So Xr(F ) ∩ Γ = Xr(L) ∩ Γ, and so Xr(L) ∩ Γ is Zariski-dense in Xr. Note that we are
approaching the setting of the previous chapters. We have L ∣= SCFp,m, k is the field of
constants, and Xr(L) ∩ Γ is Zariski-dense in Xr. However, Γ is not type-definable, and L
may not be saturated. We first deal with replacing L by a saturated model.
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Let L∗ be a saturated elementary extension of L (in the sense of SCFp,m). Let k∗ =
(L∗)p

∞
. Let ℒ′ = {+,−, ⋅, 0, 1, k0} where k0 is a new unary relation symbol. We will be us-

ing k0 to represent the constant field in a larger field, so we abbreviate (Lalg,+,−, ⋅, 0, 1, k)
by (Lalg, k).

Claim 4.11.3. As structures in the language ℒ′, (Lalg, k) ⪯ ((L∗)alg, k∗).

Proof of Claim 4.11.3 Since L∗ ∣= SCFp,m k∗ = (L∗)p
∞ ∣= ACFp. We are therefore

considering pairs of models of ACFp. It is clear from the fact that L ⊆ L∗ that (Lalg, k) ⊆
((L∗)alg, k∗). We wish to use the fact that (Lalg, k) ⪯ ((L∗)alg, k∗) if and only if (Lalg, k) ⊆
((L∗)alg, k∗) and k∗ is algebraically disjoint from Lalg over k (see [28, Theorem 8]). Since we
are working with algebraically closed fields algebraic disjointedness is equivalent to linear
disjointedness. So it remains to show that k∗ is linearly disjoint from Lalg over k.

We first show that (L∗)p
n

is linearly disjoint from Lalg over Lp
n

for each n. Let
v1, . . . , vm ∈ F be linearly independent over Lp

n
. So for all �1, . . . , �m ∈ Lp

n
we have∑m

i=1 �ivi = 0⇒ �1 = . . . = �m = 0. Since Lp
n

is definable in (L, 0, 1,+,−, ⋅) the previous
sentence is expressible as a first-order sentence, and hence remains true in the elementary
extension L∗. That is, v1, . . . , vm remain linearly independent over (L∗)p

n
.

Now we show that k∗ is linearly disjoint from Lalg over k. Let v1, . . . , vn ∈ k∗ be linearly
dependent over Lalg. We must show that they are also linearly dependent over k. We may
assume that every subset vi1 , . . . , vim is linearly independent over Lalg, since if not we can
replace the vi’s with a subset having this property. Let �1, . . . , �n ∈ Lalg be not all 0
and such that

∑n
i=1 �ivi = 0. Then since every proper subset of {v1, . . . , vn} is linearly

independent we get that for all i �i ∕= 0. Further, since {v2, . . . , vn} are linearly independent
and v1 ∈ span {v2, . . . , vn} there is a unique way of expressing v1 as a linear combination
of v2, . . . , vn. Hence, by dividing by �1, we may assume that �1 = 1, and this uniquely
determines the remaining �i’s. Consider any r ≥ 1. We have that v1, . . . , vn ∈ (L∗)p

r
are

linearly dependent over Lalg, so since we have already shown that (L∗)p
r

is linearly disjoint
from Lalg over Lp

r
it follows that v1, . . . vn are linearly dependent over Lp

r ⊆ Lalg. Let
�1, . . . , �n ∈ Lp

r
be not all 0 such that

∑n
i=1 �ivi = 0. Then we again have that �i ∕= 0 for

all i, and we can assume that �1 = 1. Then
∑n

i=2 �ivi =
∑

i=2 �ivi, so since {v2, . . . , vn} is
linearly independent we have �i = �i ∈ Lp

r
for all i. Hence for all i we have �i ∈ Lp

∞
= k,

so v1, . . . , vn are linearly dependent over k. ⊣

Claim 4.11.4. If Xr is k∗-special then Xr is k-special.

Proof of Claim 4.11.4 Suppose that Xr is k∗-special. This means that there is an algebraic
subgroup S ′ ≤ S, a semiabelian variety S0 over k∗, a surjective rational homomorphism
ℎ : S ′ → S0, a subvariety X0 ⊆ S0 also over k∗, and a c such that Xr = c + ℎ−1(X0). We
first note that, being a variety over k∗, S0 is definable in ((L∗)alg, k∗), say by a formula �S0 .
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As a semiabelian variety there is a short exact sequence 0 → T0 →f1 S0 →f2 A0 → 0 for
some algebraic torus T0 and some abelian variety A0. Again Gt

m and A0 are definable say
by formulae �T0 and �A0 . Since the maps f1 and f2 are morphisms they are definable by
formulae �f1 and �f2 . Then the statement “�f1 defines an injective group homomorphism,
�f2 defines a surjective group homomorphism, and ker f2 = im f1” can be expressed as a
first-order sentence, as can the statements “�T0 defines a torus” and “�A0 is a projective
algebraic group”. Combining these sentences yields a sentence which says “�S0 defines a
semiabelian variety”. So �S0 interpreted in (L, k) defines a semiabelian variety S1 over
k. Similarly there is a formula �S′ defining S ′, and “�S′ defines an algebraic subgroup of
S” is expressible as a first-order sentence, so �S′ interpreted in (L, k) gives an algebraic
subgroup S ′1 ≤ S. The function ℎ, being rational, is definable by a formula �ℎ. Then
“�ℎ defines a surjective homomorphism” is a first-order sentence, so �ℎ defines a surjective
rational homomorphism ℎ1 : S ′1 → S1 when interpreted in (L, k). Finally, letting �X0

be the formula defining X0, �X0 defines a subvariety X1 of S1, and there is a first-order
sentence expressing “There exists c such that Xr = c + ℎ−1(X0). When interpreted in
(L, k) this means that there is some c1 such that Xr = c1 + ℎ−11 (X1), so Xr is k-special. ⊣

In light of Claim 4.11.4 we relabel to assume that L is itself a saturated model of SCFp.
Of course, now k ∕= Falg

p .

Finally, and this is the main step, we need to relate Γ to a type-definable group of finite
U -rank. The goal will be to replace Γ by the type-definable group

∩
n p

nS(L). The first
thing to do is to show that Xr ∩ (

∩
n p

nS(L)) is Zariski-dense in Xr.

Claim 4.11.5. For all n ≥ 0 the quotient divp(Γ
′)/pn divp(Γ

′) is finite.

Proof of Claim 4.11.5 Fix n ≥ 0. As Γ′ is finitely generated the quotient Γ′/pnΓ′ is a
finitely generated ℤ/pnℤ-module, and hence is in fact finite. The inclusion Γ′ ≤ divp(Γ

′)
induces a map � : Γ′/pnΓ′ → divp(Γ

′)/pn divp(Γ
′) given by �(a + pnΓ′) = a + pn divp(Γ

′).
We show that � is surjective.

Consider any coset g+pn divp(Γ
′) ∈ divp(Γ

′)/pn divp(Γ
′). Since g ∈ divp(Γ

′) there exists
l ∈ ℤ such that gcd(l, p) = 1 and lg ∈ Γ′. Then also gcd(l, pn) = 1, so there exist x, y ∈ ℤ
such that lx+ pny = 1. So

g − pnyg = g − (1− lx)g

= g − g + lxg

= lxg

Hence lxg ≡ g(mod pn divp(Γ
′)). Note that lxg = x(lg) ∈ Γ′. So �(lxg + pnΓ′) = g +

pn divp(Γ
′). Hence � is surjective. ⊣

47



Claim 4.11.6. For all n < ! there exists an ∈ divp(Γ
′) such that (an+pn divp(Γ

′))∩Xr(L)
is Zariski-dense in Xr.

Proof of Claim 4.11.6 Fix n < !. By Claim 4.11.5 divp(Γ
′)/pn divp(Γ

′) is finite, say having
size t < !. There thus exist b1, . . . , bt ∈ divp(Γ

′) such that divp(Γ
′) = (b1 + pn divp(Γ

′)) ∪
. . .∪(bt+p

n divp(Γ
′)). Recalling thatXr(L)∩Γ is Zariski-dense inXr, and that Γ ≤ divp(Γ

′),
we thus have

Xr = divp(Γ′) ∩Xr(L)

=

(
t∪
i=1

bi + pn divp(Γ′)

)
∩Xr(L)

=
t∪
i=1

(bi + pn divp(Γ′)) ∩Xr(L)

Since Xr is irreducible, there is some 1 ≤ j ≤ t such that Xr = bj + pn divp(Γ′). So an = bj
is the required element of divp(Γ

′). ⊣

Let p∞ divp(Γ
′) =

∩∞
n=0 p

n divp(Γ
′).

Claim 4.11.7. There exists g ∈ S(L) such that Xr(L)∩ (g+ p∞ divp(Γ
′)) is Zariski-dense

in Xr.

Proof of Claim 4.11.7 For each n < ! let �n(x) be the type expressing “(x+pn divp(Γ
′))∩

Xr(L) is Zariski-dense in Xr”. Let Θ(x) =
∪∞
n=0 �n(x), and let Θ′(x) be any finite subset of

Θ(x). Let N < ! be the largest value of n such that �n(x) ⊆ Θ′(x). By Claim 4.11.6 there
exists gN such that ∣= �N(gN). Then for any m < N , we have pm divp(Γ

′) ⊇ pN divp(Γ
′),

and so

Xr ⊇ (gN + pm divp(Γ′)) ∩Xr

⊇ (gN + pN divp(Γ′)) ∩Xr

= Xr

So we have ∣= �m(gN). Thus ∣= Θ′(gN). By compactness Θ(x) is satisfiable, and by
saturation we thus have g ∈ S(L) such that ∣= Θ(g), so g + pn divp(Γ

′) ∩Xr(L) is Zariski-
dense in Xr for all n < !. Then, as it follows from saturation that a definable intersection of
nested Zariski-dense subsets ofXr is again Zariski-dense inXr, (g + p∞ divp(Γ′)) ∩Xr(L) =
Xr as required. ⊣

After applying Claim 4.11.7 we can translate to assume that g = 0; that is, we may
assume that Xr(L) ∩ p∞ divp(Γ

′) is Zariski-dense in Xr. Letting p∞S(L) =
∩
n p

nS(L) we
then have that Xr(L) ∩ p∞S(L) is Zariski-dense in Xr.
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Fact 4.12. p∞S(L) is a type-definable subgroup of S(L) of finite U-rank.

Proof. p∞S(L) is visibly a type-definable subgroup of S(L). For the fact that it is of finite
U -rank, see [8, Proposition 5.8]

Now by Theorem 4.10 applied to p∞S(L), we have that there exist Z1, . . . , Zm, k-special
subvarieties of Xr, such that

Xr(L) ∩ p∞S(L) =
m∪
i=1

Zi(L) ∩ p∞S(L)

Then

Xr = Xr(L) ∩ p∞S(L)

=
m∪
i=1

Zi(L) ∩ p∞S(L)

=
m∪
i=1

Zi(L) ∩ p∞S(L)

=
m∪
i=1

Zi

So since Xr is irreducible there is some i such that Xr = Zi, and hence Xr is k-special as
required.
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Appendix A

Groups of Finite U-Rank : The Socle
Theorem

In this appendix we present a proof of the finite U -rank version of Hrushovski’s socle the-
orem. There are several well-known expositions of the socle theorem in the case of finite
Morley rank, including [4, Proposition 2.10], [27, Proposition 5.29], and Hrushovski’s orig-
inal presentation in [10, Proposition 4.3]. However, in positive characteristic, Hrushovski’s
proof of Mordell-Lang requires a version of this theorem for groups of finite U -rank. It ap-
pears to be generally known amongst experts that Hrushovski’s argument can be modified
to work in this setting, though to our knowledge these details have not been written down.
We therefore take this opportunity to do so.

Throughout U is a universal domain for a complete stable theory T . G is a commutative
type-definable group in U with U(G) < !. We write G additively. As usual we work
throughout in U eq without mention.

In what follows we will describe the socle of G, which will turn out to be a type-
definable subgroup of G. Some of the difficulty in extending the Socle Theorem to the
finite U -rank setting will be that the socle need not be (relatively) definable in G. For
example, we would like to work in G/ socle(G), but in general quotients of type-definable
sets by type-definable equivalence relations are not even type-definable. Nevertheless, the
next result shows that we can still view cosets of connected subgroups as elements, though
we cannot necessarily collect them into a type-definable set.

Proposition A.1. Let H ≤ G be a connected type-definable subgroup, and let A be param-
eters over which G and H are defined. Then for any a ∈ G the coset a + H has a “code
over A”. That is, there is a finite tuple b such that a + H is type-definable over A ∪ {b}
and for any � ∈ AutA(U), �(a+H) = a+H if and only if �(b) = b.
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Proof. We saw in Proposition 1.9 that it follows just from stability that there exists B ⊇ A
such that a + H is type-definable over B and for all � ∈ AutA(U), �(a + H) = a + H if
and only if �∣B = id. We now use superstability to find a finite tuple b from B such that
B ⊆ dcl(A ∪ {b}). This b then satisfies the conclusions of the proposition to be proved.

Let a′ ∈ a+H be generic over B, and let p = tp(a′/B).

Claim A.1.1. p is a stationary type.

Proof of Claim A.1.1 Take any C ⊇ B, and suppose that q1, q2 are two non-forking
extensions of p to C ∪ {a}. Then both −a + q1 and −a + q2 extend H, and moreover
U(−a+ q1) = U(−a+ q2) = U(p), so both are generic in H. Since H is connected it has a
unique generic type over C ∪ {a}, so −a+ q1 = −a+ q2, and hence q1 = q2 as required. ⊣

By superstability (in this case, finite U -rank) there exists a finite tuple b from B such
that cb(p) = dcl(b). Take any � ∈ AutA(U) and suppose that �(b) = b. Since � fixes A
pointwise and H was defined over A, � must permute the cosets of H in G. Since p is
stationary and cb(p) = dcl(b), p and �(p) have a common non-forking extension. It follows
that a + H and �(a + H) = �(a) + H are not disjoint, and hence �(a + H) = a + H. By
the choice of B this implies �∣B = id. That is, B ⊆ dcl(A ∪ {b}), as desired.

A.1 Zilber Indecomposibility

In this section we present some results about groups of finite U -rank. In particular, we
describe a generalization of Zilber’s Indecomposibility Theorem on groups of finite Morley
rank to the finite U -rank setting, which is due to Chantal Berline and Daniel Lascar in
[2]. Berline and Lascar, in fact, develop a theory of indecomposibility in the setting of
superstable groups; we present here only the special case when U(G) < !.

Definition A.2. Let X be a type-definable set in G. Then X is indecomposible if, for
each definable subgroup H ≤ G, either X is contained in a single coset of H or X meets
infinitely many distinct cosets of H.

Intuitively the notion of indecomposibility is a kind of “connectedness” for subsets of
G which might not be subgroups. Recall that a type-definable group is connected if it has
no finite index proper definable subgroups. Connectedness and indecomposibility agree for
subgroups of G.

For another example of indecomposibility, the set of realizations of a complete stationary
type is indecomposible. Translates of indecomposible sets are also indecomposible.

The following theorem is a generalization of Zilber’s Indecomposibility Theorem on
groups of finite Morley rank, and is the case � = � = 0 of [2, Theorem V.3.1].
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Theorem A.3 (Zilber Indecomposibility). Suppose that {Xi : i ∈ I} is a set of indecom-
posible type-definable subsets of G such that 0G ∈ Xi for each i. Let H = ⟨Xi : i ∈ I⟩
be the (abstract) subgroup generated by the Xi’s. Then H is type-definable and connected,
and there exist i1, . . . , in ∈ I such that

H = Xi1 +Xi2 + ⋅ ⋅ ⋅+Xin

In particular, if the Xi’s are (relatively) definable in G then H is also.

A.2 The Socle

Definition A.4. The socle of G, socle(G), is the subgroup of G generated by all connected
type-definable semiminimal subgroups of G.

Lemma A.5. socle(G) is a connected, type-definable, semipluriminimal subgroup of G.
Moreover, there exist G1, . . . , Gl, connected, type-definable, semiminimal subgroups of G,
such that socle(G) = G1 + . . .+Gl and for each 1 ≤ i ≤ n, Gi ⊥

∑
j ∕=iGj.

Proof. Let ℱ = {H ≤ G : H is connected, type-definable, and semiminimal}. So socle(G) =
⟨ℱ⟩. Then any H ∈ ℱ is indecomposable and contains 0G, so we can apply the finite U -rank
version of the Zilber Indecomposibility Theorem (Theorem A.3) to ℱ . We get that socle(G)
is connected and type-definable in G, and socle(G) = H1+⋅ ⋅ ⋅+Hl for some H1, . . . , Hl ∈ ℱ .
We choose l to be minimal with the property that such a decomposition of socle(G) exists.
Suppose that Hi ⊆ acl(Xi ∪Fi). Let F = ∪li=1Fi. Then socle(G) ⊆ acl(X1 ∪ . . .∪Xl ∪F ),
so socle(G) is semipluriminimal. It remains to show that we can choose the Hi’s to have
the desired orthogonality property.

Fix a minimal set X, and let ℋX denote the collection of all connected type-definable
subgroups H of G such that H ⊆ acl(X ∪ F ) for some finite set F . By the Zilber In-
decomposibility Theorem ⟨ℋX⟩ ∈ ℋX . For each 1 ≤ i ≤ l let Gi = ⟨ℋXi

⟩, so Gi ⊇ Hi

for all i. By definition of socle(G) we have Gi ⊆ socle(G) for all i, so the decomposition
socle(G) = H1 + . . .+Hl implies socle(G) = G1 + . . .+Gl as well. If X ∕⊥ Y are minimal
then they are, up to finite sets, interalgebraic, and so ⟨ℋX⟩ = ⟨ℋY ⟩. So it follows from
minimality of l that Gi ⊥ Gj for all i ∕= j.

Now fix any 1 ≤ i ≤ n. Note that by the Zilber Indecomposibility Theorem, since the
Gi’s are connected,

∑
j ∕=iGj is indeed type-definable, so the claim Gi ⊥

∑
j ∕=iGj makes

sense. By Lemma 3.5, since Gi ⊥ Gj for all i ∕= j, we have Gi ⊥
∏

j ∕=iGj. Take any a ∈ Gi,
b ∈

∑
j ∕=iGj, and A parameters over which all the Gi’s are defined. Write b =

∑
j ∕=i bj for

some bj ∈ Gj. Then a ∣⌣A
(bj)j ∕=i, and hence a ∣⌣A

b as required.
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Theorem A.6. socle(G) is the unique maximal connected type-definable semiplurminimal
subgroup of G.

Proof. The previous lemma showed the socle(G) is a connected type-definable semipluri-
minimal subgroup of G. Note also that the sum H1 + H2 of type-definable, connected,
semipluriminimal subgroups is again type-definable, connected, and semipluriminimal. In-
deed, ⟨H1, H2⟩ = H1 +H2, and by Theorem A.3 ⟨H1, H2⟩ is type-definable and connected.
It is clear that the sum of semipluriminimal groups is again semipluriminimal. So max-
imality will imply unique maximality. All that is left is to see that socle(G) is maximal
amongst connected type-definable semiplurminimal subgroups of G.

Towards a contradiction, suppose that H is a connected type-definable semiplurimini-
mal subgroup of G such that socle(G) ⊊ H. As a type-definable subgroup of H, socle(G) is
an intersection of definable subgroups of H (see Fact 1.8). As socle(G) ∕= H some of these
definable subgroups are proper, and hence of strictly smaller U -rank than H since H is
connected. So U(socle(G)) < U(H). We will find a type-definable connected semiminimal
subgroup of H that meets infinitely many cosets of socle(G), contradicting the definition
of socle(G).

We have H ⊆ acl(Y1 ∪ . . . ∪ Yd ∪A) where Y1, . . . , Yd are minimal and A is a finite set.
Expand A if necessary so that G, socle(G), H, Y1, . . . , Yd are all defined over A. Let a ∈ H
be generic over A. Let a be a finite tuple which is a code for a + socle(G) over A, as in
Proposition A.1. If a ∈ acl(A) then a + socle(G) is type-definable over acl(A), and hence
we can compute:

U(H) = U(a/A)

= U(a/ acl(A))

≤ U(a+ socle(G))

= U(socle(G))

This contradicts the above observation that U(H) > U(socle(G)), so a ∕∈ acl(A).

Since a ∈ acl(Y1 ∪ . . . ∪ Yd ∪ A) there is some finite Y ⊆ Y1 ∪ . . . ∪ Yd such that
a ∈ acl(Y ∪ A). We may choose Y to be minimal among all such subsets. Note that this
means that Y is an acl-independent set over A. Let Y ′ ⊆ Y be such that a ∕∈ acl(Y ′ ∪A),
and take Y ′ to be maximal among all such subsets of Y . We know that such Y ′ exist since
a ∕∈ acl(A). Also, as a ∈ acl(Y ∪ A), Y ′ ∕= Y .

Claim A.6.1. Fix y0 ∈ Y ∖Y ′. Both a and a are interalgebraic with y0 over A∪(Y ∖{y0}).

Proof of Claim A.6.1 We already have a ∈ acl(A ∪ {a}) ⊆ acl(A ∪ Y ). By the maximal
choice of Y ′ we have a ∈ acl(A ∪ Y ′ ∪ {y0}) ∖ acl(A ∪ Y ′). So a ∕ ∣⌣A∪Y ′ y0. Then since

54



y0 comes from some Yi, which is minimal, symmetry gives y0 ∈ acl(A ∪ Y ′ ∪ {a}) ⊆
acl(A ∪ (Y ∖ {y0}) ∪ {a}). So a and y0 are interalgebraic over A ∪ (Y ∖ {y0}).

Next we consider a. We again already have a ∈ acl(A ∪ Y ). On the other hand, since
a ∕ ∣⌣A∪Y ′ y0 and a ∈ dcl(A ∪ a), we also have a ∕ ∣⌣A∪Y ′ y0. So as above symmetry and
minimality of the Yi’s gives y0 ∈ acl(A ∪ Y ′ ∪ {a}). So a is interalgebraic with y0 over
A ∪ (Y ∖ Y ′). ⊣

Let B = A ∪ (Y ∖ {y0}), p = tp(a/ acl(B)), and q = tp(a/ acl(B)). Then since
U(y0/B) = 1 the above shows that U(p) = U(q) = 1. It follows that X = qU is min-
imal and indecomposible, and hence ⟨X − a⟩ is a connected type-definable semiminimal
subgroup of H. Hence ⟨X − a⟩ ⊆ socle(G) by definition of socle(G). On the other hand,
since U(p) > 0, a has infinitely many conjugates under automorphisms fixing B, and so
a+ socle(G) also has infinitely many such conjugates, each of which is a coset of socle(G).
Moreover, as X is type-definable over B and a + socle(G) intersects X, each of these
conjugates of a + socle(G) also intersects X. Thus X intersects infinitely many cosets of
socle(G), and hence so does ⟨X − a⟩. This is the desired contradiction.

Corollary A.7. Suppose that G is connected and semipluriminimal. Then there exist
connected, type-definable, semiminimal subgroups G1, . . . , Gl such that G = G1 + . . . + Gl

and for each 1 ≤ i ≤ l, Gi ⊥
∑

j ∕=iGj.

Proof. The above theorem shows that if G is semipluriminimal then G = socle(G), so the
result follows immediately from Lemma A.5.

A.3 The Socle Theorem

Theorem A.8. Let A = acl(A) be parameters over which G and socle(G) are defined.
Take a ∈ G, and let p(x) = tp(a/A). Suppose that

1. Every connected type-definable subgroup of socle(G) is defined over A.

2. stab(p) is finite. (See Section 3.2 for the definition of stab(p).)

Then all the realizations of p are contained in a single coset of socle(G).

Proof. The proof is by contradiction. We aim to produce a connected type-definable sub-
group of G which is semipluriminimal and not contained in socle(G), contradicting Propo-
sition 3.17.
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Let a be a finite tuple such that a codes a + socle(G) over A (see Proposition A.1).
Let X = pU . We write Ga for a + socle(G). As A = acl(A), if tp(a/A) is algebraic then
a ∈ A, and so X ⊆ Ga = a + socle(G), as desired. So we may assume that tp(a/A) is
non-algebraic. Let Xa = Ga ∩X.

The next step of the proof is to show that there is a complete algebraic type in Ga over
parameters from socle(G)∪A∪{a}. Consider ℱ , the collection of all complete global types
q extending Ga and such that cb(q) ⊆ acl(socle(G) ∪ A ∪ {a}). Note that Ga is a partial
type over A∪ {a}, so any global non-forking extension of any completion of Ga is in ℱ ; in
particular, ℱ ∕= ∅. Let q ∈ ℱ be of minimal U -rank amongst the elements of ℱ , and let q
be the restriction of q to C = acl(cb(q) ∪ A ∪ {a}). Let Q = qU , H = stab(q) ∩ socle(G),
and H∘ be the connected component of H.

Claim A.8.1. For any c, c′ ∣= q and any parameter set D such that C ⊆ D ⊆ acl(socle(G)∪
A ∪ {a}) we have c ∣⌣C

D and tp(c/D) = tp(c′/D).

Proof of Claim A.8.1 Let q′ be any extension of q to D, and let q′ be a global non-forking
extension of q′. Then q′ ∈ ℱ , and U(q) = U(q) ≤ U(q′) = U(q’), so by minimality of
U(q) we get U(q′) = U(q), that is, q′ is a non-forking extension of q. So every extension of
q to D is non-forking, and so c ∣⌣C

D.

The above shows that tp(c/D) and tp(c′/D) are both non-forking extensions of q to
D. Since q is over an algebraically closed set of parameters it is stationary. In particular
it has a unique non-forking extension to D, so tp(c/D) = tp(c′/D). ⊣

Claim A.8.2. Q is invariant under translation by elements of H.

Proof of Claim A.8.2 Take any c ∈ Q, ℎ ∈ H. We must show ℎ+ c ∈ Q. By Claim A.8.1
we have c ∣⌣C

ℎ. Since ℎ ∣= stab(q) and c ∣= q we have ℎ+c ∣= q (see Fact 1.14), as desired.
⊣

Claim A.8.3. Xa is invariant under translation by elements of H.

Proof of Claim A.8.3 Fix any a′ ∈ Xa, ℎ ∈ H. We show that a′ + ℎ ∈ Xa. Let c ∈ Q be
arbitrary. Since q extends Ga = a + socle(G) we have c = a + t1 for some t1 ∈ socle(G).
Also Xa ⊆ a+ socle(G), so a′ = a+ t2 for some t2 ∈ socle(G). Let s = t2 − t1 ∈ socle(G).
Then a′ = s+ c.

As c ∈ Q and ℎ ∈ H Claim A.8.2 gives ℎ + c ∈ Q. By Claim A.8.1 we get tp(c/C ∪
{s}) = tp(ℎ + c/C ∪ {s}). Let � ∈ AutC∪{s}(U) be such that �(c) = ℎ + c. Then
�(a′) = �(s+ c) = s+�(c) = s+ℎ+ c = a′+ℎ. As � fixes A∪{a} pointwise, a′+ℎ ∈ Xa.
⊣

Claim A.8.4. H∘ ⊆ stab(p).
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Proof of Claim A.8.4 By assumption (1) the type-definable subgroup H∘ is defined over
A. Fix d ∈ H∘. Let d′ realize a non-forking extension of tp(d/A) to A ∪ {a}, so d′ ∣⌣A

a.
As stab(p) is defined over A it suffices to show that d′ ∈ stab(p). Pick a′ ∈ Xa such that
a′ ∣⌣A∪{a} d

′. So a′ ∣⌣A
d′ by transitivity. Also a′ ∣= p since a′ ∈ Xa ⊆ X. Since Xa is H∘

translation-invariant d′ + a′ ∈ Xa, and hence (d′ + a′) ∣= p. By Fact 1.14 this shows that
d′ ∈ stab(p). ⊣

By Claim A.8.4 and the hypothesis that stab(p) is finite we have that H∘ is finite (hence
actually H∘ = {0}), and so H is finite since U(H∘) = U(H). Now fix any c ∈ Q. If z ∈ Q
then, since Q ⊆ a + socle(G), we have z − c ∈ socle(G). By Claim A.8.1 c ∣⌣A

z − c. As
(z − c) + c = z ∣= q, this gives z − c ∈ stab(q). So z − c ∈ H. We have shown Q ⊆ H + c.
Hence Q is finite. In fact, as q is stationary Q is a singleton, Q = {c}.

So we have found c ∈ Ga such that c ∈ acl(socle(G)∪A∪ {a}). Let A0 ⊆ A be a finite
set, �(x, y, z) an LA0-formula, and e a tuple from socle(G) be such that �(x, a, e) defines a
finite subset of Ga containing c. Since a is not algebraic over A there is a minimal type r
extending tp(a/A). Without loss of generality, we may assume that r = tp(a/B) for some
algebraically closed B ⊇ A.

Since a codes a+socle(G) = c+socle(G) over A, and c+socle(G) is defined over A∪{c},
we have that a ∈ dcl(A∪{c}). Let f be a (partial) A-definable function such that f(c) = a.
Let W = tp(c/B)U . We have that �(x, f(c), e) defines a finite subset of c + socle(G), and
∣= �(c, f(c), e). Now suppose that c′ ∈ W . Then there is some � ∈ AutB(U) such that
�(c) = c′. Note that f(c′) ∣= r. Indeed, f(c) = a ∣= r, and we have:

f(c′) = f(�(c))

= �(f(c))

= �(a)

So f(c′) ∣= r as well. Moreover, �(x, f(c′), �(e)) defines a finite subset of c′ + socle(G),
and ∣= �(c′, f(c′), �(e)). Since �(e) is also a tuple from socle(G), this shows that W ⊆
acl(A0 ∪ socle(G)∪ rU). Since r is minimal, socle(G) is semipluriminimal, and A0 is finite,
this shows that W is semipluriminimal.

We next see that W meets infinitely many cosets of socle(G) in G. We have that f(c)
is a code for c+ socle(G) over A, and f(c) ∣= r. Since U(r) = 1 this means, in particular,
that f(c) ∕∈ acl(B). So there are infinitely many conjugates of f(c) under automorphisms
fixing B pointwise. Hence there are infinitely many conjugates of c + socle(G) under
automorphisms fixing B pointwise. Each such automorphism permutes cosets of socle(G)
and preserves W , so W meets infinitely many cosets of socle(G).

Since B is algebraically closed W is the set of realizations of a complete stationary type,
and hence is indecomposible. Let W ′ be a translate of W such that 0G ∈ W ′. Then ⟨W ′⟩
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is a connected type-definable semipluriminimal subgroup of G, and so ⟨W ′⟩ ⊆ socle(G)
by Theorem A.6. This contradicts the fact that ⟨W ′⟩ meets infinitely many cosets of
socle(G).
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Appendix B

Miscellany

B.1 Model Theory

In this section we prove some model-theoretic facts which were needed in the proof of
Mordell-Lang. Throughout we assume that we are working inside a universal domain U of
a complete theory T which admits elimination of imaginaries. Every group we encounter
in the proof of Mordell-Lang is commutative, so we assume that all groups in this chapter
are commutative, and we write them additively.

Lemma B.1. Let {Nℎ : ℎ ∈ H} be a definable family of definable sets. Then there is a
definable function g : H → Um such that for each ℎ ∈ H g(ℎ) is a code for Nℎ, and
g(ℎ) = g(ℎ′) ⇐⇒ Nℎ = Nℎ′.

Proof. Let A be a parameter set over which H is defined and such that for each ℎ ∈ H,
Nℎ is defined over Aℎ. Consider any ℎ ∈ H, and let c be a code for Nℎ with the formula
�, so �(y, c)U = Nℎ, and for any z ∕= c we have �(y, z)U ∕= Nℎ. Then c ∈ dcl(Aℎ), so
there exists an A-definable function gℎ on an A-definable neighbourhood of ℎ such that
c = gℎ(ℎ). Define

Uℎ = {ℎ′ ∈ H : tp(ℎ′/A) = tp(ℎ/A), gℎ is defined on ℎ′, and gℎ(ℎ
′) with �(y, z) codes Nℎ′} .

Then since gℎ is A-definable we have that Uℎ is also A-definable, and by definition we have
that ℎ ∈ Uℎ and gℎ is defined on Uℎ. By elimination of imaginaries for T we have that gℎ
maps into U rℎ for some rℎ.

Consider now the collection ℱ = {Uℎ : ℎ ∈ H}. We have just seen that ℱ is an A-
definable cover of H. That is, H =

∪
ℎ∈H Uℎ. By saturation we actually only need finitely

many of the Uℎ’s, so for some ℎ1, . . . , ℎn ∈ H we have H = Uℎ1 ∪ . . . ∪ Uℎn . Let m =
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rℎ1 +⋅ ⋅ ⋅+rℎn . We view gℎi as a map into Um by setting the first rℎ1 +⋅ ⋅ ⋅+rℎi−1
coordinates

to 0, then the next rℎi coordinates to be gℎi , and then the remaining coordinates to be 0.
We still have that gℎi(ℎ) is a code for Nℎ for any ℎ ∈ Uℎi . Define g : H → Um by, for
each ℎ ∈ H, g(ℎ) = gℎi(ℎ), where i is minimal such that ℎ ∈ Uℎi . Then g is Aℎ1 . . . ℎn-
definable, and for each ℎ ∈ H g(ℎ) is a code for Nℎ by the definition of the gℎi ’s. Note that
if g(ℎ) = g(ℎ′) then by the construction of g we get that gℎi(ℎ) = gℎi(ℎ

′) for some i. In
particular, ℎ, ℎ′ ∈ Uℎi , so tp(ℎ/A) = tp(ℎ′/A). Let � ∈ AutA(U) be such that �(ℎ) = ℎ′.
Then �(Nℎ) = Nℎ′ . Also, �(g(ℎ)) = g(ℎ′) = g(ℎ), so �(Nℎ) = Nℎ. Hence Nℎ = Nℎ′ .

Lemma B.2. Let X be a type-definable set, and let E be a relatively definable equivalence
relation on X. Then there exists a type-definable set Y and a relatively definable surjection
f : X → Y such that f(x) = f(y) ⇐⇒ xEy. (We think of Y as X/E.)

Proof. Let Γ(x) = {�i(x) : i ∈ I} be a type such that Γ(x)U = X. We may assume that Γ
is closed under finite conjunctions.

We first show that there is a definable set A ⊇ X such that E is an equivalence relation
on A. Suppose to the contrary that there is no such A. For each i let  i(x, y, z) = �i(x)∧
�i(y) ∧ �i(z). Let Ψ(x, y, z) = {¬(xEx) ∨ ¬(xEy ↔ yEx) ∨ ¬(xEy ∧ yEz → xEz)} ∪
{ i(x, y, z) : i ∈ I}. Since Γ is closed under finite conjunctions any finite subset of Ψ
is equivalent to (¬(xEx)∨¬(xEy ↔ yEx)∨¬(xEy ∧ yEz → xEz))∧ i for some i. Since
�i does not define a set on which E is an equivalence relation this formula is realized.
Hence by saturation Ψ is realized, contradicting that E is an equivalence relation on X.
We let � be the formula defining the set A whose existence we have just proved.

For each i ∈ I let Xi = �i(x)U . Since X =
∩
i∈I Xi ⊆ A we may replace each �i by

�i ∧ �, and hence we may assume Xi ⊆ A for all i. By elimination of imaginaries there is
a definable set A′ and a definable surjection � : A→ A′ such that �(x) = �(y) ⇐⇒ xEy.
Let Y = �(X) and f = �∣X . All that remains is to see that Y is type-definable.

Define Yi = �(Xi) for each i ∈ I. Then each Yi is a definable set in the same sort as A′.
We will show Y =

∩
i∈I Yi. First suppose a ∈ Y . Then there is b ∈ X such that a = �(b).

Since b ∈ X we have b ∈ Xi for each i, so a ∈ Yi for each i as well. Conversely, suppose
that a ∈

∩
i∈I Yi. Then for each i ∈ I there is bi ∈ Xi such that �(bi) = a. For each i ∈ I

let  i(x) = “x ∈ Xi”∧ “�(x) = a”, and let Ψ(x) = { i(x) : i ∈ I}. Since Γ is closed under
finite conjunctions any finite subset of Ψ is equivalent to a formula  i(x) for some i ∈ I,
and hence is satisfied by bi. So by saturation Ψ is realized, say by b. Then by definition of
Ψ we have b ∈ Xi for all i ∈ I, so b ∈ X, and �(b) = a. So a ∈ Y .

Lemma B.3. Let X and Y be type-definable sets, and let f : X → Y be a type-definable
function. Then f is relatively definable.

Proof. Let A be parameters over which X, Y, f are defined. Let Φ(x, y) = {�i(x, y) : i ∈ I}
be a type which defines f . We may assume that Φ is closed under finite conjunctions.
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Consider any a ∈ X. It follows from saturation that there is some � ∈ Φ such that
there is a unique solution to �(a, y). Indeed, suppose that no such � exists. Let Ψ(y, z) =
{y ∕= z} ∪ {�i(a, y) ∧ �i(a, z) : i ∈ I}. Let Ψ′ be a finite subset of Ψ. Since Φ is closed
under finite conjunctions Ψ′ is equivalent to the formula �i(a, y)∧�i(a, z)∧ y ∕= z for some
i ∈ I. Since there is no � such that �(a, y) has a unique solution this formula is satisfiable,
and hence Ψ is realized. But any (b, c) ∣= Ψ has, in particular, (a, b) ∣= Φ and (a, c) ∣= Φ,
and b ∕= c. This contradicts that Φ defines the graph of a function.

For each a ∈ X let �a ∈ Φ be such that �a(a, y) has a unique solution. Let Ua =
{b : �a(b, y) has a unique solution}, and let  a(x, y) = �a(x, y) ∧ “x ∈ Ua”. Then for
any b ∈ X ∧ Ua,  a(b, y) has a unique solution, which must be f(b). So we have a
definable function ga on Ua such that ga∣Ua∩X = f ∣Ua∩X . Clearly the Ua’s cover X, and
are definable over A. By saturation only finitely many of the Ua’s are required to cover
X, say Uai , . . . , Uan . As we have seen before (for example, in the proof of Lemma B.1)
we can patch the functions ga1 , . . . , gan to get a definable function g on

∪n
i=1 Uai such that

g∣X = f .

Lemma B.4. Suppose that T is stable. Let p ∈ Sn(A), q ∈ Sm(B), with p stationary.

Then X =
{

(a, b) ∈ Un × Um : a ∣= p, b ∣= q, a ∣⌣A
b
}

is type-definable over A ∪B.

Proof. We note that this is clear from the definition of non-forking independence, as (a, b) ∈
X if and only if a ∣= p, b ∣= q, and b does not realize any forking formula over Aa.
Nevertheless, we have thus far chosen to avoid discussing the definition of forking, so we
present an alternative proof using definability of types.

Since p is stationary it has a unique non-forking extension to Ab, which we denote by
p ↿ Ab. Since T is stable the type p ↿ Ab is definable. That is, for any ℒA-formula �(x, y),
where x = (x1, . . . , xn) and y = (y1, . . . , ym), there is an ℒA-formula dp�(y) such that
∣= dp�(b) ⇐⇒ �(x, b) ∈ p ↿ Ab.

First, by stationarity of p, observe that (a, b) ∈ X if and only if b ∣= q, a ∣= p and
tp(a/Ab) = p ↿ Ab.

Claim B.4.1. For any a, b the following are equivalent:

1. tp(a/Ab) = p ↿ Ab.

2. For LA-formulae �(x, y), ∣= �(a, b) ⇐⇒ ∣= dp�(b).

Proof of Claim B.4.1 First suppose tp(a/Ab) = p ↿ Ab, and let �(x, y) be an LA-formula.
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Then

∣= �(a, b) ⇐⇒ �(x, b) ∈ tp(a/Ab)

⇐⇒ �(x, b) ∈ p ↿ Ab
⇐⇒ ∣= dp�(b) by definition of dp�(y).

Conversely, suppose that for any LA-formula �(x, y) we have ∣= �(a, b) ⇐⇒ ∣= dp�(b), and
let �(x, y) be any LA-formula. Then

�(x, b) ∈ p ↿ Ab ⇐⇒ ∣= dp�(b) by definition of dp�(y).

⇐⇒ ∣= �(a, b)

⇐⇒ �(x, b) ∈ tp(a/Ab)

⊣

By the claim (a, b) ∈ X if and only if a ∣= p, b ∣= q, and ∣= �(a, b) ⇐⇒ ∣= dp�(b) for all
LA-formulae �. SoX is defined by Γ(x, y) = p(x)∪q(y)∪{�(x, y)↔ dp�(y) : � an LA-formula.}.

B.2 Semiabelian Varieties

Here we collect various results about semiabelian varieties which are useful, but which
are not readily available in the literature. Many of the results that we prove in this
section generalize similar statements for abelian varieties; the reader desiring background
on abelian varieties should consult [14] or [20].

Definition B.5. Let S be a connected commutative algebraic group over a field k. We
say that S is a semiabelian variety if there exists an exact sequence

1 // T // S // A // 0

where A is an abelian variety, and T ∼= Gs
m over some algebraically closed L ≥ k for some

s ∈ ℕ.

Throughout this appendix we will make the usual identification of T with its image in
S, and hence also identify A with S/T .

Lemma B.6. Let S be a semiabelian variety over k. Then for all n ∈ ℕ, S has finite
n-torsion.
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Proof. Recall that G[n] denotes the n-torsion elements of an algebraic group G. Since S
is a semiabelian variety we have a short exact sequence as in the definition:

1 // T // S
� // A // 0

We have that �(S[n]) ⊆ A[n] and ker(�∣S[n]) ⊆ T [n]. So we have another exact sequence

1 // ker(�∣S[n]) // S[n] // �(S[n]) // 0

The abelian variety A has finite n-torsion (see [14, Corollary IV.2.1]), and it is clear that
T does as well. So S[n] is finite.

Lemma B.7. Let S be a semiabelian variety over an algebraically closed field L, and let
R ≤ S be a connected algebraic subgroup of S. Then R is itself a semiabelian variety over
L.

Proof. We have the short exact sequence from the definition of S being semiabelian:

0 // T // S
� // A // 0

Now let R ≤ S be a connected algebraic subgroup. Then since � is a morphism of algebraic
groups �(R) is an algebraic subgroup of A, and hence is also projective, so an abelian
variety. Also, R∩T is a connected algebraic subgroup of T . Since L is algebraically closed
T is isomorphic over L to Gs

m for some s. Since any connected algebraic subgroup of Gs
m

is equal to Gt
m for some t ≤ s (see [23, Theorem III.5]), the same isomorphism shows that

R ∩ T is isomorphic over L to Gt
m for some t ≤ s. Since the original sequence is exact so

is the sequence

0 // R ∩ T // R
� // �(R) // 0

So R is semiabelian.

Proposition B.8. Let S be a semiabelian variety over a field k. Then any algebraic
subgroup of S defined over some algebraically closed L ≥ k is in fact defined over kalg.

Proof. Note that the torsion points of S are all in S(kalg) since S is over k. Moreover, as
noted in [5, Remark 3.4], the torsion subgroup of S, Stor, is Zariski-dense in S. Let H ≤ S
be a connected algebraic subgroup defined over L, so H is again a semiabelian variety.
Then Htor ⊆ Stor ⊆ S(kalg), and so in fact Htor ⊆ H(kalg). Since Htor is Zariski-dense in
H we have that any � ∈ Autkalg(L) must fix H setwise, and so H is defined over kalg.

Proposition B.9. Let S be a semiabelian variety over an algebraically closed field L, and
let R ≤ S be an algebraic subgroup of S. Then S/R is a semiabelian variety over L, and
the canonical projection p : S → S/R is a rational map.
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Proof. Since S is semiabelian, we have a short exact sequence:

1 // T // S
� // A // 0

Let RT = R ∩ T and RA = �(R).

Claim B.9.1. The sequence

1 // T/RT
�∗ // S/R �∗ // A/RA

// 0

is exact, where �∗(t+RT ) = t+R and �∗(s+R) = �(s) +RA.

Proof of Claim B.9.1 It is easy to check that �∗ is injective and �∗ is surjective. All that
remains is to see that im(�∗) = ker(�∗).

First, suppose that x+R ∈ im(�∗). Then for some z ∈ T , x+R = z +R by definition
of �∗. Hence �∗(x+R) = �∗(z +R) = �(z) +RA = 0 +RA so x+R ∈ ker(�∗).

Conversely, suppose that a + R ∈ ker(�∗). Then �∗(a + R) = �(a) + RA = 0 + RA, so
�(a) ∈ RA = �(R). So there exists r ∈ R such that �(a) = �(r). Hence �(a − r) = 0,
so as ker(�) = T there exists t ∈ T such that a − r = t. Then a − t = r ∈ R, so
a+R = t+R = �∗(t+RT ), and so a+R ∈ im(�∗). Thus im(�∗) = ker(�∗) and the sequence
is exact. ⊣

That A/RA has the structure of an abelian variety is shown in [6]. As we have noted
earlier, identifying T with Gs

m, we get that RT = Gt
m for some t ≤ s. Hence T/RT = Gs−t

m

is again an algebraic torus, and S/R is semiabelian.

Lemma B.10. Let L be an algebraically closed field of characteristic p > 0, and let S be a
semiabelian variety over L. Then, for any n ∈ ℕ, S(pn) is also a semiabelian variety over
L.

Proof. Since S is defined over L so is S(pn). As S is an algebraic group, so is S(pn). It
remains only to see that S(pn) is semiabelian. Since S is semiabelian there is a short exact
sequence

1 // T // S
� // A // 0 ,

where T ∼= Gs
m over L for some s and A is an abelian variety over L. Hence there is a

short exact sequence

1 // T (pn) // S(pn) � // A(pn) // 0

The Frobenius automorphism Fr : k → k lifts to an injective algebraic group homomor-
phism from A to A(pn). As the homomorphic image of an abelian variety is again an abelian
variety, A(pn) is an abelian variety. On the other hand, Gm is fixed by the Frobenius, and
so (Gs

m)(p
n) = Gs

m. In particular, T (pn) ∼= T , and so the above exact sequence shows that
S(pn) is a semiabelian variety.
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