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1 Introduction
In [4], Hrushovski refutes a conjecture of Zilber by constructing a strongly minimal structure with certain
geometric properties. The first part of this construction consists of extracting a limit structure from a class of
finite structures via an adaptation of Fraïssé’s amalgamation construction; we are interested in generalizations
of the construction of this limit structure.

In [5], Wagner presents an axiomatization of the construction of Hrushovski’s limit structure. In [1],
Droste and Göbel present a very abstract category theoretic construction that generalizes that of [5]. In this
paper, we construct a limit structure in an intermediate level of abstraction: we generalize the construction
of [5] using concepts from category theory, but we keep our focus on structures and embeddings, rather than
going into the full generality of categories.

For a formal statement of our main result, see Theorem 4.8. Informally, suppose C is a category whose
objects are some class of structures and whose morphisms are some class of embeddings; further suppose
that all the objects of C are well-approximated by the finitely generated objects of C (see Definition 3.8 for a
precise definition). We can relativize familiar model-theoretic concepts such as universality, homogeneity,
JEP, and AP to the category C; see Definition 3.2 and Definition 4.1. For example, an object X of C is
universal with respect to the finitely generated objects of C if for every finitely generated object A of C, there
is a morphism A → X. Our main result is that C has an object that is universal and homogeneous with
respect to the finitely generated objects of C if and only if the finitely generated objects of C have JEP and
AP; furthermore, if such an object exists, it is unique up to an isomorphism in C.

In Section 2, we give a brief overview of Wagner’s axiomatization of Hrushovski’s limit construction, as
presented by Ferreira in [2, Section 4.1]. In Section 3, we present our ω-generated categories of L-structures
and show that they cover the setting of Hrushovski amalgamations. In Section 4, we prove our generalization.

In this paper, we draw on both category theory and model theory. Some confusion may arise when dealing
with a category of L-structures and L-embeddings such that the categorical and model-theoretic notions of
isomorphism and automorphism do not coincide. To avoid confusion, whenever we are discussing the model
theoretic notion, we will prefix it with the language in question; whenever we are discussing the categorical
notion, we will prefix it the category in question. So “L-automorphism” and “L-isomorphism” refer to the
model theory notions, while “C-automorphism” and “C-isomorphism” refer to the categorical notions.

I would like to thank NSERC for funding the research that lead to this paper. This article is not intended for publication.
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Given a language L, we denote by KL the category whose objects are all the L-structures and whose
morphisms are all the L-embeddings. We can then justify our notation “L-isomorphism” by viewing L as
standing in for KL.

“Countable” means having cardinality at most ℵ0.

2 Amalgamation via Predimension
We present a summarized version of the results in [2, Section 4.1], which is itself a presentation of the results
of [5]. While not all of the statements in this section appear in [2], the ones that don’t follow without much
effort. One should note that the construction in [2], and thus the one presented here, is less general than the
original presentation in [5].

For this section, it is convenient to allow structures with empty domain.

Definition 2.1. Let L be a countable relational language. Let S be a class of finite L-structures closed
under substructures and L-isomorphisms, and containing countably many structures (up to L-isomorphism).
A predimension on S is a real-valued function δ : S → [0,∞) such that the following hold:

1. δ(∅) = 0.

2. Suppose A,B ∈ S. Suppose AB ∈ S is an L-structure of domain A ∪ B. Then δ(AB) + δ(A ∩ B) ≤
δ(A) + δ(B).

3. If A,B ∈ S are L-isomorphic, then δ(A) = δ(B).

4. There is no chain A0 ⊆ A1 ⊆ . . . with Ai ∈ S and δ(Ai) > δ(Ai+1) for each i < ω.

Given a predimension on S, we define a binary relation ≤ strengthening ⊆.

Definition 2.2. Suppose δ is a predimension on S. Suppose A,B ∈ S. We say A ≤ B (A is closed in B) if
A ⊆ B and δ(A) ≤ δ(B�) for all A ⊆ B� ⊆ B.

Note that if δ is a predimension on S, then ∅ ≤ A for all A ∈ S; this is simply because δ(∅) = 0 is the
minimum value of δ : S → [0,∞).

Definition 2.3. Suppose δ is a predimension on S. Suppose we have A,B ∈ S and an L-embedding
f : A → B. We say f is a strong embedding if f(A) ≤ B.

It easily follows that L-isomorphisms are strong.
Example 2.4 ([2, Definition 5.1.1]). Let L = {R } consist of a single ternary relation symbol. Given an
L-structure A, let

R[A] = { (a, b, c) ∈ dom(A)3 : A |= R(a, b, c) }
Given a finite L-structure A, let δ(A) = |A| − |R[A]|. Let S be the class of finite L-structures A such that for
all substructures A� ⊆ A, we have δ(A�) ≥ 0. Then δ is a predimension on S.

Definition 2.5. Suppose δ be a predimension on S. We say (S,≤) has the ≤-amalgamation property
if whenever A,B,C ∈ S, A ≤ B, and A ≤ C, we have some D ∈ S and strong embeddings f : B → D,
g : C → D such that f |A = g|A.

Example 2.6. Let S and δ be as in Example 2.4. Then (S,≤) has the ≤-amalgamation property.

Definition 2.7. Suppose D is an L-structure. We define age(D), the age of D, to be the class of finitely
generated L-structures A such that there is an L-embedding from A to D. (Note that in the case of a
relational language, we can replace “finitely generated” with “finite”.)

Given a predimension δ on S, it is convenient to talk about strong embeddings on certain infinite L-
structures; to this end, we define an extension of S and ≤. Let S be the class of L-structures D such that
age(D) ⊆ S. We extend ≤ to S × S by letting A ≤ B if A ⊆ B and whenever A ⊆ C ⊆fin B, we have
δ(A) ≤ δ(C). We then extend this to S × S by letting A ≤ B if for all C ⊆fin A such that C ≤ A, we
have C ≤ B. (See [2] for a brief justification that these are, in fact, extensions.) We also use the analogous
definition of a strong embedding between structures in S.

The following results can be derived from [2, Section 4.1].
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Proposition 2.8. Suppose δ is a predimension on S. Then ≤ satisfies the following properties as a relation

on S:

1. ≤ is reflexive and transitive.

2. ≤ is invariant under L-isomorphism. i.e. If f : B → B� is an L-embedding, then for any A ⊆ B, we

have A ≤ B if and only if f(A) ≤ f(B).

3. For all A ∈ S, we have ∅ ≤ A.

4. Suppose A,B,C ∈ S and A ⊆ B ⊆ C. Then if A ≤ C, we have A ≤ B.

5. Suppose C ∈ S, A ⊆fin C. Then there is a B ∈ S such that A ⊆ B ≤ C and for any B� ∈ S such that

A ⊆ B� ≤ C, we have B ⊆ B�. We denote this B by clC(A).

Theorem 2.9 ([2, Theorems 4.1.12 and 4.1.13]). Suppose δ is a predimension on S and (S,≤) has the

≤-amalgamation property. Then there is a countable L-structure D such that the following holds:

1. age(D) ⊆ S

2. D is ≤-homogeneous; that is, any L-isomorphism between finite closed substructures of D extends to

an L-automorphism of D.

3. D is ≤-universal; that is, given A ∈ S, there is a strong embedding f : A → D.

Furthermore, this structure is unique up to L-isomorphism. We call this structure the generic model of

(S,≤).

The generic model is constructed by inductively building a suitable chain of finite L-structures and taking
their union. That this structure is ≤-universal follows from the construction of the chain; uniqueness and
≤-homogeneity follow from a back-and-forth argument.

Using Theorem 2.9 as a model, we wish to abstract away the use of the predimension; we will instead focus
on the strong embeddings, and examine the existence and uniqueness of a universal homogeneous object.

3 ω-Generated Categories of L-structures
In the discussion of the previous section, the amalgamation was constructed with reference to the strong
embeddings and their properties; little reference was made to the predimension itself, beyond defining the
strong embeddings and proving some of their properties. A natural question is whether we can abstract away
the predimension, and look only at the embeddings. This would be a statement about structures and the
embeddings between them; category theory provides a natural framework for this question. In this section,
we develop the setting in which we will work.

We begin by trying to phrase our question in a more categorical language. To that end, we define our
primary object of study:

Definition 3.1. Let L be a language (not necessarily countable or relational). A category of L-structures
is any subcategory of KL; that is, some class of L-structures and some class of L-embeddings between them
that form a category. If C is a category of L-structures, we use the term C-embedding to refer to a morphism
of C. For an L-structure A, we write A ∈ C to denote that A ∈ ob(C). We use Cf.g. to denote the full
subcategory of finitely generated (in the model theory sense) objects of C; that is,

ob(Cf.g.) = {X ∈ ob(C) : X finitely generated as an L-structure }

and given A,B ∈ ob(Cf.g.), we have homCf.g.(A,B) = homC(A,B).

We would like to ask when a universal homogeneous (with respect to Cf.g.) object exists; we thus need
precise definitions of “universal” and “homogeneous”. For this, we use the following definitions from [1].
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Definition 3.2. Suppose C is any category, C∗ a full subcategory of C, and X ∈ ob(C). We say X is
C∗-universal if for every A ∈ ob(C∗), there is a morphism f : A → X. We say X is C∗-homogeneous if
given A ∈ ob(C∗) and morphisms f, g : A → X, there is an automorphism ϕ : X → X such that the following
diagram commutes:

A X

X

f

g
ϕ

(Recall that in category theory, an isomorphism is a morphism with a two-sided inverse, and an automorphism
is an isomorphism from an object to itself.)

If C is a category of L-structures, then D ∈ C is C∗-universal if and only if every element of C∗ has a
C-embedding into D; also, D is C∗-homogeneous if and only if every C-isomorphism between objects of C∗

that C-embed into D extends to a C-automorphism of D.
We can then state our question as follows:

Question 3.3. Given a category C of L-structures, when can we find a Cf.g.-universal, Cf.g.-homogeneous object
of C? Furthermore, will such an object be unique up to C-isomorphism, as it is in the predimension case?
Example 3.4. Suppose L is a countable relational language. Suppose S is a class of finite L-structures closed
under substructures and L-isomorphisms, and containing countably many structures up to L-isomorphism;
suppose δ is a predimension on S. Let C be the category whose objects are the countable structures in S and
whose morphisms the strong embeddings.

We check that C is indeed a category. Recall from Proposition 2.8 that ≤ is reflexive, transitive, and
isomorphism-invariant on S, and hence on the objects of C. That the identity map on a given structure is
strong follows from reflexivity of ≤; that composition is associative is trivial. It remains to verify that the
composition of strong embeddings is a strong embedding. Suppose we have strong embeddings f : A → B and
g : B → C. Then f(A) ≤ B. By invariance of ≤ under L-isomorphism, we then have that g(f(A)) ≤ g(B).
But we also have that g(B) ≤ C. So, by transitivity of ≤, we have g(f(A)) ≤ C, and g ◦ f is strong. So C is
a category. By checking the definition, we see that C is a category of L-structures.

It follows immediately from the definitions that an object of C is Cf.g.-universal if and only if it is
≤-universal. Furthermore, an object of C is Cf.g.-homogeneous if and only if it is ≤-homogeneous; this follows
from the fact that all L-isomorphisms are strong embeddings. So Question 3.3 in this case is partially
answered by Theorem 2.9.

Before tackling Question 3.3 in the general case, we need to translate another notion from model theory
to category theory. Given a chain of substructures, we can take their union to be the structure whose
universe is the union of the universes of the structures of the chain, whose constants are the constants of the
structures of the chain (which are necessarily all equal), and whose functions and relations are the unions
of the functions and relations of the structures of the chain (which necessarily extend each other); we call
this the model-theoretic union. We would like a more general notion of union that doesn’t rely on an
identified subset embedding; to this end, we use the following notions from category theory.

Definition 3.5. Suppose C is any category. Suppose we have objects (Xi : i < ω) and morphisms
fij : Xi → Xj for i < j < ω such that for all i < k < j < ω, the following diagram commutes:

Xi Xk

Xj

fik

fij
fkj (1)

Then the pair �Xi, fij� is an ω-indexed directed system. (All directed systems in this paper will be
ω-indexed, so we will hereafter simply use the term “directed system”.) It is convenient to allow fii to denote
idXi ; observe that this respects (1).

Suppose �Xi, fij� is a directed system. A direct limit of �Xi, fij� is a pair �X, fi∞� of an object X ∈ ob(C)
and a family of morphisms fi∞ : Xi → X such that the following holds:
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1. For every i < j < ω, the following diagram commutes:

Xi Xj

X

fij

fi∞
fj∞

2. Given any such pair �Yi, f �
i∞� satisfying Item 1, we have a unique morphism u : X → Y such that for

all i < ω, the following diagram commutes:

Xi X

Y

fi∞

f �
i∞

u

Example 3.6. Let L be a language. Suppose X0 ⊆ X1 ⊆ . . . is a chain of L-structures. Then, letting
fij : Xi → Xj be the inclusion maps for i < j, it is easily seen that fij = fkj ◦ fik for i < k < j; thus �Xi, fij�
is a directed system in KL. Let X be the model-theoretic union of the chain, and fi∞ : Xi → X the inclusion
maps. Then �X, fi∞� is a direct limit of �Xi, fij� in KL.

Note that when a category C of L-structures doesn’t contain all L-embeddings as C-embeddings, the
correspondence between direct limit and model-theoretic unions no longer applies. For example, the following
situations might occur:

• A direct limit exists but the model-theoretic union is not an object of the category.

• The model-theoretic union is an object of the category but no direct limit exists.

• A chain of substructures (Ai : i < ω) such that the model-theoretic union A is in C and all the inclusion
maps fij : Ai → Aj and fi∞ : Ai → A are C-embeddings, but �A, fi∞� is not a direct limit of �Ai, fij�;
furthermore, �Ai, fij� has a direct limit in C that is not C-isomorphic to A.

The following three facts follow from diagram chasing.

Fact 3.7.

1. Suppose C is a category of L-structures. Suppose A0 ⊆ A1 ⊆ . . . (that is, they are substructures in

the model theory sense) with each Ai ∈ C; let A be the model-theoretic union of the Ai. Suppose the

inclusion maps Ai → Aj are in fact C-embeddings; further suppose that A ∈ C and the inclusion maps

Ai → A are C-embeddings. Finally, suppose that �X, fi∞� is a direct limit of �Ai, fij� in C. Then X
and A are L-isomorphic.

2. Suppose C is any category, �Ai, fij� a direct system in C. Suppose �X, fi∞� and �Y, f �
i∞� are direct

limits of �Ai, fij� in C. Then X and Y are C-isomorphic by a unique C-isomorphism.

3. Suppose C is any category. Suppose �Xi, fij� is a directed system in C with direct limit �X, fi∞�. Suppose

(Xni : i < ω) is a subsequence. Then �X, fni∞� is a direct limit of �Xni , fninj �.

We restrict our attention to categories of L-structures that are controlled by the finitely generated objects
via direct limits. This is formalized in the following definition.

Definition 3.8. Suppose C is a category of L-structures. Then C is ω-generated if the following hold:

G1 For every A ∈ Cf.g., |A| ≤ ℵ0.

G2 Cf.g. has no more than ℵ0 objects up to C-isomorphism.

G3 Every directed system in Cf.g. has a direct limit in C.
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G4 Given X ∈ C, there is a directed system �Xi, fij� in Cf.g. and C-embeddings fi∞ such that �X, fi∞� is a
direct limit of �Xi, fij� in C.

G5 Suppose �Xi, fij� is a direct system in Cf.g. with �X, fi∞� as a direct limit in C. Suppose A ∈ Cf.g. and
g : A → X is a C-embedding. Then there is some i0 < ω and C-embedding g� : A → Xi0 such that the
following diagram commutes:

A Xi0

X

g�

g
fi0∞

In the setting of ω-generated categories of L-structures, we will be able to give an exact characterization
of when a universal homogeneous object exists; we will see this in Section 4. We devote the remainder of
this section to showing that the predimension situation of Section 2 gives rise to an ω-generated category of
L-structures, and that the Cf.g.-universal, Cf.g.-homogeneous objects there are precisely the generic models.

Proposition 3.9. Suppose L is a countable relational language. Suppose S is a class of finite L-structures

closed under substructures and L-isomorphisms, and containing countably many structures up to L-isomorphism;

suppose δ is a predimension on S. Let C be the category whose objects are the countable structures in S and

whose morphisms are the strong embeddings. Then C is an ω-generated category of L-structures.

Proof. We showed in Example 3.4 that C is a category of L-structures; it remains to show that C is ω-generated.
One can easily check that the objects in Cf.g. are exactly the elements of S.
The following lemma will be useful in proving that G1-G5 hold:

Lemma 3.10. Suppose B0 ≤ B1 ≤ . . . are in S. Let B be their model-theoretic union. Then B ∈ S, B is

countable, and Bi ≤ B for each i < ω. Furthermore, let gij : Bi → Bj and gi∞ : Bi → B be the inclusion

maps (which are then strong embeddings); then �Bi, gij� is a directed system in C of which �B, gi∞� is a direct

limit.

Proof of Lemma 3.10. B is the countable union of finite L-structures, and therefore countable. To show that
B ∈ S, we check that age(B) ⊆ S. Suppose C is a finite L-structure, χ : C → B an L-embedding. Then
χ(C) ⊆fin B, and therefore χ(C) is a substructure of one of the Bi ∈ S; since S is closed under substructures
and L-isomorphism, we then have that C ∈ S. So B ∈ S.

We now check that Bi ≤ B for each i < ω. Suppose i < ω. Let C = clB(Bi) (see Item 5 of Proposition 2.8).
Then C ⊆fin B, so there is some j < ω such that C ⊆ Bj ; clearly j ≥ i. But then Bi ⊆ C ⊆ Bj and Bi ≤ Bj ;
so Bi ≤ C by Proposition 2.8. But by definition of clB , C ≤ B. So Bi ≤ B.

That �Bi, gij� is a directed system in C is clear.
Since the gij and gi∞ are inclusion maps, it is also clear that the following diagram commutes for every

i < j < ω:
Bi Bj

B

gi∞

gij

gj∞

It then remains to check that if we have a countable Y ∈ S and strong embeddings ηi : Bi → Y such that
for all i < j < ω, the following diagram commutes:

Bi Bj

Y

gij

ηi ηj
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then there is a unique strong embedding u : X → Y such that for all i < ω, the following diagram commutes:

Bi B

Y

gi∞

ηi u

Suppose we have such Y and ηi : Bi → Y . Then, since the gij are inclusion maps, the ηi is a chain of
L-embeddings. Let u be the union of the ηi (an L-embedding). Then clearly the following diagram commutes
for each i < ω:

Bi B

Y

gi∞

ηi u

Note that we have yet to show that u is a strong embedding.
We claim that u is a strong embedding; we need to show that u(B) ≤ Y . Suppose that C ⊆fin u(B) and

C ≤ u(B). But C is finite, and
u(B) =

�

i<ω

u(Bi)

so there is some i < ω such that C ⊆ u(Bi) ⊆ u(B). But then by Proposition 2.8, we have C ≤ u(Bi). But
u(Bi) = ηi(Bi) ≤ Y , since ηi is a strong embedding. So, by transitivity of ≤, we have C ≤ Y . So u is indeed
a strong embedding.

It remains to check that u is unique. Suppose v is a strong embedding such that the following diagram
commutes for all i < ω:

Bi B

Y

gi∞

ηi v

Suppose b ∈ B. Pick some i < ω such that b ∈ Bi. Then v(b) = ηi(b). So v is determined by the ηi, and is
thus unique. Lemma 3.10

We now continue with the proof of Proposition 3.9.

G1 By definition of C, all of its objects are countable; thus all objects of Cf.g. are countable.

G2 Recall that in the definition of a predimension, we required that S, and thus Cf.g., have countably many
L-isomorphism types; G2 then follows by recalling that L-isomorphisms are strong embeddings.

G3 Suppose �Ai, fij� is a directed system in (S,≤). S is closed under L-isomorphism, so by inductively
relabeling the domains of the Ai appropriately we can find a chain B0 ⊆ B1 ⊆ . . . of structures in S
and L-isomorphisms ϕi : Ai → Bi such that for every i < j < ω, the following diagram commutes:

Ai Aj

Bi Bj

fij

ϕi ϕj

gij

(2)

where gij : Bi → Bj is the inclusion map. In principle, we have yet to show that gij is a strong
embedding. Given the Bi and the gij , however, we note that

gij ◦ ϕi = ϕj ◦ fij
=⇒ gij = ϕj ◦ fij ◦ ϕ−1

i
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and thus that gij is indeed a strong embedding.
We now let B be the model-theoretic union of the Bi, and let gi∞ : Bi → B be the inclusion maps.
Then, by Lemma 3.10, B ∈ C, each Bi ≤ B, and the gi∞ are strong embeddings; furthermore, �B, gi∞�
is a direct limit of �Bi, gij�. It is then a simple matter of diagram chasing to show that �B, gi∞ ◦ ϕi� is
a direct limit of �A, fij� in C.

G4 Suppose X ∈ C. If X is finite, then �X, idX� is a direct limit of �X, idX�, so G4 trivially holds. If
|X| = ℵ0, enumerate X as (xi : i < ω).
Let X0 = ∅. Given Xi, let Xi+1 = clX(Xi ∪ {xi }) ∈ S. Then clearly X is the model-theoretic union of
the Xi. Let fij : Xi → Xj and fi∞ : Xi → X be the inclusion maps. By definition of clX , each fi∞ is
a strong embedding. For i < j < ω, note that Xi ⊆ Xj ⊆ X and Xi ≤ X; thus, by Proposition 2.8,
Xi ≤ Xj , and each fij is a strong embedding. Then by Lemma 3.10, �Xi, fij� is a directed system in
(S,≤) of which �X, fi∞� is a direct limit.

G5 Suppose �Xi, fij� is a directed system in (S,≤) of which �X, fi∞� is a direct limit.
Claim 3.11. f0∞(X0) ⊆ f1∞(X1) ⊆ . . . and

X =
�

i<ω

fi∞(Xi)

(the model-theoretic union).

Proof. Let Yi = fi∞(Xi). Then Yi ∈ age(X), so Yi ∈ S. That Yi ⊆ Yi+1 follows from the fact that
fi∞ = f(i+1)∞ ◦ fi(i+1). Let Y be the model-theoretic union

�

i<ω

Yi

Each Yi ⊆ X, so Y ⊆ X. Furthermore, X ∈ C, so |X| ≤ ℵ0 and age(X) ⊆ S, so |Y | ≤ ℵ0 and
age(Y ) ⊆ S, so Y ∈ C. We claim that Y ≤ X. To see this, suppose C ⊆fin Y and C ≤ Y . Then
C ⊆ Yi ⊆ Y for some i < ω; then by Proposition 2.8, C ≤ Yi. But Yi ≤ X, since fi∞ is a C-embedding;
so C ≤ X. So Y ≤ X. Furthermore, noting that Yi ⊆ Y ⊆ X and Yi ≤ X, Proposition 2.8 yields that
Yi ≤ Y for each i < ω.
Now, let ψi : Xi → Y be defined by ψi(x) = fi∞(x). These are clearly L-embeddings; that they are
strong embeddings follows from the fact that ψi(Xi) = fi∞(Xi) = Yi ≤ Y . Furthermore, by properties
of the fi∞ we have that the following diagram commutes for each i < j < ∞:

Xi Xj

Y

fij

ψi
ψj

Then, since �X, fi∞� is a direct limit of �Xi, fij� there is a unique strong embedding u : X → Y such
that the following diagram commutes for each i < ω:

Xi X

Y

fi∞

ψi u

Now, let u� : Y → X be the inclusion map; then u� is a strong embedding since Y ≤ X. By definition of
ψi, the following diagram commutes for each i < ω:

Xi X

Y

fi∞

ψi
u�
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Then:

u� ◦ u ◦ fi∞ = u� ◦ ψi

= fi∞

But there is supposed to be a unique strong embedding v : X → X such that v ◦ fi∞ = fi∞ for all
i < ω, and clearly the identity map is such a C-embedding; so u� ◦ u = idX . So u�, the inclusion map
from Y to X, is surjective; so X = Y . Claim 3.11

We now show G5. Suppose we have A ∈ S and a strong embedding g : A → X. Then g(A) is finite,
so there is some i < ω such that g(A) ⊆ fi∞(Xi) ⊆ X. But g(A) ≤ X, so by Proposition 2.8,
g(A) ≤ fi∞(Xi). Let g� : A → Xi be g�(x) = f−1

i∞(g(x)); then g� is an L-embedding. The invariance of
≤ under L-isomorphism tells us that since g(A) ≤ fi∞(Xi), we have g�(A) = f−1

i∞(g(A)) ≤ Xi, and g� is
a strong embedding. Furthermore, the following diagram commutes:

A Xi

X

g�

g
fi∞

So G5 holds.

So C is an ω-generated category of L-structures. Proposition 3.9

Proposition 3.12. Suppose C is as in Proposition 3.9. Then an L-structure X is a generic model of (S,≤)
if and only if X ∈ C and X is Cf.g.-universal and Cf.g.-homogeneous in C.

Proof.

( =⇒ ) Suppose X is a generic model of (S,≤). By definition of the generic model, we have |X| ≤ ℵ0 and
age(X) ⊆ S, so X ∈ C. We also have that X is ≤-universal and ≤-homogeneous; by Example 3.4, we
then have that X is Cf.g.-universal and Cf.g.-homogeneous.

( ⇐= ) Suppose X ∈ C is Cf.g.-universal and Cf.g.-homogeneous. Since X ∈ C, it follows that |X| ≤ ℵ0 and
age(X) ⊆ S. Furthermore, by Example 3.4, we find that X is ≤-universal and ≤-homogeneous; so X is
a generic model of (S,≤).

Proposition 3.12

4 Amalgamation over ω-Generated Categories of L-structures
The results of this section, being of an intermediate level of abstraction, have similarities to both the full
categorical generalization and the more concrete construction of Fraïssé. In particular, the proof of Lemma 4.6
is adapted from that of [1, Lemma 2.1]; the proof of the right-to-left direction of Theorem 4.8 draws inspiration
from [3, Theorem 7.1.2].

We fix a language L (not necessarily countable or relational) and a category C of L-structures.

Definition 4.1. We say C has the joint embedding property (JEP) if whenever A,B ∈ C, there is some
C ∈ C and C-embeddings f : A → C, g : B → C. We say C has the amalgamation property (AP) if given
A,B,C ∈ C and C-embeddings f : A → B, g : A → C, there is some D ∈ C and C-embeddings f � : B → D,
g� : C → D such that the following diagram commutes:

A B

C D

f

g f �

g�

9



Example 4.2. Suppose C is as in Proposition 3.9. If (S,≤) has the ≤-amalgamation property, then Cf.g. has
JEP and AP.

Proof.

JEP Suppose A,B ∈ Cf.g.. Then ∅ ≤ A,B, so by ≤-amalgamation, we have some C ∈ Cf.g. and C-embeddings
f : A → C and g : B → C such that the following diagram commutes:

∅ A

B C

η0

η1 f

g

(where ηi are the inclusion maps). So Cf.g. has JEP.

AP Suppose we have A,B,C ∈ Cf.g. and C-embeddings f : A → B and g : A → C. With appropriate
relabeling, we may find L-structures B�, C � and L-isomorphisms ϕ : B → B�, ψ : C → C � such that
A ⊆ B�, A ⊆ C �, ϕ ◦ f = η0, and ψ ◦ g = η1 (where ηi are the inclusion maps). Since S is closed
under L-isomorphism, we then have that B�, C � ∈ Cf.g.. Then ϕ ◦ f and ψ ◦ g are C-embeddings, as
the composition of C-embeddings, so A ≤ B� and A ≤ C �. Then, by the ≤-amalgamation property,
there is some D ∈ Cf.g. and C-embeddings f � : B� → D and g� : C � → D such that the following diagram
commutes:

A B�

C � D

η0

η1 f �

g�

Substituting η0 = ϕ ◦ f and η1 = ψ ◦ g, we find the following diagram commutes:

A B

B�

C C � D

f

g

ϕ

f �

ψ g�

So Cf.g. has the ≤-amalgamation property.

Our eventual result (Theorem 4.8) will be that if C is an ω-generated category of L-structures, then there
is a C-universal and Cf.g.-homogeneous object if and only if Cf.g. has JEP and AP; furthermore, such objects
are unique up to C-isomorphism. (One should note that we are now discussing C-universality, as opposed to
Cf.g.-universality. The reason for this is that in this context, the two are equivalent; see Lemma 4.5.)

Working up to Theorem 4.8, the following definition (also from [1], although they use the term “C∗-
saturated”) will be useful.

Definition 4.3. Suppose C∗ is a full subcategory of C; suppose X ∈ C. Then X satisfies the extension
property with respect to C∗ (X has C∗-extension) if whenever we have objects A,B ∈ C∗ and C-
embeddings f : A → X, g : A → B, there is a C-embedding h : B → X such that the following diagram
commutes:

B X

A

h

g f

10



Lemma 4.4. Suppose C∗ is a full subcategory of C. Suppose X ∈ C is C∗-universal and C∗-homogeneous.

Then X has C∗-extension.

Proof. Suppose X ∈ C is C∗-universal and C∗-homogeneous. Suppose A,B ∈ C∗; suppose f : A → X and
g : A → B are C-embeddings. By C∗-universality, we have a C-embedding h : B → X. Then f and h ◦ g are
both C-embeddings from A to X; so by C∗-homogeneity, there is a C-automorphism ϕ : X → X such that the
following diagram commutes:

A X

B X

f

g

h

ϕ

Then ϕ ◦ h is our desired map. So X has C∗-extension. Lemma 4.4

Lemma 4.5. Suppose C is ω-generated. Suppose X ∈ C is Cf.g.-universal and has Cf.g.-extension. Then X is

C-universal.

Proof. Suppose Y ∈ C. By G4, there is a directed system �Yi, fij� in Cf.g. and C-embeddings fi∞ : Yi → Y
such that �Y, fi∞� is a direct limit of �Yi, fij�. By Cf.g.-universality, pick some C-embedding h0 : Y0 → X. By
Cf.g.-extension, we may inductively choose hi+1 : Yi+1 → X such that the following diagram commutes:

Yi Yi+1

X

fi(i+1)

hi
hi+1

It then easily follows that for each i < j < ω, the following diagram commutes:

Yi Yj

X

fij

hi
hj

Then, by definition of direct limits, there is a unique C-embedding u : Y → X such that for each i < ω, the
following diagram commutes:

Yi Y

X

fi∞

hi u

In particular, u : Y → X is a C-embedding. So X is C-universal. Lemma 4.5

Lemma 4.6. Suppose C is an ω-generated category of L-structures. Suppose X,Y ∈ C both have Cf.g.-
extension. Suppose A ∈ Cf.g. and we have C-embeddings ϕ∗ : A → X and ψ∗ : A → Y . Then there is a

C-isomorphism u : X → Y such that the following diagram commutes:

X

A

Y

u

ϕ∗

ψ∗

11



Proof. By G4, choose directed systems �Xi, fij�, �Yi, gij� in Cf.g. and C-embeddings fi∞ : Xi → X, gi∞ : Yi →
Y such that �X, fi∞� is a direct limit of �Xi, fij� and �Y, gi∞� is a direct limit of �Yi, gij�. By G5, we
have some m0,m1 < ω and C-embeddings ϕ : A → Xm0 and ψ : A → Ym1 such that the following diagrams
commute:

X

A Xm0

ϕ∗

ϕ

fm0∞

Y

A Ym1

ψ∗

ψ

gm1∞

Then, taking n0 = max(m0,m1), and composing with fm0n0 and gm1n0 as appropriate, we may assume
without loss of generality that n0 = m0 = m1.

Claim 4.7. We can find subsequences (Xni : i < ω) and (Yni : i < ω) and C-embeddings (hi : i < ω) such

that for each i < ω, h2i : Xn2i → Yn2i+1 and h2i+1 : Yn2i+1 → Xn2i+2 , and with the further property that the

following diagram commutes:

Xn0

A

Yn0 Yn1

h0

ϕ

ψ

gn0n1

(3)

and for each i < ω, the following diagrams commute:

Xn2i Xn2i+2

Yn2i+1

fn2in2i+2

h2i h2i+1

Xn2i+2

Yn2i+1 Yn2i+3

h2i+2h2i+1

gn2i+1n2i+3

(4)

Proof. By construction of ϕ and ψ, n0 is given. To choose n1 and h0, use Cf.g.-extension of Y to find a
C-embedding h∗

0 : Xn0 → Y such that the following diagram commutes:

Xn0

A Y

Yn0

h∗
0ϕ

ψ gn0∞

By G5, we have some n1 < ω such that the following diagram commutes:

Xn0 Yn1

Y

h0

h∗
0 gn1∞

(By composing h0 with appropriate gij , we may assume without loss of generality that n1 > n0.) Then the

12



following diagram commutes:
Xn0 Yn1

A Y

Yn0 Yn1

h0

gn1∞
ϕ

ψ

gn0n1

gn1∞

So gn1∞ ◦ gn0n1 ◦ ψ = gn1∞ ◦ h0 ◦ ϕ. But gn1∞ is a C-embedding, thus an L-embedding, thus injective, and
thus left-cancellative; so the following diagram commutes:

Xn0

A

Yn0 Yn1

h0

ϕ

ψ

gn0n1

and we have (3).
We now give the construction of n2i+2 and h2i+1 given n2i+1 and h2i; the construction of n2i+3 and h2i+2

given n2i+2 and h2i+1 is identical. By Cf.g.-extension of X, we may find some C-embedding h∗
2i+1 : Yn2i+1 → X

such that the following diagram commutes:

Xn2i

X

Yn2i+1

fn2i∞

h2i

h∗
2i+1

By G5, we have some n2i+2 < ω and C-embedding h2i+1 : Yn2i+1 → Xn2i+2 such that the following diagram
commutes:

X Xn2i+2

Yn2i+1

fn2i+2∞

h∗
2i+1

h2i+1

(Again, we may assume without loss of generality that n2i+2 > n2i+1.) Then the following diagram commutes:

Xn2i Xn2i+2

X Xn2i+2

Yn2i+1

h2i

fn2in2i+2

fn2i+2∞

fn2i+2∞

h2i+1

13



So fn2i+2∞ ◦ fn2in2i+2 = fn2i+2∞ ◦ h2i+1 ◦ h2i. But fn2i+2∞ is left-cancellative; so the following diagram
commutes:

Xn2i Xn2i+2

Yn2i+1

fn2in2i+2

h2i h2i+1

and we have (4). Claim 4.7

Having constructed our (Xni : i < ω), (Xni : i < ω), and (hi : i < ω), we look to the construction of the
desired h. By Fact 3.7, �X, fn2i∞� is a direct limit of �Xn2i , fn2in2j �. Consider then the C-embeddings
gn2i+1∞ ◦ h2i : X2i → Y . From (4), it follows that for each i < ω, the following diagram commutes:

Xn2i Xn2i+2

Yn2i+1 Y22i+3

fn2in2i+2

h2i h2i+2

gn2i+1n2i+3

It then follows that the following diagram commutes for all i < j < ω:

Xn2i Xn2j

Yn2i+1 Yn2j+1

Y

h2i

fn2in2j

h2j

gn2i+1∞ gn2j+1∞

So, by definition of direct limits, there is a unique C-embedding h : X → Y such that for all i < ω, the
following diagram commutes:

Xn2i X

Yn2i+1 Y

fn2i∞

h2i h

gn2i+1∞

(5)

By a similar argument, there is a unique C-embedding h� : Y → X such that for all i < ω, the following
diagram commutes:

Xn2i+2 X

Yn2i+1 Y

fn2i+2∞

gn2i+1∞

h2i+1 h� (6)
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Then:

h� ◦ h ◦ fn2i∞ = h� ◦ gn2i+1∞ ◦ h2i (by (5))
= fn2i+2∞ ◦ h2i+1 ◦ h2i (by (6))
= fn2i+2∞ ◦ fn2in2i+2 (by (4))
= fn2i∞

But by the definition of a direct limit, the identity is the only C-embedding u : X → X such that u ◦ fn2i∞ =
fn2i∞ for each i < ω. So h� ◦ h = idX . Similarly, h ◦ h� = idY . So h is a C-isomorphism. Furthermore:

h ◦ ϕ∗ = h ◦ fn0∞ ◦ ϕ
= gn1∞ ◦ h0 ◦ ϕ (by (5))
= gn1∞ ◦ gn0n1 ◦ ψ (by (3))
= gn0∞ ◦ ψ
= ψ∗

In diagram:

Xn0 X

A

Yn0 Yn1 Y

fn0∞

h0 h

ϕ

ψ

ψ∗

ϕ∗

gn0n1

gn0∞

gn1∞

So h is our desired isomorphism. Lemma 4.6

Theorem 4.8. Suppose C is an ω-generated category of L-structures. Then C contains a C-universal Cf.g.-
homogeneous object if and only if Cf.g. has JEP and AP. Furthermore, if such an object exists, it is unique up

to C-isomorphism.

Proof.

( =⇒ ) Suppose X ∈ C is C-universal and Cf.g.-homogeneous. By G4, pick some directed system �Xi, fij�
and C-embeddings fi∞ : Xi → X such that �X, fi∞� is a direct limit of �Xi, fij�.

JEP Suppose A,B ∈ Cf.g.. By C-universality of X, there are C-embeddings ϕ : A → X and ψ : B → X.
By G5, there is some i0, j0 < ω and C-embeddings ϕ� : A → Xi0 , ψ� : B → Xj0 such that the
following diagrams commute:

A Xi0

X

ϕ�

ϕ
fi0∞

B Xj0

X

ψ�

ψ
fj0∞

Letting k = max(i0, j0), we have C-embeddings fi0k ◦ ϕ� : A → Xk and fj0k ◦ ψ� : B → Xk. But
Xk ∈ Cf.g.. So Cf.g. has JEP.
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AP Suppose we have A,B,C ∈ Cf.g. and C-embeddings ϕ : A → B, ψ : A → C. By C-universality of
X, there is some C-embedding χ : A → X. By Lemma 4.4, X has Cf.g.-extension; so there are
C-embeddings χ0 : B → X and χ1 : C → X such that the following diagram commutes:

A B

C X

ϕ

ψ
χ

χ0

χ1

By G5, there are i0, j0 < ω and C-embeddings χ�
0 : B → Xi0 and χ�

1 : C → Xj0 such that the
following diagrams commute:

B Xi0

X

χ�
0

χ0

fi0∞

C Xj0

X

χ1

χ�
1

fj0∞

Again, taking k = max(i0, j0) and composing by fi0k and fj0k as appropriate, we may assume
without loss of generality that i0 = j0 = k. So the following diagram commutes:

A B Xk

C X

Xk

ϕ

ψ

χ�
0

fk∞

χ�
1 fk∞

But fk∞ is left-cancellative. So the following diagram commutes:

A B

C Xk

ϕ

ψ χ�
0

χ�
1

But Xk ∈ Cf.g.. So Cf.g. has AP.

( ⇐= ) Suppose Cf.g. has JEP and AP.

Claim 4.9. There is a directed system �Xi, fij� in Cf.g. with the following property:

Property 4.10. Suppose we have A,B ∈ Cf.g. and C-embeddings g : A → B and h : A → Xi for some
i < ω. Then there is some i ≤ j < ω, some C-embedding ϕ : B → Xj such that the following diagram
commutes:

B Xj

A Xi

ϕ

g

h

fij

Proof of Claim 4.9. By G2, Cf.g. has countably many isomorphism types. Let R be a set containing
exactly one representative of each isomorphism type; then |R| ≤ ℵ0. We then claim that between each
element of R, there are countably many C-embeddings. To see this, suppose A,B ∈ R. A is finitely
generated, so a C-embedding A → B is determined by its action on the finitely many generators. By
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G1, B is countable, so there are countably many choices for each of the finitely many generators of A;
so there are countably many C-embeddings A → B.
For X ∈ Cf.g., let

SX = { (A,B, g, h) : A,B ∈ R, g ∈ hom(A,B), h ∈ hom(A,X) }

Then |SX | ≤ ℵ0 for each X ∈ Cf.g..
We now construct �Xi, fij�. Let π : ω2 → ω be a bijection such that π(i, j) ≥ i for all i, j < ω (for
example, the Cantor pairing function). Let X0 be any structure in Cf.g.. Let i < ω, and suppose
we have already constructed Xk for each k ≤ i and fk� for each k < � ≤ i; we now construct Xi+1

and fk(i+1) for each k ≤ i. Enumerate SXi as (Ai,j , Bi,j , gi,j , hi,j : j < ri); we may assume ri ≤ ω,
since |SXi | ≤ ℵ0. Consider (m,n) = π−1(i); by the property of π, we have that m ≤ i. Thus Xm is
already defined, meaning that at some previous stage of the construction, we gave an enumeration of
SXm as (Am,j , Bm,j , gm,j , hm,j : j < rm) for some rm < ω. If rm ≤ n, we let Xi+1 = Xi and we let
fk(i+1) = fki for k < i+ 1. Otherwise, n < rm, and the tuple (Am,n, Bm,n, gm,n, hm,n) was defined in
the enumeration of SXm . We then use AP to find Xi+1 ∈ Cf.g. and C-embeddings ϕ : Bm,n → Xi+1 and
ψ : Xi → Xi+1 such that the following diagram commutes:

Bm,n Xi+1

Am,n Xm Xi

ϕ

hm,n

gm,n

fmi

ψ

We then let fj(i+1) = ψ ◦ fji for j < i+ 1. This completes our construction of �Xi, fij�.
A simple induction shows that �Xi, fij� is indeed a directed system; it remains to show that it satisfies
Property 4.10. Suppose we have A,B ∈ Cf.g. and C-embeddings g : A → B and h : A → Xi for some
m < ω. R contains representatives of each isomorphism type, so there are elements of R isomorphic to
A and B; with some diagram chasing, we may assume that A and B are themselves elements of R. Thus
(A,B, g, h) ∈ SXm . During the construction of Xm+1, we enumerated SXm as (Am,j , Bm,j , gm,j , hm,j :
j < rm); so we have some n < rm such that (A,B, g, h) = (Am,n, Bm,n, gm,n, hm,n). Let i = π(m,n).
Then during the construction of Xi+1, we found C-embeddings ϕ : B → Xi+1 and ψ : Xi → Xi+1 such
that the following diagram commutes:

B Xi+1

A Xm Xi

ϕ

h

g

fmi

ψ

However, we defined fm(i+1) = ψ ◦ fmi; so the following diagram commutes:

B Xi+1

A Xm

ϕ

g

h

fm(i+1)

So ϕ is our desired C-embedding. Claim 4.9

Let �Xi, fij� be such a directed system in Cf.g.. By G3, there is a direct limit of �Xi, fij� in C, say
�X, fi∞�. We claim that X is Cf.g.-universal and has Cf.g.-extension.

Cf.g.-universal Suppose A ∈ Cf.g.. By JEP, there is some B ∈ Cf.g. and C-embeddings µ : A → B and
ν : X0 → B. Applying Property 4.10 to (X0, B, ν, idX0), we find that there is some i < ω and
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C-embedding ϕ : B → Xi such that the following diagram commutes:

B Xj

X0 X0

ϕ

idX0

ν f0j

Then fj∞ ◦ ϕ ◦ µ : A → X. So X is Cf.g.-universal.
Cf.g.-extension Suppose we have A,B ∈ Cf.g. and C-embeddings g : A → X, h : A → B. By G5, there

is some i < ω and C-embedding g� : A → Xi such that the following diagram commutes:

X

A Xi

g

g�

fi∞ (7)

Then, applying Property 4.10 to (A,B, h, g�), we find that there is some i ≤ j < ω and C-embedding
ϕ : B → Xj such that the following diagram commutes:

B Xj

A Xi

ϕ

h

g�

fij (8)

Observe that by (7) and by definition of direct limits, the following diagram commutes:

Xj

X

A Xi

fj∞

g

g�

fij

Then, applying (8), we get that the following diagram commutes:

B Xj

X

A

ϕ

fj∞

h

g

So f(i+1)∞ ◦ ϕ is our desired C-embedding. So X has Cf.g.-extension.

That X is C-universal then follows from Lemma 4.5. To get that X is Cf.g.-homogeneous, suppose we
have A ∈ Cf.g. and C-embeddings ϕ, ψ : A → X. Then, since X has Cf.g.-extension, Lemma 4.6 applies,
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and there is a C-automorphism u : X → X such that the following diagram commutes:

X

A

X

u

ϕ

ψ

So X is Cf.g.-homogeneous.

To show uniqueness, suppose X,Y ∈ C are both C-universal and Cf.g.-homogeneous. Clearly X and Y are
Cf.g.-universal. Then by Lemma 4.4, X and Y have Cf.g.-extension. Pick any A ∈ Cf.g.. By Cf.g.-universality,
we have C-embeddings ϕ : A → X and ψ : A → Y . Then, by Lemma 4.6, there is a C-isomorphism u : X → Y
such that the following diagram commutes:

X

A

Y

u

ϕ

ψ

In particular, X and Y are C-isomorphic. So such objects are unique up to C-isomorphism.
Theorem 4.8
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