
THREE RECENT APPLICATIONS OF MODEL THEORY

RAHIM MOOSA

This spring’s MSRI program Model Theory, Arithmetic Geometry, and Number
Theory is centered on recent interactions between model theory (a branch of math-
ematical logic) and other parts of mathematics. To give some idea of what these
interactions are, I will discuss here three particular examples of applications of
model theory: to Berkovich spaces, to approximate subgroups, and to the André-
Oort Conjecture for Cn. Except for some concluding remarks on model theory, I
will say almost nothing about the techniques and ideas that are behind the proofs
of these theorems, and only hope that the interested reader will pursue his or her
own further investigations.

Each of the applications I will discuss was the subject of tutorials (available
on the MSRI web page) in the Introductory Workshop of our program as well
as Séminaire Bourbaki articles. The tutorials were by Martin Hils, Lou van den
Dries, and Kobi Peterzil, respectively, and the corresponding articles are by Antoine
Ducros, Lou van den Dries, and Thomas Scanlon. I have relied heavily on these
sources, and it is to them that I direct the reader for further expository details.

1. Berkovich Spaces

In a recent manuscript entitled “Non-archimedean tame topology and stably dom-
inated types” Hrushovski and Loeser use model theory to develop a framework
for studying the analytic geometry associated to an algebraic variety over a non-
archimedean valued field. As a consequence they deduce several new results on
Berkovich spaces.

Fix a complete non-archimidean absolute valued field (K, | · |). Non-archimedean
refers to the fact that | · | : K → R≥0 satisfies the ultrametric inequality

|a+ b| ≤ max{|a|, |b|}

and complete means with respect to the induced metric. The prototypical examples
are: the field of p-adic numbers Qp, the completion of the algebraic closure of Qp,
and the Laurent series fields k((t)). Now consider an algebraic variety V over
K. In analogy with real or complex algebraic varieties, one would like to use
the metric structure on K to consider V (K) from the point of view of analytic
geometry. The problem is that the topology that | · | induces on V (K) is totally
disconnected. In the early nineties Berkovich proposed to resolve this deficiency
by considering an enriched space V an

K whose points are pairs (x, ν) where x is a
scheme-theoretic point of V and ν : K(x) → R≥0 is an absolute value extending
that of K. More concretely, in the case when V is affine, V an

K can be canonically
identified with the set of multiplicative seminorms on the co-ordinate ring K[V ];
that is, multiplicative maps ν : K[V ] → R≥0 that extend the absolute value on
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K and satisfy the ultrametric inequality. The topology induced on V an
K from the

product topology on RK[V ] is then locally path connected and locally compact.
Berkovich spaces have proved to have many and diverse applications. They have

led to the development of p-adic analogues of classical notions from complex analysis
including spectral theory, harmonic analysis, equidistribution, and dynamics. There
have been applications to the Langlands program in arithmetic geometry via the
development of étale cohomology of analytic spaces. Finally, by endowing a given
ground field with the trivial absolute value (which, note, is complete and non-
archimedean), Berkovich spaces have also been useful in general algebraic geometry.

Hrushovski and Loeser use model theory to show that Berkovich spaces exhibit
very tame topological behaviour, generalisating and strengthening what was known
before. Here are some of their results.

Theorem 1 (Hrushovski, Loeser). Suppose V is a quasi-projective variety over K.
Then

(1) V an
K admits a strong deformation retraction to a closed subspace that is

homeomorphic to a finite simplicial complex,
(2) V an

K is locally contractible, and
(3) given a morphism f : V → W to an algebraic variety W over K, among

the fibres of fan : V an
K →W an

K there are only finitely many homotopy types.

2. Approximate Groups

Given a positive integer K, a K-approximate group is a finite subset X of a group
G such that 1 ∈ X, X−1 = X, and X2 := {xy : x, y ∈ X} is covered by K left
translates of X. This is supposed to say that X is almost closed under multiplica-
tion; so one should think of K as being fixed and of |X| as being large compared to
K. A 1-approximate group is a subgroup, and an easy example of a 2-approximate
group that is not a subgroup is the set {−N, . . . , N} in Z, for any N > 0. But
the interest here is really when G is not commutative; approximate subgroups were
introduced by Tao while studying the extension of additive combinatorics to the
non-commutative setting.

In his 2012 paper entitled “Stable group theory and approximate subgroups”,
Hrushovski studies the structure of K-approximate groups as the cardinality |X|
goes to infinity by applying model-theoretic techniques to the logical limits (i.e.
ultraproducts) of sequences of K-approximate groups. His main achievement is to
model such a limit of approximate groups by a compact neighbourhood of the iden-
tity in a Lie group. This is reminiscent of the proof of Gromov’s theorem on groups
of polynomial growth, and indeed, one of the striking applications of Hrushovski’s
work is a strengthening (and new proof) of Gromov’s theorem. Another application
is an extension of the Freiman-Ruzsa theorem to the non-commutative setting: in a
group of finite exponent every K-approximate group is commensurable to an actual
subgroup, commensurable here in the sense that each is contained in finitely many
left translates of the other where the number of translates is bounded in terms
of K. But the most celebrated application is the theorem of Breuillard, Green, and
Tao saying roughly that approximate groups are in general controlled by nilpotent
groups. This appears in their 2012 paper “The structure of approximate groups”,
where they also give alternative proofs of some of Hrushovski’s results. Here is a
weak version of their theorem that is simple to state.
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Theorem 2 (Breuillard, Green, Tao). Given K ≥ 1 there exists L ≥ 1 such that
for any K-approximate group X ⊆ G there is a finite set Y ⊆ 〈X〉 such that X is
covered by L left translates of Y , Y is covered by L left translates of X, and 〈Y 〉
has a nilpotent subgroup of finite index.

Among the applications of this theorem is a finitary version of Gromov’s theorem
and a generalised Margulis Lemma that was conjectured by Gromov.

3. André-Oort for Cn

Model theory’s first spectacular application to diophantine geometry was Hrushovski’s
solution in the early nineties to the function-field Mordell-Lang Conjecture in all
characteristics. This was one of the central themes of the 1998 MSRI program on
the model theory of fields. In recent years there has been another round of diophan-
tine applications, this time to the André-Oort Conjecture, in which model theory
plays a very different role. The model theory behind these latest interactions stems
from the 2006 paper of Pila and Wilkie that used model theory to count rational
points on a certain class of subsets of Rn with tame topological properties. Follow-
ing a general strategy proposed by Zannier, there are now a number of applications
of this result in various directions. I will focus on what is possibly the most striking
one thus far: Pila’s solution to the André-Oort Conjecture for Cn.

Recall that to each point τ in the upper half plane H := {z ∈ C : Im(z) > 0}
we can associate the elliptic curve Eτ := C/

(
Z+Zτ

)
. The elliptic curve Eτ is said

to have complex multiplication if its endomorphism ring is strictly bigger than Z,
which is equivalent to τ belonging to an imaginary quadratic extension of Q. Now,
there is a holomorphic surjection j : H → C with the property that j(τ1) = j(τ2)
if and only if Eτ1 and Eτ2 are isomorphic. We are interested in the affine varieties
X ⊆ AnC which have a Zariski dense set of points of the form

(
j(τ1), . . . , j(τn)

)
where each Eτi has complex multiplication. One thinks of the set of these points,
called special points, as being in some way arithmetical, roughly analogous to the
set of torsion points on a semiabelian variety. It is a fact that the special points
are Zariski dense in AnC, so affine space itself gives us examples of such varieties X.
More interesting examples are obtained by considering the Hecke correspondences

TN := {
(
j(τ), j(Nτ)

)
: τ ∈ H}

for each positive integer N . It turns out that TN is an algebraic curve in A2. It has
a Zariski dense set of special points since if τ is in a quadratic imaginary extension
of Q, then so is Nτ . The André-Oort conjecture for Cn, proved by Pila in 2011,
says that all examples come from the above two types. More precisely:

Theorem 3 (Pila). Suppose X ⊆ AnC is an irreducible subvariety containing a
Zariski dense set of special points. Then X is an irreducible component of an
intersection of varieties of the form:

• Si,τ := {(z1, . . . , zn) : zi = j(τ)} where Eτ has complex multiplication, and
• Ti,j,N := {(z1, . . . , zn) : (zi, zj) ∈ TN} where N > 0.

4. And behind them all: Model Theory

To the reader unfamiliar with model theory it may be surprising that the above
theorems are all applications of a single subject, and at that a branch of mathemat-
ical logic. In fact, model theory often plays the role of recognising, formalising, and
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facilitating analogies between different mathematical settings. In this final section
I would like to say a few words about what model theory is.

The fundamental notion in model theory is that of a structure. A structure con-
sists of an underlying set M together with a set of distinguished subsets of various
cartesian powers of M called the basic relations. It is assumed that equality is a
basic (binary) relation in every structure. One could also allow basic functions from
various cartesian powers of M to M , but by replacing them with their graphs we
can restrict to relational structures. For example, a ring can be viewed as a struc-
ture where the underlying set is the set of elements of the ring and there are, besides
equality, two basic relations: the ternary relations given by the graphs of addition
and multiplication. If the ring also admits an ordering that we are interested in,
then we can consider the new structure where we add the ordering as another basic
binary relation. The definable sets of a structure are those subsets of cartesian
powers of M that are obtained from the basic relations in finitely many steps us-
ing the following operations: intersection, union, complement, cartesian product,
image under a co-ordinate projection, and fibre of a co-ordinate projection. When
(R,+,×) is a commutative unitary ring, for example, one sees immediately that if
f1, . . . , f` are polynomials in R[x1, . . . , xn] then their set of common zeros in Rn,
is definable. Hence the Zariski constructible subsets of Rn are all definable. It is
an important fact that if R is an algebraically closed field then these are the only
definable sets. This is quantifier elimination for algebraically closed fields, or equiv-
alently Chevalley’s theorem that over an algebraically closed field the projection of
a constructible set is again constructible.

In any case, given a structure, model theory is concerned with this associated
class of definable sets. Of course, starting with an arbitrary structure one cannot
expect to say much. A key aspect is the isolation of tameness conditions under
which the definable sets are in some way tractable. For example, algebraically closed
fields are strongly minimal because the definable subsets of the field itself are all
uniformly finite or cofinite. Strongly minimal structures admit a very well-behaved
notion of dimension for definable sets. Real closed fields, on the other hand, display
a different kind of tameness: they are o-minimal in that every definable subset of
the line is a finite union of intervals and points – and this too leads to a (differently)
well-behaved notion of dimension on the cartesian powers. Strong minimality and
o-minimality are only at the beginning of extensive hierarchies of tameness notions.
Algebraically closed valued fields, for example, with their strongly minimal residue
field and o-minimal value group, involve a certain comingling of the two.

Behind Pila’s proof of the André-Oort Conjecture for Cn is the definability of the
j-function (restricted to a suitable fundamental set) in some o-minimal structure on
the reals and the Pila-Wilkie theorem on counting rational points on definable sets
in such structures. The theorems of Hrushovki and Loeser on Berkovich spaces use
the tameness of definable sets in algebraically closed valued fields. The structure
that lies behind the work of Hrushovski and that of Breuillard, Green and Tao on
approximate groups is an ultraproduct of K-approximate groups. In each of the
applications that I have discussed, the model theoretic techniques and ideas that
are brought to bear on the problem are quite specialised, and it would be misleading
to suggest some underlying or overarching principle. Nevertheless, they all stem
from the perspective that model theory offers, and it is this perspective that brings
together the themes, and participants, of our program.


