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We show that the converse to [1, Theorem 7.4] fails.

Consider the additive group Z2, and consider F : Z2 → Z2 given by

(
x
y

)
7→
(

5x
5y

)
. Let

Σ =

{(
x
y

)
: x, y ∈ {−4, . . . , 4 }

}
Remark 1. If Σ′ is a spanning set for (Γ′, F ′) then Σ′ × Σ′ is a spanning set for ((Γ′)2, F ′ × F ′).

Since {−4, . . . , 4 } is a spanning set for (Z, F ′) with F ′(x) = 5x, it then follows that Σ is a spanning set

for (Z2, F ). Let A ⊆ Z2 be

{(
5n

5m

)
: n < m < ω

}
. Then A is F -sparse: it is [L]F where

L =

{(
0
0

)∗(
1
0

)(
0
0

)∗(
0
1

)}
which is sparse by [1, Proposition 7.1].

Note that Th(Z2, 0,+, A) isn’t stable: if we let ai =

(
5i

0

)
and bj =

(
0
5j

)
then ai + bj ∈ A if and only if

i < j, so A(x + y) has the order property. So by [2, Theorem A] we should expect that A not have finite
symmetric difference from an F -set (since expanding by the latter yields a stable theory); we prove this
directly.

Suppose for a contradiction that B ⊆ Z2 were an F -set with A4B finite. Suppose

B ⊇
(
x0
y0

)
+

n∑
i=1

C

((
xi
yi

)
; δi

)
+ ∆

where xi, yi ∈ Z and ∆ ≤ Z2 and

(
xi
yi

)
6=
(

0
0

)
when i > 0.

Claim 1. ∆ = 0.

Proof. Otherwise there is

(
x
y

)
∈ ∆ such that x < 0 or y < 0. But then

n∑
i=0

(
xi
yi

)
+ k

(
x
y

)
∈ B

for all k > 0; so B contains infinitely many pairs with a negative coordinate, and thus so does A, a
contradiction. Claim 1

Claim 2. yi 6= 0 for all i > 0.

Proof. Suppose some yi = 0 with i > 0. Then

5δi(k+1) − 1

5δi − 1

(
xi
0

)
+
∑
j 6=i

(
xj
yj

)
=

(
xi
yi

)
+ 5δi

(
xi
yi

)
+ · · ·+ 5δik

(
xi
yi

)
+
∑
j 6=i

(
xj
yj

)
∈ B

1



for all k < ω. So since xi 6= 0 (by hypothesis) we get that B contains a family of pairs with unbounded
first component and bounded second component, and thus so does A, contradicting the definition of A.

Claim 2

Claim 3. n < 2.

Proof. Suppose otherwise. Since y1 6= 0 (by previous claim) and

(5δ1(`+1) − 1)

5δ1 − 1

(
x1
y1

)
+
∑
j 6=1

(
xj
yj

)
∈ B

for all ` < ω we get that the set of

a` :=
5δ1(`+1) − 1

5δ1 − 1
y1 +

∑
j 6=1

yj

is an infinite set cofinitely many of whose elements are powers of 5. So for some cofinite S ⊆ ω we get for

` ∈ S that a` is a power of 5 strictly larger than max
(

5δ2+1

4 y2, 5
)

. But we also have

(5δ1(`+1) − 1)

5δ1 − 1

(
x1
y1

)
+

(
x2
y2

)
+ 5δ2

(
x2
y2

)
+
∑
j 6=1,2

(
xj
yj

)
∈ B

for all `; so a`+5δ2y2 is a power of 5 for ` in some cofinite T ⊆ ω. But then if ` ∈ S∩T then a` and a`+5δ2y2
are both powers of 5. But the closest power of 5 to a` is 1

5a`, and y2 6= 0; so |5δ2y2| ≥ 4
5a` and a` ≤ 5δ2+1

4 y2,
contradicting our choice of S. Claim 3

Hence B is a finite union of sets of the form{(
u
v

)
+

5δ`+1 − 1

5δ − 1

(
x
y

)
: ` < ω

}

But given a set C of this form, if x 6= 0 then there is a bound on z
w for

(
w
z

)
∈ C with w 6= 0; and if x = 0

then whenever

(
w
z

)
∈ C we have w = u. So there is finite S ⊆ ω such that there is a bound on z

w for(
w
z

)
∈ B with w /∈ S; hence the same holds true of A. But this contradicts the definition of A; so no such B

exists.
One final remark: there are even subsets of (Z, F ′) where F ′(x) = 5x that are F ′-sparse but don’t

have finite symmetric difference from an F ′-set. Indeed, let Σ′ = {−4, . . . , 4 } be the standard span-

ning set for (Z, F ′) and consider L′ =

{
a0b0a1b1 · · · an−1bn−1 :

(
a0
b0

)
· · ·
(
an−1
bn−1

)
∈ L

}
⊆ (Σ′)∗. Roughly

speaking, we are encoding Z2 in Z by interleaving the digits, and simply looking at our original L. Then
A′ = [L′]F ′ = [(00)∗(10)(00)∗(01)]F ′ is F ′-sparse. But A′(x+y) again isn’t stable: if ai = 52i+1 and bj = 52j ,
then ai + bj ∈ A′ if and only if i < j. So again by [2, Theorem A] we get that A′ can’t have finite symmetric
difference from any F ′-set.
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