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Abstract. It is shown that if X is an Inoue surface of type SM then the

irreducible components of the Douady space of Xn are compact, for all n ≥ 0.
This gives an example, asked for in [15], of an essentially saturated compact

complex manifold (in the sense of model theory) that is not of Kähler-type.

Among the known compact complex surfaces without curves, these are the
only examples.

1. Introduction

A (reduced) compact complex-analytic space X can be viewed as a first-order struc-
ture, in the sense of mathematical logic, by equipping X with a predicate symbol PA
for each complex-analytic subset A ⊆ Xn, for all n ≥ 0. We denote this structure by
A(X). Model-theory is interested in the definable sets of A(X): the subsets of Xn,
for various n, obtained from the complex-analytic sets by taking intersections, com-
plements, fibres of co-ordinate projections, and images of co-ordinate projections.
Zilber [19] showed that this structure is “tame” in that it admits quantifier elimi-
nation (every definable set is a finite boolean combination of complex-analytic sets)
and a certain model-theoretic rank (Morley rank) is finite valued on definable sets.
Motivated by model-theoretic considerations, the first author introduced in [15] the
notion of an essentially saturated compact complex-analytic space, namely, one for
which there exists a countable subcollection of the predicates PA from which one
can define all the definable sets of A(X). The main result in [15], slightly reformu-
lated, is the following geometric characterisation: A compact complex-analytic space
X is essentially saturated if and only if, for all n ≥ 0, every irreducible complex-
analytic subset of Xn lives in an irreducible component of the Douady space of
Xn that is compact. Recall that the Douady space is the analytic analogue of the
Hilbert scheme; it parameterises all compact complex-analytic subspaces of X (see
Section 2 below for some details).

Every holomorphic image of a compact Kähler manifold is essentially saturated
(these are the Kähler-type spaces introduced by Fujiki in [7]). The first author asked
in [15] for an example of an essentially saturated space that is not of Kähler-type.
Akira Fujiki, in private communication, suggested that we consider the surfaces of
type SM constructed by Inoue in [10]. The purpose of this note is to show that
these surfaces are indeed examples of essentially saturated spaces that are not of
Kähler-type. In fact, among the known compact complex surfaces of non Kähler-
type without curves, these are the only examples. A key element in our proof is a
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model-theoretic classification, due to Pillay and Scanlon [16], of compact complex
manifolds having no proper infinite complex-analytic subsets (see Fact 3.1 below).

For the rest of this paper, by a complex variety we will mean a reduced and
irreducible compact complex-analytic space. A subvariety will mean an irreducible
complex-analytic subset.

2. Preliminaries

Let X be any complex-analytic space. There exist a complex analytic space D(X),
called the Douady space of X, and a complex-analytic subspace Z(X) ⊆ D(X)×X,
called the universal family of X, such that

(a) the projection Z(X)→ D(X) is a flat and proper surjection, and
(b) (Universal Property) if S is any complex-analytic space and G is any

complex-analytic subspace of S × X with G → S a flat and proper sur-
jection, then there exists a unique holomorphic map (the Douady map)
φ : S → D(X) inducing a canonical isomorphism G ' S ×D(X) Z(X).

In particular, given a complex-analytic subset A ⊆ X there is a unique point
d ∈ D(X) such that A is the fibre, Z(X)d, of Z(X) → D(X) at d. This point,
often denoted by [A], is called the Douady point of A in X. The Douady space
was constructed by Douady in [4] and shown to have countably many irreducible
components by Fujiki in [8]. A more detailed discussion of Douady spaces can be
found in [3].

It is not necessarily the case that if X is a compact complex variety then the
irreducible components of D(X) are again compact. Indeed, as explained in the
introduction, the compactness of the components of the Douady space turns out to
be model-theoretically very significant: Essential saturation is equivalent to asking
that every subvariety of Xn live in an irreducible component of the Douady space
of Xn that is compact. Here, given an irreducible component D of D(Xn), and a
subvariety A ⊆ Xn, by “A lives in D” we mean that [A] ∈ D.

Fujiki showed in [7] that the irreducible components of the Douady spaces of
Kähler-type spaces (these are the holomorphic images of compact Kähler mani-
folds) are compact. Since being of Kähler-type is preserved under taking cartesian
products, this implies that Kähler-type spaces are essentially saturated. A Hopf
surface H is an example of a compact complex manifold that is not essentially
saturated. While the components of D(H) itself are compact, D(H ×H) has non-
compact components coming from families of graphs of automorphisms of H (see [3]
for details).

We will show that the Inoue surfaces of type SM introduced by Inoue in [10] are
essentially saturated but not of Kähler-type. Instead of recalling the construction
of these surfaces, we collect together in the following fact those properties of these
surfaces that will be relevant to our argument.

Fact 2.1. Suppose X is an Inoue surface of type SM . Then

(a) X is a smooth compact complex surface containing no curves.
(b) Hi(X,TX) = 0 for i = 0, 1.
(c) X is not of Kähler-type.
(d) Any unramified covering of X satisfies properties (a)-(c).
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Proof. Parts (a) and (b) are Proposition 2 of Inoue’s original paper [10]. Part (c)
follows from the fact that the odd Betti numbers of every compact complex variety
of Kähler-type are even ([9]), while Inoue surfaces have first Betti number equal to
one ([10]).

Part (d) follows from the fact that an unramified covering of an Inoue surface of
type SM is again an Inoue surface of type SM . To see this, recall first of all that the
Inoue surfaces are known to be exactly those smooth compact complex surfaces that
have no curves, have first Betti number equal to one, and have second Betti number
equal to zero (cf. [10, 12, 18]). All of these properties are preserved under taking
unramified coverings (this is Lemma 1 of [10]). Moreover, it follows from Inoue’s
constructions (see also p. 586 of [2]), that among the Inoue surfaces, those of type
SM are distinguished as the only ones admitting two holomorphic foliations, i.e.,
whose tangent bundles admit two holomorphic subbundles. As this property is also
preserved under taking unramified coverings, we see that an unramified covering of
an Inoue surface of type SM is again an Inoue surface of type SM . �

We will eventually establish the essential saturation of Inoue surfaces of type SM
by proving that the subvarieties of Xn must be of a very special form: they are
either “degenerate” (defined below) or live in a zero-dimensional component of the
Douady space of Xn. Lemma 2.4 below shows that that will suffice.

Definition 2.2. Suppose X is a compact complex variety. A subvariety A ⊆ Xn

is degenerate if for some co-ordinate projection p : Xn → X, p(A) is a point.

Lemma 2.3. Degeneracy is preserved in components of the Douady space. More
precisely, suppose A ⊆ Xn is a degenerate subvariety that lives in the irreducible
component D of D(Xn) and let Z be the restriction of Z(Xn) to D. Then Zd is
degenerate for all d ∈ D.

Proof. Denote by p : Xn → X the first projection and by π : D×Xn → D×X the
induced projection on D × Xn. Up to a permutation of the co-ordinates we may
suppose that p(A) = a ∈ X is a point. We will show in fact that p(Zd) is a point
for all d ∈ D. Note that the only obstruction is that π(Z)→ D need not be flat.

First of all note that as Z has a reduced and irreducible fibre, by flatness its
general fibres are reduced and irreducible, as is Z itself. So π(Z) and its general
fibres over D are irreducible. But π(Z)[A] = {a}. Hence the general fibres of π(Z)
over D must be points. That is, p(Zd) is a point for general d ∈ D.

Let D′ be the set of points d ∈ D such that dim p(Zd) > 0. We have shown that
D′ is contained in a proper complex-analytic subset. Now we claim that D′ is in
fact empty. Toward a contradiction, let d′ ∈ D′. Let U be a sufficiently small open
neighbourhood of d′ in D and let C be a complex-analytic curve in U which passes
through d′ and such that for general c ∈ C, Zc is irreducible and p(Zc) is a point
(this is possible as for general d ∈ D, Zd is irreducible and p(Zd) is a point). Let
ZC be the restriction of Z to C. By flatness, ZC , and hence π(ZC), is irreducible.
Moreover the general fibres of π(ZC) → C are points and so dimπ(ZC) = 1. This
contradicts the fact that the fibre of π(ZC) over d′ has positive dimension. �

Lemma 2.4. Suppose X is a compact complex variety with the property that every
subvariety of Xn, for all n ≥ 0, is either degenerate or lives in a zero-dimensional
component of the Douady space of Xn. Then X is essentially saturated.
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Proof. First of all, as explained in the introduction, it suffices to show that every
subvariety of Xn lives in an irreducible component of D(Xn) that is compact. We
do this by induction on n ≥ 0. Cleary, the zero-dimensional components of D(Xn)
are compact, and so we focus on the degenerate subvarieties. For n = 0 there is
nothing to prove. For n = 1 note that the degenerate subvarieties are just the
points of X, and that X itself is the (compact) component of D(X) parametrising
these points.

Now suppose A is a degenerate subvariety of Xn, for some n > 1, D is the
irreducible component of D(Xn) in which A lives, and Z ⊂ D×Xn is the universal
family restricted to D. As discussed in Lemma 2.3, after possibly permuting co-
ordinates, for every d ∈ D, Zd is of the form {a} × B for some subvariety B of
Xn−1. For each irreducible component E of D(Xn−1) containing a subvariety of
Xn−1, let E′ = X × E and let Z ′ ⊂ E′ × Xn be the complex-analytic subspace
with Z ′(a,e) = {a} × Z(Xn−1)e for all a ∈ X and e ∈ E. Note that E′ is compact

by induction, and Z ′ → E′ is flat. We have corresponding (injective) Douady maps
φE : E′ → D(Xn) such that Z(Xn)φE(a,e) = {a} × Z(Xn−1)e. The φE(E′)’s must
cover D since every fibre above D is of this form. As there are only countably
many φE(E′)’s and each one is an irreducible complex-analytic subset of D(Xn),
it follows that D must be equal to some φE(E′), and thus be compact. �

3. Trivial strongly minimal compact complex varieties

In this section we point out that if X is a “trivial strongly minimal” compact
complex variety (explained below) with the property that every subvariety of X×X
is either degenerate or lives in a zero-dimensional component of D(X × X), then
the same is true of Xn for all n > 2. In particular, such varieties will be essentially
saturated. This is not a very surprising result, since, as explained below, triviality
says that all relations are essentially binary.

While we will use model-theoretic language freely in this section, we will try
to give geometric formulations of the ideas involved and the results obtained. We
suggest [13] as a general reference for model theory, and [14] for the model theory
of compact complex varieties.

Let us begin by describing what the abstract notions of “strong minimality” and
“triviality” amount to for compact complex varieties. Strong minimality just means
that X has no proper infinite complex-analytic subsets. Hence, for example, any
irreducible compact complex surface without curves is strongly minimal. Triviality
is the following condition. Suppose n > 0 and A ⊆ Xn+1 is a complex-analytic
subset such that projection onto the first n co-ordinates, Xn+1 → Xn, restricts to
a generically finite-to-one map on A. Then there must exist some i ≤ n such that if
Ai ⊆ X2 denotes the image of A under the co-ordinate projection (x1, . . . , xn+1) 7→
(xi, xn+1), then the projection onto the first co-ordinate, X2 → X, restricts to a
generically finite-to-one map on Ai.

The following characterisation of non-trivial strongly minimal compact complex
manifolds is a manifestation of the “Zilber Trichotomy” in this context. It is due
originally to Scanlon [17] and appears as Proposition 5.1 of [16].

Fact 3.1. If X is a non-trivial strongly minimal compact complex manifold, then
X is either a complex torus or a projective curve. In particular, every strongly
minimal compact complex manifold that is not of Kähler-type is trivial.
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For example, since the Inoue surfaces of type SM have no divisors and are not
of Kähler-type (see Fact 2.1 above), they are trivial strongly minimal.

The following fact about trivial strongly minimal sets in general is an easy and
well-known model-theoretic consequence of the definitions. If the reader unfamiliar
with model theory is willing to accept Corollary 3.3 below, then he or she can skip
this lemma and go directly to Proposition 3.4.

Lemma 3.2. Suppose X is a trivial strongly minimal set in some saturated model
of a complete stable theory. Given a = (a1, . . . , an) ∈ Xn, the partial n-type

Σ(x1, . . . , xn) :=
⋃
i,j≤n

tp(ai, aj) has only finitely many completions. That is, there

exist finitely many complete n-types q1(x), . . . , qN (x) such that given b ∈ Xn, if
b |= Σ then b |= q` for some ` ≤ N .

Proof. Without loss of generality we may assume that for some r ≤ n, {a1, . . . , ar}
is an acl-basis for {a1, . . . , an}. Suppose b = (b1, . . . , bn) |= Σ. By triviality, any
acl-dependence among {b1, . . . , br} would be witnessed by a pair of elements in that
set. Since Σ forces all pairs from the first r co-ordinates to be acl-independent, it
follows that {b1, . . . , br} must be an acl-independent set. If r = n then in fact b
and a are generic tuples and so b |= tp(a). That is, Σ is complete and we are done.
Hence we may sssume that r < n.

Now for each i = 1, . . . , n−r, ar+i ∈ acl(a1, . . . , ar). By triviality there is a ji ≤ r
such that ar+i ∈ acl(aji). Let φi(xji , xr+i) be a formula witnessing this. So the set
defined by φi(aji , xr+i) is finite and contains ar+i. Let q1, . . . , qN be the set of all
complete n-types of the form tp(a1, . . . , ar, c1, . . . , cn−r) where each ci is in the set
defined by φi(aji , xr+i). Since b realises Σ, |= φi(bji , br+i) for all i = 1, . . . , n − r.
Hence, if we let f be an automorphism taking (b1, . . . , br) to (a1, . . . , ar), then for
each i = 1, . . . , n− r we have that f(br+i) is in the set defined by φi(aji , xr+i). So
tp(b) = tp

(
a1, . . . , ar, f(br+1), . . . , f(bn)

)
= q` for some ` ≤ N . �

The following corollary gives the geometric content of Lemma 3.2 specialised to
compact complex varieties.

Corollary 3.3. Suppose X is a trivial strongly minimal compact complex vari-
ety. Given a subvariety A ⊆ Xn there exist only finitely many other subvarieties
having the same projections to X × X. More precisely, there exist subvarieties
B1, . . . , BN ⊆ Xn such that if B ⊆ Xn is a subvariety for which π(A) = π(B) for
all co-ordinate projections π : Xn → X2, then B = B` for some ` ≤ N .

Proof. We work in a saturated elementary extension A(X)′ of A(X), which acts as
“universal domain” (in the sense of Weil) for the geometry of the complex-analytic
subsets of X and its cartesian powers. A key point is that the complete n-types
in A(X)′ (over the emptyset) are in one-to-one correspondence with subvarieties of
Xn; every complete n-type is the generic type of a subvariety of Xn called its locus.

Let a realise the generic type of A in A(X)′. Apply Lemma 3.2 to a to obtain
complete types q1, . . . , qN . For each ` ≤ N , let B` = loc(q`) be the locus of q`. Now
suppose B is as in the statement of the corollary and let b realise the generic type
of B. Note that for each co-ordinate projection π : Xn → X2, π(a) realises the
generic type of π(A) and π(b) realises the generic type of π(B). So the assumption

on B says that b |=
⋃
i,j≤n

tp(ai, aj). Hence, by the conclusion of Lemma 3.2, b |= q`

for some ` ≤ N . It follows that B = B`, as desired. �
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Here is the main conclusion of this section.

Proposition 3.4. Suppose X is a trivial strongly minimal compact complex variety
with the property that every subvariety of X ×X is either degenerate or lives in a
zero-dimensional component of D(X × X). Then the same holds of Xn, for each
n > 2. In particular, X is essentially saturated.

Proof. Note that every subvariety of X is either degenerate or lives in a zero-
dimensional component of D(X): this follows from strong minimality as the only
subvarietries of X are points or X itself.

Let us fix n > 2 and a subvariety Y ⊆ Xn. Assume Y is not degenerate and does
not live in a zero-dimensional component of D(Xn), and seek a contradiction. Let
D be the component of the Douady space of Xn in which Y lives and let Z ⊆ D×Xn

be the restriction of the universal family to D. Let E be a proper complex-analytic
subset of D such that for all d ∈ D \ E, Zd is reduced and irreducible. Since
Y is not degenerate, none of these Zd’s are degenerate (cf. Lemma 2.3). Hence
π(Zd) is non-degenerate for each co-ordinate projection π : Xn → X2 and each
d ∈ D \ E. It follows that each π(Zd) lives in a zero-dimensional component of
D(X2). Note that if π(Zd) and π(Zd′) live in the same zero-dimensional component
of D(X2), then π(Zd) = π(Zd′). Since there are only countably many irreducible
components of D(X2), and only finitely many projections π, but continuum-many
d ∈ D \ E (as dimD > 0), there must exist infinitely many distinct d1, d2, · · · ∈
D \ E with π(Zdi) = π(Zd1) for all i > 1 and all co-ordinate projections π :
Xn → X2. Applying Corollary 3.3 to Zd1 ⊆ Xn, there exists a fixed finite set of
subvarieties B1, . . . , BN ⊆ Xn, such that each Zdi is equal to one of the Bj ’s. But
this contradicts the fact that the di’s are distinct and hence the Zdi ’s are distinct
(this is the uniqueness of the Douady map in the universal property for Douady
spaces). Hence, it must be the case that either Y is degenerate or it lives in a
zero-dimensional component of the Douady space.

By Lemma 2.4, X must be essentially saturated. �

4. Essential saturation of Inoue surfaces of type SM

Let us briefly recall some deformation theory of compact complex manifolds.
We suggest [11] for further details and as a general reference. A compact complex
manifold M is rigid if H1(X,TX) = 0, where TX denotes the tangent sheaf of X.
Every deformation of a rigid compact complex manifold is locally trivial. More
precisely: Suppose M is a rigid compact complex manifold. If M→ B is a proper
and flat surjective holomorphic map of complex varieties, and c ∈ B is such that
Mc = M , then there exists an open neighbourhood U of c in B such that MU → U
is biholomorphic to U ×M over U . Indeed, this is the classical Kodaira-Spencer
deformation theory (cf. Theorem 4.6 of [11]) once we observe that by flatness
and the fact that M is a complex manifold, the restriction of M → B to some
neighbourhood of c ∈ B is a proper submersion of complex manifolds.

We will also be interested in embedded deformations, which in fact are already
implicit in our discussion of Douady spaces. Suppose M is a complex submanifold of
a compact complex manifold N . We say that M is rigid in N if H0(M,NM/N ) = 0,
where NM/N is the normal sheaf of M in N . In that case every deformation of M
in N is trivial. More precisely: Suppose M is rigid in N . If B is a complex variety
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and G is a complex-analytic subset of B×N such that G→ B is flat and surjective,
and Gc = M for some c ∈ B, then G = B×M . This follows, for example, from the
fact that H0(M,NM/N ) is the tangent space to the Douady space of N at the point
[M ] corresponding to M ⊆ N (cf. Proposition 1.7 of [3]). Hence [M ] is isolated in
D(N) and so the Douady map g : B → D(N) must be onto the single point [M ].

Embedded deformations give rise to the notion of deformations of holomorphic
maps that leave the domain and target fixed. Suppose f : M → N is a holomorphic
map between compact complex manifolds. We say that f is rigid with respect to M
and N if H0(M,f∗TN ) = 0. It is not hard to see that this is equivalent to asking
that the graph Γ(f) is rigid in M ×N . In terms of deformations of f this can be
formulated as follows: Suppose f : M → N is rigid with respect to M and N . If B
is a complex variety and Φ : B ×M → B ×N is a holomorphic map over B such
that Φc = f for some c ∈ B, then Φ = idB ×f .

We put these facts together in the following Lemma for future use:

Lemma 4.1. Let f : M → N be a holomorphic map between compact complex
manifolds. Suppose M is rigid and f is rigid with respect to M and N . Then for
any flat and proper surjection of complex varietiesM→ B withMc = M for some
c ∈ B, and any holomorphic map Φ :M→ B×N over B with Φc = f , there must
exist a neighbourhood U of c such that ΦU (MU ) = U × f(M).

Proof. By rigidity of M there exists a neighbourhood U of c and a biholomorphism
σ : U × M → MU over U . We may assume that σc = idM . So ΦU ◦ σ is a
holomorphic map from U ×M to U ×N over U with (ΦU ◦ σ)c = f . By rigidity of
f with respect to M and N , ΦU ◦ σ = idU ×f . Hence

ΦU (MU ) = ΦU ◦ σ(U ×M) = (idU ×f)(U ×M) = U × f(M)

as desired. �

We now specialise to the case of Inoue surfaces of type SM .

Lemma 4.2. Let X be an Inoue surface of type SM and set pi : X ×X → X to
be the ith co-ordinate projection, for i = 1, 2. Suppose Y is an irreducible normal
compact complex surface, and f : Y → X × X is a holomorphic map with the
property that fi := pi ◦ f : Y → X is surjective for i = 1, 2. Then Y is itself Inoue
of type SM . Moreover, f is rigid with respect to Y and X ×X.

Proof. Consider the finite surjection f1 : Y → X. Let B be the set of points in Y
at which f1 is not locally biholomorphic. Then B is a complex-analytic subset of
Y (see 2.19 of [5]). Since Y is normal and X is smooth, if B is nonempty then it
must have dimension 1 (see 4.2 of [5]). But as f1 is finite-to-one, and X contains
no curves, the latter is impossible. Hence B is empty, f1 is an unramified covering,
and Y is again Inoue of type SM . In particular, H0(Y, TY ) = 0.

By the above argument f2 : Y → X is also an unramified covering. Hence
f∗i TX = TY for i = 1, 2. Since TX×X = p∗1TX ⊕ p∗2TX , we get

f∗TX×X = f∗p∗1TX ⊕ f∗p∗1TX = f∗1TX ⊕ f∗2TX = TY ⊕ TY
and so H0(Y, f∗TX×X) = H0(Y, TY ) ⊕ H0(Y, TY ) = 0. So f is rigid with respect
to Y and X ×X. �

Proposition 4.3. Suppose Y ⊆ X ×X is an irreducible complex-analytic subset.
Then one of the following holds:
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(a) dimY = 0, or
(b) Y = {a} ×X or Y = X × {a} for some a ∈ X, or
(c) Y lives in a zero-dimensional component of the Douady space of X ×X.

Proof. Suppose Y ⊆ X × X is an irreducible complex-analytic subset, and let
pi : X × X → X be the ith co-ordinate projection for i = 1, 2. Since each pi(Y )
is irreducible, strong minimality of X implies that pi(Y ) is either a point or all of
X. If pi(Y ) is a point, then by strong minimality of X one of (a) or (b) must hold.
Hence we may assume pi(Y ) = X for i = 1, 2. We will show that (c) holds.

It is clear that (c) holds if Y = X ×X. Let us now suppose that Y is proper.
Since pi(Y ) = X for i = 1, 2, Y is two-dimensional by strong minimality of X. Let
D be the irreducible component of the Douady space of X ×X in which Y lives,

and let Z ⊆ D×(X×X) be the restriction of the universal family to D. Let Z̃ → Z
be the normalisation of Z. We have the following situation

Z̃
π //

��>
>>

>>
>>

> Z
⊆ //

��

D × (X ×X)

yysss
sss

sss
ss

D

There exists a proper complex-analytic subset E ⊂ D such that for all d ∈ D \ E,

(i) Zd ⊂ X ×X is a reduced and irreducible surface,
(ii) pi(Zd) = X for i = 1, 2,

(iii) πd : Z̃d → Zd is the normalisation of Zd, and

(iv) Z̃ → D is flat outside of E.

Indeed, we can choose E to satisfy (i) though (iv) because Z → D is flat and proper.
For (i), use the fact that Z → D has one reduced and irreducible two-dimensional
fibre (namely Y ) and hence, by flatness, its general fibres are so. For (ii), use the
fact that none of the Zd’s are degenerate since Y was not (cf. Lemma 2.3), and we
have already seen that this implies its projections to X are surjections. To find E

satisfying (iii) note that the general fibre of Z̃ → D is normal (Théorème 2 of [1])
and π restricted to the general fibre is again a finite map that is biholomorphic
outside a proper complex-analytic set. Finally, we can find E satisfying (iv) since
by [6] every proper holomorphic map is flat outside a proper complex-analytic set.

Now fix d0 ∈ D \E. Then Z̃d0 is an irreducible normal compact complex surface

such that πd0 : Z̃d0 → X ×X composed with the projections to X are surjective.

By Lemma 4.2, Z̃d0 is itself an Inoue surface of type SM – and hence rigid – and

the map πd0 is rigid with respect to Z̃d0 and X ×X. By Lemma 4.1, there exists

an open neighbourhood U of d0 in D \ E, such that πU (Z̃U ) = U × Zd0 . Hence
ZU = U ×Zd0 . The universal property of the Douady space implies that U = {d0}.
But as U was open in the irreducible D, this means that D = {d0}. We have shown
that Y lives in a zero-dimensional component of the Douady space of X × X, as
desired. �

Corollary 4.4. Inoue surfaces of type SM are essentially saturated but not of
Kähler-type.

Proof. By Fact 2.1, Inoue surfaces of type SM are strongly minimal compact com-
plex varieties not of Kähler-type. By Fact 3.1 they are trivial. Proposition 4.3
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tells us that the irreducible subvarieties of 2-space are either degenerate or live in a
zero-dimensional component of the Douady space. By Proposition 3.4 this is then
true of n-space for all n ≥ 0, and these surfaces are essentially saturated. �

Remark 4.5. One might be tempted to try and generalise the above corollary by
observing that our argument goes through for any compact complex surface sat-
isfying the four properties of Fact 2.1. However, these properties actually charac-
terise Inoue surfaces of type SM . Indeed, from Kodaira’s classification of compact
complex surfaces we see that a non-Kähler surface X without curves must have
b1(X) = 1. It will also have b2(X) = 0 by Riemann-Roch if one imposes the con-
dition H1(X,TX) = 0. But, as mentioned before, such surfaces are completely
classified (cf. [10, 12, 18]) and they belong to one of Inoue’s classes. Since the sur-
faces of type S(+) have H1(X,TX) = 1, we are left with only the surfaces of type
SM and S(−). Among them only those of type SM satisfy the fourth property, since
any surface of type S(−) admits a double cover of type S(+), see [10].

We conclude by pointing out that among the known strongly minimal compact
complex surfaces, the surfaces of type SM are the only non-Kähler essentially satu-
rated examples. Indeed, since the only known non-Kähler compact complex surfaces
without curves are the Inoue surfaces, this follows from:

Proposition 4.6. The other Inoue surfaces, those of type S(+) and S(−), are not
essentially saturated.

Proof. Note that by Fact 3.1, these strongly minimal surfaces are also trivial.
Let X be an Inoue surface of type S(+). The universal cover of S(+) (and indeed

of all the Inoue surfaces) is H × C, the product of the upper half plane with the
complex plane. From Inoue’s construction of S(+) it is evident that translation
on the second co-ordinate induced a non-trivial action of (C,+) on X (see equa-
tion (18) of [10]). We thus obtain an infinite analytic family of automorphisms of
X paramaterised by C, which by considering graphs, can be viewed as living in the
irreducible component D of D(X×X) that contains the diagonal A ⊂ X×X. This
already implies that D is not compact, since no trivial strongly minimal compact
complex manifold can have an infinite definable family of automorphisms. However,
the non-compactness of D can be seen more directly, without using triviality of X,
as follows: Assume D is compact and let Z ⊂ D ×X ×X be the universal family
over D. Since dimH0(X,TX) = 1, and NA/X×X ∼= TX , we know that dimD = 1.
Fixing a ∈ X, the subspace Z ∩ (D × {a} × X) is thus one-dimensional and con-
tains {(g, a, ga) : g ∈ C}. Thus its projection on X is a complex-analytic subset
containing the orbit of a under the action of (C,+), and therefore cannot be zero
dimensional. This contradicts the fact that X has no curves.

Let now Y be an Inoue surface of type S(−). As mentioned before, there exists
an Inoue surface X of type S(+) which is a double cover of Y . Now one can finish
by showing that a finite cover of an essentially saturated compact complex variety
is again essentially saturated. But in this case the argument is easier: The action of
(C,+) on X described above will induce an infinite analytic family of subvarieties
of Y × Y which project in a finite-to-one manner onto each component. Arguing
as above one shows that this family of subspaces of Y × Y cannot be compactified
in D(Y × Y ). (Alternatively, essential saturation of Y would imply the existence
of an infinite definable family of finite-to-finite correspondences, which is also ruled
out by the triviality of Y .) �
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analytique donné. Annales de l’Institut Fourier (Grenoble), 16:1–95, 1966.

[5] G. Fischer. Complex Analytic Geometry. Springer-Verlag, Berlin, 1976.

[6] J. Frisch. Points de platitude d’un morphisme d’espaces analytiques complexes. Inventiones
Mathematicae, 4:118–138, 1967.

[7] A. Fujiki. Closedness of the Douady spaces of compact Kähler spaces. Publication of the

Research Institute for Mathematical Sciences, 14(1):1–52, 1978.
[8] A. Fujiki. Countability of the Douady space of a complex space. Japanese Journal of Math-

ematics (New Series), 5(2):431–447, 1979.

[9] A. Fujiki. On the structure of compact complex manifolds in C. In Algebraic Varieties and An-
alytic Varieties, volume 1 of Advanced Studies in Pure Mathematics, pages 231–302. North-

Holland, Amsterdam, 1983.

[10] M. Inoue. On surfaces of class VII0. Inventiones Mathematicae, 24:269–310, 1974.
[11] K. Kodaira. Complex manifolds and deformations of complex structures, volume 283 of

Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1986.

[12] J. Li, S.-T. Yau, and F. Zheng. On projectively flat Hermitian manifolds. Comm. Anal.
Geom., 2(1):103–109, 1994.

[13] D. Marker. Model theory: An introduction, volume 217 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002.

[14] R. Moosa. The model theory of compact complex spaces. In Logic Colloquium ’01, volume 20

of Lect. Notes Log., pages 317–349. Assoc. Symbol. Logic, 2005.
[15] R. Moosa. On saturation and the model theory of compact Kähler manifolds. Journal für die

reine und angewandte Mathematik, 586:1–20, 2005.

[16] A. Pillay and T. Scanlon. Meromorphic groups. Transactions of the American Mathematical
Society, 355(10):3843–3859, 2003.

[17] T. Scanlon. Locally modular groups in compact complex manifolds. preprint.

[18] A. Teleman. Projectively flat surfaces and Bogomolov’s theorem on class VII0 surfaces. Int.
J. Math., 5(2):253–264, 1994.

[19] B. Zilber. Model theory and algebraic geometry. In Proceedings of the 10th Easter Conference

on Model Theory, Berlin, 1993.

University of Waterloo, Department of Pure Mathematics MC 5049, 200 University

Avenue West, Waterloo, Ontario N2L 3G1, Canada
E-mail address: rmoosa@math.uwaterloo.ca

University of Waterloo, Department of Pure Mathematics MC 5170, 200 University

Avenue West, Waterloo, Ontario N2L 3G1, Canada
E-mail address: moraru@math.uwaterloo.ca
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