
ISOLATED TYPES OF FINITE RANK:

AN ABSTRACT DIXMIER-MOEGLIN EQUIVALENCE

OMAR LEÓN SÁNCHEZ AND RAHIM MOOSA

Abstract. Suppose T is totally transcendental and every minimal non-locally-

modular type is nonorthogonal to a nonisolated minimal type over the empty

set. It is shown that a finite rank type p = tp(a/A) is isolated if and only
if a |̂

Ab

q(U) for every b ∈ acl(Aa) and q ∈ S(Ab) nonisolated and minimal.

This applies to the theory of differentially closed fields – where it is motivated

by the differential Dixmier-Moeglin equivalence problem – and the theory of

compact complex manifolds.

1. Introduction

Let T be a complete totally transcendental theory admitting elimination of imagi-
naries, and U |= T a sufficiently saturated model. We are interested in the following
condition on a type p ∈ S(A).

(†) Suppose a |= p, b ∈ acl(Aa), and q ∈ S(Ab) is nonisolated and minimal.
Then a |̂

Ab

q(U).

By a minimal type we mean one that is stationary and of U -rank one. The condi-
tion (†) is essentially about the relationship (or rather lack thereof) between p and
the nonisolated minimal complete types of the theory – though the specific choice
of parameters involved here are important. We will show that in certain theories of
interest (including differentially closed fields and compact complex manifolds), and
assuming that p is of finite rank, this condition characterises when p is isolated. It
should be viewed as a reduction of the study of isolation from the finite rank case
to the minimal case.

Another motivation for (†) comes from an application of the model theory of
differentially closed fields of characteristic zero (DCF0) to a problem in noncom-
mutative algebra. It was observed in [2] that the classical Dixmier-Moeglin equiv-
alence for noetherian algebras is connected to the relationship in DCF0 between a
finite rank type over constant parameters being isolated and being weakly orthog-
onal to the field of constants. The fact that these are not equivalent lead in [2] to
the first counterexample to the Poisson Dixmier-Moeglin equivalence, and the first
finite Gelfand-Kirillov dimension counterexample to the classical Dixmier-Moeglin
equivalence. Now, p ∈ S(A) being weakly orthogonal to the constants is precisely
the instance of (†) when b = ∅ and q is the generic type of the constants. The coun-
terexample in [2] was nonisolated and satisfied this instance of (†) but failed another
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instance; one where q was the generic type of a Manin kernel of a simple abelian
variety not descending to the constants. So, the equivalence of (†) and isolation for
finite rank types can be viewed as an abstract resolution to the Dixmier-Moeglin
equivalence problem, where in order to get a true statement we have to replace
weak orthogonality to the constants by all instances of (†).

Our main result here is the following: Suppose that in T every minimal non-
locally-modular type is nonorthogonal to a nonisolated minimal type over the empty
set. Then a finite rank p ∈ S(A) is isolated if and only if it satisfies (†). This is
Theorem 3.2 below. Specialising to the case of T = DCF0, we obtain in Theorem 4.5
a more concrete form which we point out yields a quick proof of the differential
Dixmier-Moeglin equivalence for certain D-varieties that were considered in [3].
Also in §4 we give examples showing that our characterisation of isolation cannot
be substantially improved, in that we really have to range over all b ∈ acl(Aa) in
the formulation of (†).

We will use without extensive explanation various notions and facts from geo-
metric stability theory – we suggest [13] as a general reference. The underlying
total transcendentality assumption is so that prime models over sets exist and are
unique up to isomorphism, and p ∈ S(A) is isolated if and only if it is realised in a
prime model over A. In particular, we freely use the following properties:

(1) tp(a/Ab) and tp(b/A) are isolated if and only if tp(ab/A) is isolated.
(2) p = tp(a/A) is isolated if and only if stp(a/A) is isolated.
(3) If p is nonisolated then so is any nonforking extension.

Points (1) and (2) follow easily using prime models. For point (3), note that if
q = tp(a/B) is isolated by φ(x, b), and r(y) := tp(b/A) where A = acl(A) ⊆ B is
such that q does not fork over A, then the φ(x, y)-definition of r(y) isolates tp(a/A).
We also use the definable binding group theorem in totally transcendental theories.

2. Necessity of (†)

Without any assumptions beyond total transcendentality, we can show that (†) is
necessary:

Proposition 2.1. If p ∈ S(A) is isolated then (†) holds.

Proof. Note that a |̂
C

q(U) where C = dcl(Aba)∩dcl(Abq(U)). Indeed, this follows

from stable embeddedness, see for example Lemma 1 in the Appendix of [4]. In
fact, tp(a/C) ` tp(a/Abq(U)). In any case, it suffices to show that C ⊆ acl(Ab).

Let M be a prime model over Ab. Since tp(a/A) and tp(b/Aa) are isolated, so
is tp(a/Ab). By automorphisms, we may assume that a is in M . It follows that
C ⊆ dcl(Aba) ⊆M .

Now, let c ∈ C. Since c ∈ dcl(Abq(U)) we can write c = f(e) where f is Ab-
definable and e is a finite tuple from q(U). On the other hand, as M is a model,
we can find e′ from M such that c = f(e′) as well. We claim that e′ |̂

Ab

e. This will

suffice, as then dcl(Abe) ∩ dcl(Abe′) ⊆ acl(Ab), and hence c = f(e) = f(e′) is in
acl(Ab), as desired.

As was pointed out to us by the anonymous referee, that e′ |̂
Ab

e in turn follows

from the following general, and probably well known, lemma. �
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Lemma 2.2. Suppose q ∈ S(B) is a minimal nonisolated type and M is a prime
model over B. Then M |̂

B

q(U).

Proof. It suffices to show that if α is a finite sequence of realisations of q, then
the canonical base, c := Cb(α/M), is contained in acl(B). Suppose, toward a
contradiction, that c /∈ acl(B).

Note that c ∈M ∩ dcl
(
q(U)

)
. Let D be a finite set of realisations of q such that

c ∈ dcl(D). Then c 6 |̂
B
D.

Let φ ∈ q be of minimal Morley rank and degree. (Note that the Morley rank
of q need not be one.) Then c ∈ M ∩ dcl

(
φ(U)

)
= dcl

(
φ(M)

)
. Let A ⊆ φ(M)

be a finite subset such that c ∈ dcl(A). Then A 6 |̂
B
D. Hence a 6 |̂

B′ d for some

a ∈ A, d ∈ D and B′ ⊇ B. By minimality of q, it follows that d ∈ acl(B′a)\acl(B′)
and tp(d/B′) is a nonforking extension of q.

By choice, φ isolates q among those types over B with Morley rank ≥ RM(q).
And φ ∈ tp(a/B). But tp(a/B) 6= q since the former is isolated, being realised
in M , and the latter is not isolated by assumption. We must therefore have that
RM(a/B) < RM(q). Hence RM(a/B′) ≤ RM(a/B) < RM(q) = RM(d/B′). This
contradicts d ∈ acl(B′a). �

Remark 2.3. The proof of the above proposition actually gives us something
stronger: in (†) we can range over all b such that tp(b/Aa) is isolated, rather than
asking for b ∈ acl(Aa).

But what we are really interested in is not strong consequences of isolation, but
rather, weak sufficient conditions.

Question 2.4. Does (†) characterise isolation of a finite rank type p ∈ S(A)?

3. Sufficiency of (†)

We make an additional assumption on T under which (†) becomes also a sufficient
condition for isolation of finite rank types.

Assumption 3.1. Every complete non-locally-modular minimal type is nonorthog-
onal to a nonisolated minimal type in S(∅).

This is satisfied in DCF0 and CCM because of the particular manifestations of
the Zilber dichotomy in these theories: In CCM every non-locally-modular minimal
type is nonorthogonal to the generic type of the projective line, and in DCF0 every
non-locally-modular minimal type is nonorthogonal to the generic type of the field
of constants. These are minimal types over the empty set because the projective line
in CCM and the field of constants in DCF0 are both 0-definable strongly minimal
sets. They are nonisolated because the projective line and the field of constants
both have infinitely many points in acl(∅).

Theorem 3.2. Suppose T is totally transcendental and satisfies Assumption 3.1.
Let p ∈ S(A) be of finite rank. Then p is isolated if and only if it satisfies (†).

Proof. That isolated types satisfy (†) in arbitrary totally transcendental theories is
the content of Proposition 2.1.

Before proving the converse, we first observe that if tp(a/A) satisfies (†) then
for any e ∈ acl(Aa) so do tp(e/A) and tp(a/Ae). For the former, let b ∈ acl(Ae),
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and q ∈ S(Ab) nonisolated and minimal. Then as b ∈ acl(Aa) also, (†) implies that
a |̂

Ab

q(U), and hence e |̂
Ab

q(U). To see that tp(a/Ae) satisfies (†), let b ∈ acl(Aea)

and q ∈ S(Aeb) nonisolated and minimal. Then as eb ∈ acl(Aa) and tp(a/A)
satisfies (†), we get a |̂

Aeb

q(U), as desired.

We proceed to prove by induction on U(p) that if p satisfies (†) then it is isolated.
If U(p) = 0 then it is isolated. If U(p) = 1 then isolation is immediate from (†)
applied with b = ∅. So assume that U(p) > 1.

Suppose p = tp(a/A) is orthogonal to all non-locally-modular minimal types.
Since p is of finite rank it is nonorthogonal to some minimal type, which by as-
sumption must be locally modular. Now, the minimal case of an old result of
Hrushovski’s on nonorthogonality to locally modular regular types implies that
there exists e ∈ acl(Aa) with U(e/A) = 1, see [6, Theorem 2]. Since U(p) > 1,
a /∈ acl(Ae). Hence both U(e/A) and U(a/Ae) are less than U(p), and as we
have observed, both tp(e/A) and tp(a/Ae) satisfy (†). By induction, they are both
isolated. Hence tp(a/A) is isolated, as desired.

It remains to consider the case when p is nonorthogonal to some non-locally-
modular minimal type. By Assumption 3.1, p is nonorthogonal to a nonisolated
minimal type in S(∅). Taking the nonforking extension of that type to A we get
q ∈ S(A) minimal, nonisolated, and nonorthogonal to p. Applying (†) with b = ∅,
we have that a |̂

A
q(U). On the other hand, nonorthogonality implies that there

exists d ∈ dcl(Aa) \ A with tp(d/A) internal to q, see [13, Corollary 7.4.6]. We
know that both tp(d/A) and tp(a/Ad) satisfy (†). If U(d/A) < U(p) then, by
induction, both tp(d/A) and tp(a/Ad) are isolated; and consequently p would be
isolated. So we may assume U(d/A) = U(p). That is, a and d are interalgebraic
over A. Let p′ = stp(d/A) and G be the q-binding group of p′. This is a definable
group over acl(A) acting definably over A on p′(U). Moreover, a |̂

A
q(U) implies

d |̂
A
q(U), so that the binding group acts transitively on p′(U). But this implies

that p′(U) = G ·d is a definable set. As p′(U) is also invariant under Autacl(A)(U), it
follows that p′(U) is an acl(A)-definable set. That is, p′ is isolated. But a ∈ acl(Ad)
now implies that stp(a/A), and hence tp(a/A) = p, is isolated. �

4. The case of DCF0

In this section we specialise to the case when T is the theory of differentially closed
fields in characteristic zero. We will make use of the Zilber trichotomy in this theory,
a deep and fundamental result of Hrushovski and Sokolovic describing what the
nontrivial minimal types look like. While this work appears only in the unpublished
manuscript [7], some details on the locally modular case can be found in [9, III.4],
while the non-locally-modular case has an alternative proof that appears in [14]. We
suggest [8] for an exposition on the Manin kernels associated to abelian varieties.

Fact 4.1 (Zilber Trichotomy in DCF0). Suppose p ∈ S(A) is a minimal type.

(a) If p is nontrivial locally modular then p is nonorthogonal to the generic type
of the Manin kernel of a simple abelian variety over acl(A) that does not
descend to the constants.

(b) If p is not locally modular then it is nonorthogonal to the generic type of
the field of constants over the empty set.
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A few words justifying our formulation of part (a) may be in order. It is maybe
not widely known that the simple abelian variety can be taken to be over acl(A).
However, as Martin Hils has pointed out to us, this can be deduced from the results
in [7]. We give a few details. By [7, Lemma 2.11], if p is nontrivial locally modular
then p is nonorthogonal to the Manin kernel of some simple abelian variety G1

over Aa1 for some a1. Now take a conjugate a2 of a1 that is independent of a1

over A. We then get a Manin kernel of some simple abelian variety G2 over Aa2

such that p is also nonorthogonal to its generic type. Hence, the two Manin kernels
are nonorthogonal. By [7, Theorem 2.12], G1 and G2 are isogenous. By the Claim
in the proof of [7, Proposition 2.8], it follows that G1 is isogenous to a (necessarily
simple) abelian variety G over acl(A). The Manin kernel of G is thus nonorthogonal
to that of G1 (by Theorem 2.12 of [7] again). So p is nonorthogonal to the Manin
kernel of G, which is over acl(A), as desired.

As we have pointed out earlier, a consequence of Fact 4.1 is that Assumption 3.1
is satisfied in DCF0, and hence Theorem 3.2 applies.

4.1. Two Examples. We begin with a pair of examples that show Theorem 3.2
to be best possible in the sense that it is essential in (†) to consider arbitrary
b ∈ acl(Aa). That is, as Example 4.2 shows, one cannot deduce isolation of p =
tp(a/A) by checking that a |̂

A

q(U) for all nonisolated minimal types q ∈ S(A). In

fact, as Example 4.3 shows, it does not even suffice to consider q ∈ S(Ab) for all
b ∈ dcl(Aa), one must pass to acl(Aa).

Example 4.2 (Parametrised family of Manin kernels). From [2, §4] one sees that
there exist nonisolated finite rank types p = tp(a) in DCF0 satisfying:

• p is weakly orthogonal to the field of constants C; and,
• there exists b ∈ dcl(a) such that tp(b) is minimal C-internal and tp(a/b) is

minimal nontrivial locally modular.

We claim that a |̂ q(U) for any q ∈ S(∅) nonisolated and minimal.

Proof. Indeed, if q is trivial then it is orthogonal to both tp(b) and tp(a/b), and
hence to p, so that a |̂ q(U) follows. If q is non-locally-modular then it is the generic
type of some strongly minimal 0-definable set X (see [13, §2.3]). By nonisolation
of q we must have that X ∩ acl(∅) is infinite. But then X(C) is infinite, and hence
cofinite. So q(U) ⊆ Cn and a |̂ q(U) follows by weak orthogonality. As there are
no minimal nontrivial locally modular types over the empty set – this follows from
Fact 4.1(a) – these are all the possibilities for q. �

The above example works not only over the empty set, but over any subset of the
field of constants. Indeed, for any A ⊆ C, letting a be as in the above example, one
can verify that tp(a/A) remains a nonisolated type of finite rank while a |̂

A

q(U)

for all q ∈ S(A) nonisolated and minimal.

Example 4.3 (The symmetric power of the j-function equation). Freitag and
Scanlon [5] have studied the order three algebraic differential equation satisfied by
the analytic j-function. It defines, over the empty set, a strongly minimal trivial set
X in DCF0. But unlike all previous such examples, X is not ω-categorical. Indeed,
X ∩ acl(c) is infinite for any c ∈ X generic. This is due to Hecke correspondences,
see the final paragraph of the proof of [5, Theorem 4.7]. Now, let c1, c2 ∈ X be a
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pair of independent generics. Let a be a code for {c1, c2}, and set p := tp(a). We
claim that p is nonisolated but a |̂

b

q(U) for any b ∈ dcl(a) and any nonisolated

minimal q ∈ S(b).

Proof. Note, first of all, that tp(c1/c2) is not isolated since it is the generic type
of X over c2, and X ∩ acl(c2) is infinite by construction. In particular, as a is
interalgebraic with (c1, c2), we have that p is nonisolated.

Now, because p is the code of a set of independent generic elements in a trivial
strongly minimal set, we have by [12, Example 2.2] that p admits no proper fibra-
tions. That is, if b ∈ dcl(a) then either a ∈ acl(b) or b ∈ acl(∅). So it suffices to
show that a |̂ q(U) for any nonisolated minimal type q over acl(∅). Suppose this
fails for some q. Then (c1, c2) 6 |̂ q(U). Since q is minimal, this implies that q is
nonorthogonal to the generic type of X. In particular, RM(q) = 1. (Indeed, after
taking a nonforking extension, a realisation of q is interalgebraic with a generic el-
ement of the strongly minimal set X.) It follows that q is the generic type of some
strongly minimal definable set Y over acl(∅). Moreover, Y must be trivial since X
is. But then Y (C) is finite, so that Y ∩ acl(∅) is finite as acl(∅) ⊆ C, contradicting
the fact that q is nonisolated. �

4.2. An improvement on the main theorem. The characterisation of isolation
given by Theorem 3.2 can be significantly improved in the case of DCF0. We
begin by pointing out that the trichotomy expressed by Fact 4.1 takes on an even
stronger form when we restrict our attention to the nontrivial minimal types that
are nonisolated:

Lemma 4.4. A nontrivial minimal type p ∈ S(A) is nonisolated if and only if
p(U) ⊆ acl(Aq(U)) where q ∈ S

(
acl(A)

)
is the generic type of either the constant

field or of the Manin kernel of some simple abelian variety over acl(A) that does
not descend to the constants.

Proof. Fact 4.1 tells us that nontriviality implies nonorthogonal to the generic type,
say q ∈ S

(
acl(A)

)
, of either the constant field or of the Manin kernel of some

simple abelian variety over acl(A) that does not descend to the constants. Suppose
p(U) 6⊆ acl(Aq(U)). By minimality of p, this means that there is a |= p such that
a |̂

A

q(U). On the other hand, p is almost internal to q. These conditions, namely

a |̂
A

q(U) and the almost internality of tp(a/A) to q, imply that p is isolated (see

the argument in the last paragraph of the proof of Theorem 3.2).
For the converse, note that the generic type of the constant field C is minimal

and nonisolated since C is a strongly minimal set with infinitely many points in
acl(A), that infinite set being the characteristic zero field C ∩ acl(A). The generic
type of the Manin kernel of a simple abelian variety over acl(A) is minimal and
nonisolated for the same reason – the Manin kernel is strongly minimal and it has
infinitely many acl(A)-points, namely the torsion points of the abelian variety. This
gives the right-to-left direction, using for example (†) applied with b = ∅, which
holds of any isolated type p by Proposition 2.1. �

We obtain the following improvement of Theorem 3.2 in the case of DCF0.
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Theorem 4.5. Suppose p = tp(a/A) is of finite rank. Then p is isolated if and
only if the following hold:

(i) a |̂
A

C; and

(ii) for every b ∈ acl(Aa) and G a simple abelian variety over acl(Ab) that
does not descend to the constants, letting G] denote the Manin kernel of G,
a |̂

Ab

G]; and

(iii) for every b ∈ acl(Aa) and q ∈ S(Ab) nonisolated and trivial minimal,
a |̂

Ab

q(U).

Proof. Suppose p is isolated. By Proposition 2.1 we know that (†) holds. So, for
every b ∈ acl(Aa) and q ∈ S(Ab) nonisolated and minimal, a |̂

Ab

q(U). Taking q to

be nonisolated minimal trivial yields (iii). Taking q to be the generic type of G]

over acl(Ab) we have that q(U) = G] \ acl(Ab) and hence a |̂
Ab

G]. Similarly, taking

b = ∅ and q to be the generic type of C over A, we have that q(U) = C \ acl(A) and
hence a |̂

A

C.

For the converse, by Theorem 3.2, it suffices to show that (i) through (iii) im-
ply (†). Let b ∈ acl(Aa) and q ∈ S(Ab) nonisolated and minimal. We want to
show a |̂

Ab

q(U). If q is trivial then this follows by (iii). If q is nontrivial then

by Lemma 4.4 we have that q(U) ⊆ acl(Abq′(U)) where q′ ∈ S(Ab) is the generic
type of either the constant field or of the Manin kernel of a simple abelian variety
over acl(Ab) that does not descend to the constants. So it suffices to show that
a |̂

Ab

q′(U). If q′ is the generic type of a Manin kernel then this is (ii). So suppose

q′ is the generic type of C over Ab. For any finite tuple c from q′(U) ⊆ Cn we
have a |̂

A

c by (i), and so a |̂
Ab

c as b ∈ acl(Aa). We have shown that a |̂
Ab

q′(U), as

desired. �

In practice, conditions (i) and (ii) of Theorem 4.5 are relatively easy to check
as they refer to concrete differential varieties. It is the trivial case, namely condi-
tion (iii), that remains in general intractable. Unfortunately, we cannot eliminate
this condition, even when A = ∅. For example1, let X be the trivial strongly
minimal but not ω-categorical 0-definable set coming from [5] and discussed in Ex-
ample 4.3 above. Let (c1, c2) be an independent pair of generic elements of X, and
this time let a := (c1, c2) and p := tp(a). Then p satisfies conditions (i) and (ii) of
Theorem 4.5, but fails condition (iii) with b = c2. Indeed, q := tp(c1/c2) is minimal
and trivial as it is the generic type of X, it is nonisolated since X has infinitely
many points algebraic over c2, and clearly a 6 |̂

Ac2

c1.

Nonetheless, in some cases we can ignore condition (iii); for example when p
extends a finite rank definable group. In that case, any trivial minimal type is
orthogonal to p and all its extensions, so (iii) is automatic. In other cases we can

1We have to resort here to this relatively recently discovered example because all previously
known trivial strongly minimal sets in DCF0 were ω-categorical, and it is easy to see that the
generic type q of an ω-categorical strongly minimal set over a differential field that is finitely
generated over its constant subfield is always isolated, and hence cannot pose an obstacle to (iii).
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eliminate (ii) as well; if p is analysable in the constants then it and all its extensions
will be orthogonal to all Manin kernels as well as all trivial minimal types.

4.3. Connection to the Dixmier-Moeglin equivalence. In [2, §9] it was shown
that finite rank types p = tp(a/A) in DCF0, with A ⊆ C, that satisfy condition (i)
of Theorem 4.5 but are not isolated, can be used to produce finite Gelfand-Kirillov
dimension counterexamples to the classical Dixmier-Moeglin equivalence for noe-
therian algebras. The types with these properties that arose there were the ones
coming from the parameterised Manin kernels of Example 4.2. As we have just
seen, the generic type of X × X, where X is defined by the differential equation
satisfied by the j-function, gives us another such counterexample, different from
the ones appearing in [2].

The differential Dixmier-Moeglin equivalence for D-varieties was made explicit
in [3], where positive results, as opposed to counterexamples, were the focus. The
following is Corollary 2.4 of [3]. It was used there to show that D-groups over the
constants satisfy the differential Dixmier-Moeglin equivalence, and eventually to
verify the classical Dixmier-Moeglin equivalence for Hopf Ore extensions. We give
here an alternative proof; indeed it is an immediate consequence of Theorem 4.5
above. We use freely the terminology of D-varieties, and the specific notions devel-
oped in [3], without further explanation.

Corollary 4.6. Suppose (V, s) is a D-variety over an algebraically closed δ-subfield
A of the field of constants, with the property that every irreducible D-subvariety of V
over A is compound isotrivial. Then (V, s) satisfies the differential Dixmier-Moeglin
equivalence.

Proof. Working over the constants the Dixmier-Moeglin equivalence reduces to
showing that every type in S(A) extending (V, s)], that is weakly orthogonal to
the constants, is isolated. The compound isotriviality assumption means that ev-
ery such type p = tp(a/A) is analysable in the constants. Conditions (ii) and (iii)
of Theorem 4.5 are therefore automatically satisfied. Hence, by Theorem 4.5, weak
orthogonality to C, which is condition (i), implies isolation. �

5. The case of CCM

As we have mentioned, Theorem 3.2 also applies to the theory of compact complex
manifolds. Much of what was done in the previous section for DCF0 goes through
for CCM if one replaces C by the projective line and Manin kernels by nonstandard
simple complex tori (see [1]) of dimension greater than 1. This is especially the
case if you restrict attention to compact Kähler manifolds where one has essential
saturation (see [10]). There is even an analogue of the algebraic differential equation
satisfied by the analytic j-function: in [11] it is observed that there exists a 0-
definable strongly minimal trivial set in CCM that is not ω-categorical. However,
there is one key obstacle to obtaining a full analogue of Theorem 4.5. We do not
know if the analogue of the Claim in the proof of [7, Proposition 2.8] holds:

Question 5.1. Suppose G1 and G2 are nonstandard simple complex tori over b1
and b2 respectivey, and b1 and b2 are independent over c ∈ dcl(b1) ∩ dcl(b2). Is it
the case that if G1 and G2 are isogenous then there is c′ ∈ acl(c) and a nonstandard
simple complex torus over c′ to which both G1 and G2 are isogenous?
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In the algebraic case one uses the fact that an algebraically closed set is a model,
which is no longer true in CCM. Without a positive answer to this question one
obtains only a weak analogue of Theorem 4.5 where in condition (ii) Manin kernels
are replaced by nonisolated minimal types that are nonorthogonal to the generic
type of a nonstandard simple complex torus defined possibly over extra parameters.
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