Not all F-sparse sets are F'-sets
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We show that the converse to [1, Theorem 7.4] fails.
Consider the additive group Z?, and consider F': Z? — Z? given by (z) — (5;1:) Let
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Remark 1. If X' is a spanning set for (I, F”) then ¥/ x ¥/ is a spanning set for ((I')2, F’ x F").
Since { —4,...,4} is a spanning set for (Z, F') with F’(x) = 5z, it then follows that ¥ is a spanning set

for (Z2,F). Let A C Z? be { (5

5m> m<m<w } Then A is F-sparse: it is [L]p where
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which is sparse by [1, Proposition 7.1]. 4
Note that Th(Z?,0,+, A) isn’t stable: if we let a; = (%) and b; = (5()]) then a; + b; € A if and only if

i < j, so A(z + y) has the order property. So by [2, Theorem A] we should expect that A not have finite
symmetric difference from an F-set (since expanding by the latter yields a stable theory); we prove this
directly.

Suppose for a contradiction that B C Z? were an F-set with A A B finite. Suppose
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where z;,7; € Z and A < Z? and (21) + (8) when i > 0.
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Claim 1. A =0.

Proof. Otherwise there is (;) € A such that x < 0 or y < 0. But then
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for all £ > 0; so B contains infinitely many pairs with a negative coordinate, and thus so does A, a
contradiction. O Claim 1

Claim 2. y; # 0 for all i > 0.

Proof. Suppose some y; = 0 with ¢ > 0. Then
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for all £ < w. So since z; # 0 (by hypothesis) we get that B contains a family of pairs with unbounded
first component and bounded second component, and thus so does A, contradicting the definition of A.
O Claim 2

Claim 3. n < 2.

Proof. Suppose otherwise. Since y; # 0 (by previous claim) and
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for all £ < w we get that the set of
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is an infinite set cofinitely many of whose elements are powers of 5. So for some cofinite S C w we get for

¢ € S that ay is a power of 5 strictly larger than nnau((“r’&f;rl Yo, 5). But we also have
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for all £; so a; + 5% is a power of 5 for £ in some cofinite T C w. But then if ¢ € SNT then a; and a; + 5%y

are both powers of 5. But the closest power of 5 to ay is %ag, and ys # 0; so \552y2| > %az and ay < 561“3,/2,
contradicting our choice of S. O Claim 3

Hence B is a finite union of sets of the form
u 58+1 _ 1 /g
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But given a set C' of this form, if = # 0 then there is a bound on Z for (f) € C withw#0; andif x =0

then whenever (Zj) € C we have w = u. So there is finite S C w such that there is a bound on z for

(Z) € B with w ¢ S; hence the same holds true of A. But this contradicts the definition of A; so no such B

exists. O

One final remark: there are even subsets of (Z, F’) where F'(x) = 5z that are F’-sparse but don’t

have finite symmetric difference from an F’-set. Indeed, let ¥’ = {—4,...,4} be the standard span-

ning set for (Z, F') and consider L' = {aoboalbl e Qe 1bp_1 (ZO> (Cbl"_1> € L} C (¥)*. Roughly
0 n—1

speaking, we are encoding Z? in Z by interleaving the digits, and simply looking at our original L. Then
A’ = [L']p = [(00)*(10)(00)*(01)] p+ is F'-sparse. But A’(z+y) again isn’t stable: if a; = 521 and b; = 527,
then a; +b; € A" if and only if ¢ < j. So again by [2, Theorem A] we get that A’ can’t have finite symmetric
difference from any F’-set.
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