
EFFECTIVE ISOTRIVIAL MORDELL-LANG

IN POSITIVE CHARACTERISTIC

JASON BELL, DRAGOS GHIOCA, AND RAHIM MOOSA

Abstract. The isotrivial Mordell-Lang theorem of [MS04] describes the set

X ∩ Γ when X is a subvariety of a semiabelian variety G over a finite field Fq

and Γ is a finitely generated subgroup of G that is invariant under the q-power

Frobenius endomorphism F . That description is here made effective, and
extended to arbitrary commutative algebraic groups G and arbitrary finitely

generated Z[F]-submodules Γ. The approach is to use finite automata to give a

concrete description ofX∩Γ. These methods and results have new applications
even when specialised to the case when G is an abelian variety over a finite

field, X ⊆ G a subvariety defined over a function field K, and Γ = G(K).

As an application of the automata-theoretic approach, a dichotomy theorem is
established for the growth of the number of points in X(K) of bounded height.

As an application of the effective description of X ∩Γ, decision procedures are

given for the following three diophantine problems: Is X(K) nonempty? Is it
infinite? Does it contain an infinite coset?
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1. Introduction

The Mordell-Lang theorem, proved by Faltings [Fal94], is a celebrated result, which
describes the intersection of an algebraic subvariety X of a semiabelian variety G,
defined over a field of characteristic zero, with a finitely generated subgroup Γ of G.
Faltings’ theorem says that this intersection is a finite union of cosets of subgroups
of Γ, which, in particular, illustrates connections between the underlying geometric
and algebraic structures on G.

In positive characteristic the naive translation of Faltings’ theorem is no longer
true. For example, if one takes a smooth curve X of genus at least two defined
over a finite field Fq, then X embeds in its Jacobian, G. If one then picks a finitely
generated extension K of Fq such that X has a K-point x that is not a Falg

q -point
of X then the orbit of x under the action of the q-power Frobenius is infinite in X
and lies entirely in G(K), which is a finitely generated subgroup. But X(K) cannot
contain a coset of an infinite subgroup of G(K), since X would then be the Zariski
closure of this coset and hence itself an abelian variety, contradicting the fact that
it is of genus at least two.

Groundbreaking work of Hrushovski [Hru96] showed that in a natural sense
all counterexamples to the naive translation of the Mordell-Lang theorem to the
positive characteristic setting are of this type; namely, they arise from semiabelian
varieties over finite fields – the so-called isotrivial case. Indeed, Hrushovski [Hru96]
proved a relative function field version of positive characteristic Mordell-Lang in the
mid-nineties that treated the isotrivial case as exceptional. Hrushovski, however,
did not give a description of what general intersections look like in the isotrivial
case and this exceptional case was dealt with in later work of the third author and
Scanlon as follows:

Theorem 1.1 (Moosa-Scanlon [MS04]). Suppose G is a semiabelian variety over
a finite field Fq of prime characteristic p, and let F : G → G be the endomorphism
induced by the q-power Frobenius. Suppose X ⊆ G is a closed subvariety defined
over a field extension of Fq, and Γ ≤ G is a finitely generated F -invariant subgroup.
Then X ∩ Γ is a finite union of sets of the form S + Λ where S ⊆ Γ is a translate
of a sum of F -orbits and Λ is a subgroup.

Here, we are identifying G and X with their points in a sufficiently large alge-
braically closed field that serves as a universal domain for algebraic geometry in
characteristic p. Also, see Definition 2.1 below for a precise explanation of what we
mean by a “translate of a sum of F -orbits”, and for a comparison with the exact
formulation in [MS04].

Many classical diophantine problems can be realised as special cases of the
Mordell-Lang theorem. For example, a special case of the Skolem-Mahler-Lech the-
orem (see [EvdPSW03]) – asserting that the zero set of a simple linearly recurrent
sequence over a characteristic zero field is a finite union of arithmetic progressions
along with a finite set – can be obtained from Faltings’ theorem by taking the semi-
abelian variety to be Gd

m for some d ≥ 1 and Γ to be an infinite cyclic subgroup.
More generally, theorems on S-unit equations can be cast in this framework as well.

In light of these classical diophantine connections, it is very natural to ask
whether an effective version of the Mordell-Lang theorem exists. Questions of
effectivity and decidability within the context of diophantine problems enjoy a long
history and it is often the case that even basic questions of this nature are very
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difficult (see, for example, [CMP87]). For example, Skolem’s problem (see [OW12]),
which asks whether one can decide whether an integer-valued linearly recurrent se-
quence takes the value zero, is still open. This simple question can be recast in a
general Mordell-Lang framework as asking whether one can decide if certain cyclic
subgroups of commutative affine algebraic groups intersect certain hypersurfaces
non-trivially. When one goes beyond the cyclic case, questions of this nature are
known to be undecidable. For example, the solution to Hilbert’s tenth problem
(see [DMR76, Mat93]) shows that if Γ = Zd ⊆ Cd then it is undecidable whether Γ
intersects a hypersurface non-trivially for d sufficiently large. On the other hand,
in positive characteristic there has been a lot of recent work dealing with decid-
able phenomena of this type and many positive results have been obtained; see, for
example, [Der07, AB12, DM12, DM15, DM18].

In this paper we show that in the isotrivial case one indeed has an effective
version of a general Mordell-Lang theorem.

Theorem A. Let G be a commutative algebraic group defined over a finite field Fq,
let F : G → G be the q-power Frobenius, let X ⊆ G be a closed subvariety defined
over a field extension of Fq, and let Γ ≤ G be a finitely generated Z[F]-submodule.
Given presentations of G and X, along with a finite list of generators for Γ as a
Z[F]-submodule, there is an effective procedure for determining X ∩ Γ.

Our approach is not to make effective the proof of Theorem 1.1 from [MS04], but
rather to establish a new finiteness statement (Propoisition 5.1, below), effectively,
and then use that to explicitly construct, from the given data, a finite automaton
that recognises X ∩ Γ. This is done in Sections 4–6 below (see Theorem 6.3 and
the discussion following it in §6.1).

A word about how the theory of finite automata entered the picture. Inspired by
Dersken’s [Der07] proof of the Skolem-Mahler-Lech theorem in positive character-
istic (whose non-effective version is itself a very special case of Theorem 1.1), the
first and third authors developed in [BM19] a theory of automatic sets that applies
to the general isotrivial Mordell-Lang setting. Recall that, classically, a subset S of
the integers is said to be d-automatic, for some positive integer d, if there is a finite
automaton which recognises precisely the set of base-d expansions of the elements
of S. In [BM19] a generalisation is formulated where the integers are replaced by an
arbitrary abelian group (e.g., an isotrivial commutative algebraic group), and the
positive integer d (or rather multiplication-by-d) is replaced by an arbitrary injective
endomorphism of the abelian group (e.g., the Frobenius). This gives rise to a well-
behaved theory of F -automatic subsets of isotrivial commutative algebraic groups.
Details on F -automatic sets are both reviewed and appropriately generalised (from
finitely generated groups to finitely generated Z[F]-modules) in Section 3 below.
Theorem A is proved by showing that X ∩ Γ is effectively F -automatic.

As an application of Theorem A we focus on the central concern of the Mordell-
Lang problem: the set of rational points on a subvariety of an abelian variety.

Corollary 1.2. Suppose G is an abelian variety over Fq and X ⊆ G is a closed
subvariety over a function field extension K. Given presentations of G,X, and K,
there is an effective procedure for deciding the following problems:

(1) Is X(K) nonempty?
(2) Is X(K) infinite?
(3) Does X(K) contain a coset of an infinite subgroup of G?
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Such procedures are given in Section 7. Besides Theorem A, we make use of
an algorithm for producing generators for G(K) coming from the finiteness of the
Tate-Shafarevich group for abelian varieties over finite fields [Mil68].

The decision procedure for problem (3) of Corollary 1.2 makes use of the di-
chotomy between sparse and non-sparse regular languages. That dichotomy yields
the following gap theorem for the growth in the number of rational points of
bounded height:

Corollary 1.3. Suppose G is an abelian variety over Fq and X ⊆ G is a closed
subvariety over a function field extension K. Consider the Néron-Tate canonical
height on G. Then the number of points in X(K) of height at most H is either
bounded above by C(logH)d for some positive constants C and d, for H sufficiently

large, or it is bounded below by C ′
√
H for some positive constant C ′.

This appears as part of a stronger result (Theorem 8.1 below).
Beyond simply determining the intersection X ∩Γ in Theorem A, we are able to

give a general structure theorem that comes naturally from a careful analysis of the
F -automatic sets we produce. In particular, we generalise Theorem 1.1 as follows:

Theorem B. Let G be a commutative algebraic group defined over a finite field Fq,
let F : G → G be the q-power Frobenius, let X ⊆ G be a closed subvariety defined
over a field extension of Fq, and let Γ ≤ G be a finitely generated Z[F]-submodule.
Then X ∩Γ is a finite union of sets of the form S+Λ where S ⊆ Γ is is a translate
of a sum of F -orbits and Λ = H ∩ Γ for some H ≤ G an algebraic subgroup over a
finite field.

This appears as Theorem 9.1 below. The extension from semiabelian varieties to
arbitrary commutative algebraic groups is relatively straightforward, and is covered
in Section 2. But letting Γ be finitely generated as a Z[F]-module rather than as a
group takes more work and requires new methods. For example, the case of finitely
generated Z[F]-submodules of vector groups was dealt with already by the second
author in [Ghi08, Theorem 2.6], but it does not seem possible to combine this
with Theorem 1.1 to deduce Theorem B. We instead use the fact that X ∩ Γ is F -
automatic (this is Corollary 6.4 below) and then carefully analyse the structure of
F -automatic subsets of isotrivial commutative algebraic groups in Section 9. So this
does not rely on, but rather recovers and unifies, the results of [MS04] and [Ghi08].
In particular, we get an entirely new, automata-theoretic, proof of Theorem 1.1.

Although the results from [Ghi08, Theorem 2.6] and Theorem 1.1 are arguably
the two most important instances of Theorem B, there are nevertheless interesting
diophantine problems that involve interactions between the additive and multiplica-
tive structures of fields and are not covered by either result. For example, a very
special case of our Theorems A and B that may be of of independent interest is the
following. Given a finitely generated Z[F]-submodule Γ1 ⊂ Ga and a finitely gener-
ated subgroup Γ2 ⊂ Gm, we can consider the intersection Γ1 ∩ Γ2 inside the affine
line. Theorem B applies by considering G := Ga×Gm and intersecting Γ := Γ1×Γ2

with the diagonal X in G. We thus obtain a description of Γ1 ∩ Γ2. In fact, as the
diagonal is an F -invariant curve that is not the translate of an algebraic subgroup,
we conclude that Γ1 ∩Γ2 is a finite union of F -orbits. Moreover, using Theorem A,
given generators for Γ1 and Γ2, we obtain an effective algorithm for determining
the points P1, . . . , Pℓ such that Γ1 ∩ Γ2 is the union of the F -orbits of P1, . . . , Pℓ.
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Finally, let us note that the work of Derksen [Der07] on linear recurrences and
much of the work of Derksen and Masser [DM12, DM15, DM18] on S-unit equations
in positive characteristic can be recast in a way that is covered by our Theorem A
(see [BM19] for details). On the other hand, the effective result of Adamczewski
and the first author [AB12, Theorem 4.1] is not obviously covered by our work due
to the fact that we must work inside a commutative algebraic group; the ineffective
version, however, can be deduced from Theorem B.

Acknowledgements. We thank Bjorn Poonen and Felipe Voloch for many useful
remarks. We are also grateful to the anonymous referee for their useful comments
and suggestions, which improved our paper.

2. Mordell-Lang for finitely generated subgroups of isotrivial
commutative algebraic groups

It does not seem to have been observed before, though it follows rather readily from
combining Theorem 1.1 with known structure theorems about algebraic groups,
that the conclusions in fact hold for all commutative algebraic groups over finite
fields, and not just semiabelian varieties. This is a very different situation than
the Mordell-Lang theorem in characteristic zero, which fails, for example, in any
vector group of dimension greater than 1 (vector groups do not pose a problem here
because in positive characteristic their finitely generated subgroups are all finite).
For a more detailed discussion of the Mordell-Lang problem in characteristic 0 for
commutative algebraic groups, we refer the reader to [GHSZ19].

We record the aforementioned generalisation in this section for the sake of com-
pleteness. But first, let us make precise what is meant by “translates of sums of
F -orbits”. The following notation and terminology will be used throughout the
paper.

Definition 2.1. Suppose M is an abelian group equipped with an endomorphism
F : M → M . Then by an F -orbit we mean a set of the form

S(a; δ) :=
{
Fnδa : n < ω

}
where a ∈ M and δ is a fixed positive integer. That is, it is the orbit of an element of
M under the iterates of a fixed power of F . We will denote the set-sum of F -orbits
as follows:

S(a1, . . . , ar; δ1, . . . , δr) := S(a1; δ1) + S(a2; δ2) + · · ·+ S(ar; δr).

Finally, we denote by S(M,F ) the collection of all translates of sums of F -orbits;
i.e., of subsets of M of the form a+S(a1, . . . , ar; δ1, . . . , δr) where a, a1, . . . , ar ∈ M
and δ1, . . . , δr are positive integers.

Remark 2.2. In [MS04], finite unions of sets from S(M,F ) were called “cycle-free
groupless F -sets” and the collection of such were denote by OrbM . We will not use
this terminology here.

So, in the conclusion of Theorem 1.1, when we say that “S ⊆ Γ is a translate
of a sum of F -orbits” we mean that S is in S(G,F ). This description of X ∩ Γ
differs on the face of it from the original in two ways. First of all, Theorem 7.8
of [MS04] is stated in terms of “F -cycles” rather than F -orbits, but it is explained
there (in Lemma 7.1 and the paragraph following the proof of the Theorem 7.8,
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of that paper) how one can rephrase it in terms of F -orbits, and this formulation
is more suitable for our purposes. Secondly, the assumption is made in [MS04,
Theorem 7.8] that Γ ≤ G(K) where K is a regular function field extension of
Fq. But, as explained in [MS04, Remark 7.11], it is not hard to see that one can
always attain this situation at the expense of replacing q by qr and F by F r, for an
appropriate choice of r > 0. Since every F r-orbit is an F -orbit this does not take
us out of S(G,F ).

Here is the promised generalisation to arbitrary commutative algebraic groups.

Theorem 2.3. Let G be any commutative algebraic group defined over a finite
field Fq, let F : G → G be the q-power Frobenius, let X ⊆ G be a closed subvariety
defined over a field extension of Fq, and let Γ ≤ G be a finitely generated subgroup
which is also invariant under F . Then X ∩ Γ is a finite union of sets of the form
S+Λ where S ⊆ Γ is in S(G,F ) and Λ = H∩Γ for some algebraic subgroup H ≤ G
over a finite field.

Proof. When G is a semiabelian variety this is precisely Theorem 1.1. (One takes
H to be the Zariski closure of Λ, which, by rigidity of semiabelian varieties, is an
algebraic subgroup over a finite field.) It remains therefore to reduce the general
case to the case of semiabelian varieties.

First of all, we observe that the desired description of X ∩ Γ is preserved under
images by isogeny. That is, suppose G′ is a commutative algebraic group and
ϕ : G′ → G is a surjective morphism of algebraic groups with finite kernel, all
defined over a finite field. Supposing the theorem holds of G′, we prove it of G. Let
r > 0 be such that G′ and ϕ are defined over Fqr , and consider X ′ := ϕ−1(X) and
Γ′ := ϕ−1(Γ). Note that Γ′ is still a finitely generated group since kerϕ is finite.

So we have that X ′ ∩ Γ′ =

ℓ⋃
i=1

S′
i +Λ′

i where each S′
i ⊆ Γ′ is in S(G′, F r) and each

Λ′
i ≤ Γ′ is of the form H ′

i ∩ Γ′ where H ′
i is an algebraic subgroup over Falg

q . Now,
one observes that ϕ(S′

i) ∈ S(G,F r) ⊆ S(G,F ) and ϕ(Λ′
i) = ϕ(H ′

i∩Γ′) = ϕ(H ′
i)∩Γ,

while ϕ(H ′
i) is an algebraic subgroup of G over Falg

q . HenceX∩Γ =

ℓ⋃
i=1

ϕ(S′
i)+ϕ(Λ′

i)

has the desired form.
Now, suppose G is a commutative algebraic group over a finite field. According

to [Bri17, §5.6], there exists a largest semiabelian subvariety G0 ⊂ G and a largest
connected unipotent algebraic subgroup U ⊂ G, such that G = U +G0 and U ∩G0

is finite. In particular, the group multiplication map is an isogeny ϕ : U×G0 −→G.
Because of their characteristic properties, both G0 and U are also defined over finite
fields. We may therefore assume that G = U×G0. Note that U is of finite exponent;
in characteristic p every unipotent commutative algebraic group is a p-group.

Since Γ is finitely generated, so is its projection on the first factor of U×G0. Since
U has finite exponent, that projection must be finite. Letting Γ0 := Γ∩({0} ×G0),

we obtain that Γ is a finite union of cosets of Γ0, say, Γ =

ℓ⋃
i=1

(hi + Γ0). Therefore

X ∩ Γ =

ℓ⋃
i=1

(hi + ((−hi +X) ∩ Γ0)). Now, for each i = 1, . . . , ℓ, letting Xi :=
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(−hi+X)∩ ({0} ×G0) and applying the semiabelian case to Xi ∩Γ0 in G0, we get
the desired description for X ∩ Γ. □

Remark 2.4. In the statement of Theorem 2.3, and indeed throughout this paper,
we are implicitly identifying G with the set of its U-points where U is a sufficiently
large algebraically closed field that serves as a universal domain for algebraic geom-
etry in characteristic p. In fact, however, the sets S appearing in the conclusion of
the theorem can be taken to be in S(G(L), F ) where L is any algebraically closed
field such that Γ ≤ G(L).

Remark 2.5. Next, we discuss briefly the case when one drops the requirement that
Γ is invariant under the Frobenius endomorphism. For arbitrary finitely generated
subgroups Γ of semiabelian varieties G, it is no longer true that the intersection
X(K)∩Γ is a finite union of sets of the form S+H, where S ∈ S(G,F ) and H is a
subgroup of Γ; in fact, the intersection can be quite wild (see [GY23, Example 2.3]).
The second author was able to prove (see [Ghi24, Theorem 1.9]) a structure theorem
for the intersection X(K)∩Γ when Γ is a finitely generated subgroup, no longer F -
invariant. The building blocks of the structure theorem from [Ghi24] are no longer
F -orbits, but instead we have sets of the form

{an · P : n ≥ 1} ,

where P is some given point in G, while {an}n≥1 is a linear recurrence sequence
of integers with the extra property that the roots of its characteristic equation are
distinct algebraic integers of the form rm, where m is a positive integer and r is a
root of the equation witnessing the fact that F is integral over Z inside End(G).

3. F -automaticity

Our goal is to give an effective version of Theorem 2.3. Furthermore, we will be able
to weaken the assumption that Γ is finitely generated as a group to it being finitely
generated as a Z[F ]-module. Note that in the original Mordell-Lang context, when
G is assumed to be semiabelian, the map F is integral over Z and hence every finitely
generated Z[F ]-submodule is finitely generated as a group. This is no longer true
for arbitrary commutative algebraic groups, and the generalisation is both natural
and significant (see the discussion at the end of the Introduction for an application
of the general case).

Our effectivity will come from explicitly describing a finite automaton that recog-
nises the sets X ∩ Γ. In order to make sense of this we need to review the notion
of “F -automaticity” developed by the first and third authors in [BM19]. That, as
well as the generalisation of the relevant results of [BM19] from finitely generated
F -invariant groups to finitely generated Z[F ]-modules, are the goals of this section.

Definition 3.1 (Expansions). Suppose M is an abelian group, F : M → M is an
injective endomorphism, and Σ ⊆ M is finite. Given a word w = x0x1 · · ·xm ∈ Σ∗

we set

[w]F := x0 + Fx1 + · · ·+ Fmxm ∈ M

and call this the F -expansion of w. Given L ⊆ Σ∗ we denote by [L]F the set of
F -expansions of the words in L. That is, [L]F := {[w]F : w ∈ L}.
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Definition 3.2 (Spanning sets). Suppose M is an abelian group and F : M → M
is an injective endomorphism. By an F -spanning set for M we will mean a finite
subset Σ ⊆ M satisfying the following properties:

(i) [Σ∗]F = M ,
(ii) Σ contains 0 and is symmetric (i.e., if x ∈ Σ then −x ∈ Σ),
(iii) for all x1, . . . , x5 ∈ Σ there exist t, t′ ∈ Σ such that x1 + · · ·+ x5 = t+ Ft′,

and
(iv) If x1, x2, x3 ∈ Σ and x1 + x2 + x3 ∈ F (M), then there exists t ∈ Σ such

that x1 + x2 + x3 = Ft.

If Σ satisfies all but property (iv) then we will say it is a weak spanning set.

Remark 3.3. The above deifnition differs slightly from [BM19, Definition 5.1]
where injectivity of F was not assumed but an additional condition – which follows
from injectivity together with our (iv) above – appears.

The key property here is (i) which says that every element of M has an F -
expansion using Σ as “digits”. Note that we do not ask for this expansion to be
unique. Conditions (ii) and (iii) are technically useful and can in practice always
be attained by expanding Σ. Condition (iv) is a strong form of “F -purity” of Σ
in M , and while much of the basics can be done without it, the full development
of F -automaticity does require it.

Definition 3.4 (Automaticity). Suppose M is an abelian group and F is an injec-
tive endomorphism of M such that M admits an F r-spanning set for some r > 0.
A subset S ⊆ M is defined to be F -automatic if for some r > 0 and some F r-
spanning set Σ, the set of words {w ∈ Σ∗ : [w]F r ∈ S} is a regular language (see
[AS03, Chapter 4]). In other words, there is a finite automaton A which takes as
inputs finite words on the alphabet Σ, which it reads left to right, such that a word
x0x1 · · ·xm is accepted by A if and only if x0 + F rx1 + · · ·+ Fmrxm ∈ S.

Remark 3.5. (a) Already in [BM19, Proposition 6.3] it is shown that this
notion does not depend on the choice of F r-spanning set Σ. But in fact, as
Hawthorne later observed in [Haw22, Proposition 2.6], it does not depend
on r either. That is, if S is F -automatic then for any r > 0 and any Σ an
F r-spanning set, {w ∈ Σ∗ : [w]F r ∈ S} is regular.

(b) If M has an F r-spanning set then it has an F rk-spanning set for every
k > 0, this is [BM19, Lemma 5.7]. It follows that a subset is F -automatic
if and only if it is F ℓ-automatic for some, equivalently for all, ℓ > 0.

We can only discuss F -automaticity in M if M admits an F r-spanning set for
some r > 0 in the first place. While this is not always the case, it is shown in [BM19]
to be so in the context of Theorem 2.3.

Fact 3.6 (Bell-Moosa [BM19]). Suppose G is a commutative algebraic group over Fq

and F : G → G is the endomorphism induced by the q-power Frobenius map. Fix
K a function field over Fq. Suppose Γ ≤ G(K) is a subgroup that is preserved by F
and such that Γ/F (Γ) is finite. Then Γ has an F r-spanning set for some r > 0.

This appears as Corollary 5.9 of [BM19] but for Γ ≤ G a finitely generated (F -
invariant) subgroup of G. However, an inspection of the proof given there shows
that the only uses of finite-generatedness are to embed Γ ≤ G(K) for some function
field K and to ensure that Γ/F (Γ) is finite. (To see that the latter is a consequence
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of finite-generatedness, note that F (Γ) and Γ will have the same rank and hence
the quotient, being finitely generated, will be finite.) This justifies our more general
formulation, which will be useful when we consider the case of finitely generated
Z[F]-modules below.

But first, let us observe that combining Theorem 2.3 with some work in [BM19],
we obtain an F -automaticity result in the context of Mordell-Lang for commutative
algebraic groups over finite fields:

Corollary 3.7. Let G be a commutative algebraic group over a finite field Fq, let
F : G → G be the q-power Frobenius, let X ⊆ G be a closed subvariety defined over
a field extension of Fq, and let Γ ≤ G be an F -invariant finitely generated subgroup.
Then X ∩ Γ is F -automatic in (Γ, F ).

Proof. This is basically Theorem 2.3 together with [BM19, Theorem 6.9], but some
words of explanation are in order. First of all, by Fact 3.6, Γ does admit an F r-
spanning set for some r > 0, so the question of F -automaticity makes sense.

Theorem 2.3 tells us that X ∩ Γ =

m⋃
i=1

Si + Λi where each Si ⊆ Γ is in S(G,F )

and each Λi ≤ Γ is of the form Hi ∩Γ where Hi is an algebraic subgroup over Falg
q .

We need to show that these sets are F -automatic. To do so we apply Theorem 6.9
of [BM19] which says, under precisely the assumptions of this corollary, that the
“F -subsets” of Γ are F -automatic. So we must first introduce this additional notion
from [MS04].

Given any abelian group M together with an endomorphism F : M → M , an
F -cycle in M is a set of the form

C(a, δ) := {a+ F δ(a) + F 2δ(a) + · · ·+ Fnδ(a) : n < ω},

where a ∈ M and δ is a positive integer. An F -subset of M is a finite union of sets
of the form C + Λ where Λ is an F -invariant subgroup of Γ and C is a translate
of a finite sum of F -cycles. The connection between F -cycles and F -orbits is made
in [MS04]. First of all, every F -orbit is a finite union of translates of F -cycles;
indeed, it is easily checked that S(a; δ) = {a} ∪

(
a+C(F δ(a)− a; δ)

)
. But more is

true: a short combinatorial argument given in Lemma 2.9 of [MS04] shows that if
S ⊆ M and S ∈ S(M ′, F ), where M ′ is a an extension of M to which F extends,
then in fact S is a finite union of translates of sums of F -cycles in M itself.

The Si appearing in our description of X ∩ Γ are subsets of Γ that come from
S(G,F ). So by the above remarks, they are each a finite union of translates of F -
cycles in Γ. Note, however, that the Λi appearing in X∩Γ need not be F -invariant,
so we do not necessarily get that X ∩ Γ is an F -subset.

But the Λi will be F ℓ-invariant for some ℓ > 0 because Λi = Hi ∩ Γ and Hi is
an algebraic subgroup defined over a finite field. And the Si are also finite unions
of translates of F ℓ-cycles. This is because, in general, as long as F δ − 1 is not a
zero divisor in Z[F ] ⊆ End(M) for any positive integer δ, then every F -cycle in M
is a finite unions of translates of F ℓ-cycles (this is also done in [MS04] but see the
explanation in [BM19, Fact 2.3]). To observe that F δ − 1 is not a zero divisor in
our context see the proof of Theorem 6.9 of [BM19].

In conclusion then, X ∩ Γ is an F ℓ-subset of Γ for some ℓ > 0. So we get
by [BM19, Theorem 6.9] that X ∩ Γ is F ℓ-automatic in (Γ, F ℓ). By Remark 3.5, it
is thus F -automatic in (Γ, F ), as desired. □
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Remark 3.8. The above argument is not effective. This is because of its reliance on
the isotrivial Mordell-Lang theorem of [MS04]; we did not construct an automaton
that recognises X ∩ Γ. In Section 6 we will do precisely that.

As mentioned before, we want to work in the more general setting where Γ is a
finitely generated Z[F]-submodule of G. But even to make sense of F -automaticity
in that context, we have to prove that such Γ also admit spanning sets. This is the
reason we presented Fact 3.6 with weaker hypotheses than appear in [BM19]. We
only need to show that Γ/F (Γ) is finite. That is Theorem 3.11 below, but we need
a preliminary proposition.

Proposition 3.9. Let G be a commutative algebraic group over Fq, F : G → G the
q-power Frobenius, K a finitely generated extension of Fq, and Γ ≤ G(K) a finitely

generated Z[F ]-submodule. Let Γ̃ be the F -pure hull of Γ in G(K). That is,

Γ̃ := {x ∈ G(K) : there exists n ≥ 0 such that Fn(x) ∈ Γ}.
Then there exists n0 ≥ 0 such that Fn0(Γ̃) ⊆ Γ for j = 1, 2.

Proof. First of all, observe that if we have an exact sequence

0 // G1
// G

π // G2
// 0

of commutative algebraic groups over Fq and the result holds of G1 and G2 then it
holds of G. Indeed, let Γ1 := Γ ∩ G1 and Γ2 := π(Γ). Then, for each j = 1, 2, Γj

is a finitely generated Z[F ]-submodule of Gj(K), and so suppose nj is such that

Fnj (Γ̃j) ⊆ Γj . One checks readily that Fn1+n2(Γ̃) ⊆ Γ.
Now, by Chevalley’s theorem, there is a short exact sequence

0 // L // G
π // A // 0

over Fq, where L is a linear algebraic group and A is an abelian variety. By the
previous paragraph we have thus reduced the proposition to the case of abelian
varieties and commutative linear algebraic groups.

Consider the case when G = A is an abelian variety over Fq. The Lang-Néron

theorem [LN59] tells us that A(K), and hence Γ̃, is a finitely generated group.
Fixing a finite set of generators, and letting n be large enough that Fn takes each
of them into Γ, we see that Fn(Γ̃2) ⊆ Γ2, as desired.

We may therefore assume that G = L is a commutative linear algebraic group
over Fq. Then G admits a decomposition series over Falg

q where each quotient is
isomorphic to either Ga or Gm (see [Mil17, Proposition 17.38]). Working with a
power of F if necessary, we may assume this decomposition series is over Fq. Hence,
using short exact sequences as in the first paragraph of this proof (and induction on
dimG) it remains to prove the proposition in the cases when G = Gm and G = Ga.

Consider therefore the case of G = Gm. We claim that, as in the case of abelian
varieties, Γ̃ is a finitely generated group, which, as in that case, will suffice. Let S
be the finite set of places v of K such that the generators of Γ are not v-adic units,
and let E be the S-unit group of K. Since Γ ≤ E and E is F -pure in G(K), we

have that Γ̃ ≤ E. But by [Ros73], E is a finitely generated group.
Finally, it remains only to consider the case when G = Ga. Fix generators

γ1, . . . , γr of Γ. Our strategy is described by the following reduction.

Claim 3.10. It suffices to prove that there exists a finitely generated Z[F ]-module
Λ satisfying the following properties:
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(i) Γ ⊆ Λ ⊆ Γ̃; and
(ii) for some generators λ1, . . . , λs for Λ as a Z[F ]-module, if

∑s
i=1 ciλi = F (x)

for some ci ∈ Fp and some x ∈ Ga(K) then x ∈ Λ.

Proof of Claim 3.10. First of all, condition (i) yields that Λ̃ = Γ̃, where Λ̃ is (as
usually) the F -pure hull of Λ in Ga(K).

Now, condition (ii) from above yields that Λ̃ = Λ. Indeed, pick x ∈ Ga(K)
and also, let n ≥ 0 be minimal such that Fn(x) ∈ Λ; furthermore, assume n > 0
since otherwise we would have that x ∈ Λ, as claimed. Now, since Fn(x) ∈ Λ and
the λ1, . . . , λs generate Λ as a Z[F ] module, there exists some k ≥ 0 and Fp-linear
combinations of the λj ’s, say ξ0, . . . , ξk, such that

Fn(x) = ξ0 + F (ξ1) + · · ·+ F k(ξk).

But then condition (ii) above yields that ξ0 = F (ξ′0) (note that we assumed n > 0)
for some ξ′0 ∈ Λ. So, actually Fn−1(x) ∈ Λ, which contradicts the minimality of n.

Therefore, indeed n = 0 and so, Λ̃ = Λ.
We have that Λ = Γ̃. But there exists n1 ≥ 0 such that Fn1(λj) ∈ Γ for each

j = 1, . . . , s. Hence Fn1(Γ̃) ⊆ Γ, as desired. □

Now, if λi = γi (for i = 1, . . . , r) were to satisfy properties (i)-(ii) from Claim 3.10,
then we are done already (and in this case, as previously observed, we would actually

have that Γ = Γ̃). So, we assume that condition (ii) above is not satisfied by λi = γi
(since clearly condition (i) is). This means that there exist some c1, . . . , cr ∈ Fp

and there exists δ ∈ Ga(K) \ Γ such that

F (δ) = δq = c1γ1 + · · ·+ · · · crγr.
Let h(·) be the Weil height associated to the function field K/Fq (note that if K
is a finite extension of Fq, then the conclusion we seek would be obvious because
then Ga(K) is a finite set). The above relation yields that for each place v of the
function field K/Fq, we would have that

max{1, |δ|v} ≤ max{1, |γ1|v, . . . , |γr|v}.
Let i1 ∈ {1, . . . , r} such that ci1 ̸= 0. Then we replace the tuple (γ1, . . . , γr) by
(λ1, . . . , λr) where each λi = γi for i ̸= i1, while λi1 := δ. Clearly, the Z[F ]-module
Λ spanned by λ1, . . . , λr satisfies condition (i) from Claim 3.10. If also condition (ii)
were to be satisfied by the generators λ1, . . . , λr of Λ, then we would be done.
Otherwise, we proceed as before. However, note that each time when we replace a
set λ1, . . . , λr by another set η1, . . . , ηr (generating a larger Z[F ]-submodule of Γ̃),
the Weil height of the point

Pλ := [1 : λ1 : · · · : λr] ∈ Pr(K)

does not increase (note that the Weil height of the above point is computed as∑
v logmax{1, |λ1|v, · · · , |λr|v}, after a suitable normalisation of the absolute values

v of the function field K/Fq). Since Northcott’s Theorem yields the finiteness of
the number of points of bounded Weil height from Pr(K), we conclude that after
finitely many steps, we no longer produce new tuples (λ1, . . . , λr) beyond the tuples
already produced in our previous steps. Therefore, at some step, we must have the
two conditions (i)-(ii) from Claim 3.10 are satisfied.

This concludes our proof of the Proposition 3.9. □

We can now prove that in our context spanning sets exist.
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Theorem 3.11. Suppose G is a commutative algebraic group over a finite field Fq

and F : G → G is the q-power Frobenius. If Γ ≤ G is a finitely generated Z[F ]-
submodule then Γ/F (Γ) is finite. In particular, Γ admits an F r-spanning set for
some r > 0.

Proof. Let us deal first with the case when the following properties hold:

(1) there is an exact sequence

0 // L // G
π // A // 0

over Fq, where L = U × Gt
m for some commutative unipotent algebraic

group U , and A is an abelian variety; and
(2) there is a function field K over Fq such that Γ ≤ G(K) is F -pure in G(K)

in the sense that if x ∈ G(K) is such that F (x) ∈ Γ then x ∈ Γ.

Afterwards we will remove these assumptions.
Note, first of all, that for some s > 0 we have [qs](L(K)) ⊆ F (L(K)). This is

because multiplication by some power of p kills the commutative unipotent algebraic
group U , and on Gt

m multiplication by q agrees with F .
We claim that there exists n > 0 such that [n](G(K)) ⊆ F (G(K)). Indeed,

let Λ := π(G(K)) ≤ A(K). By the Lang-Neron theorem, A(K), and hence Λ,
is a finitely generated group. Hence Λ/F (Λ) is finite. Let m > 0 be such that
mΛ ⊆ F (Λ). We show that n := qsm works. Suppose x ∈ G(K). Then

π(mx) = mπ(x)

= F (λ) for some λ ∈ Λ

= F (π(y)) for some y ∈ G(K)

So mx − F (y) ∈ L(K). Hence qsmx − F (qsy) = F (z) for some z ∈ L(K), so that
qsmx = F (qsy + z) ∈ F (G(K)), as desired.

Now, by the F -purity of Γ in G(K), this implies that nΓ ⊆ F (Γ). Hence Γ/F (Γ)
is n-torsion. But Γ/F (Γ) is a finitely generated group as Γ is a finitely generated
Z[F ]-module. So Γ/F (Γ) is finite.

Next, we consider the general case; that is, we drop assumptions (1) and (2). By
the structure of commutative linear algebraic groups (see [Mil17, Theorem 17.17]),
together with Chevalley’s theorem, we know that there is an ℓ ≥ 1 such that G
does satisfy property (1) over Fqℓ . Let K be a function field extension of Fqℓ such

that Γ ≤ G(K). Note that Γ is a finitely generated Z[F ℓ]-submodule of G(K); one
can take {F i(γj) : 0 ≤ i < ℓ, 1 ≤ j ≤ k} as generators where {γ1, . . . , γk} generate

Γ as a Z[F ]-module. Let Γ̃ be the F ℓ-pure hull of Γ in G(K). By Proposition 3.9

there is an n0 ≥ 0 such that F ℓn0 Γ̃ ≤ Γ. In particular, Γ̃ is a finitely generated

Z[F ℓ]-submodule of G(K) in which it is F ℓ-pure. That is, (G, qℓ, F ℓ, Γ̃,K) satisfies

properties (1) and (2). Hence, by the first part of the proof, we have that Γ̃/F ℓ(Γ̃) is

finite. Applying the Z[F ℓ]-isomorphism F ℓn0 , we have that Γ̃/F ℓ(n0+1)(Γ̃) is finite

too. As F ℓ(n0+1)Γ̃ ≤ F ℓΓ ≤ FΓ ≤ Γ ≤ Γ̃, we have that Γ/F (Γ) is finite.
The “in particular” clause follows by Fact 3.6. □
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4. Explicit weak spanning sets

Theorem 3.11 does not explicitly construct an F r-spanning set; indeed, we are
not aware of an effective procedure for doing so except in the case of Γ = G(K),
see §7.4 below. In general, we can, however, explicitly construct (r,Σ) where Σ is
a weak F r-spanning set. Recall that this means Σ satisfies all but property (iv) of
Definition 3.2. It will turn out that weak spanning sets suffice for giving an effective
description of X ∩ Γ in the isotrivial Mordell-Lang setting.

We begin with a general construction of a weak spanning set.

Lemma 4.1. Suppose (M,F ) is an abelian group with an injective endomorphism.
Assume there exist positive integers r, b and integers b1, . . . , br, satisfying:

(i) bx =

r∑
i=1

biF
i(x) for all x ∈ M , and

(ii) |bi| <
b

6r
for all i = 1, . . . , r.

Suppose M is generated as a Z[F]-module by u1, . . . , us. Then

(1) Σ :=


s∑

i=1

r−1∑
j=0

ai,jF
j(ui) : ai,j ∈ Z, 0 ≤ |ai,j | < 6b


is a weak F r-spanning set for M .

Proof. Note that every element of M is of the form
∑s

i=1

∑ℓi
j=0 ci,jF

j(ui) and that

if each |ci,j | < 6b then this has an F r-expansion with digits in Σ. So, toward a

contradiction, suppose that there is an element x =
∑s

i=1

∑ℓi
j=0 ci,jF

j(ui) ∈ M that

does not have an F r-expansion with digits in Σ and such that N := maxi,j |ci,j |
is least such. So N ≥ 6b. Dividing each ci,j by b we write ci,j = bc′i,j + ri,j

where |ri,j | < b. Then x = y + z where y =
∑s

i=1

∑ℓi
j=0 c

′
i,jF

j(bui) and z =∑s
i=1

∑ℓi
j=0 ri,jF

j(ui). Using (i) we get

y =

s∑
i=1

ℓi∑
j=0

r∑
k=1

c′i,jbkF
j+k(ui)

=

s∑
i=1

ℓi+r∑
ℓ=0

di,ℓF
j(ui)

where di,ℓ :=
∑

j+k=ℓ

c′i,jbk. But by (ii) and the fact that |c′i,j | ≤ N
b , we have

|di,ℓ| ≤ r
N

b

b

6r
=

N

6
.

Since the coefficients of z also satisfy |ri,j | < b ≤ N
6 , we have that

x = y + z =

s∑
i=1

Li∑
j=0

ei,jF
j(ui)

where ei,j ≤ N
6 + N

6 < N contradicting the minimal choice of N .
Next we show if x1, . . . , x5 ∈ Σ then x := x1 + · · · + x5 = t + F rt′ for some

t, t′ ∈ Σ. We can write x =
∑s

i=1

∑r−1
j=0 ai,jF

j(ui) with each |ai,j | < 30b. As
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before, we divide by b, writing ai,j = ba′i,j + ri,j with |ri,j | < b. Hence x = y + z

where z :=
∑s

i=1

∑r−1
j=0 ri,jF

j(ui) and

y :=

s∑
i=1

r−1∑
j=0

a′i,jF
j(bui)

=

s∑
i=1

r−1∑
j=0

r∑
k=1

a′i,jbkF
j+k(ui)

=

s∑
i=1

2r−1∑
ℓ=0

di,ℓF
j(ui)

where di,ℓ :=
∑

j+k=ℓ

a′i,jbk, and so |di,ℓ| < r30 b
6r = 5b. We have that

x =

s∑
i=1

r−1∑
j=0

(ri,j + di,j)F
j(ui) + F r

 s∑
i=1

r−1∑
j=0

di,jF
j(ui)


and all coefficients are bounded by 6b. So, t :=

∑s
i=1

∑r−1
j=0(ri,j + di,j)F

j(ui) and

t′ :=
∑s

i=1

∑r−1
j=0 di,jF

j(ui) are in Σ and x = t+ F rt′, as desired.
Finally, it is clear that Σ contains 0 and is symmetric. Hence Σ satisfies all but

property (iv) of Definition 3.2, and is thus a weak F r-spanning set. □

We can now effectively construct weak spanning sets in the isotrivial Mordell-
Lang setting:

Proposition 4.2. Suppose G is a commutative algebraic group over Fq, presented
to us as a Zariski open subset of a Zariski closed subset of Pn. Let F : G → G be
the q-power Frobenius. Then conditions (i) and (ii) of Lemma 4.1 hold of M = G
with an effective choice of b and r as a function of n. In particular, if Γ ≤ G is
a Z[F]-submodule generated by u1, . . . , us then formula (1) of that lemma gives an
explicit weak F r-spanning set for Γ.

Proof. By Chevalley’s theorem, there is a short exact sequence

0 // L // G
π // A // 0

over Fq, where L is a linear algebraic group and A is an abelian variety. On the
other hand, L = U ×M where M is isomorphic to a multiplicative torus over Falg

q

and U is unipotent; see, for example, [Bri17, Theorem 5.3.1].
Choose ℓ > 0 sufficiently large so that

(a) M is isomorphic to a multiplicative torus over Fqℓ , and

(b) qℓ > q
ℓ
2 6ℓ(2n+ 1)4n.

It is pointed out in Proposition A.1 below that this can be done effectively; that
ℓ = max(21111!, 2nn!) satisfies (a).

We show that b := qℓ(n+1) and r := ℓ(2n+1) satisfy the conditions of Lemma 4.1.
Let a = dimA and u = dimU . Then qu annihilates U by unipotency, and hence

so does qℓu. By (a) we have that (F ℓ − qℓ) annihilates M . As A is an abelian
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variety over Fqℓ we have that F ℓ on A is the root of a monic integer polynomial of

the form Q(x) :=
∑2a

i=0 cix
i where |c0| = qℓa, c2a = 1, and

|ci| ≤
(
2a

i

)
qℓa−

ℓi
2 for all i.(2)

See [Mil, Theorem 1.1, Chapter 2, p. 75]. In any case, on G,

0 = qℓu(F ℓ − qℓ)Q(F ℓ)

= qℓu

(
2a∑
i=0

ciF
ℓi+ℓ

)
− qℓu+ℓ

(
2a∑
i=0

ciF
ℓi

)
.

so that

qℓ(u+1)c0 =

2a−1∑
i=0

(qℓuci + qℓ(u+1)ci+1)F
ℓ(i+1) + qℓuF ℓ(2a+1).

Noting that u+ a ≤ dimG ≤ n, we can multiply through by qℓ(n−u−a) to get

(3) qℓ(n−a+1)c0 =

2a−1∑
i=0

(qℓ(n−a)ci + qℓ(n−a+1)ci+1)F
ℓ(i+1) + qℓ(n−a)F ℓ(2a+1).

Note that |qℓ(n−a+1)c0| = qℓ(n+1) = b and the degree in F on the right hand side
is ℓ(2a+ 1) ≤ ℓ(2n+ 1) = r. So to show that conditions (i) and (ii) of Lemma 4.1
hold with b and r it suffices to show that all the coefficients on the right hand side
of (3) are strictly bounded in absolute value by b

6r .

First consider the coefficient of F ℓ(2a+1) in (3), which is qℓ(n−a). By condition (b)
on the choice of ℓ, qℓ > 6ℓ(2n+ 1). Thus

qℓ(n−a) =
qℓ(n+1)

qℓ(a+1)
≤ qℓ(n+1)

qℓ
<

qℓ(n+1)

6ℓ(2n+ 1)
=

b

6r

as desired.
Next, for each i = 0, . . . , 2a− 1, consider the coefficient of F ℓ(i+1). It satisfies

|qℓ(n−a)ci + qℓ(n−a+1)ci+1| ≤ qℓ(n−a)(|ci|+ qℓ|ci+1|)

≤ qℓn
((

2a

i

)
q−

ℓi
2 +

(
2a

i+ 1

)
qℓ−

ℓi+ℓ
2

)
by (2)

= qℓ(n+
1
2 )

((
2a

i

)
q−

ℓi+ℓ
2 +

(
2a

i+ 1

)
q−

ℓi
2

)
≤ qℓ(n+

1
2 )

((
2a

i

)
+

(
2a

i+ 1

))
≤ qℓ(n+1)

6ℓ(2n+ 1)
6ℓ(2n+ 1)q−

ℓ
2 4n as a ≤ n

<
b

6r
by choice of ℓ satisfying property (b)

as desired. □

Remark 4.3. It may be worth extracting the abstract group-theoretic content of
the above proof. Let (M,F ) be an abelian group with an injective endomorphism.
Suppose there is a polynomial P (x) ∈ Z[x] such that P (F ) annihilates M , and such
that all the roots of P have modulus at least α > 1. Then we can effectively find
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positive integers b and r, in terms of P and α, which will satisfy the hypotheses of
Lemma 4.1. In particular, given a finite set ∆ ⊆ M , we can effectively find a weak
F r-spanning set for the Z[F]-submodule of M generated by ∆.

Proof. Write P (x) = C(x− c1) · · · (x− cd), where C is a nonzero integer and each
ci is an algebraic number of modulus at least α. Let B = c1 · · · cd. So B is a
rational number of modulus greater than 1. We now pick a positive integer N
with the property that αN > 6Nd2d. Now, P (x) divides the integer polynomial
Q(x) := CN (xN − cN1 ) · · · (xN − cNd ), so that Q(F ) annhilates M as well. Observe
that the constant coefficient of Q is CNBN and every other coefficient is a sum
of at most 2d terms that are all at most |CB|N/αN in modulus. Hence, taking
r = Nd, b = |CB|N , and b1, . . . , br the other coefficients of Q (or their negatives),
we have satisfied the hypotheses of Lemma 4.1. Formula (1) of that lemma now
gives an explicit weak F r-spanning set. □

5. A finiteness result on Frobenius pullbacks

The automaton we build in the next section to recognising X ∩ Γ will be based on
a certain finiteness result. We need two bits of notation to state the proposition:

First, given a variety W over Fq, with q a power of a prime p, and a closed
subvariety V ⊆ W defined over a field extension of Fq, and a natural number ℓ,

let us denote by V q−ℓ

the transform of V by the inverse of the q-power Frobenius
on W . So locally, in an affine chart of W , this means replacing the coefficients of
the defining equations of V with their qℓ roots.

Secondly, if (M,F ) is an abelian group equipped with an injective endomorphism
and Σ ⊆ M is finite then by Σ(ℓ, F ) we mean the set of elements of M of the form
[w]F where w ∈ Σ∗ is a word of length at most ℓ. (In [BM19] this was denoted by
the somewhat ambiguous Σ(ℓ).)

Proposition 5.1. Suppose G is a commutative algebraic group over a finite field Fq,
F : G → G is the endomorphism induced by the q-power Frobenius map, and X is a
closed subvariety of G. Suppose r > 0 is sufficiently large, K is a finitely generated
extension of Fqr over which X is defined, and Σ ⊆ G(K) is finite. Consider the
following collection of subsets of G(K),

TK :=
{
(X − γ)q

−ℓr

(K) : ℓ ≥ 0, γ ∈ Σ(ℓ, F r)
}

Then TK is finite.

Remark 5.2. As the proof will show, we need r large enough so that qr is an
upper bound on the total degree of a defining set of polynomials over Fq for the
group multiplication on G.

The main technique for proving this proposition comes from §5 of [Der07] where it

is called “Frobenius splitting”. The first point is that while the (X−γ)q
−ℓr

are vari-

eties defined over the (ever increasing) field extensionsKq−ℓr

, the set (X−γ)q
−ℓr

(K)
agrees with the K-points of a variety defined over K, namely the transform of X−γ
by “lambda functions”. We now make this precise.

Fix K a finitely generated extension of Fq. Since K is of finite degree of imper-
fection, we can fix a linear basis 1 = h1, . . . , hm for K over Kq. We obtain additive
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operators λ1, . . . , λm on K with the property that for all x ∈ K,

x = λ1(x)
qh1 + λ2(x)

qh2 + · · ·+ λm(x)qhm.

Definition 5.3 (Lambda functions). For ℓ ≥ 0, by an order ℓ lambda function we
will mean an ℓ-fold composition of functions from {λ1, . . . , λm}. We will denote the
set of these functions by Λ(ℓ) := {λi1 ◦ λi2 ◦ · · · ◦ λiℓ : each 1 ≤ ij ≤ m}.

They have the following multiplicative property.

Lemma 5.4. Suppose P ∈ K[x] is a polynomial in the n variables x = (x1, . . . , xn).
Let λ ∈ Λ(ℓ) and a ∈ Kn. Then

λ
(
P (aq

ℓ

)
)
= Pλ(a)

where Pλ denotes the polynomial obtained by applying λ to the coefficients of P .

In particular, P (aq
ℓ

) = 0 if and only if Pλ(a) = 0 for all λ ∈ Λ(ℓ).

Proof. Note first of all that λi(uv
q) = λi(u)v for all u, v ∈ K and i = 1, . . . ,m.

Indeed, u = λ1(u)
qh1 + · · ·+ λm(u)qhm and so

uvq =
(
λ1(u)v

)q
h1 + · · ·+

(
λm(u)v

)q
hm.

We now prove the ℓ = 1 case of the lemma for monomials P (x) by induction on
the total degree. The case of P a constant is clear. Writing P (x) = Q(x)xj for a
monomial Q we have

λi

(
P (aq)

)
= λi

(
Q(aq)aqj

)
= λi(Q(aq))aj = Qλi(a)aj = Pλi(a)

as desired. By linearity, the ℓ = 1 case of the lemma follows. By induction on ℓ the

general case follows: λ ◦ λi

(
P (aq

(ℓ+1)

)
)
= λ

(
Pλi(aq

ℓ

)
)
= Pλ◦λi(a).

The left-to-right direction of the “in particular” clause is an immediate corollary.
For the converse, we need to observe that for u ∈ K, if λ(u) = 0 for all λ ∈ Λ(ℓ)
then u = 0. When ℓ = 1 this is clear by choice of λ1, . . . , λm, and the general case
follows by induction. □

Corollary 5.5. Suppose V ⊂ An is a variety defined by the vanishing of polyno-
mials P1, . . . , Ps ∈ K[x1, . . . , xn]. Then

V q−ℓ

(K) = {a ∈ Kn : Pλ
i (a) = 0, i = 1, . . . , s, λ ∈ Λ(ℓ)}.

Proof. This is immediate from Lemma 5.4. □

Our proof of Proposition 5.1 will take the following form: Working in an affine
chart we find bounds, independently of ℓ, on the degrees and “heights” of the coef-
ficients of the polynomials Pλ

1 , . . . , P
λ
s as λ ranges in Λ(ℓ) and Zeros{P1, . . . , Ps} =

X − γ ranges among the translates of X by γ ∈ Σ(ℓ, F r). Since, by Corollary 5.5,

(X − γ)q
−ℓ

(K) is the set of K-points of the variety defined by these Pλ
i , the de-

gree and height bounds on the Pλ
i will imply that there are only finitely many

possibilities for (X − γ)q
−ℓ

(K).
We now describe what our naive notion of “height” will be. We do not quite use

the usual canonical height because we are interested in keeping everything effective
– see §5.1 below. Let W ⊆ K be a finite dimensional (and hence finite) Fq-subspace
such that K = Fq(W ). We set W 0 := Fq and for ℓ > 0 denote by W ℓ the Fq-span

of the ℓ-fold products of elements in W . So Fq[W ] =
⋃
ℓ<ω

W ℓ.
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Definition 5.6 (Height). Suppose W ⊆ K is a finite dimensional Fq-subspace such
that K = Fq(W ). Define htW : Fq[W ] → N by htW (x) := min{ℓ : x ∈ W ℓ}. We can
extend this to K by defining htW (u) to be the infimum of max

{
htW (x),htW (y)

}
where u = x

y and x, y ∈ Fq[W ]. More generally, given a ∈ Pn(K), we define

htW (a) to be inf max
{
htW (x0), . . . ,htW (xn)

}
, where the infimum is taken over all

representations a = [x0 : x1 : · · · : xn] with each xi ∈ Fq[W ].

Note that this height satisfies the Northcott property: the set of points of height
bounded by N is finite because WN itself is a finite set. In order for this height
function to have the further properties that we desire, we need to choose W care-
fully. We follow §5 of [Der07] closely here. The following, for example, appears
in the proof of Proposition 5.2 of [Der07], and we repeat it here for the sake of
completeness.

Lemma 5.7. There exists a finitely generated Fq-subalgebra R of K, containing
h1, . . . , hm as well as the generators of K over Fq, such that λi(R) ⊆ R for all
i = 1, . . . ,m.

Proof. Let R be the Fq-algebra generated by h1, . . . , hm along with the generators
of K over Fq. So Rqh1 + · · · + Rqhm ⊆ R, and we need to modify R so as to get
equality. So consider the Rq-module R/(Rqh1 + · · ·Rqhm).

We first claim that it is torsion. Indeed, if a ∈ R then

a = λ1(a)
qh1 + λ2(a)

qh2 + · · ·+ λm(a)qhm,

and so if we let a nonzero b ∈ Rq be such that bλi(a)
q ∈ Rq for each i = 1, . . . ,m,

then ba ∈ Rqh1 + · · ·+Rqhm.
On the other hand, if t1, . . . , tν generate R as an Fq-algebra, then as an Rq-

module it is generated by the finite set {tr11 · · · trνν : each 0 ≤ ri < q}. So the
quotient R/(Rqh1 + · · ·Rqhm) is a finitely generated Rq-module.

Hence there is nonzero g ∈ R such that gqR ⊆ Rqh1 + · · ·Rqhm. Localising at
g, it is not hard to see that Rg = Rgq = Rq

gh1 + · · ·Rq
ghm, and so Rg works. □

Fix R as in the lemma and let W be a finite dimensional Fq-subspace of R
containing h1, . . . , hm as well as generators for R over Fq. We work with htW . The
following is the key property of htW , and it appears in the proof of Proposition 5.2
of [Der07]. We include it here, again for completeness.

Lemma 5.8. There is a constant D ≥ 0 such that for all i = 1, . . . ,m, and all

a ∈ R, we have htW
(
λi(a)

)
≤ ⌊htW (a)

q ⌋+D.

Proof. For any set A ⊆ K, let A⟨q⟩ := {aq : a ∈ A}. Note that when A is a
subring of K we have just been denoting this by Aq, but when working with Fq-
linear subspaces V ⊆ K it is worth being explicit so as to distinguish between the
subspace V ⟨q⟩ of q-powers and the subspace V ℓ generated by the ℓ-fold products.

Now, it suffices to show that for all ℓ ≥ 0, λi(W
ℓ) ⊆ W ⌊ ℓ

q ⌋+D. That is, we need
to prove that

W ℓ ⊆ (W ⌊ ℓ
q ⌋+D)⟨q⟩h1 + · · ·+ (W ⌊ ℓ

q ⌋+D)⟨q⟩hm

for all ℓ ≥ 0.
Let d := dimW and fix a basis e1, . . . , ed of W over Fq. Then W ℓ is spanned by

elements like en1
1 · · · end

d where n1 + · · ·+nd = ℓ. Writing each ni = qmi + ri where
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0 ≤ ri < q, we have that

en1
1 · · · end

d = (em1
1 · · · emd

d )q(er11 · · · erdd ).

Note that m1 + · · ·md ≤ ⌊ ℓ
q ⌋ while r1 + · · ·+ rd ≤ d(p− 1). So

W ℓ ⊆ (W ⌊ ℓ
q ⌋)⟨q⟩ ·W d(q−1).

Here for vector subspaces U, V , by U · V we mean the vector subspace spanned by
the product uv where u ∈ U and v ∈ V .

On the other hand, from Lemma 5.7 we have that R = Rqh1+ · · ·+Rqhm. Since

R =
⋃
ℓ<ω

W ℓ, the finite set W d(q−1) must be contained in

(WD)⟨q⟩h1 + · · ·+ (WD)⟨q⟩hm

for some D ≥ 0. Putting these together we get

W ℓ ⊆ (W ⌊ ℓ
q ⌋+D)⟨q⟩h1 + · · ·+ (W ⌊ ℓ

q ⌋+D)⟨q⟩hm

as desired. □

Now, we have a commutative algebraic group G over Fq. Write G as a Zariski
open subset of a Zariski closed subset of Pn over Fq. So htW is defined on G(K).
That it is compatible with the algebraic group structure is the following.

Lemma 5.9. Let C0 be an upper bound on the total degree of a defining set of
polynomials over Fq for the group multiplication on G. Then, for all a, b ∈ G(K),

htW (a+ b) ≤ C0 max{htW (a),htW (b)}.

Proof. By definition, for all x, y ∈ R, htW (x + y) ≤ max{htW (x),htW (y)} and
htW (xy) ≤ htW (x) + htW (y). As the coefficients of the polynomials defining the
group multiplication are in Fq and hence have height 0, a straightforward compu-
tation shows that htW (a+ b) ≤ C0 max{htW (a),htW (b)}. □

Suppose now that we have a finite set Σ ⊆ G(K). Expanding W if necessary,
we may and will assume that every element of Σ has a representation with all
co-ordinates in W .

Corollary 5.10. Let C0 be as in Lemma 5.9 and assume that q ≥ C0. Then, for
all ℓ ≥ 1, and all γ ∈ Σ(ℓ, F ), we have htW (γ) ≤ C0q

ℓ.

Proof. We prove this by induction on ℓ, the case of ℓ = 1 being our assumption
that every element of Σ has height one. Suppose γ ∈ Σ(ℓ+ 1, F ). So

γ = x0 + Fx1 + · · ·+ F ℓxℓ

where x0, . . . , xℓ ∈ Σ. Writing xℓ = [a0 : · · · : an] with each ai ∈ W , we have that

F ℓxℓ = [aq
ℓ

0 : · · · : aqℓn ] and aq
ℓ

i ∈ W ⟨qℓ⟩ ⊆ W qℓ . Hence, htW (F ℓxℓ) ≤ qℓ. So

htW (γ) ≤ C0 max{htW (x0 + · · ·+ F ℓ−1xℓ−1),htW (F ℓxℓ)} by Lemma 5.9

≤ C0 max{C0q
ℓ−1, qℓ} by induction

= C0q
ℓ as q ≥ C0

as desired. □

We are now ready to prove the proposition.
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Proof of Proposition 5.1. Write G as a Zariski open subset of a Zariski closed sub-
set G ⊆ Pn over Fq. Fix a finite open cover {Ui : i = 1, . . . , s} of G, and for each

i, j ∈ {1, . . . , s} polynomials P
(i,j)
0 , P

(i,j)
1 , . . . , P

(i,j)
n ∈ Fq[x0, . . . , xn; y0, . . . , yn], ho-

mogeneous in (x0, . . . , xn) and in (y0, . . . , yn), with no common zeros on Ui × Uj ,
such that for (p, q) ∈ Ui × Uj ⊆ Pn × Pn, we have

p+ q = [P
(i,j)
0 (p, q) : P

(i,j)
1 (p, q) : · · · : P (i,j)

n (p, q)].

Let C0 be the maximum of the degrees of the P
(i,j)
k s.

Suppose r > 0 is such that qr ≥ C0 and fix a function field extension K of Fqr

such that X is over K, as well as a finite set Σ ⊆ G(K). Fix h1, . . . , hm an Fqr -

linear basis for K over Kqr , and denote by λ1, . . . , λm the corresponding (order 1)
lambda functions. We will be applying the above lemmas, but with qr replacing q
and F r replacing F .

Using Lemma 5.7, fix a finitely generated Fqr -subalgebra R of K, such that

• h1, . . . , hm ∈ R,
• Frac(R) = K,
• λi(R) ⊆ R for all i = 1, . . . ,m, and
• every element of Σ has a representation with all co-ordinates in R.

Next, fix a finite dimensional Fqr -vector subspace W of R that contains h1, . . . , hm,
as well as generators for R, and such that every elements of Σ has a representation
with all co-ordinates in W . Let htW be the corresponding height function on R
and on Pn(K) studied above.

Let X be the Zariski closure of X in G so that X = X ∩ G, and X is given by
homogeneous polynomials say Q1, . . . , Qt ∈ K[x0, . . . , xn].

Now fix ℓ ≥ 0, and γ ∈ Σ(ℓ, F r). Suppose γ ∈ Uj . Fixing p ∈ Ui we have that
p ∈ X − γ if and only if p+ γ ∈ X, that is, if and only if

Qν

(
P

(i,j)
0 (p, γ), . . . , P (i,j)

n (p, γ)
)
= 0

for all ν = 1, . . . , t. That is, (X − γ) ∩ Ui is defined by the vanishing of

Qν,γ,i,j(x) := Qν

(
P

(i,j)
0 (x, γ), . . . , P (i,j)

n (x, γ)
)

for ν = 1, . . . , t. It follows by Lemma 5.4 that

(X − γ)q
−ℓr

(K) ∩ Ui = {x ∈ Ui(K) : Qλ
ν,γ,i,j(x) = 0 for all ν = 1, . . . , t, λ ∈ Λ(ℓ)}.

Note that the total degrees of the Qλ
ν,γ,i,j are bounded independently of ℓ and γ.

Indeed, if C1 is the maximum of the total degrees of Q1, . . . , Qt, then C1C0 is such
a bound. So, in order to show that TK is finite, it suffices to prove that there is a
height bound for the coefficients of Qλ

ν,γ,i,j that is independent of ℓ and γ. (Note
that ν, i, j range over finite sets.) And in order to give a bound on |TK | it suffices
to give a bound on the height of these coefficients.

By Corollary 5.10, htW (γ) ≤ C0q
ℓr. (This is where we use that qr ≥ C0.)

The coefficients of P
(i,j)
k (x, γ) therefore have htW bounded by C2

0q
ℓr. If C2 is

the maximum of the heights of the coefficients of the Qν , then we get that the
coefficients of Qν,γ,i,j(x) have htW bounded by C1C

2
0q

ℓr+C2. Next we analyze what
happens when we apply λ ∈ Λ(ℓ) to these coefficients. Fixing a ∈ R a coefficient of
Qν,γ,i,j(x), we compute the heights of λ1(a), . . . , λm(a). Since htW (a) ≤ C1C

2
0q

ℓr+
C2, letting D ≥ 0 be is as in Lemma 5.8 but applied to qr, that lemma implies
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htW
(
λk(a)

)
≤ C1C

2
0q

(ℓ−1)r + C2

qr + D for all k = 1, . . . ,m. Iterating ℓ times, we

have that for all λ ∈ Λ(ℓ),

htW
(
λ(a)

)
≤ C1C

2
0 +

C2

qℓr
+

D

q(ℓ−1)r
+

D

q(ℓ−2)r
+ · · ·+D ≤ C1C

2
0 + C2 +

Dqr

qr − 1

where the final inequality is by geometric series. So the coefficients of all the Qλ
ν,γ,i,j

have height bounded by C1C
2
0 + C2 +

Dqr

qr−1 . □

5.1. Proposition 5.1 is effective. That is, a bound on |TK | can be effectively
determined from r and Σ, along with defining equations for G and X as well as a
finite presentation of K. This is more or less clear from the proof we have given,
but we now summarise the justification for this effectivity claim.

First of all, givenK = Frac(S) with a finite presentation of S := Fq[T1, . . . , Ts]/I,
we can effectively determine a Kq-basis for K. This is argued in Appendix B below.
Let 1 = h1, . . . , hm be such a basis.

Next, the construction of R in Lemma 5.7 is effective. Indeed, letting c1, . . . , cs
be the given generators for S – namely the indeterminates Ti modulo I – the proof
of that lemma effectively finds g ∈ Fq[h1, . . . , hm, c1, . . . , cs] such that

R := Fq

[
h1, . . . , hm, c1, . . . , cs,

1

g

]
satisfies the lemma.

We thus have R = Fq[W ] where W is the Fq-span of h1, . . . , hm, c1, . . . , cs,
1
g . We

can work effectively with htW because we can decide whether two elements of R are
the same. Indeed, we can find h ∈ R such that R ⊆ S[ 1h ] and from the given finite

presentation of S we obtain a finite presentation of S[ 1h ], so that deciding equality
reduces to an ideal membership problem, which is testable by Gröbner bases.

Finally, the constant D found in Lemma 5.8 can, by the proof of that lemma, be
taken to be max{htW (v) : v ∈ W dimW (q−1)}. So it too is effectively determined.

With these effective ingredients the proof we have given of Proposition 5.1 gives
explicit bounds on the total degrees and htW of the coefficients of the polynomials
that arise in the description of the elements of TK , thus yielding an effective bound
on |TK |. □

6. An automaton recognising X ∩ Γ

Fix G a commutative algebraic group over Fq, F : G → G the q-power Frobenius
endomorphism, Γ ≤ G a finitely generated Z[F]-submodule, and X ⊆ G is a closed
subvariety defined over some field extension of Fq. By Proposition 4.2 we have
r > 0 and Σ ⊆ Γ a weak F r-spanning set for Γ. (We know by Theorem 3.11 that
we can in fact choose r and Σ so that Σ is an actual an F r-spanning set, but we
do not use this in the construction of our automaton, and the advantage of asking
only for weak spanning sets is that (r,Σ) can be effectively constructed.)

By the proof of [BM19, Lemma 5.7], for every m > 0, Σ(m,F r) is a weak F rm-
spanning set for Γ. We may therefore assume that r is sufficiently large so that
there are defining polynomials over Fq for the multiplication on G of degree less
than qr. Hence Proposition 5.1 applies.

Fix also a finitely generated extension K of Fqr such that Γ ≤ G(K) and X is
defined over K.
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We wish to describe a finite automaton A on the alphabet Σ such that w ∈ Σ∗

is accepted by A if and only if [w]F r ∈ X ∩ Γ. The set of states of A will be
the TK of Proposition 5.1. The initial state will be X(K), which corresponds to

γ = 0 and ℓ = 0. The accepting states are those sets (X − γ)q
−ℓr

(K) ∈ TK which

contain 0. Here’s the transition rule: if the machine is in state (X − γ)q
−ℓr

(K) and

reads the letter x then it should move to state (X − γ − F ℓrx)q
−(ℓ+1)r

(K). Note
that γ + F ℓrx ∈ Σ(ℓ + 1, F r), so that this is indeed a state of A. The following
shows that the rule is well-defined.

Lemma 6.1. For any x ∈ G(K), subvarieties V and W of G over K, and ℓ, ℓ′ ≥ 0,

if V q−ℓ

(K) = W q−ℓ′

(K) then (V − F ℓx)q
−ℓ−1

(K) = (W − F ℓ′x)q
−ℓ′−1

(K).

Proof. Fix a ∈ G(K). Then

a ∈ (V − F ℓx)q
−ℓ−1

⇐⇒ F ℓ+1a ∈ V − F ℓx

⇐⇒ F ℓ(Fa+ x) ∈ V

⇐⇒ Fa+ x ∈ V q−ℓ

⇐⇒ Fa+ x ∈ W q−ℓ′

by assumption and as Fa+ x ∈ G(K)

⇐⇒ F ℓ′(Fa+ x) ∈ W

⇐⇒ F ℓ′+1a ∈ W − F ℓ′x

⇐⇒ a ∈ (W − F ℓ′x)q
−ℓ′−1

as desired. □

So the transition function is well-defined, and we have a finite automaton. It
remains to verify that it does what we want.

Lemma 6.2. The automaton A accepts exactly those words w ∈ Σ∗ such that
[w]F r ∈ X ∩ Γ.

Proof. Suppose that w = x0x1 · · ·xℓ−1 for some ℓ ≥ 0. Then

w is accepted ⇐⇒ 0 ∈ (X − x0 − F rx1 − · · · − F (ℓ−1)rxℓ−1)
q−ℓr

(K)

⇐⇒ 0 ∈ X − x0 − F rx1 − · · · − F (ℓ−1)rxℓ−1 as 0 ∈ G(Fq)

⇐⇒ [w]F r ∈ X.

Since [w]F r ∈ Γ always, this is as desired. □

We have thus proved:

Theorem 6.3. Let G be a commutative algebraic group defined over a finite field Fq,
let F : G → G be the q-power Frobenius, let X ⊆ G be a closed subvariety defined
over a field extension of Fq, and let Γ ≤ G be a finitely generated Z[F ]-submodule.
Suppose (r,Σ,A) are such that

• qr is an upper bound on the total degree of a given defining set of polynomials
over Fq for the group multiplication on G,

• Σ is a weak F r-spanning set for Γ,
• and A is the automaton described above.

Then X ∩ Γ = [L]F r where L ⊆ Σ∗ is the language recognised by A.
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Proof. By Lemma 6.2, L = {w ∈ Σ∗ : [w]F r ∈ X ∩ Γ}. Since Σ is a weak F r-
spanning set, [Σ∗]F r = Γ, and so X ∩ Γ = [L]F r , as desired. □

As a consequence we can deduce the following generalisation of Corollary 3.7.

Corollary 6.4. Suppose G is a commutative algebraic group over Fq, F : G → G is
the q-power Frobenius, X ⊆ G is a closed subvariety defined over a field extension of
Fq, and Γ ≤ G is a finitely generated Z[F ]-submodule. Then X ∩Γ is F -automatic.

Proof. By Theorem 3.11, we have an r > 0 and an F r-spanning set Σ for Γ.
By [BM19, Lemma 5.7], for everym > 0, Σ(m,F r) is an F rm-spanning set. We may
therefore assume that r is sufficiently large so that there are defining equations for
the multiplication on G of degree less than qr. Let A be the automaton constructed
above with this Σ. Now apply Theorem 6.3 to (r,Σ,A) so that X ∩ Γ = [L]F r .
But Proposition 6.8(b) of [BM19] tells us that the expansion of a regular language
on an alphabet that is a spanning set is F -automatic. Hence, as Σ is an actual
F r-spanning set, and not just a weak one, [L]F r is F -automatic. □

6.1. Effectivity. Corollary 6.4 is more general than Corollary 3.7 in that Γ is only
assumed to be a finitely generated Z[F]-submodule rather than an (F -invariant)
finitely generated subgroup. But the real gain here is that we obtain an effective
description of X∩Γ in Theorem 6.3. Let us reiterate the grounds for this effectivity
claim. We are given the following data:

• defining polynomials for the algebraic group G and the subvariety X, em-
bedded as locally Zariski closed subsets of Pn

• generators for the Z[F]-submodue Γ, and
• a finite presentation of K over Fq.

From n and the generators of Γ, Proposition 4.2 gives us an effectively bounded
r > 0 and an explicit defining expression for a weak F r-spanning set Σ. Then, from
(r,Σ) together with the given presentations of G,X, and K, Proposition 5.1 gives us
an effective bound on the size of the set TK which are the states of our automaton A.
The automaton itself is then explicitly constructed. Finally Theorem 6.3 describes
X ∩ Γ as the set of F r-expansions of the words on Σ accepted by A.

7. Deciding rational points on subvarieties of isotrivial abelian
varieties

To illustrate the usefulness of the effective description of X ∩ Γ given by Theo-
rem 6.3, we now solve some natural decision problems in the arithmetic geometry
of abelian varieties over finite fields. Fix an abelian variety G over a finite field
Fq, a function field extension K of Fq, and a closed subvariety X ⊆ G defined
over K. Understanding the set of rational points X(K) is a fundamental problem
in diophantine geometry. Given presentations of G,X, and K, we will give decision
procedures for the following three questions: Is X(K) empty? Is it infinite? Does
it contain a coset of an infinite subgroup of G?

Note that Theorem 6.3 does apply to this context as X(K) = X ∩ Γ where
Γ := G(K) is (by Lang-Néron) a finitely generated F -invariant subgroup of G. (As
usual F : G → G denotes the q-power Frobenius.)
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7.1. Finding generators for G(K). The effectivity of our description of X∩Γ re-
quired as input also generators for Γ. In this case, when Γ is the set of rational points
on an isotrivial abelian variety, there is already an algorithm for computing gen-
erators of G(K). Indeed, such an algorithm exists whenever the Tate-Shafarevich
group is finite (see, for example, [Sil86, Chapter X], for the case of number fields).
That the the Tate-Shafarevich group of an abelian variety over a finite field is finite
is a theorem of Milne [Mil68].

We suppose, therefore, that we have computed generators γ1, . . . , γn for G(K).

7.2. Whether or not X(K) is empty is decidable. From the generators for
G(K), Proposition 4.2 gives us an explicit r and Σ such that Σ is a weak F r-
spanning set forG(K). LetA be the automaton built in §6 from (r,Σ). Theorem 6.3
tells us that X(K) = [L]F r where L ⊆ Σ∗ is the language recognised by A. So
X(K) is nonempty if and only if there is in A a path from the initial state to an
accepting state. This is a decidable property of the shape of the automaton A. □

7.3. Whether or not X(K) is infinite is decidable. This requires a certain
refinement of the automaton built in §6. We make use of the following lemma that
allows us to reduce any given regular language modulo an F -automatic equivalence
relation. In fact we only need the lemma for the trivial equivalence relation of
equality right now, but in §9 below we will apply it to other equivalence relations,
and so we do it in generality.

Lemma 7.1. Suppose F is an injective endomorphism of an abelian group M ,
and Σ ⊆ M is a finite set. Suppose ∼ is an equivalence relation on M such that
G := {(v, w) ∈ (Σ× Σ)∗ : [v]F ∼ [w]F } is regular. Then there is a regular language
L0 ⊆ Σ∗ such that for every w ∈ Σ∗ there is a unique v ∈ L0 with |v| ≤ |w| and
such that [v]F ∼ [w]F .

Proof. Note that we are identifying (Σ×Σ)∗ with the {(v, w) ∈ Σ∗×Σ∗ : |v| = |w|}
in the natural way.

Fix a total ordering on Σ in which 0 is least, and let ≺ denote the induced total
ordering on Σ∗ that first orders by length and then within a given length orders
lexicographically reading right to left. It is not hard to construct the automaton
witnessing that F := {(v, w) ∈ (Σ× Σ)∗ : v ≺ w} is regular.

Let E be the image of G∩F under projection onto the second coordinate. Observe
that E is the set of words w for which there is some v ≺ w of the same length such
that [v]F ∼ [w]F . Let L0 be the regular language made up of words that are not
in E and that do not end in 0. We show L0 works.

Suppose w ∈ Σ∗. Let u ∈ Σ∗ be shortest such that [u]F ∼ [w]F . If u /∈ L0 then,
as u does not end in a 0, it must be that u ∈ E . Hence there exists v ≺ u of the
same length with [v]F ∼ [u]F . Letting v be ≺-least such we have that v /∈ E . On
the other hand, v cannot end in 0 as if v = v′0 then v′ would contradict the fact
that u was chosen of minimal length. Hence v ∈ L0, as desired.

For uniqueness, suppose, toward a contradiction, that we have distinct v1, v2 ∈
L0 with [v1]F ∼ [v2]F . We may assume that |v1| ≤ |v2|. If |v1| = |v2| then we may
assume that v1 ≺ v2. Let n ≥ 0 be such that |v10n| = |v2|. As v2 does not end in 0,
we must have that v10

n ≺ v2. So v2 ∈ E , contradicting v2 ∈ L0. □
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Remark 7.2. If the equivalence relation∼ is just equality then [BM19, Lemma 6.7(a)]
gives that G is regular – and indeed it explicitly constructs an automaton recognis-
ing G – and hence the above lemma applied to a weak F -spanning set Σ gives us a
regular language in which every element of M has a unique base F representation.

We are now ready to decide the problem of whether X(K) is infinite. As before,
we first produce (r,Σ,A) such that Σ is a weak F r-spanning set for G(K) and A is
the automaton built in §6 from (r,Σ). Let L ⊆ Σ∗ be the language recognised by A.
So X(K) = [L]F r by Theorem 6.3. Let L0 ⊆ Σ∗ be the regular language given by
Lemma 7.1 applied to (G(K), F r) with the trivial equivalence relation (namely,
equality). So L0 is regular, and indeed, by following the proof of Lemma 7.1, one
can explicitly construct an automaton A0 that recognises it. Let L′ := L ∩ L0

and let A′ be the automaton obtained from A and A0 that recognises L′. By
construction, w 7→ [w]F r is a bijection between L′ and X(K). So X(K) is infinite
if and only if L′ is. By the pumping lemma, L′ is infinite if and only if there
exist strings u, v, w ∈ Σ∗ with |v| ≥ 1 such that uviw ∈ L′ for all i ≥ 0. See, for
example, [AS03, Lemma 4.2.1]. This is something decidable about the shape of the
automaton recognising L′; namely L′ is infinite if and only if there is a path from
the initial state of A′ to an accepting state that includes a nontrivial loop. □

7.4. Finding an actual spanning set for G(K). In order to deal with our last
decision problem – whether or not X(K) contains an infinite coset – weak span-
ning sets will not be sufficient. This is because we will be making use of some
recent results of Christopher Hawthorne [Haw22] that require actual spanning sets.
Fortunately, using methods from [BM19], we can give an effective algorithm for
producing a spanning set for G(K). (Our method does not extend to arbitrary
Z[F]-submodules of G(K), and that is why we only obtained weak spanning sets
in §4.) We give some details.

In §5.1 we showed how to effectively construct an Fq-algebra R with an Fq-
subspace W such that R = Fq[W ] and K = Frac(R). It was also explained how
we can then work effectively with the corresponding height function htW given by
Definition 5.6. For each positive integer N , set

ΣN := {x ∈ G(K) : htW (x) ≤ N or htW (−x) ≤ N}.

It is shown in [BM19, Proposition 5.8] that this set will be an F r-spanning set for
some r and sufficiently large N . We need to produce such r and N effectively.

In fact, the proof of [BM19, Proposition 5.8] tells us what r should be: the
requirement is that 6C6 ≤ Dr where C,D > 1 are integers satisfying:

htW (x+ y) ≤ C(htW (x) + htW (y)) for all x, y ∈ G(K),(4)

htW (−x) ≤ C htW (x) for all x ∈ G(K),(5)

htW (F (x)) ≥ D htW (x) for all but finitely many x ∈ G(K).(6)

Remark 7.3. Note that in our setting the κ of [BM19, Proposition 5.8] is 0 and
hence the conditions (i)–(iii) in the proof there are consequences of 6C6 ≤ Dr.

So to find r we need to effectively find such C and D. The proof of [BM19,
Corollary 5.9] shows that (4) and (5) hold with C being the maximum of the
degrees of the given polynomials defining the group law and inverse on G. We now
describe how to find D witnessing (6).
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First, recall that, for each positive integer ℓ, we use W ℓ to denote be the Fq-

vector space spanned by the ℓ-fold products of elements from W , while we use W ⟨q⟩

to denote the Fq-vector space of q-powers of elements from W .
By construction (see Lemma 5.7), we have a fixed Kq-basis h1, . . . , hm for K

such that R = Fq[W ] =
∑m

j=1 Fq[W ]qhj . Letting λ1, . . . , λm denote the operators
corresponding to h1, . . . , hm, let

t0 := max{htW (λj(v)) : v ∈ W dimW (q−1), j = 1, . . . ,m}.

It follows that

W dimW (q−1) ⊆
m∑
j=1

(W t0)⟨q⟩hj .

The proof of Lemma 5.8 then shows that

W t ⊆
m∑
j=1

(W ⌊ t
q ⌋+t0)⟨q⟩hj

for all t ≥ 0. Letting t1 := ⌈ t0q+q
q−1 ⌉ one computes that t1δ

q + t0 ≤ (t1 − 1)δ for all

δ > 0, and hence

W t1δ ⊆
m∑
j=1

(W (t1−1)δ)⟨q⟩hj

for all δ > 0. Letting D :=
t21

t21−1
and Z0 := {z ∈ Fq[W ] : htW (z) ≤ t21 + t1},

the proof of [BM19, Corollary 5.9] then shows that htW (xq) ≥ D htW (x) for all
x ∈ Fq[W ]\Z0. Hence D witnesses (6), with the finite exceptional set Z being those
elements of G(K) that have a homogeneous representation of the form [x0 : · · · : xn]
with each xi ∈ Z0.

Having found an r that works, the proof of [BM19, Proposition 5.8] also tells us
how large N has to be: it must be big enough so that ΣN contains an exceptional
set for (6) as well as a complete set of representatives for G

(
Kqr

)
in G(K). We

have already effectively produced an exceptional set for (6), namely Z. For repre-
sentatives of G

(
Kqr

)
in G(K) we make use of the set of generators γ1, . . . , γn for

G(K) computed in §7.1. From the fact that multiplication by qr on G is of the
form F r ◦V r where V is the Verschiebung, we get that [qr]G(K) ≤ G(Kqr ). Hence
{[ℓ]γi : 1 ≤ i ≤ n, 0 ≤ ℓ ≤ qr} is a complete set of representatives for G

(
Kqr

)
in G(K). Taking N to be greater than the height of all these elements, as well as
all the elements of Z, we have that ΣN is an F r-spanning set for G(K).

7.5. Whether or not X(K) contains an infinite coset is decidable. The
strategy for deciding this will be as follows: We have just computed (r,Σ) such
that Σ is an F r-spanning set for G(K). As in §7.3, we can then produce a regular
L′ ⊆ Σ∗ recognised by an explicitly constructed automatonA′, such that w 7→ [w]F r

is a bijection between L′ and X(K). We saw there that the infinitude of L′ was
reflected in the shape of A′. Similarly, we will show that X(K) contains an infinite
coset if and only if L′ is not “sparse”, and that sparsity can be read off from A′.

First, we need to recall what it means for a language to be sparse. A sublanguage
L ⊆ Σ∗ is said to be sparse if it is regular and the number of words in L of length n
is O(nd) as n grows, for some d ≥ 0. A list of equivalent formulations that we will
make use of is compiled in [BM19, Proposition 7.1]. Sparsity in the general setting
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of F -automatic sets has been studied further recently by Hawthorne in [Haw22],
from which we will use the following two results:

Fact 7.4 (Corollary 5.12 of [Haw22]). Suppose (M,F ) is an abelian group equipped
with an injective endomorphism and S ⊆ M is F -automatic. The following are
equivalent conditions on S:

(i) There exists an r > 0, an F r-spanning set Σ for M , and a sparse sublan-
guage L ⊆ Σ∗, such that S = [L]F r . We say that S is F -sparse.

(ii) Suppose r > 0, Σ is an F r-spanning set for M , and L ⊆ Σ∗ is regular such
that [L]F r = S. Fix any linear ordering ≺ on Σ and denote also by ≺ the
induced length-lexicographic ordering on Σ∗. Then

L≺ := {w ∈ L : w ⪯ v for all v ∈ L with [v]F r = [w]F r}

is sparse.

Remark 7.5. By the length-lexicographic ordering ≺ we mean that among words
of a given length the ordering is lexicographic and if |w| < |v| then w ≺ v.

Subsets satisfying condition (i) were called F -sparse in [BM19], but the seemingly
stronger condition (ii) is more concrete and easier both to verify or falsify in practice.
In §9.1 we will return to sparsity, studying in detail the structure of F -sparse subsets
of isotrivial commutative algebraic groups. The next fact says that F -sparse sets
are far from being subgroups.

Fact 7.6 (Corollary 5.14 of [Haw22]). Suppose (M,F ) is a finitely generated abelian
group equipped with an injective endomorphism and S ⊆ M is F -automatic. If S
is F -sparse then it does not contain any coset of an infinite subgroup of M .

We now use F -sparsity to solve our decision problem. Recall that we already
effectively produced an F r-spanning set Σ for G(K), and a regular language L′ on Σ
such that X(K) = [L′]F r and each element of X(K) has a unique F r-representation
in L′. We first argue that X(K) contains an infinite coset if and only if L′ is not
sparse. Indeed, assume that X(K) contains a coset of an infinite subgroup of G.
Then in fact that subgroup is in G(K), and hence by Fact 7.6 applied to M = G(K)
and S = X(K), it follows that X(K) is not F -sparse. Hence L′ is not sparse.
Conversely, suppose that X(K) does not contain any such infinite coset. Then by
Theorem 2.3 – or indeed by the original isotrivial Mordell-Lang theorem [MS04,
Theorem B] – we have that X(K) is a finite union of sets from S(G,F ). But it was
shown in [BM19], see the proof of Theorem 7.4 of that paper, that such sets are
F -sparse. So condition (ii) of Fact 7.4 holds of S = X(K), and we get that L′

≺ is
also sparse. But L′

≺ = L′ as each element of X(K) has a unique F r-representation
in L′. Therefore L′ is sparse.

We have reduced the problem to deciding whether or not L′ is sparse. Let A′

be the automaton recognising L′ that was explicitly constructed in the proof of
Theorem 7.3. We may assume that every state in A′ is accessible, in the sense that
it can be reached by some input. Now, one of the equivalent conditions for L′ to
be sparse, given in [BM19, Proposition 7.1(4)], is that A′ has no “double loops”.
This condition is something visibly decidable about the shape of A′. □
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8. A gap theorem for rational points of bounded height on
subvarieties of isotrivial abelian varieties

The sparse/non-sparse dichotomy for regular languages that appeared in §7.5 yields
an analogous dichotomy within the context of isotrivial Mordell-Lang. In order to
properly state this, we make use of the Néron-Tate canonical height on an abelian
variety (see [Lan64] or [HS00, Part B] for more details).

Theorem 8.1. Let G be an abelian variety defined over Fq, let F : G → G be
the q-power Frobenius endomorphism, let K be a finitely generated field extension
of Fq, and let X be a closed subvariety of G over K. Denote by h the Néron-Tate
canonical height on G. Then the following are equivalent:

(1) X(K) is F -sparse;
(2) there are C > 0 and d ≥ 0 such that for sufficiently large H

#{c ∈ X(K) : h(c) ≤ H} ≤ C(log(H))d;

(3) #{c ∈ X(K) : h(c) ≤ H} = o(H1/2);
(4) X(K) does not contain a coset of an infinite subgroup of G;
(5) X(K) is a finite union of sets from S(G,F ).

Remark 8.2. The equivalence of (2) and (3) means that there is a gap: either the
number of points on X(K) of height at most H is bounded above by C(log(H))d

or it is bounded below by C ′H1/2.

To prove this result, we require two technical lemmas dealing with estimation.
We have a positive quadratic form ⟨ · , · ⟩ on G(K)×G(K) given by

⟨x, y⟩ = h(x+ y)− h(x)− h(y).

Suppose Σ ⊆ G(K) is a finite set. Observe that for c ∈ [Σ]F and x ∈ G(K),

2h(x+ c) = ⟨x+ c, x+ c⟩ = ⟨x, x⟩+ 2⟨x, c⟩+ ⟨c, c⟩.

We can rewrite the right side as 2h(x) + 2h(c) + 2⟨x, c⟩. Then since we have only
finitely many choices for c ∈ [Σ]F , Cauchy-Schwarz gives there is some positive
constant κ1 such that ⟨x, c⟩ ≤ κ1h(x)

1/2. So letting κ2 denote the max of h(c) as
c ranges over [Σ]F we get there are positive constants κ1, κ2 such that,

(7) h(x+ c) ≤ h(x) + κ1h(x)
1/2 + κ2 for all c ∈ [Σ]F and x ∈ G(K).

In addition (using that the Néron-Tate height differs from the usual Weil height by
a uniform bounded amount), if r is a positive integer, then there is a constant κ3,
which depends upon r, such that

(8) qrh(x)− κ3 ≤ h(F r(x)) ≤ qrh(x) + κ3 for all x ∈ G(K).

Lemma 8.3. Let Σ be an F r-spanning set for G(K) and κ1, κ2, κ3 as in Equa-
tions (7) and (8). Define En recursively by E0 = max{2 + κ3 + h(a) : a ∈ Σ} and
En = En−1(1 + (κ1 + κ3)/q

n/2) for n ≥ 1. Then for all c0, . . . , cn ∈ Σ, the height
of c0 + F r(c1) + · · · + Fnr(cn) is at most Enq

nr. In particular, there is a positive
constant C0 such that for every n ≥ 1 we have c0 + F r(c1) + · · · + Fnr(cn) has
height at most C0q

nr.
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Proof. We prove the first part by induction on n. When n = 0 this follows from our
choice of E0. Now suppose that the result holds whenever n < k for some k ≥ 1
and consider an element c0 + · · ·+ F kr(ck). Then

F r(c1) + · · ·+ F kr(ck) = F r(c1 + · · ·+ F r(k−1)(ck))

has height at most qkrEk−1 + κ3 by the induction hypothesis and Equation (8).
We then translate by c0 ∈ Σ and so an application of Equation (7) yields that the
height of c0 + · · · + F kr(ck) is at most qkrEk−1 + κ3 + κ1(q

krEk−1 + κ3)
1/2 + κ2.

This quantity is less than or equal to

qkrEk−1 + (κ1 + κ2)Ek−1q
kr/2 = qkrEk,

so we obtain the first claim. To complete the proof observe that Ek ≤ C0 :=
E0

∏
j≥1(1+(κ1+κ2)/q

jr/2) and the product on the right converges since
∑

1/qjr/2

converges, so we have that the height of F r-expansions of length n is at most C0q
nr

for every n ≥ 0. The result now follows. □

Lemma 8.4. Let Σ be an F r-spanning set for G(K) and κ1, κ2, κ3 as in Equa-
tions (7) and (8). Then there is a positive constant C1 such that every element of
G(K) of height at most C1q

nr can be realised as the F r-expansion of a word in Σ∗

of length at most n.

Proof. Let C = κ1 + κ2 + κ3. We let ℓ be a positive integer with the property
qℓr/2 > C. As before, ∏

j≥ℓ

(1− C/qjr/2)

converges to a positive number θ > 0. Pick Bℓ such that q−ℓrBℓθ > 1. Then
there is some m such that every element of Néron-Tate height at most qℓrBℓ has
an F -expansion of length at most m. We define Bn = Bn−1(1−C/qnr/2) for n > ℓ.
So from the above we have Bn > 1 for all n ≥ ℓ.

We claim that for every n ≥ ℓ all numbers of height at most qnrBn can be
realised as the F r-expansion of a word in Σ∗ of length at most m + n. We again
prove this by induction on n with the base case, n = ℓ, being immediate. Now
suppose that the claim holds whenever n < k and suppose that x has height at
most qkrBk. Then there is some c0 ∈ Σ such that x − c0 ∈ G(Kqr ). Hence
h(x− c0) ≤ h(x) + κ1h(x)

1/2 + κ2. So if we let y = F−r(x− c0) then

h(y) ≤ h(x) + κ1h(x)
1/2 + κ2 + κ3

q
.

Since qkrBk ≥ 1, the height of y is at most (qkrBk + (κ1 + κ2 + κ3)(q
krBk)

1/2)/qr.
Now we claim that Bk−1 ≥ (Bk+(κ1+κ2+κ3)(Bk/q

kr)1/2). Once we have this, we
will have that y has height at most q(k−1)rBk−1 and so the result will then follow
by induction.

To show this we must show Bk−1 ≥ Bk+C(Bk/q
kr)1/2 = Bk(1+C(Bkq

kr)−1/2).
But Bk = Bk−1(1− C/qkr/2) and so

Bk(1 + C(Bkq
kr)−1/2) = Bk−1(1− C/qkr/2) + CB

1/2
k /qkr/2

≤ Bk−1 − CBk−1/q
kr/2 + CB

1/2
k−1/q

kr/2

≤ Bk−1.
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So since Bk ≥ 1 for all k we see that all elements of height at most qkr have an
expansion of length at most m + k and so we see that if we take C1 = q−mr we
obtain the result. □

Corollary 8.5. Let Σ be an F r-spanning set for G(K) and let

L := {v ∈ Σ∗ : [v]F r ∈ X(K)}.

Fix a linear ordering ≺ on Σ and denote also by ≺ the induced length-lexicographic
ordering on Σ∗. Let

E := {w ∈ L : w ⪯ v for all v ∈ L with [v]F r = [w]F r}.

If Θ(m) denotes the number of elements in X(K) of height at most m, then there
are positive constants C0 and C1 such that

(9) Θ(C1q
nr) ≤ #E≤n ≤ Θ(C0q

nr)

for all n ≥ 1, where E≤n is the set of words of length at most n in E.

Proof. By Lemma 8.4, there is a positive constant C1 such that every element of
G(K) of height at most C1q

nr is of the form [v]F r with v ∈ Σ∗ of length at most n.
In particular, for each x ∈ X(K) with h(x) ≤ C1q

nr there is a word w ∈ E of length
at most n such that [w]F = c. This gives the first inequality. By Lemma 8.3, there
is a positive constant C0 such that every word w in Σ∗ of length at most n has the
property that h([w]F r ) ≤ C0q

nr. Since w 7→ [w]F r is a bijection between E and
X(K), this gives the second inequality. □

We can now prove the gap theorem.

Proof of Theorem 8.1. By Corollary 3.7, or indeed by [BM19, Corollary 6.10], we
have that there exists an r > 0 and an F r-spanning set Σ for G(K) such that

L := {v ∈ Σ∗ : [v]F r ∈ X(K)}

is regular. So Corollary 8.5 applies.
Suppose that (1) holds and let E ⊆ L be as in Corollary 8.5. By Fact 7.4, noting

that E is just what was called L≺ there, we have that E is sparse. Hence #E≤n is
polynomially bounded, and so by Equation (9) we see that (2) holds.

The implication (2) =⇒ (3) is immediate.
Observe that if (4) does not hold then X(K) contains {a+ nb : n ∈ Z} for some

a, b ∈ G(K) with b non-torsion and since a + nb has height O(n2) we see that (3)
does not hold. So (3) implies (4).

That (4) =⇒ (5) follows from Theorem 2.3, or indeed from [MS04, Theorem B].
Finally, that (5) =⇒ (1) was already pointed out in §7.5 using results of [BM19].

□

Remark 8.6. Theorem 8.1 holds more generally for algebraic groups G that have
a height function for which Equations (7) and (8) hold after one replaces G(K)
with a finitely generated F -submodule Γ of G(K). In particular, the equivalences
hold for G(R) when G = Gd

m and R is a finitely generated Fq-algebra that is an
integral domain.
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9. Mordell-Lang for finitely generated Z[F]-submodules of isotrivial
commutative algebraic groups

Recall that S(G,F ) denotes the collection of translates of finite sums of F -orbits,
i.e., subsets of the form a + S(a1, . . . , ar; δ1, . . . , δr) in the notation of Section 2.
Our goal in this final section is to prove the following:

Theorem 9.1. Let G be a commutative algebraic group over a finite field Fq, let
F : G → G be the q-power Frobenius, let X ⊆ G be a closed subvariety defined over
a field extension of Fq, and let Γ ≤ G be a finitely generated Z[F]-submodule. Then
X ∩ Γ is a finite union of sets of the form S + Λ where S ⊆ Γ is in S(G,F ) and
Λ ≤ Γ is a Z[F r]-submodule for some r > 0.

Remark 9.2. In the conclusion of the theorem we can replace Λ by H ∩ Γ where
H is the Zariski closure of Λ. Indeed, S + Λ ⊆ S + (H ∩ Γ) ⊆ X ∩ Γ. Note also
that H ≤ G is an algebraic subgroup over a finite field since Λ is F r-invariant.

This is an isotrivial Mordell-Lang statement like Theorem 2.3 but for finitely gen-
erated Z[F]-submodules rather than finitely generated groups that are F -invariant.
When we restrict to G semiabelian, Theorem 9.1 is precisely Theorem 1.1, the
original isotrivial Mordell-Lang theorem of the third author and Thomas Scanlon
from [MS04]. However, our proof even in that case is new; we deduce the combina-
torial structure of X ∩ Γ directly from the F -automaticity given by Corollary 6.4.

The proof will proceed by a series of reductions, with the key technical step being
an understanding of the structure of “F -sparse” subsets of Γ.

9.1. Sparsity and F -orbits. Suppose we have an abelian group M equipped with
an injective endomorphism F : M → M and Σ a finite subset of M . Recall that
L ⊆ Σ∗ is said to be sparse if it is regular and the number of words in L of
length n is O(nd) as n grows, for some d ≥ 0. A list of equivalent formulations
is compiled in [BM19, Proposition 7.1]. In particular, it is shown there that every
sparse language is a finite union of languages of the form

u1w
∗
1u2w

∗
2 · · ·umw∗

mum+1 := {u1w
n1
1 u2w

n2
2 · · ·umwnm

m um+1 : n1, . . . , nm ≥ 0}

for some words ui, wi ∈ Σ∗ with the wi all nontrivial. Let us call languages of this
form simple sparse. The F -expansions of a simple sparse language will have a very
special form.

Definition 9.3. Given a1, . . . , ar ∈ M and positive integers δ1, . . . , δr, we denote{
Fn1δ1a1 + Fn1δ1+n2δ2a2 + · · ·+ F

∑r
i=1 niδiar : n1, . . . , nr ≥ 0

}
by E(a1, . . . , ar; δ1, . . . , δr). As usual, we write E(a1, . . . , ar; δ) in the case when all
the δi = δ.

Lemma 9.4. Suppose M is an abelian group, F : M → M is an injective endo-
morphism, and Σ is a finite subset of M . Suppose (N,F ) is an extension of (M,F )
for which F − id : N → N is surjective.

If L = u1w
∗
1u2w

∗
2 · · ·umw∗

mum+1 is a simple sparse sublanguage of Σ∗ then

[L]F = a0 + E(a1, . . . , ar; δ1, . . . , δr)
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for some a0, . . . , ar ∈ N and δ1, . . . , δr > 0. Moreover, if m > 0, we can choose
a0, . . . , ar, δ1, . . . , δr above so that concatenating L with any v ∈ Σ∗ yields

[Lv]F = a0 + E(a1, . . . , ar−1, ar + F ℓ[v]F ; δ1, . . . , δr)

where ℓ =
∑m+1

i=1 |ui|.

Proof. We proceed by induction on m. If m = 0 then a0 = [u1]F and r = 0 works.
So assume m > 0 and write L as the concatenation L1L2 where L1 = u1w

∗
1 and

L2 = u2w
∗
2 · · ·umw∗

mum+1. By the induction hypothesis,

(10) [L2]F = a0 + E(a1, . . . , ar; δ1, . . . , δr)

for some a0, . . . , ar from N and positive integers δ1, . . . , δr. Let |u1| = α, |w1| = β,
x = [u1]F , and y = [w1]F . The elements of [L]F are precisely those of the form
[u1w

n
1 ]F + Fα+nβ(z) with z ∈ [L2]F . Note that

[u1w
n
1 ]F + Fα+nβ(z) = x+ Fα(y) + Fα+β(y) + · · ·+ Fα+(n−1)β(y) + Fα+nβ(z).

Now, since F−id is surjective onN , there exists θ ∈ N such that Fα(y) = F β(θ)−θ.
A simple telescoping argument gives

[a1b
n
1 ]F + Fα+nβ(z) = x− θ + F βn(θ + Fα(z)).

Setting γ := x− θ we get that

[L]F =
⋃

z∈[L2]F

⋃
n≥0

{γ + F βn(θ + Fα(z))}

= γ +
⋃
n≥0

F βn(θ + Fα([L2]F ))

= γ +
⋃
n≥0

F βn(θ + Fαa0 + E(Fαa1, . . . , F
αar; δ1, . . . , δr))

= γ + E(θ + Fαa0, F
αa1, . . . , F

αar;β, δ1, . . . , δr)

as desired.
For the “moreover” clause we must first consider the m = 1. In that case

L2 = {u2} and we have

[L]F =
⋃
n≥0

{γ + F βn(θ + Fα[u2]F )}

= γ + E(θ + Fα[u2]F ;β)

and for any v ∈ Σ∗,

[Lv]F =
⋃
n≥0

{γ + F βn(θ + Fα[u2v]F )}

= γ + E(θ + Fα[u2]F + Fα+|u2|[v]F ;β).

Since α+ |u2| = |u1|+ |u2| this proves the “moreover” clause when m = 1.
Suppose m > 1. The inductive hypothesis yields that in (10) we can choose

a0, . . . , ar, δ1, . . . , δr so that for any v ∈ Σ∗

[L2v]F = a0 + E(a1, . . . , ar−1, ar + F ℓ[v]F ; δ1, . . . , δr)
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where ℓ =
∑m+1

i=2 |ui|. Hence

[Lv]F = γ +
⋃
n≥0

F βn(θ + Fα([L2v]F ))

= γ +
⋃
n≥0

F βn(θ + Fαa0 + E(Fαa1, . . . , F
α(ar + F ℓ[v]F ); δ1, . . . , δr))

= γ + E(θ + Fαa0, F
αa1, . . . , F

αar−1, F
αar + Fα+ℓ[v]F ;β, δ1, . . . , δr).

As α = |u1|, this proves the “moreover” clause. □

Remark 9.5. Note that while [L]F ⊆ M we have to go to an extension to find
a0, . . . , ar. In the proof this comes from the induction step where x and y are in M
but we have to pass to N to find γ and θ.

The sets E(a1, . . . , ar; δ1, . . . , δr), despite some superficial similarity to translates
of sums of F -orbits, are not expressible as finite unions of such. However, in our
geometric context, they can be so expressed up to Zariski closure.

Proposition 9.6. Suppose G is a commutative algebraic group over Fq, F : G → G
is the q-power Frobenius, K is a function field over Fq, and Γ ≤ G(K) is an
F -pure Z[F]-submodule. Suppose E := a0 + E(a1, . . . , ar; δ1, . . . , δr) ⊆ Γ where
a0, . . . , ar ∈ G and δ1, . . . , δr are positive integers. Then there exists T ⊆ Γ, a
finite union of sets from S(G,F ), such that E ⊆ T ⊆ E where the over line denotes
Zariski closure.

Proof. We first consider the case when E = a0 +E(a1, . . . , ar; 1); that is, when all
the δi = 1.

Note that, as E ⊆ Γ, we have Fai − ai ∈ Γ for each i = 1, . . . , r. Indeed, for
i = r this is a because both a0 + · · ·+ ar−1 + Far and a0 + · · ·+ ar are in E and
hence in Γ, and one simply takes their difference. For i = r − 1 one notes that
a0 + · · · + ar−2 + Far−1 + Far ∈ E and so subtracting a0 + · · · + ar yields that
(Far−1 − ar−1) + (Far − ar) ∈ Γ, and hence by the i = r case Far−1 − ar−1 ∈ Γ.
And so on all the way down to i = 1.

It follows, by applying F and taking sums, that Fmai − ai ∈ Γ for all m ≥ 0.

For each i = 1, . . . , r, let ji ≥ 0 be maximal such that Fai − ai ∈ G(Kpji
), if it

exists, and set ji = ∞ otherwise. Let

T := a0 +

r∑
i=1

{Fnai : n ≥ −ji}

Note that if ji < ∞ then {Fnai : n ≥ −ji} is the F -orbit S(F−jiai; 1). On the
other hand, if ji = ∞ then Fai − ai, and hence Fnai − ai for all n ∈ Z, is in the
finite group G(K ∩ Falg

q ). Hence, in that case, {Fnai : n ≥ −ji} is finite. So T is a
finite union of sets from S(G,F ). It is also clear that E ⊆ T .

We claim that T ⊆ E and that T ⊆ Γ. We proceed by induction on r ≥ 1.
Suppose r = 1. Then E = a0+S(a1; 1). Hence the Zariski closed set E−a0 is F -

invariant, and so also F−1-invariant. Since a1 ∈ E−a0 we have that Fna1 ∈ E−a0
for all n ∈ Z. In particular, T = a0 + {Fna1 : n ≥ −j1} ⊆ E.

Next, still in the case of r = 1, we show that T ⊆ Γ. Since E ⊆ Γ, it suffices to

show that a0+F−ℓa1 ∈ Γ for 0 < ℓ ≤ j1. But we have that Fa1−a1 ∈ G(Kpji
), so

applying F−1 repeatedly we get that a1 − F−1a1, . . . , F
−ℓ+1a1 − F−ℓa1 ∈ G(K),

and summing these telescopes to a1 − F−ℓa1. Hence, a1 − F−ℓa1 ∈ G(K) and



34 JASON BELL, DRAGOS GHIOCA, AND RAHIM MOOSA

F ℓ(a1 − F−ℓa1) = F ℓa1 − a1 ∈ Γ. By F -purity of Γ in G(K), a1 − F−ℓa1 ∈ Γ. As
a0 + a1 ∈ E ⊆ Γ, we thus have a0 + F−ℓa1 ∈ Γ, as desired.

Assume now that r > 1. For each m ≥ 0, consider

Em := a0 + Fma1 + E(Fma2, . . . , F
mar; 1).

So E =
⋃
m≥0

Em. Note that for each i = 2, . . . r, if ji < ∞ then

F (Fmai)− Fmai = Fm(Fai − ai) ∈ G(Kpji+m

)

and m+ ji is maximal such. If ji = ∞ then F (Fmai)−Fmai ∈
⋂
j≥0

G(Kpj

). Hence

the induction hypothesis yields that if we let

Tm := a0 + Fma1 +

r∑
i=2

{Fn(Fmai) : n ≥ −ji −m}

then Tm ⊆ Em ⊆ E and Tm ⊆ Γ. Note that

Tm = a0 + Fma1 +

r∑
i=2

{Fnai : n ≥ −ji}

and
⋃
m≥0

Tm ⊆ T . But we do not get all of T in this way because only nonnegative

F -iterates of a1 appear in this union.
To show that T ⊆ E consider the Zariski closed set

Z :=
⋂

n2≥−j2,...,nr≥−jr

(E − a0 −
r∑

i=2

Fni
i ai).

Since Tm ⊆ E we have that a0 + Fma1 +
∑r

i=2 F
ni
i ai ∈ E for any fixed tuple

of integers n2 ≥ −j2, . . . , nr ≥ −jr. That is, Fma1 ∈ Z for all m ≥ 0. Hence
S(a1; 1) ⊆ Z. But S(a1; 1) is an F -invariant, and hence F−1-invariant, Zariski
closed set. So F ℓa1 ∈ Z for all integers ℓ, in particular for all ℓ ≥ −ji. Hence

a0 + F ℓa1 +

r∑
i=2

{Fnai : n ≥ −ji} ⊆ E for all ℓ ≥ −j1. That is, T ⊆ E.

Next, we show that T ⊆ Γ. Since we already know that Tm ⊆ Γ for all m ≥ 0, it

remains only to show that a0+F−ℓa1+

r∑
i=2

{Fnai : n ≥ −ji} ⊆ Γ for all 0 < ℓ ≤ j1.

Fix integers n2 ≥ −j2, . . . , nr ≥ −jr. Note that a0 + a1 +
∑r

i=2 F
ni
i ai ∈ T0 ⊆ Γ.

But, from the argument in the r = 1 case, using F -purity, we also know that
a1 − F−ℓa1 ∈ Γ. Subtracting, we get a0 + F−ℓa1 +

∑r
i=2 F

ni
i ai ∈ Γ, as desired.

We have completed the proof of the proposition in the case when all the δi = 1.
It remains to explain how to reduce to that case. Let δ := lcm{δ1, . . . , δr}. Then
a0 + E(a1, . . . , ar; δ1, . . . , δr) is equal to the union of

a0 + E(Fm1δ1a1, F
m1δ1+m2δ2a2, . . . , F

∑r
i=1 miδiar; δ)

as each mi ranges in the finite set {0, 1, . . . , δ
δi
}. Hence it suffices to prove the

proposition when all the δi = δ. Finally, to deal with this case, noting that Γ is
an F δ-pure Z[F δ]-submodule of G(K), we can apply the already proved case of the
proposition to F δ. Since S(G,F δ) ⊆ S(G,F ), this suffices. □
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Remark 9.7. The proof of Proposition 9.6 shows (under the same hypothesis) that
if E = a0 + E(a1, . . . , ar; 1) ⊆ Γ then E ⊆ a0 + S(a1, . . . , ar; 1) ⊆ E ∩ Γ. Indeed,
clearly E ⊆ a0 + S(a1, . . . , ar; 1) ⊆ a0 +

∑r
i=1{Fnai : n ≥ −ji} =: T , and it was

shown in the proof that T ⊆ E ∩ Γ.

Corollary 9.8. Suppose G is a commutative algebraic group over Fq, F : G → G
is the q-power Frobenius, K is a function field extension of Fq, Γ ≤ G(K) is an
F -pure Z[F]-submodule, and Σ ⊆ Γ is finite. Suppose L ⊆ Σ∗ is sparse. Then there

exists T ⊆ Γ, a finite union of elements of S(G,F ), such that [L]F ⊆ T ⊆ [L]F .

Proof. By [BM19, Proposition 7.1], L is a finite union of simple sparse languages.
Apply the main clause of Lemma 9.4 to each of these with M = Γ and N = G, not-
ing that F− id is a surjective endomorphism of the algebraic group G because it has
finite kernel. So [L]F is a finite union of sets of the form a0+E(a1, . . . , ar; δ1, . . . , δr),
each lying in Γ but with the ai’s from G. Now apply Proposition 9.6. □

9.2. Intersecting with certain submodules. In order to reduce to the F -pure
setting, as required in the previous results, we will require the following general
property of translates of sums of F -orbits.

Lemma 9.9. Suppose (M,F ) is an abelian group equipped with an injective endo-
morphism and A ≤ B ≤ M are Z[F]-submodules with F ℓB ≤ A for some ℓ ≥ 0. If
S ⊆ B is from S(M,F ) then S ∩A is a finite union of sets from S(M,F ).

Proof. Write S = a0+S(a1, . . . , ar; δ1, . . . , δr). Note, first of all, that as S ⊆ B, we
have F δiai − ai ∈ B for all i = 1, . . . , r. Indeed,

F δiai − ai = (a0 + a1 + · · ·+ F δiai + · · · ar)− (a0 + a1 + · · ·+ ai + · · · ar).
It follows that Fnδiai − ai ∈ B, for all n ≥ 0. This in turn implies, using the fact
that F ℓB ≤ A, that

(11) F (ℓ+m)δiai − F (ℓ+n)δiai ∈ A

for all m ≥ n ≥ 0 and i = 1, . . . , r.
We now proceed to prove the lemma by induction on r ≥ 1, dealing with the

base case and induction step at the same time.
For each j = 1, . . . , r and N > 0, consider the subset of S given by

Sj,N := {a0 +
r∑

i=1

Fniδiai : n1, . . . , nr ≥ 0 and nj < N}

=

N−1⋃
m=0

a0 + Fmδjaj + S(a1, . . . , aj−1, aj+1, . . . , ar; δ1, . . . , δj−1, δj+1, δr).

If r = 1 then Sj,N is finite and hence so is Sj,N ∩ A, and if r > 1 then Sj,N ∩ A is
a finite union of sets from S(G,F ) by induction. Hence, if S ∩ A = Sj,N ∩ A for
some j and N then we are done. We thus assume this never happens. This means,
in particular, that there is an element of S ∩ A of the form a0 +

∑r
i=1 F

niδiai for
some n1, . . . , nr ≥ ℓ. Using (11) it follows that

T := a0 + S(Fn1δ1a1, . . . , F
nrδrar; δ1, . . . , δr) ⊆ A.

Hence, S ∩A = T ∪
r⋃

i=1

(Si,ni
∩A) which is a finite union of sets from S(G,F ). □
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9.3. Proof of Theorem 9.1. Fix (G,Fq, F,X,Γ) as in the statement of the the-
orem. For convenience, let us denote by F ⊆ P(Γ) the collection of finite unions
of sets of the form S + Λ where S ⊆ Γ is from S(G,F ) and Λ ≤ Γ is an Z[F r]-
submodule for some r > 0. We therefore wish to show that X ∩ Γ ∈ F

Clearly we may assume that X is irreducible. We proceed by induction on
d := dimX. The case of d = 0 being clear, we assume d > 0.

We start with a series of reductions. Fix a function field extension K of Fq such
that Γ ≤ G(K) and X is over K. By induction, we may assume that X(K) is
Zariski dense in X.

Reduction 1. We may assume that Γ is F -pure in G(K).

Proof. Let Γ̃ be the F -pure hull of Γ in G(K). By Proposition 3.9, there is r ≥ 0

such that F rΓ̃ ≤ Γ. In particular, Γ̃ is finitely generated as a Z[F]-submodule.

We wish to show that if the theorem holds for Γ̃ then it holds for Γ. Suppose

therefore that X ∩ Γ̃ =

ℓ⋃
i=1

Si + Λi where each Si ⊆ Γ̃ is in S(G,F ) and Λi ≤ Γ̃ is

a Z[F ri ]-submodule for some ri > 0. By Theorem 3.11, Λi/F
rΛi is finite, and so

in the above expression for X ∩ Γ̃ we may replace the Λi by F rΛi. That is, since
F rΛi ≤ Γ, we may assume that all the Λi ≤ Γ. Hence

X ∩ Γ = (X ∩ Γ̃) ∩ Γ

=

ℓ⋃
i=1

(Si + Λi) ∩ Γ

=

ℓ⋃
i=1

(Si ∩ Γ + Λi)

and we are done by Lemma 9.9 applied to A = Γ, B = Γ̃, and M = G. □

Let E be the largest connected algebraic subgroup of Stab(X) that is defined
over Falg

p . (As the class of connected algebraic subgroups over Falg
p is preserved by

summation, this exists.)

Reduction 2. We may assume that Γ admits an F -spanning set Σ such that
G := {(v, w) ∈ (Σ× Σ)∗ : [v]F − [w]F ∈ E} is regular.

Proof. Let µ : G × G → G be the morphism µ(g, h) = g − h. By Corollary 6.4,
(Γ× Γ) ∩ µ−1(E) is F -automatic. Hence, there is r > 0 and an F r-spanning set Σ
for Γ such that

{(v, w) ∈ (Σ× Σ)∗ : [v]F r − [w]F r ∈ E}
is regular. Since S(G,F r) ⊆ S(G,F ), and Γ remains F r-pure in G(K), it suffices
to prove the theorem for (G,Fqr , F

r, X,Γ). □

Fix, therefore, such an F -spanning set Σ for Γ. We know that X ∩ Γ is F -
automatic by Corollary 6.4. Hence

L := {w ∈ Σ∗ : [w]F ∈ X}

is a regular language. We also know by Lemma 7.1 applied to the equivalence
relation of being in the same coset modulo E, that there is a regular language
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L0 ⊆ Σ∗ such that for every for every w ∈ Σ∗ there is a unique v ∈ L0 with
|v| ≤ |w| and [v]F − [w]F ∈ E. Let

E := {v ∈ L00
∗ : there is w ∈ L such that |v| = |w| and [v]F − [w]F ∈ E}.

Note that E is regular as it is the projection onto the first co-ordinate of the regular
language (L00

∗ × L) ∩ G. It is easily verified that

(12) [L]F = X ∩ Γ,

(13) E ⊆ L,

(14) for every w ∈ L there is v ∈ E with [v]F − [w]F ∈ E, and

(15) for every v1, v2 ∈ E , if |v1| = |v2| and [v1]F − [v2]F ∈ E then v1 = v2.

Reduction 3. It suffices to prove that [E ]F ⊆ T ⊆ X for some T ∈ F .

Proof. Since E is defined over a finite field, Λ := E ∩ Γ is a Z[F r]-submodule of Γ
for some r > 0. By (14) we have that [L]F ⊆ [E ]F +Λ. Suppose we have proved that
[E ]F ⊆ T ⊆ X for some T ∈ F . Then [L]F ⊆ T + Λ ⊆ X + Λ. Since Λ ⊆ Stab(X),
this proves that [L]F ⊆ T + Λ ⊆ X. Since T + Λ ⊆ Γ, we get from (12) that
X ∩ Γ = T + Λ. As T + Λ ∈ F , this suffices. □

Let us denote by A the automaton that we built in §6 recognising L, and by
Z1, . . . , Zn the states of A, with Z1 = X(K) the starting state. Recall that each Zi

is of the form (X − γ)q
−ℓ

(K) for some γ ∈ Γ which has an F -expansion of length ℓ.

Hence dimZi ≤ d, and if dimZi = d then Zi = (X − γ)q
−ℓ

. Reindexing, let us
assume that Z1, . . . , Zm are d-dimensional for some 1 ≤ m ≤ n and that the rest
are of dimension strictly less than d. Since X(K) is Zariski dense in X, we have
dimZ1 = d, and hence such m exists.

Given w ∈ Σ∗, we define δ(w) = (X − [w]F )
q−|w|

(K) ∈ {Z1, . . . , Zn}, where |w|
is the length of w. So δ(w) is the state the machine ends up in on input w. We
first observe that once A is in a state of low dimension then it stays there:

Lemma 9.10. Suppose w ∈ Σ∗. If δ(w) ∈ {Zm+1, . . . , Zn} then, for all v ∈ Σ∗,
δ(wv) ∈ {Zm+1, . . . , Zn}.

Proof. Indeed, (X − [wv]F )
q−|wv|

=
(
(X − [w]F )

q−|w| − [v]F
)q−|v|

. So if Y is the

Zariski closure of δ(w) in (X − [w]F )
q−|w|

then the Zariski closure of δ(wv) is

contained in (Y − [v]F )
q−|v|

whose dimension is at most dimY . □

We now decompose E into certain auxiliary sublanguages: For each k ≤ m and
ℓ = m+ 1, . . . , n, let

Ek := {w ∈ E : δ(w) = Zk},
Oℓ := {wa : w ∈ Ek for some k ≤ m and a ∈ Σ moves A moves from Zk to Zℓ},
Nℓ := {v ∈ Σ∗ : uv ∈ E for some u ∈ Oℓ},
Mℓ := {v ∈ Σ∗ : [v]F ∈ Zℓ}.
Lemma 9.10 together with (13) implies

(16) E =

m⋃
k=1

Ek ∪
n⋃

ℓ=m+1

OℓNℓ.
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Lemma 9.11. For each ℓ = m+ 1, . . . , n, Nℓ ⊆ Mℓ and [OℓMℓ]F ⊆ X.

Proof. Suppose v ∈ Nℓ. Then there is wa ∈ Oℓ such that wav ∈ E . Hence

[wav]F ∈ X =⇒ [wa]F + F |w|+1([v]F ) ∈ X

=⇒ F |w|+1([v]f ) ∈ X − [wa]F

=⇒ [v]F ∈ (X − [wa]F )
q−|w|−1

(K) = Zℓ.

This proves that Nℓ ⊆ Mℓ.
Now, suppose wa ∈ Oℓ and v ∈ Mℓ. Then z := [v]F ∈ Zℓ(K) = Zℓ. (This last

equality follows from the fact that Zℓ is the set of K-points of some variety.) But

as wa moves A into the state Zℓ we have that Zℓ = (X − [wa]F )
q−|w|−1

(K). Hence

[wav]F = [wa]F + F |w|+1(z) ∈ X

as desired. □

Putting Lemma 9.11 together with (16) we get

(17) [E ]F ⊆
m⋃

k=1

[Ek]F ∪
n⋃

ℓ=m+1

[OℓMℓ]F ⊆ X

Lemma 9.12. For each k ≤ m, Ek is sparse.

Proof. It follows from the general theory of regularity that Ek is a regular sublan-
guage of E . Suppose Ek is not sparse. Then, by one of the equivalent characterisa-
tions of sparsity given in [BM19, Proposition 7.1], there exist u, a, b, v ∈ Σ∗ with a
and b distinct nonempty words of the same length, such that u{a, b}∗v ⊆ Ek.

Let w1, w2 ∈ {a, b}∗ be words of the same length. Then

(X − [uw1v])
q−|uw1v|

(K) = Zk = (X − [uw2v])
q−|uw2v|

(K).

Since k ≤ m, taking Zariski closures yields

(X − [uw1v])
q−|uw1v|

= (X − [uw2v])
q−|uw2v|

.

Transforming by F |uw1v| = F |uw2v| and translating by F |uw1|([v]) = F |uw2|([v]), we
get that g(w1, w2) := [uw1]− [uw2] ∈ Stab(X). Letting λ := |a|, note that

g(aw1, aw2) = ([a] + Fλ([uw1]))− ([a] + Fλ([uw2])) = Fλg(w1, w2).

So {g(w1, w2) : w1, w2 ∈ {a, b}∗, |w1| = |w2|} is preserved by Fλ. Hence, so is
the Zariski closure H ≤ Stab(X) of the subgroup generated by this set. It follows
that H, and hence its connected component H0, is over a finite field. So H0 ≤ E.

Let N be the index of H0 in H. Fix N +2 distinct words w0, . . . , wN+1 ∈ {a, b}∗
of the same length. Then {g(w0, wj) : j = 1, . . . , N + 1} ⊆ H cannot all lie in
distinct cosets of H0. So for some i ̸= j we have that

[uwjv]− [uwiv] = [uwj ]− [uwi] = g(w0, wi)− g(w0, wj) ∈ H0 ≤ E.

But as uwiv, uwjv ∈ E are distinct but of the same length, this contradicts (15). □

Reduction 4. It suffices to prove that for each sparse O ⊆ Σ∗ and U ∈ F , if

[O]F ⋆ U := {[w]F + F |w|(γ) : w ∈ O, γ ∈ U}

then [O]F ⋆ U ⊆ T ⊆ X for some T ∈ F .
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Proof. Since Ek is sparse for each k ≤ m by Lemma 9.12, and Γ is F -pure in
G(K) by Reduction 1, we may apply Corollary 9.8 to see that each Ek ⊆ T ⊆ X
for some T ∈ F . Hence, by (17), and Reduction 3, it suffices to show that, for all
ℓ+m+1, . . . , n, [OℓMℓ]F ⊆ T ⊆ X for some T ∈ F . But [OℓMℓ]F = [Oℓ]F ⋆ [Mℓ]F
by definition, Oℓ is sparse by Lemma 9.12 as it is contained in

⋃m
k=1 EkΣ, and

[Mℓ]F = Zℓ ∩ Γ ∈ F by induction since ℓ > m. □

Taking finite unions we may assume that O = u1w
∗
1u2 · · ·ukw

∗
kuk+1 is a simple

sparse language and that U = b + S + Λ where S = S(b1, . . . , bt; δ) ⊆ Γ for some
b, b1, . . . , b2 ∈ G and Λ ≤ Γ is a Z[F δ]-submodule for some δ > 0. We may assume
that k > 0 as the result is trivial for k = 0. By Lemma 9.4 we have

[O]F = a0 + E(a1, . . . , ar; δ1, . . . , δr)

for some a0, . . . , ar ∈ G and δ1, . . . , δr > 0, and for any v ∈ Σ∗

[Ov]F = a0 + E(a1, . . . , ar−1, ar + F ℓ[v]F ; δ1, . . . , δr)

where ℓ =
∑k+1

i=1 |ui|. Hence

[O]F ⋆ U =
⋃
γ∈U

[Ovγ ]F where γ = [vγ ]F

=
⋃

γ∈S+Λ

a0 + E(a1, . . . , ar−1, ar + F ℓ(b+ γ); δ1, . . . , δr)

=
⋃

γ∈S+Λ

a0 + E(a1, . . . , ar−1, ar + F ℓb, F ℓγ; δ1, . . . , δr, δ)

where the final equality uses the fact that S +Λ is F δ-invariant. As pointed out in
the proof of Proposition 9.6, setting ρ = lcm{δ1, . . . , δr, δ}, each

a0 + E(a1, . . . , ar−1, ar + F ℓb, F ℓγ; δ1, . . . , δr, δ)

can be written as the union of the sets

a0 +E(Fm1δ1a1, F
m1δ1+m2δ2a2, . . . , F

∑r
i=1 miδi(ar + F ℓb), F

∑r
i=1 miδi+mr+1δ+ℓγ; ρ)

where 0 ≤ mi ≤ ρ
δi

and 0 ≤ mr+1 ≤ ρ
δ . For ease of notation, fix µ := (m1, . . . ,mr+1)

and let

aµ,j := F
∑j

i=1 miδiaj for i = 1, . . . , r − 1

aµ,r := F
∑r

i=1 miδi(ar + F ℓb) and

rµ :=

r∑
i=1

miδi +mr+1δ + ℓ.

We thus have

[O]F ⋆ U =
⋃

γ∈S+Λ

⋃
µ

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ).

It therefore suffices to prove that, for each of these finitely many µ, the set

Eµ :=
⋃

γ∈S+Λ

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ)

is contained in an element of F that is contained in X. Now, by the F -purity of Γ
in G(K) given by Reduction 1, we can apply Proposition 9.6 to see that each

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ)
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is contained in an element of F that is contained in X. In fact, as explained in
Remark 9.7, the proof of that proposition shows that

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ) ⊆ a0 + S(aµ,1, . . . , aµ,r, F

rµγ; ρ) ⊆ X ∩ Γ.

Hence Eµ ⊆ T ⊆ X where T ⊆ Γ is given by

T :=
⋃

γ∈S+Λ

a0 + S(aµ,1, . . . , aµ,r, F
rµγ; ρ)

= a0 + S(aµ,1, . . . , aµ,r; ρ) +
⋃

γ∈S+Λ

S(F rµγ; ρ)

= a0 + S(aµ,1, . . . , aµ,r; ρ) + F rµ(S + Λ)

where the final equality uses that S + Λ, and hence F rµ(S + Λ), is F ρ-invariant.
So T ∈ F , as desired.

This completes the proof of Theorem 9.1. □

Appendix A. Trivialising multiplicative tori

Proposition A.1. Suppose M is a multiplicative torus over Fq; that is, it is an al-

gebraic group that is isomorphic to Gd
m over Falg

q . Then there exists an isomorphism

between M and Gd
m over Fqℓ with ℓ ≤ max(21111!, 2dd!).

Proof. Write M = Spec(T ) where T is a finitely generated (geometrically) integral

Fq-algebra. Let ℓ be least such that there exists an isomorphism betweenM and Gd
m

over Fqℓ . We have an Fqℓ -algebra isomorphism Φ : T ⊗Fq Fqℓ → Fqℓ [t
±1
1 , . . . , t±1

d ].
Let F : Fqℓ → Fqℓ denote the q-power Frobenius automorphism, and τ := id⊗F

the induced Fq-algebra automorphism of T ⊗Fq
Fqℓ . Let σ := ΦτΦ−1 be the cor-

responding Fq-algebra automorphism of Fqℓ [t
±1
1 , . . . , t±1

d ]. Note that both τ and σ
extend F on Fqℓ and are of order ℓ.

For each i = 1, . . . , d we have that σ(ti) = αit
ai,1

1 · · · tai,d

d for some αi ∈ F∗
qℓ and

some integers ai,j such that A = (ai,j) ∈ GLd(Z). Note that Aℓ = id. We claim
that A is of order ℓ. This will suffice because the maximal order of a torsion element
in GLd(Z), at least when d > 10, is 2dd! by a theorem of Feit [Fei96].

Suppose, toward a contradiction, that the order of A is k < ℓ. Then, for each
i = 1, . . . , d, σk(ti) = αiti for some αi ∈ F∗

qℓ . On the other hand, σℓ(ti) = ti.

Hence, letting m := ℓ
k , we get that

1 = αiσ
k(αi)σ

2k(αi) · · ·σ(m−1)k(αi) = αiF
k(αi)F

2k(αi) · · ·F (m−1)k(αi).

That is, each αi has norm 1 over Fqm , and so by Hilbert’s Theorem 90, there

exist λi ∈ F∗
qℓ such that αi =

λi

Fkλi
. Hence, after a change of variables ti 7→ λiti,

which corresponds to modifying Φ, we may assume that σk(ti) = ti for all i. It
follows that the fixed subring of σk is Fqm [t±1

1 , . . . , t±1
d ]. Of course the fixed subring

of τk = id⊗F k is T ⊗Fq Fqm , and Φ restricts to an isomorphism of the fixed

subrings. We thus have T ⊗Fq
Fqm isomorphic to Fqm [t±1

1 , . . . , t±1
d ], contradicting

the minimality of ℓ. □
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Appendix B. Finding a Kq-basis

Suppose we are given a finite presentation of an Fq-algebra R and K = Frac(R).
In this appendix we explain how to find a basis for K over Kq.

We have a set of generators x1, . . . , xm for R as an Fq-algebra. Using Gröbner
basis, after reordering our variables if necessary, we can find some t ≤ m such that
x1, . . . , xt are algebraically independent over Fq and such that xj is algebraic over
L := Fq(x1, . . . , xt) for t+1 ≤ j ≤ m. We impose a degree lexicographic ordering on
the variables xt+1, . . . , xm and use Gröbner bases to find a collection of monomials
a1, . . . , ar in xt+1, . . . , xm such that the following hold:

• for each j = t+ 1, . . . ,m, some power of xj is in {a1, . . . , ar};
• the (finite) collection M of monomials in xt+1, . . . , xm that are not a mul-
tiple of some element of a1, . . . , ar form a basis for K over L;

• each element in M is degree lexicographically less than some ai;
• for each j = 1, . . . , r we have an explicit expression

(18) aj =
∑
b∈M

λj,bb,

with λj,b ∈ L.

Applying the q-Frobenius isomorphism to M we see that

A := {uq : u ∈ M}

is a basis for Kq over Lq. Moroever, as a basis for L over Lq is given by xi1
1 · · ·xit

t

with 0 ≤ i1, . . . , it < q, we have that

U := {xi1
1 · · ·xit

t u : 0 ≤ i1, . . . , it < q, u ∈ M}

is a basis for K over Lq.
Note that as Kq contains Lq, the set U spans K as a Kq-vector space. We wish

to refine this into a basis B. Let u1, . . . , ur be an enumeration of U . We begin at
step 0 with B = ∅. At step i, to determine whether ui is in our basis, we check

whether ui is in the Lq-span of the set Bi :=
⋃
j<i

ujA. Notice that for each a ∈ A

and each j < i, using the relations given by (18), we can explicitly express uja
as an Lq-linear combinations of elements of U . It then becomes a simple matter
of linear algebra to determine whether ui is in the Lq-span of Bi. If it is not, we
add ui to B; otherwise, we leave B unchanged. We claim that the set B is a basis
for K over Kq. First, to see that it spans K, suppose toward a contradiction that
some ui is not in the Kq-span of B, and assume that i is least such. Then ui ̸∈ B
and so by construction ui is in the Lq-span of the elements

⋃
j<i ujA. But since

LqA ⊆ Kq, we see that ui is in the Kq-span of u1, . . . , ui−1, which by minimality
of i is contained in the Kq-span of B, our desired contradiction. Now, to see linear
independence, notice that if B is dependent then there is some i for which ui ∈ B
and for which we have a relation ui =

∑
j<i

λq
juj with the λj ∈ K. But now we can

write each λq
j as an Lq-linear combination of elements of A, and this means that ui

is in the Lq-span of the elements
⋃

j<i ujA, contradicting the fact that ui ∈ B.
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[OW12] Joël Ouaknine and James Worrell. Decision problems for linear recurrence sequences.
In Reachability problems, volume 7550 of Lecture Notes in Comput. Sci., pages 21–

28. Springer, Heidelberg, 2012.

[Ros73] Michael Rosen. S-units and S-class group in algebraic function fields. J. Algebra,
26:98–108, 1973.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate

Texts in Mathematics. Springer-Verlag, New York, 1986.

Jason Bell, University of Waterloo, Department of Pure Mathematics, 200 Univer-

sity Avenue West, Waterloo, Ontario N2L 3G1, Canada

Email address: jpbell@uwaterloo.ca

Dragos Ghioca, University of British Columbia, Mathematics Department, 1984 Math-

ematics Road, Vancouver, BC V6T 1Z2, Canada
Email address: dghioca@math.ubc.ca

Rahim Moosa, University of Waterloo, Department of Pure Mathematics, 200 Uni-

versity Avenue West, Waterloo, Ontario N2L 3G1, Canada
Email address: rmoosa@uwaterloo.ca


	1. Introduction
	2. Mordell-Lang for finitely generated subgroups of isotrivial commutative algebraic groups
	3. F-automaticity
	4. Explicit weak spanning sets
	5. A finiteness result on Frobenius pullbacks
	6. An automaton recognising X
	7. Deciding rational points on subvarieties of isotrivial abelian varieties
	8. A gap theorem for rational points of bounded height on subvarieties of isotrivial abelian varieties
	9. Mordell-Lang for finitely generated Z[F]-submodules of isotrivial commutative algebraic groups
	Appendix A. Trivialising multiplicative tori
	Appendix B. Finding a Kq-basis
	References

