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Abstract. Motivated by the problem of determining the structure of inte-

gral points on subvarieties of semiabelian varieties defined over finite fields, we
prove a quantifier elimination and stability result for finitely generated mod-

ules over certain finite simple extensions of the integers given together with

predicates for cycles of the distinguished generator of the ring.

1. introduction

The Mordell-Lang conjecture asserts that for G a semiabelian variety over the
complex numbers, X ⊂ G a subvariety, and Γ ≤ G(C) a finitely generated subgroup
of the complex points, the set of points X(C) ∩ Γ is a finite union of cosets of
subgroups of Γ. This fails when C is replaced by a field of positive characteristic.
For example, suppose that X and G are defined over a finite field Fq and that
F : G → G is the corresponding Frobenius morphism. Let K := Fq(X) and let
Γ ≤ G(K) be the Z[F ]-submodule generated by γ := idX : X → X thought of as
an element of X(K). Then X(K)∩Γ contains the infinite set {Fnγ : n ∈ N}. If X
contains no translates of algebraic subgroups of G, then this fact already contradicts
the näıve translation of the Mordell-Lang conjecture to positive characteristic.

Hrushovski salvages the Mordell-Lang conjecture in positive characteristic by
proving a function field version in which varieties defined over finite fields are treated
as exceptions to the general rule [2]. In this paper we generalize the rule so that
these varieties are no longer exceptional.

In the case that X is a curve, the presence of these Frobenius orbits is the only
obstruction to a clean statement of Mordell’s conjecture. Samuel showed that if C
is a curve of geometric genus at least two defined over a finite field, then for any
finitely generated field K extending the field of definition of C, the set of K-rational
points on C is a finite set of Frobenius orbits [5]. Continuing with the example at
the end of the first paragraph, suppose that Y = X +X also contains no translates
of infinite algebraic subgroups of G. This is the case, for example, when X is a
curve of genus at least three embedded into its Jacobian G = JX . Then Y (K) ∩ Γ
contains the set {Fmγ +Fnγ : n,m ∈ N}. We show in Section 7 of this paper that
to handle the general case of the Mordell-Lang problem for G defined over a finite
field we need only permit such sums of finitely many Frobenius orbits (together
with groups) into the description of X(K) ∩ Γ. It seems that the main step in
proving this result was to recognize the correct form of these intersections.
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The Mordell-Lang conjecture and related statements have model theoretic inter-
pretations. On the face of it, the Mordell-Lang conjecture in its original form may
be rephrased as The structure induced on a finitely generated subgroup of a semi-
abelian variety of the complex numbers from the field structure is weakly normal.
Moreover, as Pillay showed, the finitely generated group is actually stably embed-
ded. More precisely, if K is an algebraically closed field of characteristic zero and
Γ is a finitely generated subgroup of the K-points of some semiabelian variety over
K, then the theory of the structure (K,+,×,Γ) is stable and the formula “x ∈ Γ”
is weakly normal [3]. As observed by the second author in [7] this result implies a
version of uniformity for the Mordell-Lang conjecture.

The present paper addresses the question of determining the model theoretic
properties of the structure induced on Γ by (K,+,×,Γ), when K is an algebraically
closed field of positive characteristic and Γ is a finitely generated Frobenius submod-
ule of a semiabelian variety defined over a finite field. As certain infinite Frobenius
orbits may be definable in Γ, the induced structure cannot be weakly normal. How-
ever, we show that it is stable, and hence, as in Pillay [3], (K,+,×,Γ) is stable.
As a consequence of this analysis we obtain a uniform version of the Mordell-Lang
conjecture for semiabelian varieties over a finite field.

While the structure of integral points on semiabelian varieties defined over finite
fields serves as motivation, we perform our technical work in the abstract setting
of “F -structures”. We work with cetain fixed finite simple extension R of Z, which
we denote by Z[F ], and the class of finitely generated R-modules. For a finitely
generated R-module M , an F -set will be a finite union of finite sums of points,
submodules, and “F -cycles” (see Section 2 for the formal definitions). We prove
quantifier elimination and stability for finitely generated R-modules with predicates
for these F -sets. The key is a translation between properties of F -sets and of sets
definable in the structure (N, 0, σ) where σ is the successor operation.

Our collaboration on this paper began during the MSRI Model Theory of Fields
program during the Spring of 1998. Both authors thank MSRI for providing ex-
cellent working conditions. We are also grateful to the referee for pointing out a
mistake in an earlier version, and for a number of useful suggestions.

2. Preliminaries and Statement of Results

Throughout this paper R will denote a ring, and F ∈ R a distinguished element
of R, satisfying the following conditions:

• R is a finite simple ring extension of the integers Z, generated by F ;
• F is not a zero-divisor in R; and

•
∞⋂
n=0

FnR = {0}.

We often write R = Z[F ]. The main consequence of our standing assumptions on
R is contained in the following proposition:

Proposition 2.1. If M is a finitely generated R-module, then F∞M :=

∞⋂
n=0

FnM

is a finite set.
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Proof. Let (F ) be the ideal in R generated by F , let π : R→ R/(F ) be the quotient
map, and let N = F∞M . As N is finitely generated, and FN = N , Nakayama’s
Lemma says that there is an r ∈ R with rN = 0 and π(r) = 1.

We claim that r is not a zero-divisor. Indeed, suppose sr = 0 for some s 6= 0
in R. Then 0 = π(sr) = π(s)π(r) = π(s). Hence, s ∈ (F ). On the other hand, as
F∞R = 0, s = Fnt for some n ≥ 0 and t ∈ R \ (F ). Hence, Fntr = 0, and as F is
not a zero divisor, tr = 0. But then, as before, π(t) = 0, implying that t ∈ (F ) –
which is a contradiction.

It follows that I = (r) ∩ Z is a nonzero ideal of Z. Indeed, as R is a finite
extension of Z, r is integral over Z. The minimal polynomial of r over Z must
have a nonzero constant term, since r is not a zero-divisor. This constant term is
visibly in (r) ∩ Z. Hence Z/I is a finite ring, and R/(r), being a finitely generated
Z/I-module, is also a finite ring. Finally, as r kills N , N is a finitely generated
R/(r)-module – and hence is itself a finite set. �

Example 2.2. We describe our intended example.
Fix G a semiabelian variety over a finite field Fq of characteristic p > 0. The

group variety G admits an algebraic endomorphism F : G → G induced from the
q-power Frobenius x 7→ xq. Let R = Z[F ] be the subring of the endomorphism ring
of G generated by F . Note that R satisfies the required conditions. Indeed, the
endomorphism ring of G, and hence R, is a finite extension of Z. Since F is injective
on G it is not a zero-divisor. Moreover, the only infinitely F -divisible element of R
is the zero map. To see this, choose a finitely generated field extending Fq, L, such
that G(L) is Zariski-dense in G (for example, take L to be the function field of G
over Fq). Note that every endomorphism in R is defined over Fq, and hence over

L. If α ∈ F∞R, then αG(L) ⊂
⋂
n>0

FnG(L) = G(k), where k :=
⋂
n>0

Lq
n

is a finite

field. Hence α takes a Zariski-dense subgroup of G to a finite group. It follows that
the kernel of α is of finite index in G, and as G is connected, this implies that α
must be the zero map.

The finitely generated R-modules that we are interested in will appear as sub-
modules Γ ≤ G(K), where K is a finitely generated regular field extension of Fq.
A particularly relevant case is when Γ is the set of rational or integral points on G.
For example, if G is an abelian variety, then G(K) is a finitely generated group,
and as it is closed under the Frobenius endomorphism, it is a finitely generated
R-module. We can consider Γ := G(K) itself. For semiabelian varieties, we can
consider Γ := G(R), where R ⊂ K is a finitely generated ring extension of Fq. No-
tice that in all these cases F∞Γ ≤ G(Fq), since finite generatedness and regularity

imply that
⋂
n>0

Kqn = K ∩ Falg
q = Fq.

Definition 2.3. Fix a finitely generated R-module M .
An F -cycle in M is a set of the form

C(a; δ) := {a+ F δa+ F 2δa+ · · ·+ Fnδa : n ∈ N},

where a ∈M and 0 < δ ∈ N. For sums of F -cycles, we use the notation

C(a1, . . . , ar; δ1, . . . , δr) :=

r∑
i=1

C(ai; δi),
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where a1, . . . , ar ∈ M , and δ1, . . . , δr ∈ N with each δi > 0. If it is the case that
δ1 = · · · = δr =: δ, then we abbreviate C(a1, . . . , ar; δ1, . . . , δr) by C(a1, . . . , ar; δ).

An F -set in M is a finite union of sets of the form

b+ C(a1, . . . , ar; δ1, . . . , δr) +H,

where b, a1, . . . , ar ∈ M , δ1, . . . , δr ∈ N with δi > 0, and H is a submodule of M .
We denote by F(M) the collection of all F -sets in M .

A groupless F -set is a finite union of sets of the form b+C(a1, . . . , ar; δ1, . . . , δr).
We denote by Groupless(M) the collection of all groupless F -sets in M .

Finally, an F -structure is a pair (M,F) where M is a finitely generated R-module

and F :=
⋃
n≥0

F(Mn). We view (M,F) as a first-order structure in the language

where there is a predicate for each member of F .

Here are the main results of this paper:

Theorem A. The theory of an F -structure admits quantifier elimination and is
stable (Theorems 5.12 and 6.11, respectively).

We also obtain the following version of Mordell-Lang for semiabelian varieties
over finite fields (this is Theorem 7.8). As in Example 2.2 we fix the following
data: G is a semiabelian variety over a finite field Fq; F : G → G is the algebraic
endomorphism induced by the q-power Frobenius map; R = Z[F ] is the subring
of the endomorphism ring of G generated by F ; K is a finitely generated regular
extension of Fq; and Γ ≤ G(K) is a finitely generated R-submodule.

Theorem B. If X ⊆ G is a closed subvariety, then X(K) ∩ Γ ∈ F(Γ). Moreover,
the submodules of Γ that appear are of the form H(K) ∩ Γ where H ≤ G is an
algebraic subgroup over Fq.

Combining these, we conclude (this is Corollary 7.10):

Theorem C. If U is an algebraically closed field extending K, then Th(U ,+,×,Γ)
is stable.

As an application of our analysis, we also obtain the following uniform version
of Theorem B (this is Corollary 7.15):

Theorem D. Suppose {Xb}b∈B is an algebraic family of closed subvarieties of G.
There are A1, . . . , A` ∈ F(Γ) such that for any b ∈ B there exist I ⊂ {1, . . . , `} and

points (γi)i∈I from Γ, such that Xb(K) ∩ Γ =
⋃
i∈I

γi +Ai.

Remark 2.4. The assumption of regularity is not very restrictive. If Γ ≤ G(U)
is any finitely generated R-module, then there exists a finitely generated field ex-
tension K ′/Fq, such that Γ ≤ G(K ′). Taking r > 0 such that K ′ ∩ Falg

q = Fqr , we
have that K ′ is a regular extension of Fqr . Note that Γ can also be viewed as a
Z[F r]-module. Replacing q with qr, the above theorems apply.

In the remainder of this section we give an alternate description of groupless
F -sets in terms of F -orbits rather than F -cycles. This will be useful to us in latter
sections, and may also shed more light on the nature of F -sets.
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Definition 2.5. Fix a finitely generated R-module M . An F -orbit in M is a set
of the form S(a; δ) := {Fnδa : n ∈ N}, where a ∈ M and 0 < δ ∈ N. A cycle-free
groupless F -set in M is a finite union of sets of the form

b+ S(a1, . . . , ar; δ1, . . . , δr),

where b, a1, . . . , ar ∈M , δ1, . . . , δr ∈ N with each δi > 0; and where

S(a1, . . . , ar; δ1, . . . , δr) :=

r∑
i=1

S(ai; δi)

is used to denote sums of F -orbits. Again, if it is the case that δ1 = · · · = δr =: δ,
then we abbreviate S(a1, . . . , ar; δ1, . . . , δr) by S(a1, . . . , ar; δ). We denote by OrbM
the collection of all cycle-free groupless F -sets in M .

Remark 2.6. As the terminology suggests, OrbM ⊂ Groupless(M). Indeed, one
need only observe that for a ∈M and δ > 0,

S(a; δ) = {a} ∪ a+ C(F δa− a; δ).

Note that {a} ∈ Groupless(M), as, for example, {a} = a+ C(0; 1).

Lemma 2.7. Suppose M is a finitely generated R-module and U ∈ Groupless(M).
There exists a finitely generated R-module M ′ extending M , such that U ∈ OrbM ′ .

Proof. It is sufficient to do this for U an F -cycle. Suppose U = C(b; δ), where
b ∈ M and δ > 0. We construct M ′ as follows. Let x be an indeterminate, and
consider the free R-module generated by x over M , N := M ⊕R · x. Let I be the
R-submodule of N generated by the element F δx− x− b ∈ N . Then M ′ := N/I,
the quotient of N by I, is again a finitely generated R-module.

We claim that the natural embedding of M in N induces an embedding of M in
M ′. For this it is sufficient to show that M ∩ I = {0}. Let c ∈ M ∩ I ⊂ N . Then
c = r(F δx − x − b), for some r ∈ R. This implies that c + rb = (F δr − r)x, and
hence (F δr−r)x ∈M ∩(R ·x) = {0}. It follows that F δr = r, and so multiplication
by F δ in R fixes r. Hence r ∈ F∞R, which by our standing assumptions is {0}. In
particular, c = 0, as desired.

Let a ∈ M ′ be the image of x under the quotient map N → M ′. Then in M ′,
F δa− a = b. Hence, C(b; δ) = −a+ S(F δa; δ). We have described an F -cycle as a
cycle-free groupless F -set in the sense of M ′, as desired. �

Remark 2.8. The construction of the finitely generated R-module M ′ in the above
proof will appear again, and warrants a name. We say that M ′ is a δ-splitting
extension of M at b. More generally, we say that M ′ is obtained from M by a finite
sequence of splitting extensions if there are

M = M0 ≤M1 ≤ · · · ≤Mr = M ′,

where for i ≤ r − 1, Mi+1 is a δi-splitting extension of Mi at bi, for some δi > 0
and bi ∈Mi.

That we do not pick up any additional structure in passing to these extensions
is expressed by the following strengthening of Remark 2.6:

Lemma 2.9. Suppose M is a finitely generated R-module and N ≤ M is a sub-
module. If S ∈ OrbM and S ⊂ N , then S ∈ Groupless(N).
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Proof. Taking finite unions, we may assume that S = b + S(a; δ) where b ∈ M ,
a = (a1, . . . , an) ∈ Mn, and δ = (δ1, . . . , δn) ∈ Nn. As in Remark 2.6, for each
i ≤ n, we may write S(ai; δi) = {ai} ∪ ai + C(F δai − ai; δi). Hence

S = b+

n∑
i=1

[{ai} ∪ ai + C(F δai − ai; δi)]

=
⋃

I⊂{1,...,n}

(b+ a1 + · · ·+ an) +
∑
i∈I

C(F δai − ai; δi)

Note, first of all, that b + a1 + · · · + an ∈ S ⊂ N . Moreover, for each i ≤ n,
F δiai − ai ∈ N . Indeed,

b+ a1 + · · ·+ ai−1 + F δiai + ai+1 + · · ·+ an

and
b+ a1 + · · ·+ ai−1 + ai + ai+1 + · · ·+ an

are visibly in S ⊂ N . Taking the difference of these two elements, we get that
F δiai − ai ∈ N . Hence S ∈ Groupless(N). �

Definition 2.10. Suppose M is a finitely generated R-module and N ≤ M is a
submodule. Then OrbNM denotes the class of all cycle-free groupless F -sets in M
that are contained in N .

As a consequence of Lemmas 2.7 and 2.9, we obtain that for any finitely generated
R-module M ,

Groupless(M) =
⋃

M≤M ′
OrbMM ′ ,

where the union is taken over all finitely generated R-modules extending M . In
this way, the study of groupless F -sets is to a large extent reduced to the study of
cycle-free groupless F -sets.

Remark 2.11. In the above equality, we could have restricted this union to any
collection, M, of finitely generated R-modules extending M with the following
property: For any a1, . . . , ar ∈ M and δ1, . . . , δr > 0, there is an M ′ ∈ M and
b1, . . . , br ∈M ′ such that F δibi − bi = ai for all i ≤ r. For example, the class of all
R-modules obtained from M by a finite sequence of splitting extensions.

3. Groupless F -sets and (N, 0, σ, Pδ).

Our main tool for understanding cycle-free groupless F -sets will be a corre-
spondence between them and a certain well-understood structure on the natural
numbers, N. For each δ > 0, we can view N as a structure in the language Lδ where
there is a constant symbol for 0, a function symbol σ for the successor function,
and a unary predicate Pδ(x) that signifies “x ≡ 0 mod δ”. We say that a subset of
Nn is δ-definable to mean that it is Lδ-definable.

While the model theory of Th(N, 0, σ, Pδ) is both straightforward and well-
known, we were unable to find an appropriate reference in the literature. We
have therefore included an appendix in which we discuss various properties of this
theory. We will refer the reader to this appendix whenever some aspect of the
model theory of Th(N, 0, σ, Pδ) is invoked.
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We also consider the full structure on N given by all these predicates. To this
end we set L =

⋃
δ>0 Lδ, and say that a subset of Nn is definable to mean that it

is L-definable. We will be interested mainly in sets definable by equations in L.

Definition 3.1. By a δ-equation we mean a formula of the form

• x ≡ qmod δ, for some 0 ≤ q < δ; or,
• x = σr(y), for some r ∈ N; or,
• x = p, for some p ∈ N,

where x and y are (singleton) variables. By an equation we mean a δ-equation for
some δ > 0. A (δ-)variety in Nn, is then solution set to finitely many (δ-)equations
in the variables x1, . . . xn. A translate of a (δ-)variety is called a (δ-)basic set. A
(δ-)closed set is a finite union of (δ-)basic sets.

Remark 3.2. Suppose δ, γ, r > 0 and δ = rγ. Then every γ-definable (respectively
γ-closed) set is a δ-definable (respectively δ-closed) set. Indeed, if 0 ≤ q < γ then

x ≡ qmod γ ⇐⇒
r−1∨
`=0

x ≡ (`γ + q) mod δ.

In particular, this shows that every definable (respectively closed) set is δ′-definable
(respectively δ′-closed) for some δ′ > 0.

Remark 3.3. The δ-closed sets are exactly the projections of the positive quantifier-
free definable sets in (N, 0, σ, Pδ). In particular, they are closed under unions, in-
tersections, and projections.

Proof. Using the bi-interpretation of the structures (N, 0, σ, Pδ) and (N, 0, σ) pre-
sented in the appendix, it is sufficient to do this for (N, 0, σ) – that is, when δ = 1.1

Suppose B = r + V , where r = (r1, . . . , rn) ∈ Nn and V ⊂ Nn is a variety. Note
that V is a positive quantifier-free definable set. Now,

B = r + V = π[Γ(σr) ∩ (V × Nn)];

where σr : Nn → Nn is the map (σr1 , . . . , σrn), Γ(σr) ⊂ Nn×Nn is the graph of σr,
and π is the projection π(x1, . . . , xn, y1, . . . , yn) = (y1, . . . , yn). We have expressed
B as the projection of a positive quantifier-free definable set.

For the converse, it suffices to show that for V ⊂ Nn+1 and π : Nn+1 → Nn the
projection, if V is a variety then πV is basic. Fix co-ordinate variables x1, . . . , xn, y
for Nn+1 and assume πV 6= ∅. Choose a finite set of equations, Λ, defining V , such
that the number, m, of equations in Λ that involve y is minimal. Clearly, if m = 0
then πV is a variety. We assume that m > 0.

Suppose Λ includes an equation of the form y = p for some p ∈ N. If Λ contains
any other equation involving y, then that equation can either be removed or replaced
by an equation not involving y, without changing V . By the minimality of m, this
is the only equation in Λ that refers to y. But then, πV is clearly a variety. We
may assume that no such equation appears in Λ. A similar argument allows us to
assume that Λ also does not contain any equation of the form y = σa(xi) for some
a ∈ N and i ≤ n.

We are left to consider the case when Λ contains an equation σa(y) = xi for
some a ∈ N and i ≤ n. As before, the minimality of m ensures that this is the
only equation in Λ that involves y. Let Θ = Λ \ {σa(y) = xi}, and let W ⊂ Nn

1See Proposition A.2.
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be the variety defined by Θ. Then πV = {(r1, . . . , rn) ∈ W : ri ≥ a}. We wish to
show that such a set is basic. Let J ⊂ {1, . . . , n} be those indices j ≤ n such that
Θ implies an equation of the form σbj (xj) = xi or xj = σcj (xi). As i ∈ J , J is
non-empty. Note that if k /∈ J , then Θ will not imply any equation relating xk with
some xj for j ∈ J . We also observe that if for some j ∈ J , Θ implies that xj = p
for some p ∈ N, then Θ determines xi also; and as πV is nonempty, every element
of W must have ith coordinate ≥ a. But then, πV = W and we are done. Hence
we may assume that no such equation is implied by Θ.

Let b be greatest with the property that for some j ∈ J , Θ implies σb(xj) = xi.
Taking j = i we see that b ≥ 0. If b ≥ a, then Θ must force xi ≥ a. Again, this
means that πV = W and we are done. Hence, we may assume that 0 ≤ b < a.
Finally, for each j ∈ J , let aj = a− b; and for each k /∈ J , let ak = 0. Then πV is
the basic set (a1, . . . , an) +W . �

We describe the relevance of these structures on N to groupless F -sets. Fix a
finitely generated R-module M and a tuple a = (a1, . . . , an) ∈ Mn. We set the
following notation:

• For B ⊂ Nn, FBa := {
n∑
i=1

F biai : (b1, . . . , bn) ∈ B} ⊂M .

• For r = (r1, . . . , rn) ∈ Nn, F ra :=

n∑
i=1

F riai ∈M .

• For r, s ∈ Nn, r is a-equivalent to s, written r ∼a s, if F ra = F sa.
• For b ∈M , loga b := {r : b = F ra} ⊂ Nn.

The set loga b describes the ways in which b can be written as sums of iterates of
F applied to a1, . . . , an. Note that ∼a is an equivalence relation and that r ∼a s if
and only if (r, s) ∈ log(a,−a) 0.

Suppose B is a variety defined by a single equation. Then it is of one of the
following forms:

I {(m1, . . . ,mn) ∈ Nn : mt ≡ qmod δ}, for some 0 ≤ q < δ and t ≤ n.
II {(m1, . . . ,mn) ∈ Nn : ms = σr(mt)}, for some r ∈ N and s, t ≤ n.

III Nt × {p} × Nn−t−1, for some p ∈ N and t ≤ n.

Clearly, FBa is then of the form (respectively):

I S(a1, . . . , at−1, F
qat, at+1, . . . , an; 1, . . . , 1, δ, 1, . . . , 1).

II S(a1, . . . , as−1, F
ras + at, as+1, . . . , at−1, at+1, . . . , an; 1).

III F pat + S(a1, . . . , at−1, at+1, . . . , an; 1).

Iterating this procedure, it is not hard to see that for any variety B ⊂ Nn, FBa
is a cycle-free groupless F -set. Conversely, if S = c + S(a; δ), for some c ∈ M ,
a ∈ Mn, and δ = (δ1, . . . , δn); then S = FB(c, a), where B ⊂ Nn+1 is the variety
{(0, r1, . . . , rn) : ri = 0 mod δi}. We have:

Lemma 3.4. Suppose S ⊂M . Then S ∈ OrbM if and only if S =
⋃`
i=1 F

Biai for
some sequence of tuples a1, . . . , a` and closed sets B1, . . . , B`.

Proof. This follows from the preceding discussion once we have observed that for
translates B2 = r+B1, FB2(x1, . . . , xm) = FB1(F r1x1, . . . , F

rnxm); and for unions

B =
⋃l
i=1Bi, F

Bx =
⋃l
i=1 F

Bix. �
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Proposition 3.5. Suppose M is a finitely generated R-module. Then for all
a ∈ Mn and b ∈ M , loga b is closed. In particular, a-equivalence is a definable
equivalence relation on Nn.

The proof of Proposition 3.5 is somewhat technical and we delay it for the time
being. In Theorem 4.3 below, we will not only prove that loga b is closed, but we
will also describe how the set varies with b.

For the remainder of this section, we describe a number of consequences of this
proposition, concentrating mainly on the behaviour of the class of groupless F -sets.
The following remark is an immediate consequence of the definitions.

Remark 3.6. Suppose M and N are finitely generated R-modules and f : M → N
is a surjective R-module homomorphism.

• If A ∈ OrbM (respectively Groupless(M) or F(M)), then f(A) ∈ OrbN
(respectively Groupless(N) or F(N)).
• If A ∈ F(N), then f−1(A) ∈ F(M).
• If A ∈ OrbN (respectively Groupless(N)) then there exists B ∈ OrbM

(respectively Groupless(M)) with f(B) = A.

Lemma 3.7. Suppose M is a finitely generated R-module.

(a) OrbM is preserved under intersections.
(b) If S ∈ OrbM and N ≤M is a submodule, then S ∩N ∈ OrbM .

Proof. For part (a), suppose S, T ∈ OrbM . By Lemma 3.4, and taking finite unions,
we may assume that S = FBa and T = FCb, for some a ∈ Mn, b ∈ Mm, B ⊂ Nn
closed, and C ⊂ Nm closed. But then S ∩ T = FDa, where

D := {r ∈ B : for some s ∈ C, (r, s) ∈ log(a,−b) 0}.

By Proposition 3.5, log(a,−b) 0 is closed. As closed sets are preserved under inter-

sections and projections, D is a closed set. Hence FDa ∈ OrbM .
For part (b), we may again assume S = FBa for some a ∈Mn and closedB ⊂ Nn.

Let π : M → M/N be the quotient map. Then c ∈ S ∩ N if and only if π(c) = 0
and c = F ra for some r ∈ B. But then 0 = F rπ(a). Hence S ∩ N = F (B∩Z)a,
where Z := logπ(a) 0. By Proposition 3.5 applied to M/N , we have that Z ⊂ Nn is
closed. Hence S ∩N ∈ OrbM . �

Corollary 3.8. Suppose M is a finitely generated R-module.

(a) Groupless(M) is preserved under intersections.
(b) If U ∈ Groupless(M) and N is a submodule, then U ∩N ∈ Groupless(N).

Proof. We first go up and then come back down. Suppose U, V ∈ Groupless(M).
Using Lemma 2.7, let M ′ be a finitely generated R-module that extends M , and
such that U, V ∈ OrbM ′ . Then by part (a) of Lemma 3.7, U ∩ V ∈ OrbM ′ . As
U ∩ V ⊂M , we have by Lemma 2.9, that U ∩ V ∈ Groupless(M).

For part (b), let M ′ be a finitely generated R-module that extends M , and
such that U ∈ OrbM ′ . Now N is also a submodule of M ′, and so by part (b) of
Lemma 3.7, U ∩N ∈ OrbM ′ , and hence in Groupless(N) by Lemma 2.9. �

Proposition 3.9. Suppose M is a finitely generated R-module.

(a) F(M) is preserved under intersections.
(b) If X ∈ F(M) and N ≤M is a submodule, then X ∩N ∈ F(N).
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Proof. For part (a), it suffices to show that if U, V ∈ Groupless(M) and G,H ≤M
are submodules, then (U + G) ∩ (V + H) ∈ F(M). We proceed by a series of
increasingly more general cases. Note that Case 2, below, implies part (b).

Case 1: V = 0 and G ∩H = 0. Notice that

(U +G) ∩H = [(U ∩ (G+H)) +G] ∩H.
As G+H ∼= G⊕H, we have a projection map η : G+H → H. Moreover,

[(U ∩ (G+H)) +G] ∩H = η(U ∩ (G+H)).

By part (b) of Corollary 3.8, U ∩ (G+H) ∈ Groupless(G+H). Hence

(U +G) ∩H = η(U ∩ (G+H)) ∈ Groupless(H) ⊂ F(M).

Case 2: V = 0. Let π : M →M/(G ∩H) be the quotient map. Then

(U +G) ∩H = π−1π[(U +G) ∩H] = π−1[(πU + πG) ∩ πH].

Now πU ∈ Groupless(M/(G ∩H)). By case 1, (πU + πG) ∩ πH ∈ Groupless(πH).
It follows that (U + G) ∩ H ∈ F(H). This proves part (b) of the proposition, as
well as part (a) for this case.

Case 3: The general case. Note that (U + G) ∩ (V + H) is the projection onto

the first coordinate of [(U +G)× (V +H)]∩∆ ⊂M2 where ∆ is the diagonal. On
the other hand, it is not hard to see that (U +G)× (V +H) = (U ×V ) + (G×H),
and that U ×V ∈ Groupless(M2). By case 2, [(U ×V )+(G×H)]∩∆ is in F(M2).
Hence (U +G) ∩ (V +H) ∈ F(M). �

We describe a class of quantifier-free definable sets, more general than F -sets, to
which these methods apply.

Definition 3.10. A generalised groupless F -set is a finite union of sets of the form
U \ V where U, V ∈ Groupless(M). We denote by Groupless∗(M) the collection of
all generalised groupless F -sets. A generalised F -set is a finite union of sets of the
form A+H, where A ∈ Groupless∗(M) and H ≤ M is a submodule. The class of
generalised F -sets is denoted by F∗(M).

Remark 3.11. Corollary 3.8 implies:

• Groupless∗(M) is preserved under unions and intersections.
• If A,B ∈ Groupless∗(M) then so is A \B.
• If N ≤M and A ∈ Groupless∗(M), then A ∩N ∈ Groupless∗(N).

Proposition 3.12. Suppose M is a finitely generated R-module and A ⊂ M .
Then A ∈ Groupless∗(M) if and only if there is a finitely generated R-module M ′

extending M , tuples a1, . . . , a` from M ′, and L-definable sets Y1, . . . , Y`, such that

A =
⋃̀
i=1

FYiai.

Proof. We begin with the right-to-left direction. Taking finite unions, we may as-
sume that A = FY a where Y ⊂ Nn is definable and a ∈ (M ′)n, where M ′ ≥M is a
fixed finite extension. As A ⊂M , it is sufficient to prove that A ∈ Groupless∗(M ′).
Let δ > 0 be such that both Y and a-equivalence are δ-definable (we are applying
Proposition 3.5 to M ′ here). We work in the structure (N, 0, σ, Pδ). As pointed
out in the appendix, this structure is of finite Morley rank (in fact of rank 1).2

2See Propositions A.1 and A.2.
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We proceed by induction on (RM,dM)(Y ), the case of RMY = 0 being trivial.
We can write Y as B \ Z where B ⊂ Nn is δ-closed, Z ⊂ B is δ-definable, and
(RM,dM)(B) = (RM,dM)(Y ).3 It follows that (RM,dM)(Z) < (RM,dM)(Y ).

Let X ⊂ Z be the set

X := {r ∈ Z : if s ∈ B and s ∼a r then s ∈ Z}.

Then A = FBa \ FXa. Indeed, FY a ⊂ FBa \ FXa is clear from the definition of
X. For the other direction suppose b ∈ FBa \ FXa. In particular, b = F ra for
some r ∈ B \X. If r ∈ B \ Z = Y then b ∈ A as desired. If not, then r ∈ Z \X.
By the definition of X, there is s ∈ B with s ∼a r, and s /∈ Z. It follows that
b = F ra = F sa ∈ FY a = A.

Now, X is δ-definable and (RM,dM)(X) < (RM,dM)(Y ). By induction, we
have FXa ∈ Groupless∗(M ′). As B is closed, FBa ∈ OrbM ′ ⊂ Groupless∗(M ′).
Hence A = FBa \ FXa ∈ Groupless∗(M ′).

For the converse, taking finite unions, we may assume that A = U \ V , where
U, V ∈ Groupless(M). Let M ′ be a finitely generated R-module extending M , such
that U, V ∈ OrbM ′ . Taking finite unions again, and applying Lemma 3.4, we may

assume that U = FBa and V =

m⋃
i=1

FCibi where a, b1, . . . , bm are tuples from M ′

and B,C1, . . . , Cm are closed sets. But then A = FY a, where

Y := {r ∈ B :

m∧
i=1

∀s ∈ Ci, (r, s) /∈ log(a,−bi) 0}.

Y is visibly definable, and this completes the proof of the proposition. �

Remark 3.13. In the above proposition, we could have taken M ′ to be obtained
from M by a finite sequence of splitting extensions.

We wish to use Proposition 3.12 to prove that, like F -sets, the class of gen-
eralised F -sets is preserved under images and preimages of surjective R-module
homomorphisms. We begin with a lemma.

Lemma 3.14. Let f : M1 →M2 be a surjective R-module homomorphism between
finitely generated R-modules, a ∈ M1, f(a) = b, and δ > 0. Suppose M ′1 is the δ-
splitting extension of M1 at a and M ′2 is the δ-splitting extension of M2 at b. Then
there is a natural surjective R-module homomorphism f ′ : M ′1 → M ′2 that extends
f , and such that ker f ′ = ker f .

Proof. Recall that M ′1 := (M1⊕R·x)/R·(F δx−x−a), where x is an indeterminate.
This was defined in Remark 2.8 and appears in the proof of Lemma 2.7. It was
shown in that lemma that the natural inclusion of M1 ⊂ M1 ⊕ R · x induces an
inclusion of M1 ⊂M ′1. Similarly, M ′2 := (M2⊕R · y)/R · (F δy− y− b). Clearly, we

can lift f to f̂ : M1 ⊕R · x→M2 ⊕R · y, by x 7→ y, with ker f̂ = ker f . As f̂ maps
R · (F δx− x− a) onto R · (F δy − y − b), it descends to a map f ′ : M ′1 → M ′2 that
is surjective and extends f . On the other hand,

(f̂)−1[R · (F δy − y − b)] = R · (F δx− x− a) + ker f̂ = R · (F δx− x− a) + ker f

Hence, ker f ′ = ker f . �

3See Proposition A.5, which is a uniform version of this.
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Proposition 3.15. Suppose f : M1 →M2 is a surjective R-module homomorphism
of finitely generated R-modules. The class of generalised F -sets is preserved under
images and preimages of f .

Proof. Suppose A ∈ Groupless∗(M1) and H ≤M1. We want to show that f(A+H)
is a generalised F -set in M2. As f(A+H) = f(A) + f(H), it suffices to show that
f(A) ∈ Groupless∗(M2). By Proposition 3.12, and taking finite unions, we may
assume that A = FY a, where Y ⊂ Nn is definable and a ∈ (M ′1)n; for some M ′1
that is obtained from M1 by a finite sequence of splitting extensions. Iterating
Lemma 3.14 we obtain M ′2 extending M2, and a lifting of f to a surjective R-
module homomorphism f ′ : M ′1 → M ′2. Then f ′(A) = FY f ′(a). But as f ′ lifts f ,
we have that f ′(A) = f(A). So by Proposition 3.12 again, f(A) ∈ Groupless∗(M2).

We now check preimages. Suppose A ∈ Groupless∗(M2) and H ≤ M2. We may
again assume that A = FY b, where Y is definable and b is a tuple from a finitely
generated R-module obtained from M2 by a finite sequence of splitting extensions,
M ′2. Let M ′1 extend M1, and let f ′ : M ′1 →M ′2 be a surjective lifting of f such that
ker f ′ = ker f (using Lemma 3.14). Let a from M ′1 be such that f ′(a) = b. We
claim that

f−1(A+H) = (FY a ∩M1) + f−1(H).

Right-to-left containment is clear from the fact that f ′ extends f . For the converse
note that f ′−1(H) = f−1(H) + ker f ′ = f−1(H) + ker f = f−1(H). Hence

f ′−1(FY b+H) = FY a+ f ′−1(H) = FY a+ f−1(H).

As f−1(A+H) ⊂M1, it follows that

f−1(A+H) ⊂ [FY a+ f−1(H)] ∩M1 = (FY a ∩M1) + f−1(H).

So f−1(A+H) = (FY a∩M1) +f−1(H). As FY a ∈ Groupless∗(M ′1), Corollary 3.8
implies that FY a ∩M1 ∈ Groupless∗(M1), and so f−1(A+H) ∈ F∗(M1). �

It is visible from the definitions that a generalised groupless F -set is a boolean
combination of groupless F -sets, and hence quantifier-free definable. This is not
immediately obvious for generalised F -sets that are not groupless. Nevertheless,

Corollary 3.16. Every generalised F -set in a cartesian power of M is quantifier-
free definable in (M,F).

Proof. Suppose A ∈ Groupless∗(Mn) and H ≤ Mn is a submodule. It suffices
to show that A + H is a boolean combination of sets from F(Mn). Consider the
quotient map π : Mn → Mn/H. By (the proof of) Proposition 3.15, πA is in
Groupless∗(Mn/H). Hence, πA is a boolean combination of groupless F -sets in
Mn/H. But A+H = π−1πA. The corollary now follows from Remark 3.6 together
with the fact that π−1 commutes with boolean operations. �

Proposition 3.17. Suppose M is a finitely generated R-module.

(a) F∗(M) is preserved under intersections.
(b) If X ∈ F∗(M) and N ≤M is a submodule, then X ∩N ∈ F∗(N).

Proof. This follows exactly as in the analogous statement for F(M) (Proposi-
tion 3.9). One uses Remark 3.11 instead of Corollary 3.8; and the fact that the
class of generalised F -sets is also preserved under images and preimages of surjective
R-module homomorphisms (Proposition 3.15). �
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4. Uniform Definability of Logarithmic Equivalence

Fix a finitely generated R-module M . In this section, we aim to give a uniform
description of loga b, which will in particular prove Proposition 3.5. In order to do
so, it is convenient to distinguish certain kinds of translates of sets in N:

Definition 4.1. A tuple r ∈ Nn is called disjoint from a set B ⊂ Nn if for all
i ≤ n, if the ith coordinate of r is nonzero then every element of B has zero as its
ith coordinate. In this case, we write r ⊕ B to mean the translate r + B. We call
r ⊕B a disjoint-translate of B.

Let a ∈ Mn, r ∈ Nn, and B ⊂ Nn closed. The purpose of introducing disjoint-
translates is that if r ⊕ B is a disjoint-translate of B, then we have a particularly
simple description of F (r⊕B)a in terms of FBa. Let IB ⊂ {1, . . . , n} be the support
of B – that is, those indices i ≤ n such that some element of B has a nonzero ith
coordinate. We employ the folowing notation.

B◦ ⊂ N|IB | is the projection of B onto the IB-coordinates;
a◦ ∈M |IB | is the projection of a onto the IB-coordinates;
a◦ ∈M (n−|IB |) is the projection of a onto the ({1, . . . , n}\ IB)-coordinates;
r◦ ∈ N(n−|IB |), is the projection of r onto the ({1, . . . , n} \ IB)-coordinates;

After permuting the indices, r ⊕B is just r◦ ×B◦. In fact, we have:

F (r⊕B)a = F r◦a◦ + FB
◦
a◦.

Notice that FB
◦
a◦ depends on B and a, but not on r. Only the point by which

FB
◦
a◦ is being translated depends on r. That is, as you disjoint-translate a closed

set, the groupless F -sets that you obtain only vary by translation. We often refer
to B◦, a◦ as the canonical contraction of B, a and the expression F r◦a◦+FB

◦
a◦ as

the canonical form of F (r⊕B)a.
Another advantage of disjoint-translates is that they form a uniformly definable

family of sets. Since we do not have “+” in our language L, arbitrary translations
of a definable set do not form a uniformly definable family. The following lemma
says that every unformly definable family of varieties is essentially of this form.

Lemma 4.2. Suppose δ > 0 and V ⊂ Nm+n is a δ-variety. There is a δ-variety
W ⊂ Nn such that for all r ∈ Nm, Vr is either empty or a disjoint-translate of W .

Proof. Let us use x1, . . . , xm, y1, . . . , yn as coordinate variables for Nm+n. Rear-
range the coordinates so that for some 0 ≤ ` ≤ n the equations defining V imply
a condition of the form yi = σt(xj) or xj = σt(yi) for some j ≤ m, if and only if
i ≤ `. We have that Vr = s×W ′, where s ∈ N` varies with r and W ′ ⊂ Nn−` is a
fixed δ-variety. Then W = {0}` ×W ′ satisfies the conclusion of the lemma. �

In any case, we aim to prove the following:

Theorem 4.3. Suppose M is a finitely generated R-module. There exists a positive
integer δM > 0 such that the following holds: Suppose a = (a1, . . . an) ∈ Mn.
There are δM -basic sets B1, . . . , B` in Nn, such that for all b ∈ M , there is some
J ⊂ {1, . . . , `}, and for each j ∈ J there is some rj ∈ Nn disjoint from Bj, such
that

loga b =
⋃
j∈J

(rj ⊕Bj).
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We first explain what δM will be. Let K =
⋃
n kerFn. Note that FK = K, and

hence K is a submodule of M . As it is finitley generated, K = kerFN1 for some
N1 ≥ 0. It follows that F is injective on F∞M . Indeed, if c ∈ F∞M , then we can
write c = FN1b for some b ∈ M . Now, if Fc = 0 then b ∈ kerFN1+1 ⊂ kerFN1 ,
and hence c = 0. As F∞M is a finite set, it follows that some positive power of F
must fix F∞M pointwise. From now on, given a finitely generated R-module M ,
δM will be the least positive integer such that F δM fixes F∞M pointwise.

Our proof of the theorem will proceed via a series of lemmas. For each i ≥ 0, let
Mi = K + F iM . These are the points that are F i divisible modulo K. We obtain
a filtration of M , and define Mω to be the intersection of this descending chain of
R-submodules:

M0 = M ⊃M1 ⊃M2 ⊃ · · · ⊃Mω =

∞⋂
n=0

Mn

This in turn induces a valuation on M , v : M → ω + 1, given by v(x) ≥ n if and
only if x ∈Mn.

Lemma 4.4. For all x ∈M , v(Fx) = 1 + v(x).

Proof. This is clear if v(x) = ω (i.e., if x ∈ Mω). Assume v(x) = m < ω. Let
y ∈M and α ∈ K be such that x = Fmy+α. Then Fx = Fm+1y+Fα, and hence
v(Fx) ≥ m + 1. Now suppose that v(Fx) > m + 1. That is, there exists z ∈ M
and β ∈ K, such that Fx = Fm+2z+ β. Hence Fm+1y+Fα = Fm+2z+ β, and so
Fm+1(y − Fz) ∈ K. Hence y − Fz ∈ K. That is, y = Fz + θ for some θ ∈ K. It
follows that x = Fm+1z + Fθ + α ∈Mm+1, contradicting v(x) = m. �

Lemma 4.5. Suppose a1, . . . , at ∈M \Mω. If k1, . . . , kt ∈ N satisfy kj−k1 > v(a1)

for all j > 1; then, v(
∑t
i=1 F

kiai) = k1 + v(a1).

Proof. Notice that for each j > 1,

v(F kjaj) = kj + v(aj) > k1 + v(a1) + v(aj) ≥ k1 + v(a1) = v(F k1a1).

The lemma now follows from the fact that the valuation of a sum is the unique
minimum valuation of the summands (if such a unique minimum exists). �

Lemma 4.6. Suppose a1, . . . , at ∈ M \Mω. There exists N > 0 such that for all
k1 < · · · < kt, and `1, . . . , `t from N satisfying

(a) k1 > N and ki − ki−1 > N for all 1 < i ≤ t; and,
(b) `i > N , and |`i − `j | > N for all i 6= j from {1, . . . , t};

if
t∑
i=1

F kiai = (

t∑
i=1

F `iai) modMω,

then for some permutation σ of {1, . . . , t}, and for each i ≤ t,

F `σ(i)aσ(i) − F kiai ∈Mω.

In particular, ki + v(ai) = `σ(i) + v(aσ(i)) for all i ≤ t.

Proof. For the “in particular” clause notice that F `σ(i)aσ(i) − F kiai ∈ Mω implies
that the two summands must have the same value, and so by Lemma 4.4 we must
have that ki + v(ai) = `σ(i) + v(aσ(i)).
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Now let m := max{v(ai) : i ≤ t} and let

N := max{m, v(Fm−v(ai)ai − Fm−v(aj)aj) :

i, j such that Fm−v(ai)ai − Fm−v(aj)aj /∈Mω}

Suppose k1, . . . , kt, `1, . . . , `t satisfy the hypotheses of the Lemma, and let σ be a
permutation of {1, . . . , t} so that `σ(1) < · · · < `σ(t).

We will show that this σ and N work. We show it by induction on t: the case
of t = 1 is obvious and we assume that t ≥ 2. We claim it is sufficient to show that
F `σ(1)aσ(1) − F k1a1 ∈Mω. Indeed, this implies that

t∑
i=2

F kiai = (

t∑
i=2

F `σ(i)aσ(i)) modMω,

and so by induction F `σ(i)aσ(i) − F kiai ∈ Mω for i = 2, . . . , t, and we are finished.

Assume F `σ(1)aσ(1) − F k1a1 /∈Mω and seek a contradiction.
Note that by Lemma 4.5, our choice of N , and our choice of σ, we already know

that k1 + v(a1) = `σ(1) + v(aσ(1)). Using this we compute:

F `σ(1)aσ(1) − F k1a1 = F `σ(1)+v(aσ(1))−m(Fm−v(aσ(1))aσ(1))− F k1a1

= F k1+v(a1)−m(Fm−v(aσ(1))aσ(1))− F k1a1

= F k1+v(a1)−m(Fm−v(aσ(1))aσ(1) − Fm−v(a1)a1)

Evaluating both sides we get that

v(F `σ(1)aσ(1) − F k1a1) = k1 + v(a1)−m+ v(Fm−v(aσ(1))aσ(1) − Fm−v(a1)a1).

Now, since we are assuming that F `σ(1)aσ(1) − F k1a1 /∈Mω this gives

v(F `σ(1)aσ(1) − F k1a1) ≤ k1 + v(a1)−m+N < k2 + v(a1)−m ≤ k2

We also have that

k1 + v(a1)−m+N = `σ(1) + v(aσ(1))−m+N ≤ `σ(1) +N < `σ(2).

We have shown that v(F `σ(1)aσ(1) − F k1a1) < k2, `σ(2). Note that

t∑
i=2

F kiai −
t∑
i=2

F `σ(i)aσ(i) = (F `σ(1)aσ(1) − F k1a1) modMω,

and so v(
∑t
i=2 F

kiai −
∑t
i=2 F

`σ(i)aσ(i)) = v(F `σ(1)aσ(1) − F k1a1) < k2, `σ(2). On

the other hand, v(
∑t
i=2 F

kiai −
∑t
i=2 F

`σ(i)aσ(i)) is greater than or equal to the
minimum value of its summands, each of which ≥ k2, `σ(2). This contradiction
proves the lemma. �

The following lemma is a special case of Theorem 4.3.

Lemma 4.7. Let a1, . . . , an ∈ Mω. There exist δM -basic sets B1, . . . , B` ⊂ Nn,
such that for all b ∈ M , there is some J ⊂ {1, . . . , `} and for each j ∈ J there is
some rj ∈ Nn disjoint from Bj, such that loga b =

⋃
j∈J(rj ⊕Bj).



16 RAHIM MOOSA AND THOMAS SCANLON

Proof. Let us first deal with the case when each ai ∈ F∞M . Recall that F δM fixes
F∞M pointwise. So for all m ∈ N, Fmai = F (m′δM+r)ai = F rai where r ∈ N is
strictly less than δM and m′ ∈ N. Hence, if m ∈ loga b, then there exists r◦ ∈ loga b
each of whose coordinates are strictly less than δM , and m = m′(δM , . . . , δM ) + r◦
for some m′ ∈ Nn. Moreover, for all m′ ∈ Nn, m′(δM , . . . , δM ) + r◦ ∈ loga b. That
is, B(r◦) := r◦ + {n ∈ Nn : n ≡ 0 mod δM} is contained in loga b. Note that B(r◦)
is a δM -basic set. Now, the collection {B(r)} as r varies among all n-tuples each
of whose coordinates are strictly less than δM , is finite (independently of b) and
covers all of Nn. It follows that loga b is equal to the union of some of these B(r)’s;
and we have proved the lemma in this case.

Consider the general case (where each ai is only assumed to be in Mω). Let
N1 ∈ N be such that K = kerFN1 . For all a ∈ Mω, FN1a ∈ F∞M . Now those
elements of m ∈ loga b where mi ≥ N1 for all i ≤ n, is just (N1, . . . , N1) + loga′′ b,
where a′′ = (FN1a1, . . . , F

N1an). As each FN1ai ∈ F∞M , we have already proved
the desired conclusion for loga′′ b. We are left to consider those elements m ∈ loga b
such that for some i ≤ n, mi < N1. Since there are only finitely many possible
values for i and for r < N1 – independent of b – we need only show that for any
fixed i ≤ n and r < N1, the set {m ∈ loga b : mi = r} has the desired form. We
proceed by induction on n: the case of n = 1 being trivial. For n ≥ 2, the set of
elements m ∈ loga b satisfying mi = r can be described as the set of all

(m1, . . . ,mi−1, r,mi+1, . . . ,mn) ∈ Nn

such that
(m1, . . . ,mi−1,mi+1, . . . ,mn) ∈ loga′(b− F rai),

where a′ = (a1, . . . , ai−1, ai+1, . . . , an). By the inductive hypothesis applied to a′,
loga′(b−F rai) =

⋃
j∈J(r′j⊕B′j), where the B′j ⊂ Nn−1 come from a finite collection

of δM -basic sets that depends only on a′, and hence only on a and i. For each j ∈ J ,
let rj ∈ Nn be the tuple obtained from r′j by plugging in 0 between the (i−1)st and
ith coordinate; and let Bj ⊂ Nn be the δM -basic set obtained from B′j by plugging
in r between the (i − 1)st and ith coordinate of each element. It is then not hard
to see that

{m ∈ loga b : mi = r} =
⋃
j∈J

(rj ⊕Bj),

This gives us the desired description for {m ∈ loga b : mi = r}. �

We are in a position to prove Theorem 4.3 itself. Let us restate the Theorem:
Suppose a = (a1, . . . , an) ∈ Mn. There exist δM -basic sets B1, . . . , B` ⊂ Nn, such
that for all b ∈ M , there is some J ⊂ {1, . . . , `}, and for each j ∈ J there is some
rj ∈ Nn disjoint from Bj, such that

loga b =
⋃
j∈J

(rj ⊕Bj).

Proof. Arrange the indices so that a1, . . . , at /∈ Mω and at+1, . . . , an ∈ Mω. We
proceed by induction on t. The case t = 0 is taken care of by Lemma 4.7. Now
suppose that 0 < t ≤ n, and fix b ∈ M . We will describe loga b making sure that
the data that appear in this description are independent of b.

Let N be the bound given by Lemma 4.6 applied to a1, . . . , at. We can divide
loga b into the following pieces:
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1. loga b
]: the set of those m ∈ loga b for which both mi and |mi −mj | are

greater than N , for all i, j ≤ t.
2i,r. {m ∈ loga b : mi = r}, for fixed i ≤ t and 0 ≤ r ≤ N .

3i,j,r. {m ∈ loga b : mj = mi + r} for fixed i < j ≤ t and 0 ≤ r ≤ N .

We will analyse these pieces of loga b separately, and in the order presented above.
First of all, we claim that for m ∈ loga b

] there are only finitely many possible
choices for (m1, . . .mt). Indeed, let m′ ∈ loga b

] be another element. Notice that

t∑
i=1

Fm
′
iai = (

t∑
i=1

Fmiai) modMω.

Lemma 4.6 ensures there is only one possible choice of (mi + v(ai) : i ≤ t), up to
permutations of {1, . . . , t}. Hence there are only finitely many possible choices for
(m1, . . .mt); the number of which is bounded independently of b.

Fixing any such choice of r1, . . . , rt, call the set of m ∈ loga b
] where mi = ri for

all i ≤ t, loga b
](r). Then

loga b
](r) = (r1, . . . , rt, 0, . . . , 0)⊕ ({0} × · · · × {0} × loga′′(b−

t∑
i=1

F riai))

where a′′ = (at+1, . . . , an). Each of the coordinates of a′′ is in Mω, and so Lemma
4.7 applies. This describes loga b

](r) in terms of unions of disjoint-translates of
δM -basic sets that come from a finite collection that does not depend on b nor on r.
Ranging over the possible choices of (r1, . . . , rt) we obtain the desired conclusions
for loga b

].
Fix i ≤ t and 0 ≤ r < N , and consider case 2i,r. The set of elements m ∈ loga b

satisfying mi = r can be described as the set of all

(m1, . . . ,mi−1, r,mi+1, . . . ,mn) ∈ Nn

such that

(m1, . . . ,mi−1,mi+1, . . . ,mn) ∈ loga′(b− F rai),
where a′ = (a1, . . . , ai−1, ai+1, . . . , an). By the inductive hypothesis applied to a′,
loga′(b−F rai) =

⋃
j∈J(r′j⊕B′j), where the B′j ⊂ Nn−1 come from a finite collection

of δM -basic sets that depends only on a′, and hence only on a and i. For each j ∈ J ,
let rj ∈ Nn be the tuple obtained from r′j by plugging in 0 between the (i − 1)st
and ith coordinate; and let Bj ⊂ Nn be the basic set obtained from B′j by plugging
in r between the (i− 1)st and ith coordinate of each element. Then

{m ∈ loga b : mi = r} =
⋃
j∈J

(rj ⊕Bj),

This gives us the desired description for {m ∈ loga b : mi = r}. As there are only
finitely many choices for i and r (independently of b), this takes care of case 2.

We are left to consider cases 3i,j,r for fixed i < j ≤ t and 0 ≤ r ≤ N . The set of
elements of loga b, for which mj = mi + r can be described as the set of all

(m1, . . . ,mj−1,mi + r,mj+1, . . . ,mn) ∈ Nn

such that

(m1, . . . ,mj−1,mj+1, . . . ,mn) ∈ loga′(b),
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where now a′ = (a1, . . . , ai−1, ai+F
raj , ai+1, . . . , aj−1, aj+1, . . . , an). The inductive

hypothesis applied to a′ yields loga′ b =
⋃
k∈J(r′k ⊕B′k), where B′k ⊂ Nn−1 are δM -

basic sets that come from a finite collection that depends only on a′, and hence
only on a, i, j, and r. For each k ∈ J , we consider two cases seperately:

(1) If some element of B′k has nonzero ith coordinate then let
– rk ∈ Nn be the tuple obtained from r′k by plugging in 0 between the

(j − 1)st and jth coordinate;
– Bk ⊂ Nn be obtained from B′k by plugging in the sum of the ith

coordinate and r between the (j − 1)st and jth coordinate of each
element.

(2) If the ith coordinate of every element of B′k is zero then let
– rk ∈ Nn be obtained from r′k by plugging in the sum of the ith coor-

dinate of r′k and r between the (j − 1)st and jth coordinate of r′k;
– Bk ⊂ Nn be obtained from B′k by plugging in 0 between the (j − 1)st

and jth coordinate of each element.

In either case, Bk is δM -basic, rk is disjoint from Bk, and the Bk’s come from a
finite collection of δM -basic sets that only depend on a, i, j, and r (this was the why
the cases were distinguished). We have

{m ∈ loga b : mj = mi + r} =
⋃
k∈J

(rk ⊕Bk).

Ranging over the finitely many possibilities for i < j ≤ t and r ≤ N , we complete
the proof of Theorem 4.3 (and hence of Proposition 3.5). �

5. Quantifier Elimination

Fix a finitely generated R-module M . We have already seen in Section 3 that as a
consequence of the closedness of the “log” sets, the class Groupless(M) is preserved
under intersections. In this section we use the uniformity of the “log” sets, given
by Theorem 4.3, to obtain a description of these intersections that is uniform with
respect to translation. We then use this uniformity, together with some other
ingredients, to obtain quantifier elimination for the theory of an F -structure.

We begin with the following uniform version of Lemma 2.9:

Lemma 5.1. Suppose S ∈ OrbM . There are T1, . . . , T` ∈ OrbM and d1, . . . , d` ∈ S
such that

(a) S =
⋃̀
i=1

di + Ti.

(b) If N ≤ M is a submodule and c + S ⊂ N for some c ∈ M , then for all
i ≤ `, Ti ∈ Groupless(N) and c+ di ∈ N .

Proof. Taking finite unions we assume that S = b+ S(a; δ) where a = (a1, . . . , an)
and δ = (δ1, . . . , δn) with each δi > 0. As in Lemma 2.9 write

S =
⋃

I⊂{1,...,n}

(b+ a1 + · · ·+ an) +
∑
i∈I

[−ai + S(F δiai; δi)]
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Let d := b+ a1 + · · ·+ an, and

T :=
⋃

I⊂{1,...,n}

∑
i∈I

[−ai + S(F δiai; δi)].

Then S = d + T . Suppose c + S ⊂ N , where c ∈ M . Then c + d ∈ N as d ∈ S.
Moreover, as in Lemma 2.9, for each i ≤ n, F δiai − ai ∈ N . It follows that for all
I ⊂ {1, . . . , n},

∑
i∈I [−ai + S(F δiai; δi)] =

∑
i∈I C(F δiai − ai; δi) ∈ Groupless(N).

Hence T ∈ Groupless(N). �

The next lemma gives us a uniform description of the intersection of a cycle-free
groupless F -set with a submodule.

Lemma 5.2. Suppose S ∈ OrbM and G ≤ M is a submodule. Then there exist
U1, . . . , U` ∈ Groupless(G) ∩ OrbM , and for each J ⊂ {1, . . . , `} there exists XJ ∈
F∗(M ×G|J|) such that the following holds:

(a) For all J and (c, cj)j∈J ∈ XJ , (c+ S) ∩G =
⋃
j∈J

(cj + Uj).

(b) For every c ∈ M with (c + S) ∩ G non-empty, there is some non-empty
J ⊂ {1, . . . , `} and (cj)j∈J ∈ G|J| with (c, cj)j∈J ∈ XJ .

Proof. First of all, by Lemma 5.1, it suffices to find the Uj ’s in OrbM and the XJ ’s

in F∗(M ×M |J|). Also, taking finite unions and translating, we may assume that
S = S(a; δ). We write S = FDa, where D = δ1N× · · · × δnN.

Let π : M → M/G be the quotient map. Let B1, . . . B`′ ⊂ Nn be the basic sets
obtained by Theorem 4.3 applied to M/G and −πa. Reordering if necessary, let
0 ≤ ` ≤ `′ be such that for all 1 ≤ i ≤ `, Ci := Bi ∩ D is nonempty, and for all
j > `, Bj ∩D is empty. For each 1 ≤ i ≤ `, let Ui := FC

◦
i a◦, where C◦i , a

◦ is the
canonical contraction of Ci, a (see the discussion on page 13).

We now define the XJ ’s. Fix J ⊂ {1, . . . , `}. Let AJ be the collection of tuples
(r, sj)j∈J such that

• for each j ∈ J , sj is disjoint from Cj ; and,

• log(−πa)(F
r(−πa)) ∩D =

⋃
j∈J

sj ⊕ Cj .

Note that AJ is definable since log(−πa)(F
r(−πa)) is the (−πa)-equivalence class

of r, and hence, as r varies, is uniformly definable over r. If (r, sj)j∈J ∈ AJ and

j ∈ J , recall that F sj◦a◦+FC
◦
j a◦ is the canonical form of F (sj⊕Cj)a. Let A′J be the

collection of tuples (r, sj◦)j∈J where (r, sj)j∈J ∈ AJ . Then A′J is also definable.

Finally, let XJ ⊂M ×M |J| be the set of tuples (x, xj)j∈J such that πx = F r(−πa)
and xj − x = F sj◦a◦, for some (r, sj◦)j∈J ∈ A′J . Now XJ is a generalised F -set by
Propositions 3.12 and 3.15. Note that XJ may be empty.

We check (a). Suppose (c, cj)j∈J ∈ XJ . Then there exists (r, sj)j∈J such that
cj − c = F sj◦a◦ and log(−πa)(πc) ∩D =

⋃
j∈J sj ⊕ Cj . Hence

F (log(−πa)(πc)∩D)a =
⋃
j∈J

F (sj⊕Cj)a =
⋃
j∈J

cj − c+ Uj

and so

(c+ S) ∩G = c+ F (log(−πa)(πc)∩D)a =
⋃
j∈J

cj + Uj .
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We check (b). Let c ∈ M with (c + S) ∩ G is non-empty. Then −πc ∈ πS.
Hence, for some r ∈ D, F r(−πa) = πc. Moreover, by Theorem 4.3, for some
J ′ ⊂ {1, . . . , `′}, and tuples sj for j ∈ J ′,

log(−πa) πc =
⋃
j∈J′

(sj ⊕Bj).

As D = δ1N × · · · × δnN, it is not hard to see that for each j ∈ J ′, if j ≤ `
and sj ∈ D then sj is disjoint from Bj ∩ D = Cj (which is non-empty) and
(sj ⊕Bj)∩D = sj ⊕Cj . On the other hand, if sj /∈ D or j > `, then (sj ⊕Bj)∩D
is empty. Let J = {j ∈ J ′ : sj ∈ D and j ≤ `}. We have

log(−πa)(F
r(−πa)) ∩D = log(−πa) πc ∩D =

⋃
j∈J

(sj ⊕ Cj).

Note that J 6= ∅ since r ∈ log−πa(πc) ∩D. Letting cj = c + F sj◦a for each j ∈ J ,
we see that (c, cj)j∈J ∈ XJ , as desired. �

Proposition 5.3. Suppose S ∈ OrbM and G,H ≤ M are submodules. Then
there exist U1, . . . , U` ∈ Groupless(G), and for each J ⊂ {1, . . . , `} there exists
XJ ∈ F∗(M ×G|J|), such that the following holds:

(a) For all J and (c, cj)j∈J ∈ XJ , (c+ S +H) ∩G =
⋃
j∈J

(cj + Uj + (H ∩G)).

(b) For every c ∈M with (c+S+H)∩G non-empty, there is some non-empty
J ⊂ {1, . . . , `} and (cj)j∈J ∈ G|J| with (c, cj)j∈J ∈ XJ .

Proof. Let V1, . . . V` ∈ Groupless(G+H), and YJ ∈ F∗(M×(G+H)|J|) for each J ⊂
{1, . . . , `}, be given by Lemma 5.2 applied to S and G+H. Let π be the quotient
map M →M/(G∩H); and η : π(G+H)→ πG be the projection map corresponding
to the isomorphism π(G+H) ∼= πG⊕πH. For each i ≤ `, let Ui ∈ Groupless(G) be
such that πUi = ηπVi. For each J ⊂ {1, . . . , `}, let XJ ⊂M ×G|J| be those tuples
(x, xj)j∈J such that for some (yj)j∈J ∈ (G+H)|J|, (x, yj)j∈J ∈ YJ and πxj = ηπyj .
As generalised F -sets are preserved under intersections and images/preimages of
surjective R-module homomorphisms, the XJ ’s are generalised F -sets.

These Ui’s and XJ ’s work. For (a), suppose (c, cj)j∈J ∈ XJ and (c, dj)j∈J ∈ YJ
with πcj = ηπdj for each j ∈ J . By part (a) of Lemma 5.2,

(c+ S) ∩ (G+H) =
⋃
j∈J

dj + Vj .

Fixing j ∈ J , we have

(dj + Vj +H) ∩G = π−1[(πdj + πVj + πH) ∩ πG]

= π−1[ηπdj + ηπVj ]

= cj + Uj + (H ∩G)

Hence

(c+ S +H) ∩G = [(c+ S) ∩ (G+H) +H] ∩G
=

⋃
j∈J

cj + Uj + (H ∩G)
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as desired. For part (b) suppose c ∈ M with (c + S + H) ∩ G non-empty. Then
(c + S) ∩ (H + G) is non-empty, and so by part (b) of Lemma 5.2, there is a non-
empty J ⊂ {1, . . . , `} and (dj)j∈J ∈ (G+H)|J| such that (c, dj)j∈J ∈ YJ . Now for
each j ∈ J , let cj ∈ G be such that πcj = ηπdj . Then, (c, cj)j∈J ∈ XJ . �

Remark 5.4. We actually obtain that (c + S + H) ∩ G is non-empty if and only
if there is some non-empty J ⊂ {1, . . . , `} and (cj)j∈J ∈ G|J| with (c, cj)j∈J ∈ XJ .
In particular the set of such c is a generalised F -set.

The following description of intersections of F -sets in general uses only part
of what is given by Proposition 5.3, and is presented here mainly for the sake of
completeness.

Corollary 5.5. Suppose U, V ∈ Groupless(M) and G,H ≤ M are submodules.
Then there exist W1, . . . ,W` ∈ Groupless(M) such that for all c, d ∈ M there is
J ⊂ {1, . . . , `} and points (ej)j∈J from M , such that

(c+ U +H) ∩ (d+ V +G) =
⋃
j∈J

ej +Wj + (H ∩G).

Proof. We may assume that U and V are cycle-free groupless F -sets. Indeed, let
M ′ be a finitely generated R-module extending M such that U, V ∈ OrbM ′ , and let
W1, . . . ,W` ∈ Groupless(M ′) witness the truth of the corollary in this case. Then
for c, d ∈M there is J ⊂ {1, . . . , `} and points (ej)j∈J from M ′, such that

(c+ U +H) ∩ (d+ V +G) =
⋃
j∈J

ej +Wj + (H ∩G).

But as (c + U + H) ∩ (d + V + G) ⊂ M , each ej + Wj ⊂ M . Note that there is a
further extension M ′′ of M ′ such that W1, . . . ,W` ∈ OrbM ′′ . So Lemma 5.1 applies
to Wj ∈ OrbM ′′ , and we find Wij ’s in Groupless(M) (independently of the ej ’s)
such that ej +Wj is a finite union of sets of the form eij +Wij where the eij ’s are
now also from M . Hence we may and do assume that U, V ∈ OrbM ,

Applying Proposition 5.3 to U × V ∈ OrbM2 , H × G ≤ M2, and the diagonal
∆ ≤ M2, we obtain Ŵ1, . . . , Ŵ` ∈ Groupless(M2) such that for all c, d ∈ M there
is J ⊂ {1, . . . , `} and points (êj)j∈J from M2, such that

[(c, d) + (U × V ) + (H ×G)] ∩∆ =
⋃
j∈J

êj + Ŵj + (H ×G) ∩∆.

For each i ≤ `, let Wi be the projection of Ŵi onto the first coordinate. Then
W1, . . . ,W` witness the truth of the corollary. �

The next step for quantifier elimination is to understand when a given F -set is
covered by translates of other F -sets. We begin with the groupless case.

Lemma 5.6. Suppose U, V1, . . . , V` ∈ Groupless(M). Then the set

X := {(c0, c1, . . . c`) ∈M `+1 : c0 + U ⊂
⋃̀
i=1

(ci + Vi)}

is a generalised F -set.
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Proof. Let η : M `+1 → M ` be given by η(a0, . . . a`) = (a1 − a0, . . . , a` − a0). Let

Y := {(c1, . . . c`) ∈ M ` : U ⊂
⋃̀
i=1

(ci + Vi)}. Note that X = η−1(Y ). It suffices,

therefore, to show that Y ∈ F∗(M `) (by Proposition 3.15).
We may assume that U, V1, . . . , V` ∈ OrbM . Indeed, if M ′ is a finitely gener-

ated R-module extending M such that U, V1, . . . , V` ∈ OrbM ′ , and if Y ′ is the set

{(c1, . . . c`) ∈ (M ′)` : U ⊂
⋃`
i=1(ci +Vi)}, then Y = Y ′ ∩M `. So if Y ∈ F∗((M ′)`),

then Y ∈ F∗(M `) (by part (b) of Proposition 3.17).
Taking finite unions, we may assume that U = FBx, and that for each i ≤ `,

Vi = FCizi; where B ⊂ Np, Ci ⊂ Nri are closed, x ∈ Mp, and zi ∈ Mri . We need
to deal with the situation when some of the Vi’s are extraneous. To this end, for
fixed I ⊂ {1, . . . , `} let

YI := {(ci)i∈I ∈M |I| : U ⊂
⋃
i∈I

ci + Vi and for each i (ci + Vi) ∩ U 6= ∅}.

Letting Y ′I := {(c1, . . . , c`) ∈ M ` : (ci)i∈I ∈ YI}, we have Y =
⋃

I⊂{1,...,`}

Y ′I . Now,

for fixed (ci)i∈I ∈ YI and i ∈ I, ci = F rx − F szi for some r ∈ B and s ∈ Ci. So
ci ∈ FNqiai where ai = (x,−zi) and qi = p+ ri. Letting yi = (ai, zi) and

ZI := {(F tiai)i∈I : FBx ⊂
⋃
i∈I

F (ti×Ci)yi};

we obtain YI ⊂ ZI . Moreover, if Z ′I := {(c1, . . . , c`) ∈ M ` : (ci)i∈I ∈ ZI}, then

Y ′I ⊂ Z ′I ⊂ Y . Hence Y =
⋃

I⊂{1,...,`}

Z ′I , and we need only show that each Z ′I is a

generalised F -set. For this, it suffices to show that each ZI is a generalised F -set.
Using the definability of logarithmic equivalence, it is not hard to see that for any

fixed I ⊂ {1, . . . , `}, the set of (ti)i∈I such that FBx ⊂
⋃
i∈I

F (ti×Ci)yi, is definable.

It follows, by Proposition 3.12, that ZI ∈ Groupless∗(M |I|). �

Lemma 5.7. If G is an infinite subgroup of M , then G /∈ Groupless(M).

Proof. Suppose G is a groupless F -set and seek a contradiction. Let M ′ extend
M so that G ∈ OrbM ′ . Then there are tuples a1, . . . a` from M ′, and closed

sets B1, . . . , B`, such that G =
⋃`
i=1 F

Bia`. Extending the ai’s and Bi’s in an
appropriate manner, we may assume that for some n > 0, a1, . . . , a` ∈ (M ′)n and

that B1, . . . , B` ⊂ Nn are mutually disjoint. Let B =
⋃`
i=1Bi. Let ∼ be the

definable equivalence relation on B given by

r ∼ s ⇐⇒
∨
i,j≤`

(r ∈ Bi and s ∈ Bj and F rai = F saj).

There is a natural bijection between B/ ∼ and G.
For each i, j, k ≤ `, define Pijk ⊂ Bi × Bj × Bk to be the definable relation

F r1ai + F r2aj = F r3ak. We obtain a group structure on B/ ∼ by declaring that
e1+e2 = e3 if for some i, j, k ≤ `, there exists (r1, r2, r3) ∈ Pijk such that the∼-class
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of r` is equal to e` for ` = 1, 2, 3. For some δ > 0, this infinite group is interpretable
in the structure (N, 0, σ, Pδ), contradicting the triviality of Th(N, 0, σ, Pδ).4 �

Lemma 5.8. Suppose H1, . . . ,Hn ≤ G are submodules of M such that each Hi is
of infinite index in G, and U1, . . . , Un ∈ Groupless(M). Then

G 6=
n⋃
i=1

Ui +Hi.

Proof. We proceed by induction on n. Consider the case of n = 1. Let π be the
reduction modulo H1 map. If G = U1 +H1, then πG = πU1. But as πG is infinite,
this would contradict Lemma 5.7.

Suppose n > 1. Define a quasiordering on 1, . . . , n by i v j if and only if Hi∩Hj

has finite index in Hi. We may assume that v is a partial ordering. If not, then
it must be the case that for some i 6= j, Hi ∩Hj is of finite index in both Hi and
Hj . But then, (Ui +Hi)∪ (Uj +Hj) = U ′+ (Hi ∩Hj) for some groupless F -set U ′.

But by induction, G 6= [U ′ + (Hi ∩Hj)] ∪
⋃
k 6=i,j

Uk +Hk.

After reordering, we may assume that H1 is v-maximal. That is, for all i 6= 1,
H1∩Hi is of infinite index in H1. Let π : G→ G/H1 be the quotient map restricted
to G. Now, as H1 has infinite index in G, X = π(U1 ∪ H1) = πU1 6= G/H1 by
Lemma 5.7. Let h ∈ (G/H1) \X. Then π−1{h} is disjoint from U1 +H1. Hence, if

G =

n⋃
i=1

Ui+Hi then π−1{h} is covered by

n⋃
i=2

Ui+Hi. But π−1{h} is a coset of H1,

say c+H1. So H1 =

n⋃
i=2

(−c+Ui+Hi)∩H1. We can express each (−c+Ui+Hi)∩H1

as an F -set where the submodule that appears is H1 ∩Hi. As H1 ∩Hi has infinite
index in H1; we see that this is impossible by induction. �

Corollary 5.9. Suppose U1, . . . , Un ∈ Groupless(M) and H1, . . . ,Hn ≤ G are
submodules of M . Let I be the set of indices i such that Hi has finite index in G.

If G =

n⋃
i=1

(Ui +Hi), then G =
⋃
i∈I

(Ui +Hi).

Proof. Note that by Lemma 5.8, I 6= ∅. Let K =
⋂
i∈I

Hi, and X =
⋃
i∈I

Ui + Hi.

Then K is of finite index in G and X is a finite union of cosets of K. Suppose that
G \ X 6= ∅, and a ∈ G \ X. We would have a + K ⊂ G \ X ⊂

⋃
j /∈I Uj + Hj , so

that K =
⋃
j /∈I [(Uj − a) + Hj ] ∩K. Each [(Uj − a) + Hj ] ∩K is an F -set where

the submodule that appears is Hj ∩ K. As Hj ∩ K has infinite index in K, this
contradicts Lemma 5.8. �

Proposition 5.10. Suppose U, V1, . . . , V` ∈ Groupless(M) and G,H1, . . . ,H` are
submodules of M . Then the set

X := {(c0, c1, . . . cl) ∈M `+1 : c0 + U +G ⊂
⋃̀
i=1

(ci + Vi +Hi)}

is a generalised F -set.

4See Propositions A.1 and A.2.
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Proof. Clearly c0 + U + G is covered by the union on the righthand side of the
displayed inclusion if and only if c0 + u + G is covered for all u ∈ U . But by
Corollary 5.9, if this happens at all, it will already happen with those indices i such
that Hi ∩G has finite index in G. Thus, we may and do assume that Hi ∩G is of

finite index in G for each i. Let K :=
⋂̀
i=1

(Hi ∩G), and denote by π the reduction

modulo K map. It is not hard to see that c0 + U +G ⊂
⋃`
i=1(ci + Vi +Hi) if and

only if πc0 + π(U +G) ⊂
⋃`
i=1(πci + π(Vi +Hi)). Note that as πG and the πHi’s

are finite sets, π(U +G) and the π(Vi +Hi)’s are groupless F -sets in M/K. That
is, we are in the groupless case. By Lemma 5.6, the set

Y = {(d0, d1, . . . , dl) ∈ (M/K)`+1 : d0 + π(U +G) ⊂
⋃̀
i=1

(di + π(Si +Hi))}

is a generalised F -set. Hence X = π−1(Y ) ∈ F∗(M `+1), as desired. �

We combine Propositions 5.3 and 5.10 to obtain:

Proposition 5.11. Suppose T, S1, . . . S` ∈ OrbM and L,G,H1, . . . ,H` ≤ M are
submodules. Then the set

X := {c ∈M : (c+ T +G) ∩ L ⊂
⋃̀
i=1

[(c+ Si +Hi) ∩ L]}

is quantifier-free definable in (M,F).

Proof. Let U1, . . . Un ∈ Groupless(L) and YJ ∈ F∗(M×L|J|) for each J ⊂ {1, . . . , n},
be given by Proposition 5.3 applied to T , G, and L. Similarly, for i ≤ `, let
Vi1, . . . Vimi ∈ Groupless(L) and ZiJ ∈ F∗(M × L|J|) for each J ⊂ {1, . . . ,mi},
be given by that proposition applied to Si, Hi, and L. Then c ∈ X if and only if
(c+ T +G) ∩ L is empty or
(∗) there exist

• non-empty J ⊂ {1, . . . , n}, I ⊂ {1, . . . , `}, and Ji ⊂ {1, . . . ,mi} for each
i ∈ I; and,
• tuples (cj)j∈J ∈ L|J| and (dij)j∈Ji ∈ L|Ji| for each i ∈ I;

such that

(i) (c, cj)j∈J ∈ YJ , (c, dij)j∈Ji ∈ ZiJi for each i ∈ I; and,

(ii)
⋃
j∈J

(cj + Uj + (G ∩ L)) ⊂
⋃
i∈I

⋃
j∈Ji

(dij + Vij + (Hi ∩ L)).

As all the YJ ’s and ZiJi ’s are generalised F -sets, and as condition (ii) is given by
a generalised F -set relation (by Proposition 5.10); the set of c ∈ M for which (∗)
holds is a generalised F -set. It is therefore quantifier-free definable. Finally the set
of c ∈ M such that (c + T + G) ∩ L is empty is quantifier-free definable (it is the
complement of a generalised F -set – see Remark 5.4). �

Theorem 5.12. Suppose M is a finitely generated R-module. Then Th(M,F)
admits quantifier elimination.

Proof. We need to show that the projection of a quantifier-free definable set is again
quantifier-free definable. As F -sets are preserved under intersections and unions,
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it is sufficient to show that π[(U + G) \
⋃̀
i=1

(Vi + Hi)] is quantifier-free definable;

where U, V1, . . . V` ∈ Groupless(Mm+n), G,H1, . . . H` ≤ Mm+n are submodules,

and π : Mm+n →Mm is the projection map. Now, π[(U +G) \
⋃̀
i=1

(Vi +Hi)] is just

π(U +G) \X where

X = {c ∈Mm : (U +G)c ⊂
⋃̀
i=1

(Vi +Hi)c}.

It suffices to show that X is quantifier-free definable.
For any b ∈Mm+n and δ > 0, the F -cycle C(b; δ) is a cycle-free groupless F -set

in (M ′)m+n for some finite extension M ′ of M . Indeed, let b = (b1, . . . , bm+n), and
let M ′ be obtained from M by a finite sequence of splitting extensions such that
for all i ≤ m+ n, there is ai ∈ M ′ with F δai − ai = bi. Then F δa− a = b, where
a = (a1, . . . , am+n). As in Lemma 2.7, C(b; δ) = −a+S(F δa; δ), which is cycle-free
and groupless in (M ′)m+n. Hence, there is some finitely generated R-module M ′

extending M , such that U, V1, . . . V` ∈ Orb(M ′)m+n .

Let X ′ = {c ∈ (M ′)m : (U + G)c ⊂
⋃̀
i=1

(Vi + Hi)c}. Then X = X ′ ∩Mm. So it

suffices to show that X ′ is quantifier-free definable in the F -structure (M ′,F). But
c ∈ X ′ if and only if

(U +G) ∩ (c× (M ′)n) ⊂
⋃̀
i=1

(Vi +Hi) ∩ (c× (M ′)n)

if and only if

[(−c, 0) + U +G] ∩ (0× (M ′)n) ⊂
⋃̀
i=1

[(−c, 0) + Vi +Hi] ∩ (0× (M ′)n).

It follows from Proposition 5.11 applied to the finitely generatedR-module (M ′)m+n

(in which U, V1, . . . , V` are now cycle-free groupless), that the set of (−c, 0)’s for
which this last displayed inclusion holds is quantifier-free definable. Hence X ′ is
quantifier-free definable. �

6. Stability

In this section we show that the theory of an F -structure is stable. Fix a finitely
generated R-module M . We begin by introducing a stratification by complexity of
the cycle-free groupless F -sets of M :

Definition 6.1. Suppose δ > 0. We define the class of cycle-free groupless F -sets
in M of order δ, denoted by OrbM (δ) to be those F -sets in OrbM that are finite
unions of sets of the form c + S(a1, . . . , an; δ1, . . . , δn), where each δi divides δ.

Moreover, given N ≤ M a submodule, OrbNM (δ) is the class of all S ∈ OrbM (δ)
such that S ⊂ N .
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Remark 6.2. (a) Note that OrbM =
⋃
δ>0

OrbM (δ). In fact, we can restrict

this union to be over all δ a multiple of γ, where γ > 0 is fixed and given.
(b) Any S ∈ OrbM (δ) can be expressed as a cycle-free groupless F -set whose

F -orbits only involve δ. Indeed, if δ = rδi then

S(ai; δi) =

r−1⋃
`=0

S(F `δiai; δ).

(c) For S ⊂M , S ∈ OrbM (δ) if and only if S =
⋃̀
i=1

FBiai for some sequence of

tuples a1, . . . , a` from M and δ-closed sets B1, . . . , B`. Indeed, this follows
from the argument for Lemma 3.4.

(d) Suppose S ∈ OrbM (δ). There are S1, . . . , S` ∈ OrbM (δ) and d1, . . . , d` ∈ S
such that S =

⋃`
j=1 di + Sj . Hence, if c + S ⊂ N for some c ∈ M and

N ≤ M a submodule, then S1, . . . , S` ⊂ N (and so in OrbNM (δ)). This
follows from the argument for Lemma 5.1.

Let us fix δM > 0 as in Section 4; that is, it is the least positive integer such that
F δM fixes the set F∞M pointwise (see page 14). We have the following control
over intersections in this class.

Lemma 6.3. Suppose N ≤ M is a submodule and S, T ∈ OrbNM (δ), where δ is a

multiple of δM . There exist R1, . . . R` ∈ OrbNM (δ), such that for all x, y ∈ N there
is an I ⊂ {1, . . . , `} and zi ∈ N for each i ∈ I, such that

(x+ S) ∩ (y + T ) =
⋃
i∈I

zi +Ri.

Proof. It suffices to prove this for N = M . Indeed, as in part (d) or Remark 6.2,

we rewrite Ri =
⋃`i
j=1 dij +Rij , where each dij ∈ Ri and Rij ∈ OrbM (δ). Then as

(x+S)∩ (y+T ) ⊂ N (if x, y ∈ N), each zi +Ri ⊂ N , and hence each zi + dij ∈ N
and each Rij ∈ OrbNM (δ) – yielding the desired result. Secondly, as

(x+ S) ∩ (y + T ) = y + (x− y + S) ∩ T,

we may assume that y = 0. Finally, taking finite unions, we may assume that
S = c+ S(a1, . . . an; δ) and T = d+ S(b1, . . . bm; δ).

Write S = c+F δN
n

a and T = d+F δN
m

b, where a = (a1, . . . an), b = (b1, . . . bm).
For all x, (x+ S) ∩ T = x+ c+ FD(x)a, where

D(x) := {r ∈ Nn : for some s ∈ Nm, (r, s) ∈ δN(n+m) ∩ log(a,−b)[d− c− x]}

By Theorem 4.3, we have δM -basic sets B1, . . . B`′ ⊂ N(n+m) depending only on
(a,−b) (and hence only on S and T ), and J ⊂ {1, . . . , `′}, such that,

log(a,−b)[d− c− x] =
⋃
j∈J

rj ⊕Bj ,

for some rj ∈ N(n+m). For each 1 ≤ i ≤ `′, let Ci = δN(n+m) ∩Bi. Note that Ci is
either empty or δ-closed. We may arrange the indices so that for some 0 ≤ ` ≤ `′,
Ci is nonempty if and only if i ≤ `. Now let I ⊂ J be those indices i ≤ ` for which
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ri ∈ δN(n+m). It follows that for all i ≤ `′, δN(n+m) ∩ (ri ⊕ Bi) = ri ⊕ Ci if i ∈ I,
and empty otherwise. We have

δN(n+m) ∩ log(a,−b)[d− c− x] =
⋃
i∈I

ri ⊕ Ci.

Let π : N(n+m) → Nn be the projection map, Then

D(x) =
⋃
i∈I

πri ⊕ πCi,

where πC1, . . . , πC` are δ-closed sets that depend only on S and T . Now,

(x+ S) ∩ T =
⋃
i∈I

x+ c+ F (πri)◦a◦ + FπC
◦
i a◦,

where F (πri)◦a◦ + FπC
◦
i a◦ is the canonical form of F (πri⊕πCi)a. As πC◦1 , . . . , πC

◦
`

are also δ-closed, each FπC
◦
i a◦ ∈ OrbM (δ); and they depend only on S and T . �

Definition 6.4. Fix δ > 0. An exponential F -set of order δ is a set of the form
FBa for some a ∈ Mn and B ⊂ Nn δ-closed. We denote the class of exponential
F -sets of order δ by ExpM (δ). Given N ≤ M a submodule, ExpNM (δ) is the class
of all S ∈ ExpM (δ) such that S ⊂ N .

Remark 6.5. Note that ExpNM (δ) ⊂ OrbNM (δ), and that every set in OrbNM (δ) is a

finite union of sets in ExpNM (δ). Hence Lemma 6.3 is true of the class ExpNM (δ) as
well. Also, note that for any c, a1, . . . , an ∈ M and any δ1, . . . , δn ∈ N dividing δ,
c+ S(a1, . . . , an; δ1, . . . , δn) ∈ ExpM (δ).

The purpose of introducing these exponential F -sets is that they admit a well-
defined notion of dimension. Suppose δ is a multiple of δM and S ∈ ExpM (δ).
Then S = FBa for some tuple a and some δ-closed set B. Now suppose that
for some other tuple b and δ-closed set C, S = FCb. Denote by [B]a and [C]b
the set of a-equivalence and b-equivalence classes of B and C respectively. Let
X := log(a,−b) 0 ∩ (B × C). Then X ⊂ B × C is a δ-closed relation (as δM divides

δ). Moreover, X induces a δ-definable bijection between [B]a and [C]b. In partic-
ular, (RM[B]a,dM[B]a) = (RM[C]b,dM[C]b), where Morley rank and degree are
computed in (N, 0, σ, Pδ). We can therefore make the following definition:

Definition 6.6. Fix δ > 0 a multiple of δM , and let S ∈ ExpM (δ). The δ-dimension
of S (respectively, δ-degree of S), denoted by dimδ S (respectively degδ S), is the
Morley rank (respectively Morley degree) of [B]a, where B ⊂ Nn is any δ-closed set
and a is any n-tuple of elements from M such that S = FBa.

Remark 6.7. (a) δ-dimension and δ-degree are preserved under translation.
Indeed, c + FBa = F (0×B)(c, a) and the δ-definable bijection between B
and 0×B induces a δ-definable bijection between [B]a and [0×B](c,a).

(b) If S ⊂ T then (dimδ S,degδ S) ≤ (dimδ T, degδ T ). Indeed, if T = FBa and
S = FCb, then we can write S = FDa where D ⊂ B is the δ-closed set
D := {r ∈ B : for some s ∈ C, (r, s) ∈ log(a,−b) 0}.

The key property of this notion of dimension that we will make use of is contained
in the following lemma.
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Lemma 6.8. Suppose δ > 0 is a multiple of δM and N ≤ M is a submodule.
Suppose S, T ∈ ExpNM (δ) with dimδ S = dimδ T . There are R1, . . . , R` ∈ ExpNM (δ),
such that for all i ≤ `, (dimδ Ri,degδ Ri) < (dimδ T, degδ T ); and such that the
following holds: if c + S ⊂ T for some c ∈ N , then there exist I ⊂ {1, . . . , `} and

bi ∈ N for each i ∈ I, such that [T \ (c+ S)] ⊂
⋃
i∈I

bi +Ri.

Proof. It suffices to do this for N = M . Indeed, if T ∈ ExpNM (δ) and T \ (c+ S) is
contained in

⋃
i∈I bi+Ri, then [T \ (c+S)] ⊂

⋃
i∈I(bi+Ri)∩N . Using Lemma 5.2,

we can write (bi +Ri) ∩N =
⋃`i
j=1 bij +Rij ; where each bij ∈ N and Rij ∈ OrbNM .

The Rij ’s come from a finite collection that depends only on Ri and N . Inspecting
the proof of Lemma 5.2, and observing that F δM also fixes F∞N pointwise, we
actually find these Rij ’s in OrbNM (δ). Taking finite unions, we find the Rij ’s in

ExpNM (δ). So we assume that N = M .
Let T = FBa and S = FCb, where B and C are δ-closed. If c + S ⊂ T then

c + S = FD(c)a, where D(c) := {r ∈ B : for some s ∈ C, (r, s) ∈ log(a,−b) c}. By

the uniformity in our description of log(a,−b) c from Theorem 4.3, we obtain that

there is a uniformly δ-definable family of δ-closed subsets of B, (Dt)t such that for
each c with c+ S ⊂ T , there is a t with c+ S = FDta.

Let d = dimδ T and r = degδ T . The next step is to show that there is a
uniformly δ-definable family of δ-definable sets (Xt)t, such that for each c with
c + S ⊂ T , there is a t with [T \ (c + S)] = FXta and (RM,dM)(Xt) < (d, r).

Let B̂ and D̂t, for each t, denote the saturation with respect to a-equivalence of

the sets B and Dt respectively. Let Yt := B̂ \ D̂t. Finally, using Corollary A.3 of
the appendix, we find a uniformly definable family of δ-definable subsets Xt ⊂ Yt
with [Xt]a = [Yt]a and (RM,dM)(Xt) = (RM,dM)([Yt]a).5 Now let c be such that
c + S ⊂ T , and t such that c + S = FDta. Then FXta = FYta = T \ (c + S).
Moreover, as (RM,dM)([B]a) = (d, r) and RM([Dt]a) = dimδ S = d, we have that

(d, r) > (RM,dM)([B]a \ [Dt]a) = (RM,dM)(Xt),

as desired.
There exists a finite union of δ-varieties, V , such that for each t, Xt ⊂ Vt and

(RM,dM)(Vt) = (RM,dM)(Xt).
6 So for every c with c + S ⊂ T , there is a t such

that [T \ (c+ S)] ⊂ FVta and (dimδ,degδ)(F
Vta) < (d, r). Finally, by Lemma 4.2,

(Vt)t is a uniform family of unions of disjoint-translates of fixed δ-varieties, and
hence (FVta)t is a uniform family of unions of translates of fixed sets in ExpM (δ).
This completes the proof of the lemma. �

We are now in a position to prove the stability of F -structures. But before doing
so, we introduce some terminology regarding elementary extensions of F -structures.

Definition 6.9. Let (∗M, ∗F) be an elementary extension of (M,F). IfX ∈ F(M),
then by ∗X we mean the interpretation of X in (∗M, ∗F). By an F -set in ∗M we
will mean a finite union of sets of the form α+ ∗X where X ∈ F(M) and α ∈ ∗M .

Remark 6.10. By Corollory 5.5 and transfer, the class of F -sets in ∗M is preserved
under intersections. Moreover, Every definable set in (∗M, ∗F) is a boolean combi-
nation of F -sets in ∗M . Indeed, by quantifier elimination, every definable subset of

5The uniformity comes from the fact that Corollary A.3 holds for any model of Th(N, 0, σ, Pδ).
6See Proposition A.5.
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∗Mn is a boolean combination of fibres (∗X)c where X ∈ F(M (m+n)) and c ∈ ∗Mm.
Now (∗X)c is the projection onto the last n co-ordinates of (∗X) ∩ (c× ∗M); and

(∗X) ∩ (c× ∗M) = (c, 0) + [(−c, 0) + ∗X] ∩ ∗(0×M).

Hence (∗X) ∩ (c× ∗M) is an F -set in ∗M (m+n) (it is a translate of an intersection
of such). Hence (∗X)c is an F -set in ∗Mn.

Theorem 6.11. Let M be a finitely generated R-module and (∗M, ∗F) an elemen-
tary extension of the F -structure (M,F). Every 1-type over ∗M is ∗M -definable.
That is, Th(M,F) is stable.

Proof. By the above remark, it suffices to show that for any U ∈ Groupless(M)
and G ≤M a submodule, the set DU,G(p) := {a ∈ ∗M : p(x) ` x ∈ a+ ∗U + ∗G} is
∗M -definable. Let π denote reduction modulo G and N := M/G. If p = tp(α/∗M),
then we set p/G := tp(πα/∗N). If we know that Dπ(U),0(p/G) is ∗N -definable, then
DU,G(p) is ∗M -definable. Thus it suffices to show that for any U ∈ Groupless(M)
the set DU (p) := DU,0(p) is ∗M -definable. Now, there exists a finitely generated

R-module M ′ extending M , such that U ∈ OrbMM ′ . Moreover, for some δ > 0 a

multiple of δM ′ , U ∈ OrbMM ′(δ). Finally, U is a finite union of sets from ExpMM ′(δ).
Hence, fixing a finitely generated R-module M ′ extending M , and fixing δ > 0 a
multiple of δM ′ , it suffices to show that for all S ∈ ExpMM ′(δ), the set

DS(p) = {a ∈ ∗M : p(x) ` x ∈ a+ ∗S}
is ∗M -definable.

If for all T in ExpMM ′(δ) the sets DT (p) are empty, then they are certainly ∗M -

definable. So, we may assume that some DT (p) 6= ∅. Let T ∈ ExpMM ′(δ) have

minimal (dimδ,degδ) (among the sets in ExpMM ′(δ)) with the property that for
some b ∈ ∗M , p(x) ` x ∈ b + ∗T . Fix such a choice of b. We prove that for all

S ∈ ExpMM ′(δ), DS(p) is b-definable. For S ∈ ExpMM ′(δ), let R1, . . . , R` ∈ ExpMM ′(δ)

be such that for any x, y ∈ ∗M , (x + ∗S) ∩ (y + ∗T ) =
⋃
i∈I

xi + ∗Ri for some

I ⊂ {1, . . . , `} and xi ∈ ∗M (these exist by Lemma 6.3 and transfer). Let J be the
set of indices j ≤ ` such that dimδ Rj = dimδ T . We claim that

DS(p) = {a : (∃y)
∨
j∈J

y + ∗Rj ⊆ (a+ ∗S) ∩ (b+ ∗T )}.

This would prove that DS(p) is b-definable, as desired.
For one direction, suppose that a ∈ DS(p). Then p(x) ` x ∈ (a+ ∗S)∩ (b+ ∗T ).

Now (a + ∗S) ∩ (b + ∗T ) =
⋃
i∈I

ci + ∗Ri for some ci ∈ ∗M and I ⊂ {1, . . . , `}. As

p(x) is consistent, I 6= ∅. As p(x) is complete, p(x) ` x ∈ ci + ∗Ri for some i ∈ I.
By minimality of (dimδ,degδ)(T ), dimδ Ri = dimδ T . Conversely, suppose that for
some some c ∈ ∗M and some j ∈ J , c + ∗Rj ⊆ (a + ∗S) ∩ (b + ∗T ). If a /∈ DS(p),
then p(x) ` x ∈ b + (∗T \ [(c − b) + ∗Rj ]). By Proposition 6.8 and transfer, there

are d1, . . . , dm ∈ ∗M and R′1, . . . , R
′
m ∈ ExpMM ′(δ), such that

∗T \ [(c− b) + ∗Rj ] ⊂
m⋃
i=1

di + ∗R′i;

and for each i ≤ m, (dimδ R
′
i,degδ R

′
i) < (dimδ T, degδ T ). Now for some i ≤ m,

p(x) ` x ∈ b+ di + ∗R′i, contradicting the minimal choice of T . �
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7. Mordell-Lang for Isotrivial Semiabelian Varieties

In this section we prove Theorems B, C, and D. Our strategy is to first prove
Theorem B using some particular properties of F -sets in the algebro-geometric
context of Example 2.2. We then apply the theory of F -structures developed in
the previous sections, to deduce the stability of the structure induced on a finitely
generated Z[F ]-submodule of a semiabelian variety over a finite field. Together
with some further analysis, this will allow us to obtain the desired uniformity in
the Mordell-Lang statement.

For the rest of this section we work in the following context: G is a semia-
belian variety over a finite field Fq of characteristic p; F : G → G is the algebraic
endomorphism induced by the q-power Frobenius map x 7→ xq; and R = Z[F ] is
the subring of the endomorphism ring of G generated by F . As pointed out in
Example 2.2, R = Z[F ] does satisfy the required properties stated at the begining
of Section 2. Unlike in that section, we do not yet fix a finitely generated regular
extension, K of Fq, and consider only finitely generated R-submodules of G(K).
Instead, we let U be any fixed algebraically closed field of characteristic p, and we
considering arbitrary finitely generated R-submodules of G(U).

For the sake of readability, if the context is unambigious, we will identify a variety
X over U with its U-rational points (instead of writing X(U)).

The following lemma says that we can resolve cycles into orbits within the class
of finitely generated R-submodules of G(U).

Lemma 7.1. Suppose Γ ≤ G(U) is a finitely generated R-submodule. Then for
any U ∈ Groupless(Γ) there exists a finitely generated R-submodule Γ′ ≤ G(U)
extending Γ, such that U ∈ OrbΓ′ .

Proof. As in the proof of Lemma 2.7, it suffices to show that for any b ∈ Γ and
δ > 0, there is a finitely generated Γ′ ≤ G(U) extending Γ such that for some
a ∈ Γ′, F δa−a = b. But (F δ−1) : G→ G is an isogeny, and hence (F δ−1)(x) = b
has a solution in G(U). Let Γ′ be the R-submodule generated over Γ by some such
solution a ∈ G(U). �

Lemma 7.2. Let Γ ≤ G(U) be a finitely generated R-submodule, a = (a1, . . . , am)
a tuple of elements of Γ, δ > 0, and Λ ≤ Γ a submodule. Let K ⊂ U be a finitely
generated field extension of Fq such that Γ ≤ G(K); and let r > 0 be such that
K ∩ Falg

q = Fqr .

(a) The Zariski closure of S(a; δ) + Λ is defined over over Fqr .

(b) If, moreover, δ is a multiple of r, then S(a; r) + Λ ⊂ S(a; δ) + Λ.

Proof. For part (a), let A := S(a; δ) + Λ. Then F δA ⊂ A, and hence F δA ⊂ A. So
A is fixed by F δ, and hence is defined over Falg

q . As it is the Zariski closure of some

points in G(K), it is also defined over K. It follows that A is defined over Fqr .
For part (b), we proceed by induction on m. Suppose m = 1 and consider

S(a; δ) + Λ. As δ is a multiple of r, for any c ∈ S(a; r) there is some n ∈ rN such

that Fnc ∈ S(a; δ). Let Y := S(a; δ) + Λ be the Zariski closure. So Fn(c+ Λ) ⊂ Y
and Y is defined over Fqr (by part (a)). As n is a multiple of r, we get that

c + Λ ⊂ Y . Hence S(a; r) + Λ ⊂ S(a; δ) + Λ, as desired. Now suppose m > 1.
Let X be the Zariski closure of S(a; δ) + Λ. Note that we can write S(a; δ) as
S(a1; δ)+S(a2, . . . , am; δ). By induction, we have that c+S(a2, . . . , am; r)+Λ ⊂ X
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for all c ∈ S(a1; δ). Hence S(a1; δ) +S(a2, . . . , am; r) + Λ ⊂ X. By induction again,
S(a1; r) + d+ Λ ⊂ X, for all d ∈ S(a2, . . . , am; r). We have shown that

S(a; r) + Λ = S(a1; r) + S(a2, . . . , am; r) + Λ ⊂ S(a; δ) + Λ,

as desired. �

Corollary 7.3. Suppose Γ ≤ G(U) is a finitely generated R-module, A ∈ F(Γ),

and X ⊂ G is a closed subvariety. Let Σ :=
⋃
n≥0

FnA, and suppose that Σ ⊂ X.

Then there exists B ∈ F(Γ) such that Σ ⊂ B ⊂ X.

Proof. Taking finite union we may assume that A = U+Λ, where U ∈ Groupless(Γ)
and Λ ≤ Γ is a submodule. Moreover, by Lemma 7.1, there is a Γ′ ≤ G(U) such
that U ∈ OrbΓ′ . Now if we find B′ ∈ F(Γ′) such that Σ ⊂ B′ ⊂ X, then letting
B := B′ ∩ Γ ∈ F(Γ), we would have Σ ⊂ B ⊂ X. So we may assume that Γ′ = Γ,
and that A = S + Λ for some S ∈ OrbΓ and Λ ≤ Γ a submodule.

Let K ⊂ U be a finitely generated field extension of Fq such that Γ ≤ G(K). Let
r > 0 be such that K ∩ Falg

q = Fqr . Note that

Σ =
⋃
n≥0

FnA =
⋃
n≥0

F rn(A ∪ FA ∪ · · · ∪ F (r−1)A).

Moreover, for each 0 ≤ i < r, F iA is again of the form Si + Λi. Hence it suffices
to prove the following statement: For all S ∈ OrbΓ and Λ ≤ Γ a submodule, if

Σ′ :=
⋃
n≥0

F rn(S + Λ) ⊂ X, then there exists B ∈ F(Γ) such that Σ′ ⊂ B ⊂ X.

Taking finite unions, we may assume that S = b+S(a; δ) where b, a are from Γ and
δ > 0 is a multiple of r (see Remark 6.2).

Let B := S(b, a; r) + Λ. Then it is not hard to see, using that δ is a multiple of
r, that Σ′ ⊂ B. We are left to show that B ⊂ X. Fix n ≥ 0. Then

F rnb+ S(a; r) + Λ ⊂ F rnb+ S(a; r) + Λ

⊂ F rnb+ S(a; δ) + Λ

= F rn[b+ S(a; δ) + Λ]

= F rn(S + Λ) ⊂ Σ′ ⊂ X,

where the second inclusion is by part (b) of Lemma 7.2, and the equality following
it is by part (a) of that Lemma. It follows that B ⊂ X. �

Lemma 7.4. Suppose K ⊂ U is a finitely generated regular field extension of Fq,
Γ ≤ G(K) is a finitely generated R-module, X ⊂ G is a closed subvariety, and
r > 0. We can view Γ as a Z[F r]-submodule of G(U) as well. If A ⊂ Γ is an F r-set
with A ⊂ X, then there exists B ∈ F(Γ) with A ⊂ B ⊂ X.

Proof. We may assume that A = U + Λ where U is a groupless F r-set and Λ is
a Z[F r]-submodule of Γ. Let H ≤ G be the Zariski closure of Λ in G. Then
H is defined over Falg

q (every algebraic subgroup of G is) and over K (it has a
Zariski-dense intersection with G(K)); and so over Fq. It follows that H ∩ Γ is a
Z[F ]-submodule of Γ. Moreover, by definition, every groupless F r-set is an F -set.
So B := U +H ∩ Γ is an F -set. Clearly A ⊂ B. Moreover, if A ⊂ X, then for each
a ∈ U , a+H ∩ Γ ⊂ a+ Λ ⊂ X. Hence B ⊂ X. �
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Lemma 7.5. Suppose Γ ≤ G(U) as a finitely generated R-submodule. Let K ⊂ U
be a finitely generated field extension of Fq such that Γ ≤ G(K).

(a) The F -pure hull of Γ in G(K) – i.e., the set of g ∈ G(K) such that Fng ∈ Γ
for some n – is a finitely generated group. In particular, Γ itself is a finitely
generated group.

(b) For all n ≥ 0, Γ/FnΓ is a finite set.
(c) There exists m > 0, such that Γ \ FΓ ⊂ G(K) \G(Kqm).

Proof. Part 1 is clear in the case when G is an abelian variety, since in that case
G(K) is itself a finitely generated group. For the general case, we can chooseR ⊂ K
an integrally closed ring that is finitely generated over Fq (as a ring), and such that
Γ ≤ G(R). Now G(R) is a finitely generated group, and since Kq ∩ R = Rq, it is
F -pure in G(K). Hence the F -pure hull of Γ in G(K), Γ′, is a subgroup of G(R).
It follows that Γ′ is itself a finitely generated group.

Recall that the multiplication by qn map on G(K) is equal to Fn ◦ V n, where
V : G(K) → G(K) is the Verschiebung map. As Γ′ is F -pure in G(K), it follows
that V restricts to an endomorphism of Γ′, and that qnΓ′ ⊂ FnΓ′. Now Γ′/qnΓ′,
being a finitely generated Z/qnZ-module, is finite. Hence Γ′/FnΓ′ is finite for all n.
Now consider Γ itself, and let n be arbitrary. As Γ′ is a finitely generated group, for
some N > 0, FNΓ′ ⊂ Γ. So Γ′/FnΓ is a quotient of the finite group Γ′/Fn+NΓ′.
Hence Γ/FnΓ is finite, establishing part (b).

Finally, for (c), let N > 0 again be such that FNΓ′ ⊂ Γ, and let m = N + 1.
Then Γ ∩G(Kqm) ⊂ FmΓ′ ⊂ FΓ. It follows that Γ \ FΓ ⊂ G(K) \G(Kqm). �

Remark 7.6. In what follows we will implicitly use the following fact: Let L be
a field possibly equipped with additional structure. Suppose Y is a variety defined
over L, Υ ⊆ Y (L) is a set definable in L, and {Xb}b∈B is an algebraic family of
subvarieties of Y defined over L. Then the condition that Xb(L)∩Υ is Zariski-dense
in Xb is a type-definable condition on b. Indeed, if Xb(L)∩Υ is not Zariski-dense
in Xb, then its Zariski closure V ( Xb, is over L, and V (L) contains Xb(L) ∩ Υ.
The existence of such a V may be expressed as a countable disjuntion of formulas,
hence the negation is type definable. Indeed, that V is contained in Xb can be
expressed by saying that a given set of polynomials defining Xb is contained in the
radical of the ideal generated by a given set of polynomials defining V . That the
containment is proper is equivalent to there being some natural number d, and an
extension L′/L of degree d, for which V (L′) 6= Xb(L

′). As the extensions of degree
d may be uniformly encoded in L, this too can be expressed using countably many
formulas.

The following proposition was shown in [1] using a Hilbert scheme argument;
and is also a very special case of Hrushovski’s function field Mordell-Lang Theorem
in positive characteristic [2]. We present an elementary model-theoretic argument
that appeared in unpublished notes of the first author.

Proposition 7.7. Suppose Γ ≤ G(U) is a finitely generated group and X ⊂ G is a
closed subvariety such that X ∩ Γ is Zariski-dense in X. Then for some γ ∈ G(U),
γ +X is defined over Falg

q .

Proof. Let K ⊂ U be a finitely generated field extension of Fq such that Γ ≤ G(K).
Note that X is defined over K, since it has a dense intersection with G(K). Let
L ⊂ U denote the separable algebraic closure of K. Since K is a finitely generated
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extension of Fq, we have that
⋂
n≥0

Lq
n

= Falg
q . Finally, let ∗L be an ω1-saturated

elementary extension of L (as a field), and let k =
⋂
n≥0

(∗L)q
n

.

We claim that ((∗L)alg, k) is an elementary extension of (Lalg,Falg
q ) as pairs of

fields. Indeed, it suffices to show that Lalg is algebraically disjoint from k over Falg
q .7

This in turn reduces to showing that L is linearly disjoint from k over Falg
q , which

is what we do: Let Bn ⊂ L, for n > 0, be an increasing chain of finite sets such
that each Bn is a linear basis for L over Lq

n

. Then B :=
⋃
n>0Bn is a linear basis

for L over Falg
q . We need to show that B is linearly independent over k. For this,

it suffices to show that for each n > 0, Bn is linearly independent over k. But it
follows immediately from L � ∗L, that (∗L)q

n

is linearly disjoint from L over Lq
n

.
Hence Bn is linearly independent over (∗L)q

n

, and so over k.
Now fix n > 0. As Γ is a finite union of cosets of FnΓ, and X(L) ∩ Γ is Zariski-

dense in X, for some γ ∈ Γ, (γ + X)(L) ∩ FnΓ is Zariski-dense in γ + X. Hence
(γ+X)(L)∩G(Lq

n

) is Zariski-dense in γ+X. Now this is a type-definable property
of γ (see Remark 7.6), say by a partial type pn(x). Note that pm(x) implies pn(x)
for m ≥ n. Hence,

⋃
n>0 pn(x) is consistent. It follows by saturation of ∗L, that

there is ∗γ ∈ G(∗L) such that (∗γ + X)(∗L) ∩ G(∗Lq
n

) is Zariski-dense in ∗γ + X
for all n. By saturation again, (∗γ + X)(k) is Zariski-dense in ∗γ + X. It follows
that ∗γ +X is defined over k.

In particular, we have shown that some translate ofX by an element ofG((∗L)alg)
is defined over k. This can be witnessed by a first-order sentence (with parameters
from K), true of ((∗L)alg, k). By transfer, it is true of (Lalg,Falg

q ). As Lalg ⊂ U ,
this proves the proposition. �

We are now ready to prove the main result of this section: a version of the abso-
lute Mordell-Lang conjecture for isotrivial semiabelian varieties in positive charac-
teristic. This proof is based on an argument that was first presented by the second
author in the e-print [6].

Theorem 7.8. Suppose G is a semiabelian variety over a finite field Fq; F : G→ G
is the algebraic endomorphism induced by the q-power Frobenius map; R = Z[F ] is
the subring of the endomorphism ring of G generated by F ; U is an algebraically
closed field; and K ⊂ U is a finitely generated regular field extension of Fq.

If X ⊆ G is a closed subvariety, and Γ ≤ G(K) is a finitely generated R-
submodule, then X(K)∩ Γ ∈ F(Γ). Moreover, the submodules of Γ that appear are
of the form H(K) ∩ Γ where H ≤ G is an algebraic subgroup over Fq.

Proof. We first observe that the “moreover” clause follows from the main statement.
Indeed, if Λ ≤ Γ is a submodule that appears in the expression of X∩Γ as an F -set,
then replacing Λ by H∩Γ, where H is the Zariski closure of Λ in G, does not change
X ∩Γ (see the proof of Lemma 7.4). Moreover, H is defined over Fq, as it is defined
over both K and Falg

q .
We proceed by induction on dimX. When dimX = 0 the theorem is trivially

true. Suppose 0 < d := dimX. We may assume that X is irreducible. Moreover,
as X ∩ Γ = (X ∩ Γ) ∩ Γ, we may also assume that X ∩ Γ is Zariski-dense in X.

7See, for example, Poizat [4].
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Next, we argue that we may assume X is over Fq. By Proposition 7.7 there is
some γ ∈ G(U) such that γ + X is defined over Falg

q . Let Γ′ = Γ < γ > be the
R-submodule of G(U) generated by Γ and γ. Let K ′ be a finitely generated field
extension of Fq such that Γ′ ≤ G(K ′). Let r > 0 be such that K ′ ∩ Falg

q = Fqr . So
K ′ is a regular extension of Fqr and we can view Γ′ as a Z[F r]-submodule of G(K ′).
Moreover, γ+X is now defined over both Falg

q and K ′ (the latter since it has a dense
intersection with G(K ′)) – and hence over Fqr . Assuming the result in this case we
obtain (γ+X)∩Γ′ is an F r-set, and so X ∩Γ′ = −γ+(γ+X)∩Γ′ is also an F r-set
in Γ′. Note that Γ is a Z[F r]-submodule of Γ′, and hence X ∩ Γ = (X ∩ Γ′) ∩ Γ
would be an F r-set in Γ (by part (b) of Proposition 3.9). But by Lemma 7.4, this
would in turn imply that X ∩ Γ is an F -set in Γ.

Finally, we may also assume that X has a trivial stabilizer. Let H = StabG(X)
be the stabilizer of X in G as an algebraic group. Then H is defined over Fq. Let

π : G → G/H =: Ĝ be the quotient map. Set Γ̂ := π(Γ) and X̂ := π(X). Then

StabĜ(X̂) is trivial. Assuming the result in this case, we have that X̂ ∩ Γ̂ ∈ F(Γ̂)

and π(X ∩ Γ) = X̂ ∩ Γ̂. Using the fact that the kernel of π �Γ stabilizes X ∩ Γ, we

have X ∩ Γ = π �−1
Γ (X̂ ∩ Γ̂). So, it would follow that X ∩ Γ ∈ F(Γ).

With these reductions in place, we claim that for some N > 0, if ξ ∈ Γ \ FΓ,

then (ξ + X) ∩ G(KqN ) is not Zariski-dense in ξ + X. Suppose this were false,
and let (ξi)i∈ω be a sequence of points in Γ \ FΓ, and (ni)i∈ω a strictly increasing
sequence of positive integers, such that (ξi+X)∩G(Kqni ) is Zariski-dense in ξi+X.
Using part (c) of Lemma 7.5, choose m > 0 such that Γ \ FΓ ⊂ G(K) \ G(Kqm).
Hence, each ξi ∈ G(K)\G(Kqm). Let ∗K be an ω1-saturated elementary extension
of K. Using Remark 7.6 and saturation, we obtain ∗ξ ∈ G(∗K) \ G(∗Kqm) such

that (∗ξ + X)(k) is Zariski-dense in ∗ξ + X, where k =
⋂
n≥0

∗Kqn . It follows that

∗ξ + X is defined over k. But as X is defined over Fq ⊂ k, we obtain that for all
σ ∈ Aut((∗K)alg/k), σ(∗ξ)− ∗ξ stabilises X. As StabX is trivial, this means that
σ fixes ∗ξ. Hence, ∗ξ ∈ G(k) ⊂ G(∗Kqm), which is a contradiction.

Now let ξ ∈ Γ \ FΓ, and choose coset representative η1, . . . η` for FNΓ in FΓ.
Then each ξ + ηi ∈ Γ \ FΓ, and hence (ξ + ηi + X) ∩ FNΓ is not Zariski-dense in

(ξ+ηi+X). It follows that dim (ξ +X) ∩ FΓ = dim(
⋃̀
i=1

(ξ + ηi +X) ∩ FNΓ) < d.

By induction, (ξ+X)∩FΓ is an F -set in FΓ, and hence in Γ. We have shown that
for all ξ ∈ Γ \ FΓ, (ξ +X) ∩ FΓ ∈ F(Γ).

We now finish the proof. Note that Γ = (G(Fq)∩Γ)∪
⋃
n≥0

Fn(Γ \FΓ). Fix coset

representatives γ1, . . . , γ` for the nonzero cosets of FΓ in Γ. We have,

X ∩ Γ = X ∩ (G(Fq) ∩ Γ) ∪
⋃
n≥0

[X ∩ Fn(Γ \ FΓ)]

= (X(Fq) ∩ Γ) ∪
⋃
n≥0

Fn(X ∩ (Γ \ FΓ))

= (X(Fq) ∩ Γ) ∪
⋃
n≥0

Fn[
⋃̀
i=1

(γi + (−γi +X) ∩ FΓ)]
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where the second equality uses the fact that X is defined over Fq, and hence is fixed
by powers of F . For each i ≤ `, γi ∈ Γ \ FΓ, and so (−γi + X) ∩ FΓ ∈ F(Γ). So

Ai :=
⋃̀
i=1

(γi+(−γi+X)∩FΓ) is an F -set. By Corollary 7.3, there exists B ∈ F(Γ)

such that
⋃
n≥0

Fn[
⋃̀
i=1

Ai] ⊂ B ⊂ X. Hence X∩Γ = (X(Fq)∩Γ)∪B is an F -set. �

By Lemma 7.1 we can even expressX(K)∩Γ in terms of F -orbits and submodules
(that is, without F -cycles) if we allow ourselves to pass to finitely generated R-
submodules of G(U) that extend Γ. The following example shows that in order to
get rid of the F -cycles, one does, in general, have to pass to such extensions.

Example 7.9. Let C be a curve of geometric genus at least two over Fq with
C(Fq) 6= ∅ and Aut(C) = {idC}. We consider C as a subvariety of its Jacobian G
over Fq. Let K := Fq(C), and let α := idC be the identity on C thought of as an
element of C(K) ⊂ G(K). Let γ := Fα − α and Γ ≤ G(K) the Z[F ]-submodule
generated by γ. Note that α /∈ Γ. Set X := −α+C. From our hypotheses, it follows
that C(K) = C(Fq) ∪ S(α; 1). So X(K) = (−α+ C(Fq)) ∪ {0} ∪ (−α+ S(Fα; 1)).
Note that X(K) ∩ Γ = {0} ∪ (−α+ S(Fα; 1)) = {0} ∪ C(γ; 1). Thus, X(K) ∩ Γ is
a groupless F -set in Γ, but cannot be expressed as a cycle-free groupless F -set in
Γ. It is only cycle-free in G(K).

Corollary 7.10. Th(U ,+,×,Γ) is stable.

Proof. Denote by Γind the structure whose universe is Γ and whose relations are sets
of the form D ∩ Γn, where D ⊂ G(U)n is definable (with parameters) in (U ,+,×).
By Theorem 7.8, every definable set in Γind is definable in (Γ,F). That is, the
structure induced on Γ by (U ,+,×,Γ) is a reduct of (Γ,F). By Theorem 6.11, Γind

is stable. By a result of Pillay’s from [3], (U ,+,×,Γ) is stable. �

Remark 7.11. Note that we can, in a certain sense, drop the assumption in The-
orem 7.8 that Γ ≤ G(K), where K is a regular extension of Fq. If Γ ≤ G(U) is any
finitely generated Z[F ]-submodule, then Γ ≤ G(K ′) where K ′ is a finitely generated
regular extension of Fqr for some r > 0. Viewing Γ as an F r-structure, we would
obtain that X ∩Γ is an F r-set. It follows that in Corollary 7.10, Γ can be taken to
be any finitely generated Z[F ]-submodule of G(U).

Our final goal is to obtain a uniform version of Theorem 7.8. We will require
some further observations about F -structures in this geometric context. We begin,
however, with a lemma that holds in any F -structure, and that was essentially
proved in Section 5.

Lemma 7.12. For each i ≤ ` suppose

• Ui = Si +Hi where Si ∈ Groupless(Γ) and Hi ≤ Γ is a submodule;
• for each i ≤ `, Vi =

⋃mi
j=1 Tij + Kij, where Tij ∈ Groupless(Γ) and Kij is

a submodule of Hi of finite index;
• for each i ≤ `, Wi =

⋃ni
j=1Rij + Lij, where Rij ∈ Groupless(Γ) and Lij is

a submodule of Hi of infinite index.

If there exists A ∈ F(Γ) with
⋃̀
i=1

Ui \ (Vi ∪Wi) ⊂ A, then
⋃̀
i=1

Ui \ Vi ⊂ A.
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Proof. Fix i ≤ `. We need to show that Ui \ Vi ⊂ A. Fix d ∈ Si. Since by
assumption Ui ⊂ A ∪ Vi ∪Wi, we have that

d+Hi = [A ∩ (d+Hi)] ∪ [Vi ∩ (d+Hi)] ∪ [Wi ∩ (d+Hi)].

Now by Corollary 5.9, d+Hi = [A∩ (d+Hi)]∪ [Vi ∩ (d+Hi)]. Hence Ui ⊂ A∪Vi,
and so Ui \ Vi ⊂ A, as desired. �

Next we consider elementary extension. We let ∗ denote an elementary extension
of the entire universe. In particular, if Γ ≤ G(U) is any finitely generated Z[F ]-
submodule, then (∗U ,+,×, ∗Γ, ∗F) is an elementary extension of (U ,+,×,Γ,F).
Recall that every definable set in (∗Γ, ∗F) is a boolean combination of F -sets in ∗Γ;
where an F -set in ∗Γ is by definition a finite union of sets of the form γ+ ∗U + ∗Λ,
where γ ∈ ∗Γ, U ∈ Groupless(Γ), and Λ ≤ Γ is a submodule.8 We will call finite
unions of such sets groupless F -sets in ∗Γ if no submodules appear, and cycle-free
groupless F -sets in ∗Γ if the U ’s are in OrbΓ.

What does Theorem 7.8 tell us about the nonstandard situation? First of all,
by the more general form described in Remark 7.11, there is some r > 0 such
that if X ⊂ G is a subvariety over U then X(U) ∩ Γ is an F r-set in Γ. By uniform
definability of types applied to the stable Th(U ,+,×,Γ), as X varies in an algebraic
family, X(U) ∩ Γ will be uniformly definable in the F r-structure on Γ. We cannot
directly conclude that it is uniformly an F r-set. Nevertheless, it follows that for
Z ⊂ G defined over ∗U , Z(∗U)∩ ∗Γ is a boolean combination of F r-sets in ∗Γ. This
will be used in what follows.

Lemma 7.13. Suppose B ⊂ A are groupless F -sets in ∗Γ. Then there exists a
finitely generated Z[F ]-submodule Γ′ ≤ G(U), extending Γ, such that every irre-
ducible component of the the Zariski closure of A \B is a translate, by an element
of ∗(Γ′), of a variety defined over Falg

q .

Proof. We may assume that the Zariski closure of A \ B is irreducible. Indeed, if

Z is an irreducible component of A \B, then (A \ B) ∩ Z(∗U) is Zariski-dense in
Z, and (A \ B) ∩ Z(∗U) = (A \ B) ∩ (Z(∗U) ∩ ∗Γ). As pointed out in the above
discussion, Z(∗U) ∩ ∗Γ is a boolean combination of F r-sets, for some r > 0. Hence
(A \ B) ∩ Z(∗U) is a finite union of sets of the form A′ \ B′, where A′ and B′ are
groupless F r-sets in ∗Γ, and hence groupless F -sets in ∗Γ. Moreover, one of the
A′ \ B′ is Zariski-dense in Z. This allows us to make the desired reduction. We
may also assume that A and B are cycle-free. Indeed, this is the case if we pass to
an extension Γ′ ≤ G(U), and the form of the lemma allows us to do so.

With these reductions in place we show that some translate of A \B, by an
element of ∗Γ, is defined over Falg

q . Fixing an arbitrary multiple of δΓ′ , δ > 0, it
suffices to prove this when both A and B are finite unions of translates of sets
of the form ∗S where S ∈ ExpΓ(δ). We proceed by induction on the maximum
(dimδ,degδ) of the exponential F -sets that appear in A. If the maximum dimδ is
zero then A is finite and the lemma is trivial.

Let Z be the Zariski closure of A \B. Write A \B as a finite union of translates
of sets of the form ∗(S(ai; δ)) \ Bi. As Z is irreducible, one of the terms in this
union will be Zariski-dense in Z, and hence we may assume that A = ∗(S(a; δ)).
Moreover, using Lemma 6.8 and induction, we can assume that the exponential
F -sets that appear in B are of (dimδ,degδ) strictly less than that of S(a; δ).

8See Definition 6.9 and Remark 6.10.
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Now, F δ(A\B) = F δA\F δB = [F δA\ (B∪F δB)]∪ [(B∩F δA)\F δB]. Taking
Zariski closures, and using the fact that Z is irreducible, we have that F δZ is either
the Zariski closure of (B ∩F δA) \F δB, or of F δA \ (B ∪F δB). In the former case,
by induction, F δZ, and hence Z is a translate of a subvariety defined over Falg

q . In

the latter case, we have that F δZ = F δA \ (B ∪ F δB) ⊂ A \B = Z, where we are
using the fact that A = ∗(S(a; δ)), and hence F δA ⊂ A. It follows that Z is fixed
by F δ, and hence is defined over Falg

q . �

Proposition 7.14. Suppose K ⊂ U is a finitely generated regular field extension
of Fq and Γ ≤ G(K) is a finitely generated Z[F ]-submodule. Let X be a closed
subvariety of G over ∗U . Then X(∗U) ∩ ∗Γ is an F -set in ∗Γ.

Proof. By Noetherian induction on X, we may and do assume that X is irreducible,
that X(∗U) ∩ ∗Γ is Zariski-dense in X, and that X has a trivial stabilizer.

We have already pointed out that X(∗U)∩ ∗Γ is definable in (∗Γ, ∗F). We write

X(∗U) ∩ ∗Γ =
⋃̀
i=1

[ai + ∗Si + ∗Hi \ (

mi⋃
j=1

bij + ∗Tij + ∗Hij)]

for appropriate submodules (the H’s) and groupless F -sets (the S’s and T ’s) from
Γ, and translating parameters (the a’s and b’s) from ∗Γ. After rewriting the Hi

and the Hij ’s as a finite union of cosets of
⋂
{Hij : [Hi : Hij ] < ω}, we can assume

that each Hij is either of infinite index in Hi or is equal to Hi. For each i ≤ `, set

• Ui := ai + ∗Si + ∗Hi;

• Vi :=
⋃
{bij + ∗Tij + ∗Hij : where Hij = Hi}; and,

• Wi :=
⋃
{bi,j + ∗Tij + ∗Hij : where [Hi : Hij ] is infinite}.

We have X(∗U) ∩ ∗Γ =
⋃`
i=1 Ui \ (Vi ∪Wi). By transfer from the standard model,

Lemma 7.12, and Theorem 7.8; we obtain X(∗U) ∩ ∗Γ ⊃
⋃`
i=1(Ui \ Vi). Hence,

X(∗U) ∩ ∗Γ =
⋃`
i=1(Ui \ Vi)

As X is irreducible and X(∗U)∩∗Γ is Zariski-dense in X, X = Ui \ Vi for some i.
Note that Hi stabilises Ui \ Vi, and hence stabilises X. As X has trivial stabiliser,
Hi is trivial. So Ui and Vi are groupless F -sets in ∗Γ. By Lemma 7.13, for some
finitely generated Z[F ]-submodule Γ′ ≤ G(U) extending Γ, and some γ ∈ ∗(Γ′),
γ+X is defined over Falg

q ⊂ U . But then (γ+X)(∗U)∩ ∗(Γ′) = ∗((γ+X)(U)∩Γ′),
and (γ+X)(U)∩Γ′ is an F r-set for some r > 0. Hence X(∗U)∩∗(Γ′) is an F r-set in
∗(Γ′), and so X(∗U)∩ ∗Γ = (X(∗U)∩ ∗(Γ′))∩ ∗Γ is an F r-set in ∗Γ. The groupless
part of this will be groupless F -sets in ∗Γ. Moreover, if H ≤ Γ is a Z[F r]-submodule
such that ∗H appears in the expression of X(∗U) ∩ ∗Γ as an F r-set, then we can
replace ∗H by ∗(H ′) where H ′ = H(U) ∩ Γ. As H is defined over Fq (using the
regularity of K over Fq), H ′ is a Z[F ]-submodule of Γ. Hence, we have expressed
X(∗U) ∩ ∗Γ as an F -set in ∗Γ, as desired. �

Corollary 7.15. Suppose K ⊂ U is a finitely generated regular field extension of
Fq and Γ ≤ G(K) is a finitely generated Z[F ]-submodule. Suppose {Xb}b∈B is an
algebraic family of closed subvarieties of G. There are A1, . . . , A` ∈ F(Γ) such
that for any b ∈ B there exist I ⊂ {1, . . . , `} and points (γi)i∈I from Γ, such that

Xb(K) ∩ Γ =
⋃
i∈I

γi +Ai.



38 RAHIM MOOSA AND THOMAS SCANLON

Proof. If this failed, we could find an elementary extension (∗U ,+,×, ∗Γ, ∗F) of
(U ,+,×,Γ,F), and a parameter b ∈ B(∗U) for which Xb(

∗U)∩∗Γ is not expressible
as an F -set in ∗Γ. This contradicts Proposition 7.14. �

Appendix A. N with successor and congruence predicates.

Proposition A.1. Let T be given by the following system of axioms in the language
L1 = {0, σ}.

(a) (∀x, y)σ(x) = σ(y)→ x = y
(b) (∀x)σ(x) 6= 0

(cn) (∀x)σn(x) 6= x
(d) (∀y)(∃x)σ(x) = y ∨ y = 0

Then

(1) T is uncountably categorical.
(2) T = Th(N, 0, σ)
(3) T eliminates quantifiers.
(4) T is strongly minimal.
(5) If A ⊂ M |= T is a subset of a model of T and a ∈ M , then a ∈ acl(A) if

and only if σn(a) = σm(b) for some n,m ∈ N and b ∈ A ∪ {0}.
(6) If A ⊂M |= T is a subset of a model of T , then acleq(A) = dcleq(A).
(7) T is trivial.
(8) T has definable Skolem functions.

Proof. First of all, if (N, 0, σ) |= T is any model, then for n < 0 a negative integer

we define σn(x) :=

{
y if S−n(y) = x and

0 if no such y exists.

We define an equivalence relation ∼ on N by x ∼ y ⇔ σn(x) = y ∨ σn(y) = x
for some n ∈ N. In any model of T the class [0]∼ must be isomorphic to (N, 0, σ)
while all other classes are isomorphic to (Z, σ). If M1 and M2 are two models of
T of the same uncountable cardinality κ, then as each ∼-class has size ℵ0, the sets
M1/ ∼ and M2/ ∼ have cardinality κ. Let 〈ai : i < κ〉 list representatives of
the ∼-classes of M1 with a0 = 0 and 〈bi : i < κ〉 likewise list representatives of
the ∼ classes in M2. Then M1 = {σn(a0) : n ∈ N} t {σm(ai) : m ∈ Z, i < κ}
while M2 = {σn(b0) : n ∈ N} t {σm(bi) : m ∈ Z, i < κ} and the map given by
σn(ai) 7→ σn(bi) gives an isomorphism. This proves part (1).

For part (2), we note that Axiom scheme (cn) implies that every model of T is
infinite. This together with uncountable categoricity implies that T is complete.
As (N, 0, σ) |= T , we have Th(N, 0, σ) = T .

For part (3), let (N, 0, σ) |= T be a saturated model of T , A ⊂ N a small
subset, and a, b ∈ N be two elements with the same quantifier-free type over A.
We show that they must have the same complete type. As 0 is named already we
may without loss of generality assume that 0 ∈ A. If for some n,m ∈ N and c ∈ A
we have σn(a) = σm(c), then σn(b) = σm(c) as well. In light of the injectivity of σ,
we would have a = b. Otherwise, we have that [a]∼ /∈ {[c]∼ : c ∈ A} (and, of course,
[b]∼ /∈ {[c]∼ : c ∈ A} as well). As in the proof of uncountable categoricity, we see
that the there is an automorphism of M fixing A and taking a to b. It follows that
tp(a/A) = tp(b/A).
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Part (4) follows from quantifier elimination. Part (5) follows from the fact that
N := {σn(0) : n ∈ N}∪{σn(b) : n ∈ Z, b ∈ A \N} is an elementary submodel of M .
This also gives part (6) since acleq(A) ⊂ Neq and visibly N ⊂ dcl(A).

For part (7), let (N, 0, σ) |= T be a saturated model of T and a, b, c ∈ N . If c is
not independendent from {a, b}, then by strong minimality c ∈ acl(a, b)\acl(0). So
by part (5), either c ∈ acl(a) (and hence c is not independent from a) or c ∈ acl(b)
(and hence c is not independent from b). Thus, T is trivial.

For part (8), by quantifier elimination it suffices to show that if x is a singleton
variable, y is an r-tuple of variables, and φ(x; y) a conjunction of atomic and negated
atomic formulas, then there is a definable function f taking arguments y such that
T ` (∀y)[φ(f(y); y) ↔ (∃x)φ(x; y)]. Write φ =

∧n
i=1 ψi(x; y) &

∧m
j=1 ¬ϑj(x, y)

where each ψi and ϑj is of the form σa(x) = σb(y`) or σa(x) = σb(0) for some
a, b,∈ N and ` ≤ r. If n > 0, then write ψ1 as either σa(x) = σb(0) or σa(x) = σb(y`)
for some a, b,∈ N and ` ≤ r. We define f(y) := σb−a(0) or σb−a(y`) depending on
the form of ψ1. If n = 0, then let B be the supremum of the values of a and b for
which ϑj is of the form σa(x) = σb(0) or σa(x) = σb(y`) for some j ≤ m. We define
f(y) to σB+1(yi) for the least i such that φ(σB+1(yi); y) holds and to be σB+1(0) if
there is no such i. We check that f works. If n > 0, T ` ψ1(x; y)→ x = f(y). As
φ implies ψ1, it follows that T ` (∃x)φ(x; y)↔ φ(f(y); y). Suppose n = 0. As T is
complete, we need only check that f works in the standard model. Take any y ∈ Nr
and let z be the maximal element of the set {σB+1(0), σB+1(y1), . . . , σB+1(yr)}.
Certainly, we have ¬(σa(z) = σb(0)) and ¬(σa(z) = σb(yi)) for all a, b ≤ B and
i ≤ r. Thus, φ(f(y); y) holds. �

Recall that for each δ > 0, Pδ(x) is the predicate x ≡ 0 mod δ.

Proposition A.2. Let 0 < δ ∈ N. There is a natural, definable, bi-interpretation
of the structures (N, 0, σ) and (N, 0, σ, Pδ). With respect to these interpretations the
1-closed sets correspond to the δ-closed sets.

Proof. By “definable” we just mean that the universe of each structure is interpreted
as a definable set in (the home sort of) the other structure – as opposed to being
interpreted as a definable set in the imaginary sorts.

For the sake of distinguishing these structures, we write (N, 0, S, Pδ) instead
of (N, 0, σ, Pδ). In (N, 0, S, Pδ) we interpret (N, 0, σ) as (Pδ, S

δ, 0), where the co-
ordinate map is the bijection Pδ(N)→ N given by δa 7→ a. An equation of the form
x = σr(y) is interpreted as x = Srδ(y) & x ≡ 0 mod δ & y ≡ 0 mod δ, which are
δ-equations. It follows that every 1-closed set is interpreted as a δ-closed set.

We now describe how (N, 0, S, Pδ) is interpreted in (N, 0, σ). The universe is
N×{0, σ(0), . . . , σδ−1(0)}, where the co-ordinate map is the bijection 〈a, b〉 7→ aδ+b.
We take 〈0, 0〉 to represent 0 and N × {0} to represent Pδ. We interpret S on
N× {0, σ(0), . . . , σδ−1(0)} by

S(〈x, y〉) =

{
〈x, σ(y)〉 if y < δ − 1 and

〈σ(x), 0〉 if y = δ − 1

The δ-equations x ≡ qmod δ (for q < δ) and x = Sr(y) are interpreted by closed
relations in (N, 0, σ). In the first case, it is just N × {q}. In the second case, for
each i < δ we write (i+ r) = piδ+ si with si < δ. Then x = Sr(y) is interpreted as

{(〈n1,m1〉, 〈n2,m2〉) :
∨
i<δ

m2 = i & m1 = si & n1 = σpi(n2)}.
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It follows that every δ-closed set is interpreted in (N, 0, σ) as a 1-closed set.
Finally, one notes that the compositions of these interpretations produce defin-

ably isomorphic self-interpretations of (N, 0, σ) and of (N, 0, S, Pδ). �

As a consequence of this bi-interpretation, Th(N, 0, σ, Pδ) is of finite Morley rank
(the universe has rank 1). The following corollary was used in Lemma 6.8.

Corollary A.3. Fix δ > 0 and T := Th(N, 0, σ, Pδ). Suppose M |= T , A ⊆ M , E
is an A-definable equivalence relation on Mn, and X ⊆Mn is A-definable. There is
an A-definable set Y ⊆ X with Y/E = X/E and (RM,dM)(Y ) = (RM,dM)(X/E).

Proof. We show that this is true for any theory T satisfying: T is a totally transcen-
dental theory admitting weak elimination of imaginaries, having definable Skolem
functions and for which definable and algebraic closure in T eq agree on real ele-
ments. By Proposition A.1 this is true of Th(N, 0, σ); and via the bi-interpretation
of Proposition A.2 it is also true of Th(N, 0, σ, Pδ).

We work by induction on (RM,dM)(X/E). Using acleq(A) = dcleq(A), we
may break X/E into d := dM(X/E) A-definable sets W1, . . . ,Wd of Morley rank
RM(X/E) and degree 1. Setting Xi := {x ∈ X : x/E ∈Wi}, we see that it suffices
to consider the case that d = 1.

As T admits weak EI, there is an A-definable function f : X → Mm/Sym(m)
such that xEy ⇔ f(x) = f(y). Let π : Mm →Mm/ Sym(m) be the quotient map.
Let R ⊆ X ×Mm be defined by (x, y) ∈ R ⇔ f(x) = π(y). By the existence of
Skolem functions, there is an A-definable function g : Mm →Mn such that for any
y ∈Mm if M |= (∃z)R(z, y), then M |= R(g(y), y).

Let Z := g(π−1(f(X)). Note that Z/E = X/E. Let U ⊆ Z be an A-definable
subset of Z with RM(Z) = RM(U) and dM(U) = 1. As f is finite-to-one when
restricted to Z, we have that RM(Z) = RM(Z/E) and RM(U) = RM(U/E). Thus,
RM(X/E \ U/E) < RM(X/E). By induction, there is some A-definable subset
V ⊆ f−1(X/E \U/E) with V/E = (X/E \U/E) and RM(V ) = RM(X/E \U/E).
Set Y := U ∪ V . �

Definition A.4. Fix δ > 0. Let D ⊂ Nn be a δ-variety, α ∈ Nn an n-tuple of
natural numbers less than δ. By the α-residue class of D we mean the δ-variety
Dα := {x ∈ D :

∧n
i=1 xi ≡ αi mod δ}.

We can write D as a disjoint union of its α-residue classes, as α ranges over
all n-tuples of natural numbers less than δ. Moreover, the interpretation of Dα in
(N, 0, σ) is a 1-variety (this can be seen by inspecting the interpretation given in
Proposition A.2). Note that the interpretation of an arbitrary δ-variety is not in
general a 1-variety.

Proposition A.5. Fix δ > 0. Let X ⊂ Nn+m be any Lδ-definable set. There is a
finite union of δ-varieties V ⊂ Nn+m such that for any b ∈ Nm with Xb 6= ∅, one
has Xb ⊂ Vb and (RM,dM)(Vb) = (RM,dM)(Xb).

Proof. By Proposition A.1 Th(N, 0, σ) admits quantifier elimination. From the bi-
interpretation of Proposition A.2, this is also true of Th(N, 0, σ, Pδ). We write

X =
⋃`
i=1(Di \

⋃ki
j=1 Cij) where each Di and Cij is a δ-variety and Cij ( Di. It

suffices to consider the case when ` = 1, and we assume X = D \ (
⋃k
j=1 Cj).
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Let Σ := {α1, . . . , α`} ⊂ Nn+m be the set of all distinct tuples of numbers strictly

less than δ. We can write X =
⊔̀
i=1

[Dαi \
k⋃
j=1

(Cj)αi ]. Taking finite unions, we may

assume that for some α ∈ Σ, D = Dα and each Cj = (Cj)α. That is, D and the
Cj ’s are of a fixed residue class.

If b ∈ Nm with Xb 6= ∅, then Db is again a δ-variety and each (Cj)b ( Db is a
proper δ-subvariety. Moreover, Db and the (Cj)b’s are still of a fixed residue class.
Hence their interpretations in (N, 0, σ) are varieties. Using part (5) of Proposi-
tion A.1 it is not hard to see that in (N, 0, σ) every proper subvariety of a variety
has strictly smaller Morley rank. It follows that for each j, RM(Cj)b < RMDb.
Hence, (RM,dM)(Db) = (RM,dM)(Xb), and we can take V = D. �
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