
Canonical Bases in Stable Theories

by

Ruizhang JIN
Department of Pure Mathematics

University Of Waterloo

Waterloo, Ontario, Canada, 2013

Table of Contents

1 Saturation 2

2 Codes, Many-sorted Structures, and Imaginaries 4

3 Codes for Type-definable Sets? 10

4 Forking 11

5 Canonical Bases 15

APPENDIX 21

A DLO Eliminates Imaginaries 21

References 23

ii

iii

Introduction

In model theory, a definable set is a set which is definable by a formula the parameters of
which comes from the whole universe. For example, let (R, 0, 1,+,×, <) be our structure,
then the set {x|x > 0} is definable by formulas like x > 0 and x + π > π. Notice that
x+ π > π uses a parameter π, while x > 0 doesn’t (because 0 is already in our language),
so in this example the parameter π is actually redundant. It is then a natural question to
ask how much a certain definable set actually depends on chosen parameters.

A canonical parameter (or a “code”) for a definable set is a set of parameters that is
in some sense minimal or irredundant. This will be made precise in Chapter 3, where we
will show that a definable set is perfectly characterized by its code in the sense that any
automorphism fixes the definable set iff it fixes the code. Codes do not always exist, but for
any model M there is an easy way to construct a new model denoted M

eq which preserves
all the information of the model M and also has codes for all definable sets. In a very loose
sense, definable sets are nothing more than finite tuples in M

eq.

Since definable sets have codes in M
eq, a natural question we will ask is whether type-

definable sets also have codes. It turns out that type-definable sets do not always have
codes even in theories with very nice properties. However, in stable theories, if we loosen
the restriction on what “fixing the type” means, we always have “canonical bases” in M

eq

for type-definable sets. Canonical bases are a (weakened) parallel of codes for definable
sets: an automorphism fixes a type generically iff it fixes a canonical base of the type.

The notion of canonical bases is a classical part of stability theory. The purpose of this
essay is to give a gentle and thorough exposition of these well-known ideas.

This essay is organised as follows. In Chapter 1, we recall the definition of a sufficiently
saturated model, in which we will often be working in the following chapters. In Chapter
2, we give the formal definition of “codes”, and then introduce the many-sorted model
M

eq which has codes for every definable set. We investigate the possibility of codes for
types in Chapter 3, and this motivates discussing “forking” in a stable theory in Chapter

1

4. We give the definition of canonical bases for types in Chapter 5, which is a parallel of
codes for definable sets, prove several facts about them. Finally, and work out an example:
canonical bases of types in ACF0.

In this essay, L will denote a first-order language, T will denote a complete L-theory
with only infinite models, and M , N will denote models of T . We usually use A, B,
C for parameter sets, and X, Y , Z for definable sets. We use a, b, c for both ele-
ments and tuples. When an automorphism α acts on a formula φ, we mean that α is
applied on all the parameters in φ, and the result is denoted φ

α. Similarly for types:
p
α = {φ (x, α(a)) : φ(x, y) is an L-formula, φ(x, a) ∈ p}. We use φ(M) to denote the set of
realisations of the formula φ in a model M . Note that φ(M) ⊆ M

n where n is the arity
of the tuple x. Similarly, for a partial type p(x), p(M) denotes the set of realisations of
p. We use S(A) to denote the set of all complete n-types over A, for all n ≥ q. We often
write a |= p(x) to say that a is a realisation of p(x) in some implicitly given model.

Chapter 1

Saturation

In this and the following two chapters, we are going to give facts that are necessary for
later discussions. We are not going to give proofs of these facts, but rather refer the reader
to [3] and Chapter 1 of [5] for further details.

Suppose T is a complete theory. In stability theory one usually works a sufficiently

saturated model C of the theory T . By this we mean that for a sufficiently large cardinal
κ, our model C is

1. κ-saturated, i.e., every type over parameters of cardinality < κ is realized in C itself;
and

2. strongly κ-homogeneous, i.e., if A and B are subsets of C of cardinality < κ, and f

2

is a bijection between A and B which is an elementary map, then f extends to an
automorphism of C itself.

The following useful properties also hold for a sufficiently saturated model. They are
consequences of 1 and 2 above.

3. C is κ+-universal, i.e., for every model M of T of cardinality ≤ κ, M is isomorphic
to an elementary substructure of C;

Let AutA(C) denote the set of automorphisms of C that fix A pointwise. Let dcl(A)
denote the definable closure of A, i.e., a ∈ dcl(A) iff there exists a formula φ such that
φ(C) = {a}. Let acl(A) denote the algebraic closure of A, i.e., a ∈ acl(A) iff there exists a
formula φ such that a ∈ φ(C) and |φ(C)| is finite.

4. For any subset A ⊂ C of cardinality < κ, a ∈ dcl(A) iff for any f ∈ AutA(C),
f(a) = a;

5. For any subset A ⊂ C of cardinality < κ, a ∈ acl(A) iff {f(a) : f ∈ AutA(C)} is
finite.

6. For any subset A ⊂ C of cardinality < κ and any definable set X, X is A-definable
(i.e., definable by an LA-formula) iff for any f ∈ AutA(C), f(X) = X.

Remark 1.1. For any theory T , there exist sufficiently saturated models. For a proof, we
suggest that the reader refer to Chapter 4 of [3].

We will often be working in a fixed sufficiently saturated model C with an associated
cardinal κ. In that case, unless otherwise specified, the conventions are as follows: a small
set is a set of size < κ; parameter sets are always assumed to be small; models are also
assumed to be small elementary submodels of C; types are assumed to be over small sets
or models. Sometimes we will need to break some of these conventions. In particular we
will consider types over C. To avoid confusions we will call types over C global types and
denote them with boldface letters (e.g., p).

3

Chapter 2

Codes, Many-sorted Structures, and

Imaginaries

The readers may refer to Chapter 4 of [1] for details and proofs of the facts mentioned
in this section.

The following captures what we might mean by “minimal” or “irredundant” parameters
for a definable set.

Definition 2.1. Given a structure M , suppose X ⊂ M
n is a definable set. A tuple a is

called a code for X or a canonical parameter for X if there is an L-formula φ(x, y), such
that X = φ(M,a) and if a� satisfies X = φ(M,a

�), then a = a
�.

We say that a is a code for ψ(x) if a is a code for ψ(M).

We now give another characterisation of codes.

Proposition 2.2. Let M be a |T |+-saturated model of T , and X a definable set in M .

Then a is a code for X iff for each automorphism α of M , α fixes X as a set iff α(a) = a.

Proof. The following proof is from the unpublished note Some Elementary Facts About

M
eq by Rahim Moosa.

Assume that a is a code for X and φ(x, a) defines X where φ(x, y) is an L-formula. If
an automorphism α of M fixes a, it fixes φ(x, a) and therefore fixes X. If α(X) = X, then
φ(M,a)α = φ(M,a), so φ(M,α(a)) = φ(M,a). By the definition of codes, α(a) = a.

Assume now that for each automorphism α of M , α fixes X as a set iff α(a) = a. By
Property 4 in Chapter 1, X is definable by a formula φ(x, a) where φ(x, y) is an L-formula.

4

Let p(y) = tp(a). We claim that p(y) implies (¬∀x(φ(x, a) ↔ φ(x, y))) ∨ (a = y). If
a
� |= p(y) but a

� �= a, then by saturation there is an automorphism of M that takes a

to a
�, so by our assumption, φ(x, a�) does not define the set X. By compactness there

is an L-formula ψ(y) ∈ p(y) which implies (¬∀x(φ(x, a) ↔ φ(x, y))) ∨ (a = y). Clearly
φ(x, a) ∧ ψ(a) still defines the set X. If φ(x, a�) ∧ ψ(a�) also defines the set X, then ψ(a�)
holds and ∀x(φ(x, a�) ↔ φ(x, a)), which yields a = a

�. Hence a is a code for X, witnessed
by φ(x, y) ∧ ψ(y).

Remark 2.3. It follows from the above proposition that if a and b are both codes of X,
then a ∈ dcl(b) and b ∈ dcl(a).

We will often be working in a sufficiently saturated model. In these cases, we will
always use this automorphism characterisation of codes, rather than the definition.

The following example shows that we do not necessarily have codes for all definable
sets in a structure M .

Example 2.4. Let L = (E) be our language where E is a binary relation, and T be the
theory that there are infinitely many equivalence classes and each equivalence class has
infinitely many elements. Let M be any model of T and a ∈ M . We prove that the
definable set E(M,a) does not have a code.

Suppose b = (b1, .., bn) is a tuple and φ(x, b) defines the set E(M,a). Let α be an
automorphism of M which fixes every equivalence class as a set but does not fix b1 (possible
because every equivalence class has infinitely many elements). Then φ(x, α(b)) defines the
set E(M,a)α = E(M,a), but α(b) �= b. So b is not a code for E(M,a).

It turns out that 0-definable equivalence relations are the only obstacles to definable
sets having codes.

To solve this issue, we will introduce the model M eq and the theory T
eq. We first

introduce the concept of “many-sorted language”.

Definition 2.5. (Many sorted language) A many sorted language is a language which
contains sorts, relation symbols, function symbols (constants being 0-ary function symbols),
and for each sort, variables of that sort. Each relation symbol R will be associated with a
tuple (S1, ..., Sn) of sorts (called the arity of R); and each function f will be associated with
a tuple of sorts for the domain (the arity of f) and also a target sort. Well-formed formulas
are built up as usual, except we require that if the arity of a relation R is (S1, ..., Sn), then
for R(v1, ..., vn) to be a formula, each term vi must be of sort Si, and similarly for functions.

5

A structure for a many-sorted languageM will consist of disjoint domains corresponding
to the various sorts of the language. The interpretation of a relation symbol R will then be
a subset of SM

1 × ...×S
M
n where (S1, ..., Sn) is its arity, and similarly for the interpretation

of function symbols.

Remark 2.6. We cannot construct by compactness an element which is not in any sort,
because any variable belongs to a specific sort, and to say that some variable is not in a
specific sort is thus not well-formed.

Now, for a 1-sorted language L, an L-theory T , and an L-structure M , we are going to
introduce the many-sorted language Leq, the Leq-theory T

eq, and the Leq-structure M eq in
a canonical fashion.

Let ER(T) be the collection of E ⊂ M
n × M

n where E is a 0-definable equivalence
relation, i.e., an equivalence relation on M

n definable by an L-formula φE(x, y) (without
parameters), x and y being finite tuples of the same arity n. For each equivalence relation
E ∈ ER(T), Leq will contain a sort SE. In particular there will be a sort S=. For E

as above, Leq will also contain a new function symbol fE, whose arity is (S=)n for the
appropriate n and whose target sort is SE. All the relation and function symbols of L will
also be in L

eq and their arity will be of the form (S=)n for some n.

Our structure M eq is as follows. The interpretation of S= in M is just M itself, and the
interpretation of the function and relation symbols in L are then interpreted accordingly.
For every E ∈ ER(T), the interpretation of the sort SE will be M

n
/E = {a/E : a ∈ M

n}
which is the set of E-classes of Mn, and the interpretation of fE will be the function that
maps a ∈ M to a/E.

By considering all variables in a formula as in the sort S=, we can treat any L-formula
as an L

eq-formula. By induction, we have easily

Fact 2.7. For any L-formula φ(x), and any tuple a from M , M |= φ(a) iff M
eq |= φ(a).

Let T eq be the theory claiming that all sentences that are true in T are true, with the
additional axioms that for each E ∈ ER(T), fE is a surjective map from (S=)n onto SE,
and f(x) = f(y) iff E(x, y). Clearly M

eq is a model of T eq if M is a model of T .

The following are several facts about T eq.

Fact 2.8. 1. Every model M∗ of T eq is of the form M
eq where M := (S=)M

∗
is a model

of T .

2. T
eq is complete.

6

3. If φ(x1, ..., xk) is an L
eq formula, and each xi is of sort S=, then there exists an

L-formula ψ(x1, ..., xk) which is equivalent to φ.

4. If M is κ-saturated and strongly κ-homogeneous, then M
eq is also κ-saturated and

strongly κ-homogeneous.

5. An automorphism of M can be uniquely extended to M
eq. Moreover, every auto-

morphism of M eq is acquired in this way.

By definition, passing to M
eq gives us codes for certain equivalence classes. For each

0-definable equivalence relation E ∈ ER(T) and each E-class X, let b ∈ X, a = fE(b),
and φ(x, y) be the L-formula y = fE(x). Then φ(x, a) defines the set X, and if for some
a
�, φ(x, a�) also defines X, we have a = a

�. The following proposition tells us more.

Proposition 2.9. If M |= T , then for each definable set X in M , X as a definable set in

M
eq has a code in M

eq.

Proof. Let X be a definable set in M defined by φ(x, a) where φ(x, y) is an L-formula.
Then E(y1, y2) := ∀x(φ(x, y1) ↔ φ(x, y2)) is a 0-definable equivalence relation. Let Y be
the E-class containing a, and let b = fE(a) ∈ M

eq. It is not hard to see that b is the code
for our set X witnessed by the formula ∀y(b = fE(y) → φ(x, y)).

Remark 2.10. We actually proved the following fact in the above proof: if every equiv-
alence class of every 0-definable equivalence relation in M has a code in M , then every
definable set in M has a code in M .

Proposition 2.11. Let M be a |T |+-saturated model of T . Every definable set in M
eq has

a code in M
eq.

Proof. Let E(x, x�) be a 0-definable equivalence relation in M
eq where x and x

� are of
arity (S1, ..., Sn), let X be an E-class and d ∈ X, and let f1, ..., fn be the functions of Leq

mapping from S= to Si. Let ψ(y1, ..., yn) = E ((f1(y1), ..., fn(yn)) , d) where y1, ..., yn are of
sort S=, and let Y be the set defined by ψ(y1, ..., yn). So Y is the pull-back of X to the
home sort M . By the construction of M eq,we know that an automorphism of M eq fixes X
iff it fixes Y . Also, since y1, ..., yn are of sort S=, Y actually lives in M , and thus has a
code in M

eq, say a. It follows from Proposition 2.2 that a is also a code for X.

By Remark 2.10, since every equivalence class in M
eq has a code in M

eq, every definable
set has a code in it.

7

We now continue to define elimination of imaginaries.

Definition 2.12. A theory T (possibly in a many-sorted language) has elimination of

imaginaries, or eliminates imaginaries, if for every model M , every 0-definable equivalence
relation E, and every E-class X, X has a code in M .

Remark 2.13. 1. If T is complete, one need only check the definition in some (rather
than any) model.

2. Proposition 2.11 implies that for any complete theory T , T
eq has elimination of

imaginaries.

3. Remark 2.10 shows that if T has elimination of imaginaries and M |= T , then every
definable set in M has a code in M .

Passing to T
eq gives us codes for all definable sets. It is therefore never necessary to

pass to (T eq)eq; moreover, if T has elimination of imaginaries, it is not necessary for us to
pass to T

eq.

Now consider the theory ACF0, the theory of algebraically closed field of characteristic
0. We prove that ACF0 eliminates imaginaries. First we give the following fact (proof can
be found on p. 62 of [2]).

Fact 2.14. Let K be a field, I be an ideal of K[x1, ..., xn]. There exists a minimal field of

definition of I. This means that there exists a field k0 ⊆ K, such that

1. I is generated by polynomials whose coefficients are in k0; and

2. If I is generated by polynomials whose coefficients are in k ⊆ K, then k ⊇ k0.

Furthermore, if α is an automorphism of K, then I
α = I iff α �k0= id, where I

α =��
i

�
α(ai)

�
j x

nij

j

�
:
�

i

�
ai

�
j x

nij

j

�
∈ I

�
.

Proposition 2.15. ACF0 eliminates imaginaries.

Proof. We work in a sufficiently saturated model K |= ACF0. We assume some familiarity
with this theory. In particular, we know that ACF0 admits quantifier elimination, so
every definable set is a finite boolean combination of Zariski closed sets, i.e., zero sets of
polynomial equations.

8

Let X ⊂ K
n be Zariski-closed. Let I(X) = {f ∈ K[x1, ..., xn] : f(b) = 0 for all b ∈ X}

be the ideal of X. By Noetherianity I(x) is finitely generated, so its minimal field of
definition is a finitely generated filed extension of Q. Suppose the minimal field of definition
of I(X) is Q(a1, ..., al). Let a = (a1, ..., al).

If α ∈ Aut(K) fixes a, then it fixes the field Q(a1, ..., al) pointwise. Since Q(a1, ..., al)
contains the coefficients of the generators of the ideal I(X), I(X) = I(X)α. Since X is
Zariski-closed, V (I(X)) := {b : f(b) = 0 for all f ∈ I(X)} equals X, and since α fixes
I(X), α fixes V (I(X)) = X.

If α ∈ Aut(K) fixes X, then it fixes I(X). By Fact 2.14, α fixes the minimal field of
definition of I(X) pointwise, so it fixes a = (a1, ..., al).

By Proposition 2.2, a is a code for X. We proved that every Zariski-closed set has a
code.

Now let X be an irreducible Zariski closed set with code a. Suppose that Y � X be a
definable set with code b, and that the Zariski closure of X\Y is X. Every automorphism
fixing a and b fixes the setX\Y . Every automorphism α fixingX\Y preserves the collection
of Zariski closed sets that contains X\Y , thus fixing their intersection, which is X, the
Zariski closure of X\Y . Since α fixes X and X\Y , it fixes Y , so it fixes a and b. So (a, b)
is a code for X\Y .

Now let X be an arbitrary definable set. Let X̄ be the Zariski closure of X. Let
X̄ = X1 ∪ ... ∪ Xn be the irreducible decomposition of X with ai a code for for Xi. If
X∩Xi = Xi, then ci := ai is a code for X∩Xi. Otherwise, let Y = Xi\(X∩Xi). Note that
Y ⊂ Xi is a definable set, and the Zariski closure of Xi\Y is Xi, so we need to find a code
for Y . This can be done by using the same way we are using to find the code for X, and
this recursive process will stop at some point because X is a finite boolean combination of
Zariski closed sets. Now suppose bi is a code for Y . By argument from the last paragraph,
ci := (ai, bi) is a code forX∩Xi = Xi\Y . We now haveX = (X∩X1)∪...∪(X∩Xn) and each
X ∩Xi has a code ci. Now, an automorphism fixes X iff it fixes {Xi∩X : i = 1, ..., n} as a
set, which means that it might permute the subscripts (permuting the subscripts is the only
possibility by the uniqueness of the irreducible decomposition). Suppose X∩Xi = φ(x, ci).
If there exists an automorphism α such that α(Xi∩X) = Xj ∩X for some j, then we may
assume that X ∩ Xj = φ(x, cj), i.e., the codes ci and cj are based on the same formula.
Let Ci = {cj : there exists an automorphism taking X ∩Xj to X ∩Xi}. Since elements in
Ci are finite tuples and |Ci| is finite, Ci is Zariski closed and has a code, say di. It is not
hard to see that every automorphism fixes X iff it fixes all Ci’s as sets, iff it fixes all di’s.
So (d1, ..., dn) is a code for X.

Thus ACF0 eliminates imaginaries.

9

From now on, unless otherwise specified, we will work implicitly inside T
eq instead of

just T . For example, by a ∈ acl(A) we actually mean that a ∈ acleq(A).

Chapter 3

Codes for Type-definable Sets?

We work in a sufficiently saturated model C, or rather Ceq, of a complete theory T .

Since definable sets in M
e
q have codes, a natural question to ask is whether type-

definable sets, i.e., sets of realisations of types, also have codes. A natural definition
of codes for types is: a (possibly infinite) set B is a code for a type p(x) if for every
automorphism α of our ambient saturated model C, pα(C) = p(C) iff α �B= id. In this
chapter, we point out that unlike definable sets, even in C

eq, type-definable sets do not
necessarily have codes.

Let ACF0 be our theory, K be our sufficiently saturated ambient model (containing the
complex number set as a field), and p(x) be the type saying that x is transcendental over
the field Q(π). We claim that p does not have a code.

The set of realizations of p(x) is the set of elements which are transcendental over Q(π),
which is K\Q(π)alg. An automorphism α of K fixes p(K) as a set iff it fixes Q(π)alg as a
set.

Suppose a ∈ K\Q(π)alg. Let a
� ∈ K\Q(π)alg be an element not equal to a. As both

are transcendental, by saturation there exists an automorphism α of K that fixes Q(π)alg

pointwise but maps a to a
�. So α(p(K)) = p

α(K) = p(K). Since α does not fix a, a code
for p cannot contain a.

Suppose a ∈ Q(π)alg\Qalg. Let a� ∈ Q(π)alg\Qalg be an element not equal to a. There
exists an automorphism of Q(π)alg (which can be extended to an automorphism of K) that
fixes Qalg pointwise but maps a to a

�. Since α fixes Q(π)alg as a set, α fixes K\Q(π)alg =
p(K). Since α does not fix a, a code for p cannot contain a.

10

From the argument above, a code for our type p, if it exists, must be a subset of Qalg.
Let a ∈ K\Q(π)alg, and let σ ∈ AutQalg(K) take π to a. Clearly σ does not fix Q(π)alg as
a set, so it does not fix p(K). This means that a code for our type cannot be a subset of
Qalg. Therefore, p does not have a code.

Note that in our example, the automorphism σ that mapped π to the other transcen-
dental number a �∈ Q(π)alg did not fix the set p(K), but it did not move it much. Indeed,
p and p

σ have the same “generic” context, namely transcendentality. One way to resolve
the problem of type-definable sets not having codes is to weaken the notion of code to ask
automorphisms to only fix the type “generically”. Of course we need a robust notion of
“generic” for this.

In the following chapter, we will introduce the concept of non-forking extension, which
is a precise definition of what “generic” might mean.

Chapter 4

Forking

Our goal here is to quickly review the basic notions around forking. The reader may
refer to pp. 14-28 of [5] for detailed proofs of unproven facts in this section.

We fix a sufficiently saturated model C and work implicitly in C
eq in this section.

Definition 4.1. Let M be a model of T , p(x) ∈ S(M), and δ(x, y) be an L-formula. An
LM -formula φ(y) is a δ-definition of p, if for all b ∈ M , φ(b) holds iff δ(x, b) ∈ p(x). A
type p(x) ∈ S(M) is definable over A ⊂ M if for each L-formula δ(x, y), there exists a
δ-definition of p which is an LA-formula. A type is definable if it is M -definable.

While δ-definitions need not be unique, every δ-definition of p defines the same set in
the model M , namely {b : φ(x, b) ∈ p(x)}. Hence they are equivalent modulo T . We
therefore abuse notation by referring to the δ-definition of p, and denoting it by dpδ(y).

11

A type p being A-definable means that for each L-formula δ(x, y), there is an LA-
formula dpδ(y) which tells us which δ(x, b) are in our type. In particular note that if p is
A-definable and α ∈ AutA(M), then p

α = p.

The problem, of course, is that types need not be definable. This is where stability
theory enters the picture.

Definition 4.2. An L-formula δ(x, y) is stable if there do not exist two sequences of tuples
(a1, ..., an, ...) and (b1, ..., bn, ...) such that |= δ(ai, bj) iff i ≤ j. A theory T is stable if every
L-formula in T is stable.

We will not use this combinational definition directly, instead we will use the following
key property: types over models in stable theories are definable.

Fact 4.3. Suppose δ(x, y) is stable and p(x) ∈ S(M). Then p(x) has a δ-definition over
M .

From now on we will assume that our theory T is stable.

Let p1 ∈ S(A) and p2 ∈ S(B), where A ⊂ B are two small sets. We say that p2 is an
extension of p1 if every formula that appears in p1 also appears in p2. Consider, in the
language of fields, the complete type p(x) over Q that says the element is transcendental
over Q. Among the extensions of p(x) to C, there is a distinguished one, say q(x), which
says it is transcendental over C. This extension, compared to the others, is somehow a
“free” extension of p(x),

This notion of “free extension” is made rigorous in stable theories by the following
definition.

Definition 4.4. Let M ⊂ N be models of T and q(x) ∈ S(N). We say that q does not

fork over M if q is definable over M .

It follows easily that for each L-formula δ(x, y), if q ∈ S(N) is an extension of p ∈ S(M)
that does not fork over M , then there is a δ-definition of q that is a δ-definition of p. Since
δ-definitions are unique modulo T -equivalence, it follows that p and q have the same δ-
definitions.

Actually, it is a fact that for any models M ⊂ N and any p(x) ∈ S(M), there always
exists an extension q(x) ∈ S(N) which does not fork over M .Indeed, the δ-definitions of p
tell us how to build q(x): for each a ∈ N , we put δ(x, a) into q if N |= dpδ(a). Of course
one has to check that this produces a consistent complete type. This q will be the unique
non-forking extension of p to N . We denote this q by p|N . In fact we have

12

Fact 4.5. Let M be a model, A ⊂ M be algebraically closed and p(x) ∈ S(A). There is a
unique extension of p to M which is definable over A. We denote this extension by p|M .

Remark 4.6. We say that a set X is algebraically closed if X = acl(X). Similarly, X is
definably closed if X = dcl(X).

Now we can extend Definition 4.4 to algebraically closed sets: Let A ⊂ B be two
algebraically closed parameter sets and q ∈ S(B). We say that q does not fork over A if
for some, equivalently any, model M ⊃ A, q|M is definable over A.

By definition and Fact 4.5, p ∈ S(A) does not fork over A.

And here is the final generalized definition of non-forking where the constraint of being
algebraically closed is dropped.

Definition 4.7. Let A ⊂ B be two arbitrary parameter set and q ∈ S(B). We say that
q does not fork over A, if there is an extension q

� ∈ S(acl(B)) of q, such that q� does not
fork over acl(A). If q ∈ S(B) extends p ∈ S(A) and q does not fork over A, then we also
say that q is a non-forking extension of p to B.

In fact, it turns out that if some extension of q to acl(B) does not fork over acl(A),
then all extensions of q to acl(B) do not fork over acl(A). This follows from the fact that
the group of elementary permutations of acl(B) which fixes B pointwise acts transitively
on the set of extensions of q to acl(B) (see p. 20 of [5]).

Note that every extension of p to acl(A) is a non-forking extension.

Definition 4.8. A type p ∈ S(A) is stationary if it has a unique non-forking extension
to any set B containing A. In this case the non-forking extension of p to B is denoted by
p|B.

Proposition 4.9. Types over algebraically closed sets are stationary.

Proof. This follows from Fact 4.5 and the definition.

Let p(x) ∈ S(A) where A is algebraically closed. Suppose B ⊇ A. Let M ⊇ acl(B)
be a model. By Fact 4.5, there exists a type q ∈ S(M) which is definable over A. It is
easy to see that q � acl(B) is also definable over A, and by definition, q|B is a non-forking
extension of p to B.

Suppose q1, q2 are two non-forking extensions of p to B ⊇ A, say q1, q2 ∈ S(B). Let
q
�
1, q

�
2 ∈ S(acl(B)) be extensions of q1, q2, respectively. By definition, q1, q2 are non-forking

13

extensions of p. Let M ⊃ B be a model and consider q
�
1|M and q

�
2|M . Since q

�
1|M and

q
�
2|M are non-forking extensions of a type p over an algebraically closed set to the model
M , by Fact 4.5 q

�
1|M = q

�
2|M . Hence q1 = q2 as desired.

Thus, in order to show that a type over an arbitrary set A is stationary, it suffices to
check that it has a unique extension to acl(A).

We can now extend the notion of δ-definability to stationary types over arbitrary sets
A.

Definition 4.10. Let A be a parameter set and let p ∈ S(A) be stationary. For an L-
formula δ(x, y), the δ-definition of p is the δ-definition of p|M for some, equivalently any,
model M ⊇ A. We say that p is definable over B if it has δ-definitions over B for all δ.

Two types p ∈ S(A) and q ∈ S(B) are parallel if they have the same non-forking
extension to some set containing A∪B. If p and q are stationary, they then have the same
δ-definitions for any L-formula δ(x, y). In this way, we consider parallel stationary types
as “having the same generic content”, thus formalizing what was hinted at in Chapter 3.

Proposition 4.11. Let p ∈ S(A) be stationary. Then p is definable over A.

Proof. Fix a model M ⊃ A. Since p is stationary, p has a unique extension p
� = p|M .

It follows that for all α ∈ AutA(C), p�α = p
�. Hence α fixes dp�δ(C) for all L-formulas

δ(x, y). It follows from sufficient saturation of our ambient model that dp�δ is equivalent
to an LA-formula. As dp�δ is the δ-definition of p, we have that p is definable over A.

Example 4.12. Let ACF0 be our theory. Since ACF0 admits elimination of imaginaries,
we do not need and will not pass to ACFeq

0 .

Let p(x) ∈ S(Q) be the type which says x is transcendental over Q. Given any field
F of characteristic 0 (so Q is a subfield of F), we claim that p has a unique non-forking
extension to F and that that extension is the one saying that x is transcendental over F .
We may assume that F is algebraically closed.

First note that p(x) has a unique extension p
�(x) ∈ S(Qalg) which says that x is tran-

scendental over Qalg. As Qalg = acl(Q), p� is a non-forking extension of p.

Now suppose q(x) ∈ S(F) is a non-forking extension of p(x). Then by definition it must
be a non-forking extension of p�(x). Let n ≥ 0 and consider φ (x, (y0, ..., , yn)) the L-formula
(y0 + y1x + ... + ynx

n = 0) ∧ (yn �= 0). If q(x) contains the formula φ (x, (a0, ..., , an)) for
some (a0, ..., an) ∈ F

n+1, then dqφ(F) is not the empty set, so F |= ∃(y = (y0, ..., yn))dqφ(y).

14

Notice that Qalg � F , and ∃ydqφ(y) is an LQalg-formula (since q does not fork over Qalg,
we can take dqφ(y) to be an LQalg-formula). So Qalg |= ∃ydqφ(y). Also notice that dqφ(y)
is a φ-definition of p�(x) because q is a non-forking extension of p�. So there exists a tuple
(b0, ..., bn) from Qalg, such that p� contains the formula (b0+ b1x+ ...+ bnx

n = 0)∧ (bn �= 0).
But p� says that x is transcendental over Qalg, a contradiction. Thus q(x) does not contain
φ (x, (a0, ..., , an)) for any tuple (a0, ..., an) from F . This means that q(x) is the type saying
that x is transcendental over F .

This argument also shows that the type p(x) is stationary.

Chapter 5

Canonical Bases

We have seen in Chapter 2 that for any theory, when we are working in C
eq, every

definable set X has a code, i.e., a tuple such that an automorphism fixes X setwise iff it
fixes the code. In Chapter 3, we asked if there is something like a code for type-definable
sets, and showed that the naive generalisation does not work. In this chapter we show
that for stationary types in stable theories, there is an appropriate weakening of code that
works, namely the canonical base.

Recall that our convention is that types are over small sets. However we will also con-
sider types over the entire saturated model C, and we call these global types, denoting them
with boldface p, q, etc. If α is an automorphism, then p

α is defined just like an automor-
phism acting on ordinary types: pα = {φ (x, α(a)) : φ(x, y) is an L-formula, φ(x, a) ∈ p}.

We first define “codes” for global types in the naive way.

Definition 5.1. A set A is called the canonical base of a global type p ∈ S(C), if for each
automorphism α of C, pα = p iff α fixes the set A pointwise.

The following example shows that not all global types have canonical bases.

15

Example 5.2. Let C be an ℵ1-saturated model of DLO, the theory of dense linear ordering
without endpoints. We assume some familiarity with this theory, in particular that DLO
admits quantifier elimination and elimination of imaginaries. We give a proof of DLO
eliminating imaginaries in the appendix.

Let a0 < a1 < ... < an < ... be a sequence of increasing elements in C. Let p(x) be
the global type saying that x > b iff b > ai for all i = 0, 1, 2, ... (although p(x) is a partial
global type, it actually uniquely determines a complete global type which we still denote
by p(x)). We claim that p(x) does not have a canonical base.

Since DLO eliminates imaginaries, if p has a canonical base, it will be in the home sort
C. We now prove that p does not have a canonical base. Suppose b < ak for some ak. Since
b < ak < ak+1 < ..., there is an elementary map that takes the sequence (b, ak, ak+1, ...) to
(ak, ak+1, ak+2...) which can be extended to an automorphism α of C. It is easy to see that
p
α = p, but α(b) = ak �= b, so b is not in the canonical base of p. Suppose now that b > ak

for all k = 0, 1, 2, Let b� > b. Since a0 < a1 < a2 < ... < b < b
�, there is an elementary

map that takes the sequence (b, ak, ak+1, ...) to (b�, ak+1, ak+2...) which can be extended to
an automorphism α of C. It is again easy to see that pα = p, but α(b) = ak �= b, so b is
not in the canonical base of p. So if p has a canonical base, it has to be the empty set.
Let b0 < b1 < b2 < ... be a sequence such that bi > a > j for all i, j ≥ 0. Let q(x) be the
global type saying that x > b iff b > ai for all i = 0, 1, 2, ... (similar to p(x), q(x) is also a
complete type). The global types p and q are different because x < b0 is in p but not in q.
There exists a partial elementary map that takes (ai)ni=0 to (bi)ni=0 which can be extended
to an automorphism α. Since α (trivially) fixes the empty set but takes the global type p

to a different global type q, the empty set is not a canonical base of p. Therefore, p does
not have a code.

However, in stable theories, canonical bases always exist.

Proposition 5.3. Assume that T is stable. Every global type p ∈ S(C) has a canonical

of cardinality ≤ |T |.

Proof. We construct a canonical base of p.

By Fact 4.3, for each L-formula δ(x, y), p has a δ-definition. Let dpδ(y) be a δ-definition
of p and aδ a code for dpδ(y). Let A = {aδ : δ(x, y) is an L-formula}. Note that A is a
small set because it is of size at most the number of L-formulas.

We claim that A is a canonical base of p.

16

If α is an automorphism of C and p = p
α, then for each L-formula δ(x, y),

C |= dpδ(c) ⇔δ(x, c) ∈ p

⇔δ(x, α(c)) ∈ p
α = p

⇔C |= dpδ(α(c)).

That is, α fixes dpδ(C). As aδ is its code, it follows that α(aδ) = aδ. So α fixes A pointwise.

Conversely, suppose α fixes A pointwise, i.e., for each L-formula δ(x, y), α(aδ) = aδ.
Then

δ(x, α(c)) ∈ p ⇔C |= dpδ(α(c))

⇔C |= dpδ(c) Since α fixes the code for dpδ(y)

⇔δ(x, c) ∈ p.

Thus pα = p.

In the rest of this chapter, we assume that our theory T is stable.

Proposition 5.4. Let p be a global type. If A is a canonical base of p, then B is a

canonical base of p iff dcl(A) = dcl(B). In particular, every canonical base is small.

Proof. We freely use the automorphism characterisation of dcl that we have in sufficiently
saturated models (see (4) in Chapter 1).

If B is a canonical base of p, then every automorphism of C fixes B pointwise iff it
fixes p iff it fixes A pointwise. So dcl(A) = dcl(B).

Conversely, assume dcl(A) = dcl(B). Let α be an automorphism of C. If pα = p,
then α|A = id, thus α|dcl(A) = id, and since B ⊂ dcl(A), α fixes B pointwise. If α fixes
B pointwise, then α|dcl(B) = id and thus α fixes A pointwise, so p

α = p. We have proved
that B is also a canonical base of p.

By Proposition 5.3, for each global type there exists one canonical base which is small.
Since small is preserved under definable closure, all canonical bases are small.

This justifies denoting by cb(p) the set dcl(A) where A is any canonical base of the
global type p. We abusively call cb(p) the canonical base of p.

Using non-forking extensions we can extend the definition of canonical bases to ordinary
stationary types.

17

Definition 5.5. Suppose p(x) is a stationary type (over a small set of parameters). A
canonical base of p is by definition a canonical base of the global non-forking extension
p|C.

The following characterisation shows that canonical bases do encode the generic content
of stationary types.

Proposition 5.6. Suppose p(x) ∈ S(A) is stationary and B is a parameter set. The

following are equivalent:

(i) B is a canonical base of p.

(ii) For all α ∈ Aut(C), α � B = id iff p
α and p are parallel.

Proof. Fix α ∈ Aut(C). Note that as automorphisms preserve non-forking extensions,
p
α ∈ S (α(A)) is also stationary. It follows that (p|C)α = p

α|C. Hence

p and p
α are parallel

⇔ p|C = p
α|C

⇔ p|C = (p|C)α.

The equivalence of (i) and (ii) is then an immediate consequence of the equivalence
displayed above.

As before, we define cb(p) = dcl(B) where B is a canonical base of p. Equivalently,
cb(p) = cb(p|C). We also say that cb(p) is the canonical base of p.

The following proposition tells us where the canonical base of a type lies.

Proposition 5.7. For any stationary type p ∈ S(A), cb(p) ⊆ dcl(A).

Proof. Suppose p(x) ∈ S(A) is stationary. For any L-formula δ(x, y), let bδ be a code for
dpδ(y). Since p(x) is definable over A, dpδ(C) is an A-definable set, so bδ ∈ dcl(A). Since by
definition dpδ(y) are also the δ-definitions of p|C, the set B = {bδ : δ(x, y) is an L-formula}
is a canonical base of p|C, and thus a canonical base of p. Since each element of B lies
inside dcl(A), we get that cb(p) = dcl(B) ⊆ dcl(A).

The following characterisation of canonical base is very useful, and explains in what
sense the canonical base is a “minimal” parameter set.

18

Proposition 5.8. Let p ∈ S(A) be a stationary type. Then cb(p) is the smallest definably

closed set B ⊆ dcl(A) such that p does not fork over B and p � B := {LB formulas in p}
is stationary.

Proof. We first prove that p does not fork over cb(p). To prove this, by Definition 4.7,
we need to prove that there is an extension p

� ∈ S(acl(A)) of p that is definable over
acl(cb(p)). Notice that p is stationary, and every extension of p to acl(A) is non-forking, so
p
� is actually the unique non-forking extension of p to acl(A). Let δ(x, y) be an L-formula,
and dp�δ(y) be a δ-definition of p�. By Definition 4.10, dp�δ(y) is also a δ-definition of
p
�|C = p|C. By the construction of a canonical base of p|C in the proof of Proposition 5.3,
we know that dp�δ(C) is cb(p)-definable. So p

� is definable over cb(p), thus over acl(cb(p)).

We now prove that p � cb(p) is stationary. Let r := (p| acl(A)) � acl (cb(p)). Note that
as p does not fork over cb(p), p| acl(A) is a non-forking extension of the stationary type
r. Hence cb(p) = cb(r). Now suppose q ∈ S(acl(cb(p))) is an extension of p � cb(p). As
is mentioned in Chapter 4, the group of elementary permutations of acl(cb(p)) which fixes
cb(p) pointwise acts transitively on the set of extensions of p � cb(p) to acl(cb(p)) (see p.
20 of [5]). So there exists an automorphism α of C such that α �cb(p)= id and q

α = r. We
now get that cb(qα) = cb(r), and by taking α

−1 on both sides, we get that cb(q) = cb(r)
(since α fixes cb(r) = cb(p) pointwise). As q, r ∈ S(acl(cb(p))), being parallel means that
in fact q = r. We have shown that p � cb(p) has a unique extension to acl(cb(p)), so
p � cb(p) is stationary.

Now suppose that p does not fork over B and p � B is stationary for some definably
closed set B ⊆ dcl(A). Note then that p and p � B have the same δ-definitions. Let bδ be
a code for the δ-definition of p for some L-formula δ(x, y). Since B is definably closed, we
have that bδ ∈ B, so {bδ : δ(x, y) is an L-formula} ⊆ B, and by taking definable closure on
both sides, we get that cb(p) ⊆ B.

We conclude this essay with a description of canonical bases in ACF0.

Let K |= ACF0 be our sufficiently saturated model. Since ACF0 eliminates imaginaries,
we do not pass to K

eq.

Let F be a (small) field of characteristic 0. Given p(x) ∈ Sn(F) a complete n-type
over F , let Ip = {f(x) ∈ F [x1, ..., xn] : f(a) = 0 for all (equivalently any) a |= p(x)}.
Let Vp = V (Ip) = {(a1, ..., an) ∈ K

n : f(a1, ..., an) = 0 for all f ∈ Ip}. By noetherianity
Vp is an F -definable Zariski closed set, and since p(x) is a complete type over F , Vp is
F -irreducible.

19

Let V ⊆ K
n be an F -irreducible F -definable Zariski closed set. Let p(x) be the complete

type containing x ∈ V and {x �∈ W : W � V , W F -definable} (by quantifier elimination
there is a unique type containing this partial type). See Chapter 7 of [4] for a proof.

Proposition 5.9. Let F1 ⊂ F2 be two algebraically closed (small) fields, p(x) ∈ Sn(F1),
and q(x) ∈ Sn(F2). Then q(x) is a non-forking extension of p(x) iff Vp = Vq.

Proof. Let Ip = {f(x) ∈ F1[x1, ..., xn] : f(a) = 0 for all (equivalently any) a |= p} be
an ideal in F1[x1, ..., xn] generated by f1, ..., fk. If Iq = {f(x) ∈ F2[x1, ..., xn] : f(a) =
0 for all (equivalently any) a |= q} (which is an ideal in F2[x1, ..., xn]) is also generated by
f1, ..., fk, then we immediately get that Vp = Vq.

Let Um be the set of monomials of degree not greater than m with coefficient 1. Let
δ(x, y) be the L-formula, where x is of arity n and y = (yu)u∈Um is of arity |Um|, saying that�

u∈Um
yuu(x) = 0, i.e., the polynomial whose coefficient is y has x as a root. Let us find

explicitly a δ-definition of p(x). Since Ip is generated by f1, ..., fk, for a tuple c = (cu)c∈Um

from F1, δ(x, c) ∈ p(x) iff there exist polynomials q1, ..., qk ∈ F1[x1, ..., xn] of degree ≤ m,
such that

�k
i=1 qifi =

�
u∈Um

cuu. By interpreting “there exist polynomials” as “there
exist coefficients for polynomials”, this can be written as an LF1-formula, say ψ(y), which
is a δ-definition of p(x). Since non-forking extension preserves δ-definitions, ψ(y) is also
a δ-definition of q(x). That is, for any tuple c = (cu)u∈Um from F2, δ(x, c) ∈ q(x) iff
there exist q1, ..., qn ∈ F2[x1, ..., xn] of degree ≤ m, such that

�k
i=1 qifi =

�
u∈Um

cuu. But
δ(x, c) ∈ q(x) iff

�
u∈Um

cuu ∈ Iq. Hence, by enumerating all m > 0, we get that Iq is
generated by f1, ..., fk.

Remark 5.10. In general, it is not hard to prove that if F1 and F2 are not necessarily
closed, then q(x) is a non-forking extension of p(x) iff Vq is an F2-irreducible component
of Vp.

Proposition 5.11. Suppose p ∈ Sn(F) is stationary. Then cb(p) is the minimal field of

definition of Vp.

Proof. We use the automorphism characterisation of canonical bases: an automorphism
α ∈ Aut(K) fixes a canonical base of p iff p and p

α are parallel.

For α ∈ Aut(K), let G be an algebraically closed group containing F and α(F). By
definition, p and p

α are parallel iff p|G = p
α|G, and by Proposition 5.9 and the correspon-

dence between types over G and G-irreducible Zariski closed sets, iff Vp = Vpα . Thus a
code for Vp is a canonical base of p.

20

Let H = Q(a1, ..., al) be the minimal field of definition of Vp. We have shown in
the proof of Proposition 2.15 that (a1, ..., al) is a code for the Zariski closed set Vp, i.e.,
α ∈ Aut(K) fixes (a1, ..., al) iff it fixes the set Vp. So (a1, ..., al) is a canonical base of p,
and cb(p) = H = dcl(a1, ..., al), which is the minimal field of definition of Vp.

APPENDIX

Appendix A

DLO Eliminates Imaginaries

Recall (from Definition 2.12) that a theory T eliminates imaginaries, if for any model
M of T , and any definable set X in M , there exists an L-formula φ(x, y) and a tuple a

such that X = φ(M,a), and if X = φ(M,a
�), then a

� = a. We prove here that DLO, the
theory of dense linear ordering without endpoints, eliminates imaginaries.

In the rest of this appendix, the theory will always be DLO. We assume some familiarity
of this theory. In particular, we use without proof the fact that DLO has quantifier
elimination. We will always be working in a sufficiently saturated model C.

Lemma A.1. Let X be a definable set in C. If both φ(x, a) and ψ(x, b) defines X, where

φ(x, y) and ψ(x, z) are two L-formulas, and a = (a1, ..., am) and b = (b1, ..., bn) are two

tuples, then there is an L-formula δ(x, w), such that X = δ(C, c), where c = a ∩ b when

viewed as sets, i.e., elements in c are elements that appears in both a and b.

21

Proof. We only need to prove the following claim: if bk does not appear in the tuple a,
then there is an Lb�-formula defining X, where b

� = (b1, ..., bk−1, bk+1, ..., bn). We can reach
the conclusion of the lemma by repeatedly taking away elements in b that are not in a.

Without loss of generality, assume a1 < ... < am and b1 < ... < bn.

If no ai falls into the open interval (bk−1, bk+1), then by sufficient saturation, for any
c ∈ (bk−1, bk+1), there exists an automorphism α which fixes every element in a and b

�,
but takes bk to c. Since this automorphism fixes the tuple a, it fixes X. This means
that for every c ∈ (bk−1, bk+1), ψ(x, (b1, ..., bk−1, c, bk+1, ..., bn)) defines X, so actually the
Lb�-formula ∀z(bk−1 < z < bk+1 → ψ(x, (b1, ..., bk−1, z, bk+1, ..., bn))) defines X.

Now we drop the assumption on ai and try to prove the same thing. Let c ∈ (bk−1, bk+1).
Without loss of generality assume c < bk. Let α be an automorphism of C which fixes b,
fixes every ai which lies outside (bk−1, bk+1), and moves all the ai’s in (bk−1, bk+1) outside the
interval (c, bk). Since α fixes b, it fixes X, so φ(x, α(a)) also defines X. Now let β be an au-
tomorphism that fixes α(a) and b

� and takes bk to c, which exists as α(ai) is now outside the
interval (c, bk), for any i. Since β fixes α(a), it fixes X. Thus β ◦α is an automorphism that
fixes X, fixes b�, and takes bk to c. So ψ(x, (b1, ..., bk−1, c, bk+1, ..., bn)) still defines X, and
we get again that the Lb�-formula ∀z(bk−1 < z < bk+1 → ψ(x, (b1, ..., bk−1, z, bk+1, ..., bn)))
defines X.

Proposition A.2. DLO eliminates imaginaries.

Proof. For any definable set X, let a be a minimal parameter for X in the sense that X is
definable over a but not definable over any proper subtuple of a. Let us index a = (a1, ..., ak)
such that a1 < a2 < ... < ak. Suppose X = φ(C, a) where φ(x, y) is an L-formula. We
claim that a is a code of X witnessed by the formula φ(x, a)∧(a1 < a2 < ... < ak). Suppose
X = φ(C, a

�) ∧ a
�
1 < a

�
2 < ... < a

�
k. By Lemma A.1 and minimal choice of a, {a�1, ..., a�k} =

{a1, ..., ak}, and hence a
� = a as we have a1 < a2 < ... < ak and a

�
1 < a

�
2 < ... < a

�
k.

Remark A.3. The above corollary shows that any theory satisfying Lemma A.1 has weak
elimination of imaginaries, i.e., for every definable set X there is a tuple c of parameters
and a corresponding formula φ(x, y) such that φ(x, c) defines X, and φ(x, c�) defines X iff
c
� is a permutation of c (hence c is actually more like a set of parameters rather than a
tuple).

22

References

[1] Wilfrid Hodges. Model Theory. Cambridge University Press, New York, 1993.

[2] Serge Lang. Introduction to Algebraic Geometry. Addison-Wesley Publishing Company,
Reading, MA, 1996.

[3] David Marker. Model Theory: An Introduction. Springer-Verlag, New York, 2002.

[4] Rahim Moosa. Set Theory and Model Theory. Unpublished Notes, 2012.

[5] Anand Pillay. Geometric Stability Theory. Oxford University Press, New York, 1996.

23

	Saturation
	Codes, Many-sorted Structures, and Imaginaries
	Codes for Type-definable Sets?
	Forking
	Canonical Bases
	APPENDIX
	DLO Eliminates Imaginaries
	References

