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Abstract. A criterion in the spirit of Rosenlicht is given, on the rational

function f(x), for when the planar vector field

{
y′ = xy

x′ = f(x)

}
admits a pair of

algebraically independent first integrals over some extension of the base field.

This proceeds from model-theoretic considerations by working in the theory

of differentially closed fields of characteristic zero and asking: If D ⊆ A1 is a

strongly minimal set internal to the constants, when is log−1
δ (D), the pullback

of D under the logarithmic derivative, itself internal to the constants?
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1. Introduction

This paper is concerned with systems of differential equations of the form

(1)

{
y′ = xy
x′ = f(x)

}
where f is a rational function over a base differential field1 (F, δ). Note that when
the base is a field of constants, namely δ is trivial on F , these equations define
a rational vector field on the plane. Indeed, we will be applying our results to
precisely that context. But we are interested more generally in the case of a possibly
nonconstant base field. Note, also, that at least outside of y = 0, the system (1)

can be expressed as the single second-order differential equation

(
y′

y

)′
= f

(
y′

y

)
.
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In other words, we are looking at the pullback of x′ = f(x) under the logarithmic

derivative operator y 7→ y′

y
.

Other classes of second-order algebraic differential equations that have been the
object of model-theoretic study in recent years include Painlevé equations in [14, 15],
generic planar vector fields in [7], and the twisted D-groups of [1, Example 3.4]. A
central feature of Painlevé equations and generic planar vector fields is that there
is little structure induced on the solution space, whereas the system (1) that we
study here, like that of twisted D-groups, admits a lot of structure.2

What we ask about logarithmic-differential pullbacks is motivated by both model
theory and differential-algebraic geometry:

Question 1. When is (1) almost internal to the constants?

We will review what this means formally in Section 3, but roughly speaking, to say
that (1) is almost internal to the constants is to say that it admits two algebraically
independent first integrals after base change. Recall that a first integral to a vector
field (A2, s) is a nonconstant rational function that is constant on the leaves of
the corresponding foliation. Equivalently, it is a nonconstant rational function on
which the derivation induced by s vanishes. So Question 1 asks: when does it
happens that, over some differential field (K, δ) extending (F, δ), there exists a pair
of algebraically independent rational functions in K(x, y) that are constant for the
(unique) derivation extending δ on K and taking (x, y) 7→

(
f(x), xy

)
.

Of course one should ask this question first about the single equation x′ = f(x).
When is x′ = f(x) almost internal to the constants? When does it admit a first
integral after base change? In the case that F is a field of constants the answer to
this question is given by an old theorem of Rosenlicht (see [17, Proposition 2]): it is

almost internal to the constants if and only if f = 0 or
1

f
=

d

dx
(g), or

1

f
=
c ddx (g)

g
,

for some c ∈ F and g ∈ F (x). However, no extension of Rosenlicht’s criterion to
the case of nonconstant parameters is known – the naive generalisations certainly
fail. So at this level of generality we will have to impose as an additional condition
that x′ = f(x) is almost internal to the constants. Or even that it is internal to the
constants – that after base change the rational function field is generated by a first
integral. Then we take the logarithmic-differential pullback of x′ = f(x), namely
the system (1), and ask when it too is almost internal to the constants.

An important example is f = 0. In that case (1) defines a differential-algebraic
group which extends the constant points of the multiplicative group by the constant
points of the additive group. It is not almost internal to the constants. We do
have one first integral, namely the rational function x itself. Moreover, each fibre
y′ = cy has a first integral after we extend the base to a solution: if γ is nonzero
and satisfies γ′ = cγ then the rational function y

γ is a first integral to y′ = cy

over F (γ). (In model-theoretic parlance, this says that the system (1) is analysable
in the constants.) But these first integrals on the fibres cannot be put together,
and we do not obtain an algebraically independent pair of first integrals over any
differential field. An argument for this well known fact can be found in [3, Fact 4.2].
From the f = 0 case one can deduce the same result for f = γ where γ ∈ F .

2This will become clearer as we go along, but for the model theorist, what we have in mind
here is disintegratedness versus nonorthogonality to the constants.
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Consider next the example f(x) = x. Then, again, the logarithmic-differential
pullback (1) is not almost internal to the constants. This is [8, Proposition 3.2].
There is a first integral (namely, x

γ where γ′ = γ is nonzero) but not a pair of

algebraically independent first integrals.
Finally, consider f(x) = x2. Then 1

x + t is a first integral if t′ = 1. On the
other hand, x

y is also a first integral to (1). Hence, in this case, the logarithmic-

differential pullback is almost internal to the constants. Note that x′ = x2 is
differential-birationally isomorphic to x′ = 1 by the change of variable x 7→ −1

x ,
but the latter has logarithmic-differential pullback not internal to the constants.
So, while almost internality to the constants is a differential-birational invariant
of (1), it is not an invariant of x′ = f(x). The answer to Question 1 will have to
be sensitive to the specific rational function f .

Our goal is to explain the different behaviour exhibited in the above examples.
Observe that when f(x) = x2, the system (1) is differential-birationally isomorphic
to a product of first-order equations; namely, the change of variables y 7→ x

y yields{
y′ = 0
x′ = x2

}
. We say that the system (1) splits. A precise definition appears in the

next section, but roughly speaking, it means that after a finite-to-finite differential-

rational correspondence the system transforms into one of the form

{
y′ = γy
x′ = f(x)

}
for some γ ∈ F . It is not hard to verify that the other examples we have considered
(when f is either constant or x) do not split. It was at first expected that this was
typical; that if a logarithmic-differential pullback is almost internal to the constants
then it is for the concrete reason that it splits, see [9, Conjecture 5.4]. This turns
out not to be entirely correct.

In fact, Question 1 depends sharply on a subtle model-theoretic invariant of the
equation x′ = f(x) called its binding group. This is a certain algebraic group, acting
differential-rationally on the generic solutions to the equation, that generalises the
differential Galois group in the case of linear ODE’s. Because the equation is first-
order, it follows from general results that the dimension of the binding group is at
most 3. We answer Question 1 in all but the top-dimensional case:

Theorem A. Suppose F is a differential field and f ∈ F (x) is a rational function
such that x′ = f(x) is internal to the constants with binding group not of dimen-
sion 3. Then the logarithmic-differential pullback of x′ = f(x) is almost internal to
the constants if and only if it splits.

It is necessary that the binding group not have dimension 3 in the following
strong sense: If the binding group is of dimension three – and this does happen
as we verify in Example 4.2 below – then x′ = f(x) is a finite cover of another
first-order algebraic differential equation whose logarithmic-differential pullback is
almost internal to the constants but does not split. This ubiquity of counterexam-
ples in dimension 3 appears as Theorem 4.4 below.

Our proof of Theorem A goes through a careful case analysis by dimension of the
binding group, studying dimensions 0, 1, and 2 in turn. This is done in Section 5,
where the bulk of the work of this paper is done. (There are examples showing each
case to be non-vacuous, see in particular Example 5.4 in dimension 2.)

When the base is a field of constants it is known that the binding group is at most
1-dimensional, and so Theorem A applies to answer Question 1 entirely. In this
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case we give explicit Rosenlicht-type criteria on f(x) for (1) to be almost internal
to the constants:

Theorem B. Suppose F is an algebraically closed field of constants and f ∈ F (x).

The rational vector field defined by

{
y′ = xy
x′ = f(x)

}
is almost internal to the constants

if and only if the following conditions on f are satisfied:

(i) f 6= 0, and

(ii)
1

f
=

d

dx
(g) or

1

f
=
c ddx (g)

g
for some c ∈ F and g ∈ F (x), and

(iii)
kx− e
f

=
d
dx (h)

h
for some nonzero k ∈ Z, e ∈ F and h ∈ F (x).

Condition (ii) is the Rosenlicht condition on f that we saw before. Condition (iii)

can be expressed as saying that the partial-fraction decomposition of
x− ek
f must be

of the form
∑`
i=1

ri
x−ci for some rational numbers ri and constants ci ∈ F . In

particular, writing f = P
Q with P,Q coprime polynomials, condition (iii) forces

degP ≥ degQ+ 2. (It also forces P to have at most one multiple root, namely e
k

with multiplicity 2.) In particular, we see that while all the examples f(x) = c, x, x2

considered above satisfy (i) and (ii), only f(x) = x2 satisfies condition (iii). This
explains why the logarithmic-differential pullback of x′ = x2 behaves differently
from the others.

Let us end this introduction by speculating on a more general setting in which
this work could be situated. The logarithmic derivative is a special case of the
generalised Schwarzian derivative in the sense of [18], arising from an algebraic
group acting on a curve. In this case it is the action of the multiplicative group
on itself. Now, the only faithful transitive algebraic group actions on curves are
the one-dimensional groups acting on themselves (of which Ga gives rise to the
derivative and Gm gives rise to the logarithmic deriviative), GmnGa acting on the
affine line by affine linear transformations, and PSL2 acting on the projective line by
projective transformations (which gives rise to the classical Schwarzian derivative).
In all cases, by construction, the fibres of the generalised Schwarzian derivative are
internal to the constants. It would be natural to ask, in each of these cases, when
is the generalised-Schwarzian-differential pullback of x′ = f(x) almost internal to
the constants?

Acknowledgements. We are grateful to Rémi Jaoui and Anand Pillay for several
useful conversations on this topic.

2. Splitting and a formulation for types

We work throughout this paper in a fixed sufficiently saturated model (U , δ) of
the theory of differentially closed fields in characteristic zero. This is a large dif-
ferentially closed field that serves as a universal domain for differential-algebraic
geometry. All parameter sets are assumed to be of cardinality strictly less than
|U| unless explicitly stated otherwise. All algebraic and differential-algebraic vari-
eties are identified with their U-points. Definable will always mean definable with
parameters in (U , δ). The field of constants is denoted by C = {x ∈ U : δx = 0}.
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By the logarithmic derivative we then mean the definable function logδ x =
δx

x
.

We have the following short exact sequence of differential-algebraic group homo-
morphisms

0 // Gm(C) // Gm

logδ // Ga
// 0

where Gm denotes the multiplicative group and Ga the additive group.
For the sake of both clarity and rigour, it is more convenient to work with

logarithmic-differential pullbacks of types rather than equations.

Definition (Logarithmic-differential pullback). For p ∈ S1(A) a complete 1-type
over A, we denote by log−1δ (p) the type tp(u/A) ∈ S1(A) where u ∈ Gm is such
that logδ u |= p and u /∈ acl(A, logδ u).

That log−1δ (p) exists is because for fixed a |= p the equation δy = ay has a
solution outside of acl(A, a) by the existential closedness and saturation of (U , δ).
Moreover, log−1δ (p) does not depend on the choice of a. Indeed, suppose a′ |= p
and u′ /∈ acl(A, a′) is such that logδ u

′ = a′. Then there is σ ∈ AutA(U) with
σ(a) = a′. Now logδ

(
σ(u)

)
= σ(logδ u) = σ(a) = a′ and σ(u) /∈ acl(A, a′). So u′

and σ(u) are both generic realisations of the strongly minimal formula δy = a′y
over acl(A, a′), and hence there is τ ∈ AutAa′(U) with τ(σ(u)) = u′. In particular,
tp(u/A) = tp(u′/A).

We now make precise what we mean by splitting in Theorem A.

Definition (Splitting). For p ∈ S1(A) we say that the logarithmic-differential
pullback splits if we can factor some nontrivial integer power of u |= log−1δ p in Gm

as uk = w1w2 where w1 ∈ dcl(A, logδ u) and logδ w2 ∈ dcl(A).

Assuming p itself is almost C-internal, we have that tp(w1/A) is almost C-internal
as any realisation is in the definable closure of a realisation of p. Also tp(w2/A) is
C-internal as any two realisations, having the same logarithmic derivative, will have
a constant ratio. Hence, if log−1δ (p) splits then any realisation is in the algebraic

closure of realisations of almost C-internal types. That is, if log−1δ (p) splits then it

is almost C-internal. The question is whether splitting is the only way log−1δ (p) can
be almost C-internal.

We restate Theorem A with these formalities in place.

Theorem A, reformulated. Suppose F is an algebraically closed differential field
and f ∈ F (x) is such that the generic type p ∈ S1(F ) of δx = f(x) is C-internal.
Suppose the binding group of p is not of dimension 3. Then log−1δ (p) is almost
C-internal if and only if it splits.

It is this version that we prove in Section 6 below.
Finally, let us remark that it might be natural to ask about arbitrary minimal

C-internal 1-types p – without insisting that it is the generic type of an equation
of the form δx = f(x). In fact, the only way in which we use this equation in the
proof of Theorem A is to rule out (by genus considerations) the possibility of the
binding group of p being an elliptic curve. Our methods do not seem to yield a
proof, nor a counterexample, when the binding group is an elliptic curve.
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3. Model-theoretic preliminaries

Our aim in this section is to briefly recall various relevant notions from stability
theory around internality and orthogonality, and then to establish some either el-
ementary or well-known facts about them that will be used later. We stay in the
setting of differentially closed fields, though everything discussed here makes sense
in, and is true of, stable first-order theories in general. We suggest [11] for an
introduction to the model theory of differentially closed fields.

By a minimal type we mean a stationary complete type of U -rank one.
Suppose p ∈ S(A) is a stationary type. We say that p is C-internal if for some

B ⊇ A and a |= p independent of B over A, a ∈ dcl(B, C). Often one uses
the following “fundamental system of solutions” characterisation: for some n < ω
there is a Morley sequence (a1, . . . , an) |= p(n) and an (A, a1, . . . , an)-definable
function g(x) such that for all a |= p there is a tuple c from C such that a = g(c).
Here p(n) is the (unique) type of an n-tuple of independent realisations of p. A
key tool in studying C-internal types is the binding group which we will denote
by AutA(p/C). By definition this is the group of permutations of p(U) that are
induced by automorphisms of U fixing A ∪ C pointwise. When p is C-internal, the
binding group, along with its action on p(U), is A-definable. In fact, over possibly
additional parameters, AutA(p/C) is definably isomorphic to the C-points of an
algebraic group over the constants.

Lemma 3.1. Suppose p ∈ S(A) is a stationary C-internal type. If a |= p and b ∈
dcl(Aa) then q := tp(b/A) is a stationary C-internal type and there is a surjective
A-definable homomorphism φ : AutA(p/C) → AutA(q/C). If p is minimal and
b /∈ acl(A) then ker(φ) is finite.

Proof. Given σ ∈ AutA(p/C) we define φ(σ) to be the restriction to qU of any
extension of σ to AutA(U/C). The fact that b ∈ dcl(Aa) ensures that φ(σ) does not
depend on the extension chosen and is in fact A-definable. Indeed, writing b = f(a)
for some A-definable function f , for any b′ |= q we have that b′ = f(a′) for some
a′ |= p, and φ(σ)(b′) = f(σ(a′)) for any such a′. It is also clear that φ is surjective:
given τ ∈ AutA(q/C) extend it to τ̂ ∈ AutA(U/C) and note that φ(τ̂ |p(U)) = τ .

Let (a1, . . . , an) |= p(n) be a fundamental system of solutions for the C-internality
of p. Then the action of an element of AutA(p/C) on {a1, . . . , an} determines its
action on p(U). Now let b1, . . . , bn |= q be such that tp(ab/A) = tp(aibi/A) for all
i = 1, . . . , n. If p is minimal and b /∈ acl(A) then each ai ∈ acl(Abi). If σ ∈ ker(φ)
and σ̂ ∈ AutA(U/C) extends σ, then σ̂(bi) = bi for all i, and so there are only
finitely many possible values that σ can take on {a1, . . . , an}. This proves that
ker(φ) is finite. �

Lemma 3.2. Suppose p ∈ S(A) is a stationary type that is C-internal and whose
binding group G acts regularly – i.e., uniquely transitively – on p(U). Suppose L
is an A-definable subgroup of G. Then L is normal and there exist a |= p and
e ∈ dcl(A, a) such that the binding group of tp(e/A) is G/L.

Proof. Let a |= p and set e to be a canonical parameter for L ·a, the orbit of a under
the action of L. Then clearly e ∈ dcl(A, a), and hence q := tp(e/A) is stationary
and C-internal. Let H := AutA(q/C) be its binding group and let φ : G→ H be the
surjective definable homomorphism given by Lemma 3.1. We show that L = ker(φ).
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Fix g ∈ G and σ ∈ AutA(U/C) extending g. Then

g ∈ ker(φ) =⇒ σ(e) = e

=⇒ σ(L · a) = L · a
=⇒ L · (ga) = L · a
=⇒ ga = `a for some ` ∈ L
=⇒ g ∈ L by the regularity of the action.

Conversely, suppose g ∈ L. Let e′ |= q be arbitrary. Then e′ is the canonical
parameter for L · a′ for some a′ |= p. Now g(L · a′) = L · a′ as g ∈ L. Hence
σ(L · a′) = L · a′, and so σ(e′) = e′. That is, φ(g) = 1, as desired. �

Lemma 3.3. Suppose p ∈ S(A) is a stationary type that is C-internal with binding
group G. Suppose H is an algebraic group over the constants and φ : H(C) → G
is a definable isomorphism over possibly additional parameters. If L is a normal
algebraic subgroup of H over the constants then φ

(
L(C)

)
is definable over A ∪ C.

Proof. For convenience, let us take A = ∅. Recall that the binding group appears
as the group of automorphisms of an object in the binding groupoid as introduced
by Hrushovski in [6] – but see also [4, §3] for a detailed exposition with present
terminology. Namely, we have a 0-definable connected groupoid G with objects
(Oi)i∈I and morphisms (fm : Oi → Oj)m∈M(i,j) all in the pure field of constants,
plus one new object O∗ with morphisms (fm : Oi → O∗)m∈M(i,∗) and (fm : O∗ →
Oj)m∈M(∗,j) in U , such that G = AutG(O∗), H(C) = AutG(Oc), and φ = fm for
some fixed c ∈ I and m ∈ M(c, ∗). Now, each morphism fm′ : Oc → O∗ induces
a definable isomorphism Fm′ : AutG(Oc) → AutG(O∗) given by α 7→ fm′αf−1m′ .
Since L(C) is normal in AutG(Oc) we have that Fm

(
L(C)

)
= Fm′

(
L(C)

)
for all

m′ ∈M(c, ∗). In particular, or all σ ∈ Aut(U/C),
σφ
(
L(C)

)
= σFm

(
L(C)

)
= Fσ(m)

(
L(C)

)
= Fm

(
L(C)

)
= φ

(
L(C)

)
as desired. �

Suppose p ∈ S(A) is a stationary type. We say that p is weakly orthogonal to C
if a |̂

A
C for all a |= p. An equivalent characterisation is that of “having no new

constants”; namely, that dcl(A, a)∩ C = dcl(A)∩ C. Note that by the fundamental
system of solutions characterisation of internality, if p is C-internal then p(n) is not
weakly C-orthogonal for some n < ω.

Because of stationarity, if p is both C-internal and weakly C-orthogonal, then
AutA(p/C) acts transitively on p(U). In particular, being the orbit of an element
under the definable action of a definable group, p(U) is a definable set and so p is
isolated. If p is in addition minimal then p(U) will be a strongly minimal set.

Lemma 3.4. Suppose p ∈ S(A) is minimal C-internal. If p(n) is weakly orthogonal
to C but p(n+1) is not, then dim AutA(p/C) = n.

Proof. Note, first of all, that G = AutA(p(m)/C) for all m ≥ 1. So if p(n) is weakly
orthogonal to C then the action of G on p(n)(U) is transitive, and hence dimG ≥ n.
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Now, let (a1, . . . , an) |= p(n). We can extend this to a Morley sequence (a1, . . . , am)
that forms a fundamental system of solutions, with m > n. In particular, G is
determined by its action on (a1, . . . , am). If we let q be the nonforking extension
of p to B := A ∪ {a1, . . . , an} and set K := Fix(a1, . . . , an) = {g ∈ G : gai = ai},
then K embeds into AutB(q(m−n)/C). But as p is minimal and p(n+1) is not weakly
orthogonal to C we have that p(U) ⊆ acl(B, C), and hence AutB(q(m−n)/C) is a
finite group. So K is finite. Since every element of G is determined modulo K, by
its action on (a1, . . . , an), this means that G ⊆ acl(A, a1, . . . , an). Hence dimG = n,
as desired. �

Corollary 3.5. Suppose p ∈ S(A) is minimal C-internal. Then

dim AutA(p/C) = max{m < ω : p(m) is weakly orthogonal to C}.

Proof. As we have pointed out, C-internality implies that some power is not weakly
C-orthogonal. Note also that if p(m) is not weakly C-orthogonal then neither is
p(m+1). The Corollary now follows from Lemma 3.4. �

A more robust notion than internality is almost internality: p is almost C-internal
if for some B ⊇ A and a |= p independent of B over A, a ∈ acl(B, C). So acl has
replaced dcl in the definition.

Lemma 3.6. Every almost C-internal type over A is interalgebraic over A with a
C-internal type over A.

Proof. This is well known, but as we could not find a detailed proof we provide one
here. Suppose p ∈ S(A) is almost C-internal and a � p. Let n be least such that
there exists an LA-formula ϕ(x, y, z), a tuple b independent from a over A and a
tuple c from C such that � ϕ(a, b, c) and |ϕ(U , b, c)| = n. We fix these b, c, and ϕ.

We claim that ϕ (U , b, c) ⊆ acl(Aa). Indeed, let a = a1, a2, . . . , an be the ele-
ments of ϕ(U , b, c). Towards a contradiction, suppose without loss of generality that
a2 6∈ acl(Aa). Then there are a′2, b′ and c′ such that tp(a′2b

′c′/Aa) = tp(a2bc/Aa)
and a′2b

′ |̂
Aa
a2 · · · anb. We want to show that a |= ϕ(x, b, c) ∧ ϕ(x, b′, c′) also

witnesses the almost C-internality of p. This would suffice as it would contradict
the minimality of n. We need that bb′ |̂

A
a. Since b |̂

A
a and b |̂

Aa
b′, we have

b |̂
Ab′

a. But also, b′ |̂
A
a. Hence, bb′ |̂

A
a, as desired.

Now, let d be a code for the finite set ϕ (U , b, c). Then a ∈ acl(Ad) and as each
ai ∈ acl(Aa) we get that d ∈ acl(Aa) as well. So acl(Aa) = acl(Ad). Moreover, it
follows that d |̂

A
b, and as d ∈ dcl(A, b, c) we have that tp(d/A) is C-internal. �

Lemma 3.7. Suppose p ∈ S(A). The following are equivalent:

(i) p is almost C-internal,
(ii) for some m > 0, p(m) is not weakly orthogonal to C,
(iii) for some m > 0 and (a1, . . . , am) |= p(m), am ∈ acl(A, C, a1, . . . , am−1).

Proof. That (iii) implies (ii) with the same m is clear. For (ii) implies (i) note that
by minimality, (a1, . . . , am) 6 |̂

A
C yields ai ∈ acl(A, C, a1, . . . , ai−1) for some i ≤ m.

Finally, assume (i) holds. Let p′ ∈ S(A) be C-internal and interalgebraic with p
over A, by Lemma 3.6. If (a′1, . . . , a

′
n) is a fundamental system of solutions for p′

and a′n+1 |= p′ is independent of (a′1, . . . , a
′
n), then a′n+1 ∈ dcl(A, C, a′1, . . . , a′n).

Let a1 |= p be interalgebraic with a′1 over A, and extend it to (a1, . . . , an+1) such
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that
(
(a1, a

′
1), . . . , (an+1, a

′
n+1)

)
is a Morely sequence. Then an+1 ∈ acl(A, a′n+1) ⊆

acl(A, C, a′1, . . . , a′n) = acl(A, C, a1, . . . , an), which is (iii) with m = n+ 1. �

As suggested by Corollary 3.5 and Lemma 3.7, when working with almost C-
internality, rather than C-internality, the role of the dimension of the binding group
is played by max{m < ω : p(m) is weakly orthogonal to C}. This will agree with
the dimension of the binding group of a C-internal type interalgebraic with p.

The following is the manifestation in differentially closed fields of Hrushovski’s [5]
classification of faithful transitive group actions on strongly minimal sets in stable
theories, along with the fact that every infinite finite rank definable field in a dif-
ferentially closed field is definably isomorphic to the field of constants (see [16,
Corollary 1.6]).

Fact 3.8. Suppose (G,S) is a definable faithful transitive group action of G on a
strongly minimal set S. Then

(1) dimG = 1 and G acts regularly, or
(2) dimG = 2 and (G,S) is definably isomorphic to the action of Gm(C)nGa(C)

on C by affine transformations, or
(3) dimG = 3 and (G,S) is definably isomorphic to the action of PSL2(C) on

P(C) by projective transformations.

In particular, dimG ≤ 3.

Corollary 3.9. Suppose p ∈ S(A) is a minimal type that is almost C-internal.
Then p(4) is not weakly orthogonal to C.

Proof. By Lemma 3.6 we may assume that p is C-internal. Let G = AutA(p/C) be
the binding group. By Corollary 3.5, it suffices to show that dimG ≤ 3. But if
dimG > 0 then p is weakly orthogonal to C so that G acts transitively on S := p(U).
Now apply Fact 3.8. �

Finally, the following is a useful consequence of stable embededness.

Lemma 3.10. Suppose φ(z) is a formula over A in variables z = (z1, . . . , zm). If

φ(z) has a realisation in Cm then it has a realisation in
(

acl(A) ∩ C
)m

.

Proof. By stable embeddeness, φ(C) = ψ(C) where ψ(z) is an Lring-formula over
dcl(A) ∩ C. As K := acl(A) ∩ C is an algebraically closed field it is an elementary
substructure of C and hence ψ(K) is nonempty. �

4. Counterexamples in dimension 3

We show in this section that it is possible for log−1δ (p) to be almost C-internal
without splitting. Indeed, this happens near any minimal C-internal p for which
p(3) is weakly C-orthogonal.

First a preparatory lemma.

Lemma 4.1. Suppose F is a differential field with algebraically closed constants
and p ∈ S(F ) is a C-internal and weakly C-orthogonal minimal type.

(a) The binding group of p is definably isomorphic to Ga(C) if and only if there
are a |= p and b ∈ F 〈a〉 \ F alg such that δb ∈ F .
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(b) The binding group of p is definably isomorphic to Gm(C) if and only if there
are a |= p and b ∈ F 〈a〉 \ F alg such that logδ b ∈ F .

Proof. Let S := p(U). We know by weak C-orthogonality that S is a strongly
minimal set acted upon transitively by the binding group G := AutF (p/C).

First, suppose there are a |= p and b ∈ F 〈a〉 \ F alg such that γ := δb ∈ F . Since
p is weakly C-othogonal, so is q(x) := tp(b/F ). If β ∈ F alg satisfied δβ = γ, then
b−β would be a constant that is clearly dependent on b over F . Hence the formula
δx = γ has no realisations in F alg. So this formula isolates q(x) and AutF (q/C) is
definably isomorphic to Ga(C). But by Lemma 3.1 there is a surjective definable
homomorphism φ : G → AutF (q/C) with finite kernel. As the additive group has
no proper finite covers, φ must be an isomorphism, and we have that G is definably
isomorphic to Ga(C), as desired.

Similarly, if γ := logδ b ∈ F , then q will be isolated by logδ x = γ and will have
binding group Gm(C). We obtain a definable homomorphism φ : G→ Gm(C) that is
surjective and with finite kernel. But as the only finite covers of the multiplicative
group are those of the form [n] : Gm → Gm that raise to the nth power, it follows
that G is definably isomorphic to Gm(C) in this case.

For the converse directions of both parts, we first show how the 1-dimensionality
of G implies the existence of infinitely many automorphisms of the differential field
F 〈a〉 that fix F pointwise. Indeed, the action of G on S is uniquely transitive
by Fact 3.8. So if we fix a ∈ S then S ⊆ dcl(F, a, C). We thus have an F 〈a〉-
definable embedding f : S → Cn for some n > 0. It follows that the generic type
of S over F 〈a〉 is not isolated and so S(F 〈a〉alg) is infinite. But f

(
S(F 〈a〉alg)

)
⊆

dcl
(
F 〈a〉alg ∩ C

)
= dcl(F ∩ C) by the weak C-orthogonality of p and the algebraic

closedness of F ∩ C. It follows that S(F 〈a〉alg) = S(F 〈a〉), and so the latter is
infinite. Note that if e ∈ S(F 〈a〉) \ F alg then because p is minimal we must have
a ∈ S(F 〈e〉alg) = S(F 〈e〉). In particular, F 〈a〉 = F 〈e〉, and a 7→ e induces an
automorphism of the differential field F 〈a〉 that fixes F pointwise. We have shown
there are infinitely many such automorphisms, as desired.

This allows us to apply a theorem of Kolchin [10, Theorem 7] (see also [12]), to
conclude3 that there exists b ∈ F 〈a〉 \ F alg such that

(1) γ := δb ∈ F , or
(2) γ := logδ b ∈ F , or
(3) (δb)2 = λb(b2 − 1)(b− κ) for some nonzero λ, κ ∈ F .

Letting q := tp(b/F ) we have that q(x) is the generic type of the formula

(1) δx = γ, or
(2) (δx = γx) ∧ (x 6= 0), or
(3) (δx)2 = λx(x2 − 1)(x− κ),

respectively. Moreover, q is weakly C-orthogonal. As we have seen, it then follows
that if we are in case (1) the binding group of q is definably isomorphic to Ga(C), and
if we are in case (2) it is definably isomorphic to Gm(C). It is also well known that
in case (3) the binding group of q cannot be either Ga(C) or Gm(C), see for example
the proof of Proposition 5.28 in [9] for an explicit argument. Now, by Lemma 3.1
there is a definable homomorphism φ : G → AutF (q/C) that is surjective and has
finite kernel. If G is definably isomorphic to Ga(C) then φ is an isomorphism and

3Note that F is relatively algebraically closed in F 〈a〉 as p is stationary, and the constants of
F 〈a〉 are the same as those of F as p is weakly C-orthogonal – so Kolchin’s theorem does apply.
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so AutF (q/C) is also Ga(C) and we are in case (1). Similarly, if G is Gm(C) then so
is AutF (q/C) and we are in case (2). �

Next we point out that case (3) of Fact 3.8, where PSL2(C) acts on P(C) by
projective transformations, is realised as a binding group in differentially closed
fields. It is the binding group of the equation δx = f(x) where f is the differentially
generic degree 2 polynomial. Indeed, this is probably well-known and the following
argument follows suggestions to the first author by Anand Pillay.

Example 4.2. Fix independent differentially transcendental α0, α1, α2, and let
p(z) be the generic type of δz = α2z

2 + α1z + α0 over Q〈α1, α2, α3〉. Then p is
C-internal with binding group isomorphic to PSL2(C).

Proof. Consider first the generic type q(x, y) ∈ S2(F ) of the following system of

linear differential equations:

{
x′ = β1,1x+ β1,2y
y′ = β2,1x+ β2,2y

}
where the βi,j are independent

differentially transcendental elements and F := Q〈β1,1, β1,2, β2,1, β2,2〉. Then q is C-
internal by linearity. We show that AutF (q/C) is isomorphic to GL2(C). Fix a pair

of independent realisations (a1, b1), (a2, b2), and form the matrix V =

(
a1 a2
b1 b2

)
.

For notational convenience, we write that V |= q(2) and that δV = BV where
B = (βij). By genericity of q and independence of the ralisations, the entries
of V form an algebraically independent set of transcendental elements over F .
In particular, V is invertible. Given σ ∈ AutF (q/C), we have δV σ = BV σ. It
follows that Mσ := V −1V σ ∈ GL2(C), and that σ 7→Mσ is a homomorphism from
AutF (q/C) to GL2(C) defined over F (V ) := F (a1, b1, a2, b2). It is injective because
the columns of V form a basis for the solution set to the linear differential system
over C, and so if V σ = V then σ = id. So much is true for any 2 × 2 system of
linear differential equations. For surjectivity we will use the differentially-generic
choice of the entries of B. Namley, since B = (δV )V −1, the entries of V are also
independent differential transcendentals, and so q(2) is weakly C-orthogonal. In
particular, if M ∈ GL2(C) is arbitrary then V is independent of M over F , and
so the columns of W := VM , which are clearly solutions to the linear differential
system, are in fact independent generic solutions. That is, W |= q(2). By weak
C-orthogonality again, W = V σ for some σ ∈ AutF (q/C), and hence M = Mσ.
This completes the proof that AutF (q/C) is isomorphic to GL2(C).

Now, consider (a, b) |= q, set e := a
b , and let p(z) := tp(e/F ). A direct compu-

tation shows that

δe = −β2,1e2 + (β1,1 − β2,2)e+ β1,2.

Setting α0 := β1,2, α1 := β1,1 − β2,2, and α2 := −β2,1, we have that p(z) is the
generic type of δz = α2z

2 +α1z+α0 over F , and {α0, α1, α2} are independent dif-
ferentially transcendental elements. By Lemma 3.1 we have an induced F -definable
surjective homomorphism φ : AutF (q/C)→ AutF (p/C).
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It is clear that under the identification of AutF (q/C) with GL2(C) given above,
Gm(C) ⊆ ker(φ). For the reverse containment, suppose σ ∈ ker(φ). Then

δ

(
σ(a)

a

)
=

a(β1,1σ(a) + β1,2σ(b))− σ(a)(β1,1a+ β1,2b)

a2

=
β1,2(aσ(b)− σ(a)b)

a2

= 0 since σ
(a
b

)
=
a

b
.

Hence σ(a) = ca for some constant c ∈ C. Since σ
(
a
b

)
= a

b , we have σ(b) = cb as
well. In principle, this constant cmay depend on the choice of (a, b). So let c1, c2 ∈ C
be such that σ(a1, b1) = c1(a1, b1) and σ(a2, b2) = c2(a2, b2), where (a1, b1), (a2, b2)
are the independent realisations of q chosen before. Then (a1 + a2, b1 + b2) |= q as
well, and we get σ(a1+a2, b1+b2) = d(a1+a2, b1+b2) for some d ∈ C. The C-linear

independence of (a1, b1), (a2, b2) implies that d = c1 = c2. Hence, V σ = d

(
a1 a2
b1 b2

)
and so Mσ = V −1V σ =

(
d 0
0 d

)
∈ Gm(C). We have shown that ker(φ) = Gm(C).

It follows AutF (p/C) is isomorphic to PSL2(C), as desired. �

Fix a differential field F and a minimal type p ∈ S1(F ) that is C-internal and
has a 3-dimensional binding group. By the above example such an F and p exist.

Proposition 4.3. Suppose (a1, a2, a3) |= p(3). There exists an extension F ′ of F
by constants and v ∈ F ′〈a1, a2, a3〉 \ F ′〈a1〉alg such that logδ v ∈ F ′〈a1〉.

Proof. Let q be the nonforking extension of p to F 〈a1〉, and let G = AutF 〈a1〉(q/C)
be the binding group of q. Since p(2) is weakly orthogonal to C we get that q is
weakly orthogonal to C, and hence qU is a strongly minimal set that is acted upon
transitively by G. Since p(3) is weakly orthogonal to C but p(4) is not (by 3.5), we
have that q(2) is weakly orthogonal to C but q(3) is not. Lemma 3.4 applied to q
thus implies that dimG = 2.

Now, Fact 3.8 tells us that the action of G on qU is definably isomorphic to
Gm(C) nGa(C) acting on C by affine transformations. As this action is sharply 2-
transitive, we have that G acts regularly on the set of realisations of q(2). Moreover,
we have a normal definable subgroup L of G such that G/L is definably isomorphic
to Gm(C). In principle the parameters from L could come from anywhere. But as
L is normal, Lemma 3.3 applies to q(2) to give us that L is defined over F 〈a1〉 ∪ C.

Let F ′ be an extension of F by constants such that F ′ ∩C is algebraically closed
and L is defined over K := F ′〈a1〉. Let r be the nonforking extension of q(2) to K.
Because q(2) is weakly orthogonal to C, we have that r = tp(a2, a3/K) is implied
by q(2). Hence G = AutK(r/C) and it acts regularly on rU . As L is a K-definable
subgroup of G, Lemma 3.2 applies to r, and we get e ∈ K〈a2, a3〉 such that the
binding group of tp(e/K) is G/L = Gm(C). Lemma 4.1(b) applies4 to tp(e/K)
and there must exist v ∈ K〈e〉 \Kalg such that logδ v ∈ K. As K = F ′〈a1〉alg and
K〈e〉 ⊆ F ′〈a1, a2, a3〉, this proves the proposition. �

4Note that by weak C-orthgonality of p the constants of K are those of F ′ and hence alge-
braically closed.
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We can now produce a C-internal minimal 1-type whose logarithmic-differential
pullback is C-internal but does not split. Namely, with notation as in the propo-
sition, set b := logδ v and consider p′ := tp(b/F ′). Then b is in the definable
closoure of a1 over F ′, and hence p′ is minimal and C-internal. The logarithmic-
differential pullback log−1δ (p′) = tp(v/F ′) is also C-internal as v ∈ F ′〈a1, a2, a3〉.
If log−1δ (p′) splits then we can factor some nontrivial integer power of v in Gm as
vk = w1w2 where w1 ∈ F ′〈b〉 and logδ w2 ∈ F ′. It follows that w2 ∈ F ′〈v〉, and so
r := tp(w2/F

′) is C-internal . Note that if w2 ∈ F ′ alg, then as w1 ∈ F ′〈b〉 ⊆ F ′〈a1〉,
we would have v ∈ F ′〈a1〉alg. As that is not the case, we must have w2 /∈ F ′ alg. So
Lemma 4.1(b) implies that AutF ′(r/C) is definably isomorphic to Gm(C). But there
is a surjective F ′-definable homomorphism AutF ′

(
log−1δ (p′)/C

)
→ AutF ′(r/C) by

Lemma 3.1. That is, AutF ′
(

log−1δ (p′)/C
)

has Gm(C) as a definable quotient. On

the other hand, v ∈ F ′〈a1, a2, a3〉 implies that AutF ′
(

log−1δ (p′)/C
)

is in turn a

definable quotient of AutF ′
(
p(3)|F ′/C

)
= AutF (p/C), where the last equality uses

the weak C-orthogonality of p(3) and the fact that F ′ is an extension of F by con-
stants. We have shown that Gm(C) is a definable quotient of AutF (p/C). But this
is impossible as AutF (p/C) is definably isomorphic to PSL2(C) by Fact 3.8. So
log−1δ (p′) does not split.

We have established the following.

Theorem 4.4. For any differential field F and minimal C-internal type p ∈ S1(F )
with AutF (p/C) 3-dimensional, there exists a minimal 1-type p′, in the definable
closure of a nonforking extension of p, such that log−1δ (p′) is C-internal but does
not split. Moreover, such p and F exist.

5. Dimension not 3

We know by Fact 3.8 that a minimal C-internal type has binding group of dimension
at most 3. We have already considered the case of dimension 3. What remains is
to consider the remaining three possibilities.

5.1. The dimension 2 case. Fix a differential field F . In this section we consider
minimal C-internal types p ∈ S1(F ) with 2-dimensional binding groups. We will
show that in that case, if log−1δ (p) is almost C-internal then it splits.

We begin with a general lemma about dependence over logarithmic derivatives.

Lemma 5.1. Suppose (u1, . . . , un) is a sequence of nonzero elements, and ai :=
logδ ui for i = 1, . . . , n. If the elements u1, . . . , un are field-theoretically alge-
braically dependent over acl(F, C, a1, . . . , an) then they are multiplicatively depen-
dent. That is, for some e ∈ acl(F, C, a1, . . . , an) and integers ρ1, . . . , ρn not all zero,
euρ11 · · ·uρnn = 1.

Proof. Let u := (u1, . . . , un) and a := (a1, . . . , an). Let P (x) be a nonzero polyno-
mial over acl(F, C, a) in variables x = (x1, . . . , xn) such that P (u) = 0, and which
has the minimum number of terms among all nonzero polynomials over acl(F, C, a)

with this property. Write P (x) in multi-index notation as P (x) =
∑
η∈I

eηx
η where

the eη are nonzero elements of acl(F, C, a). Since

logδ(u
η) = η1a1 + · · ·+ ηnan =: η · a,
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we compute

δP (u) =
∑
η∈I

(
(δeη)uη + eηδ(u

η)
)

=
∑
η∈I

(
(logδ eη)eηu

η + eη logδ(u
η)uη

)
=

∑
η∈I

(logδ eη + η · a)eηu
η.

Now fix ν ∈ I. Then, as P (u) = 0,

0 = (logδ eν + ν · a)P (u)− δP (u)

=
∑
η∈I

(
(logδ eν + ν · a)− (logδ eη + η · a)

)
eηu

η

and Q(x) :=
∑
η∈I

(
(logδ eν + ν · a) − (logδ eη + η · a)

)
eηx

η is a polynomial over

acl(F, C, a) with at least one less term than P (x). By minimality, Q(x) = 0. That is,
(logδ eν+ν·a) = (logδ eη+η·a) for all η ∈ I. In other words, logδ(eνu

ν) = logδ(eηu
η)

for all η, ν ∈ I. Note that |I| > 1 since each ui is nonzero as are the eη for η ∈ I.
Fixing distinct η, ν ∈ I, let c ∈ C be such that eνu

ν = ceηu
η. Letting ρ := ν − η

and e :=
ceη
eν

we have that euρ = 1, as desired. �

Proposition 5.2. Suppose p ∈ S1(F ) is a minimal type such that p(3) is not
weakly C-orthogonal and log−1δ (p) is almost C-internal. Let (a1, a2) |= p(2). There
exist w ∈ F 〈a1, a2〉 and a nonzero integer k such that logδ w = k(a2 − a1).

Proof. Extend (a1, a2) to a Morley sequence (ai : i ≥ 1) in p and consider a Morley
sequence (ui : i ≥ 1) in log−1δ (p) such that logδ ui = ai for all i.

Since log−1δ (p) is almost C-internal, by Lemma 3.7 there is some n > 0 such that
u1 ∈ acl(F, C, u2, . . . , un). Since each δui = aiui, this means that u1 is in the field-
theoretic algebraic closure of {u2, . . . , un} over acl(F, C, a1, . . . , an). Lemma 5.1
therefore applies and we have e ∈ acl(F, C, a1, . . . , an) and integers ρ1, . . . , ρn that
are not all zero, such that euρ11 · · ·uρnn = 1.

Without loss of generality, we may assume that ρ1 6= 0 and set k := ρ1. Let
σ, τ ∈ AutF (U) be such that

σ(u1, u2, . . . , un) = (u1, u3, u4, . . . , un+1)

and
τ(u1, u2, . . . , un) = (u2, u3, u4, . . . , un+1).

Applying σ and τ to the identity euρ11 · · ·uρnn = 1, we get that

σ(e)uk1

n∏
i=2

uρii+1 = 1

and

τ(e)uk2

n∏
i=2

uρii+1 = 1.

Hence αuk1 = uk2 where α := σ(e)
τ(e) . But we also have

σ(a1, a2, . . . , an) = (a1, a3, a4, . . . , an+1)
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and
τ(a1, a2, . . . , an) = (a2, a3, a4, . . . , an+1)

so that α ∈ acl(F, C, a1, . . . , an+1). We are given that p(3) is not weakly C-orthogonal,
so by minimality a3 ∈ acl(F, C, a1, a2). By indiscernibility, the same holds for all
am with m ≥ 3. Hence α ∈ acl(F, C, a1, a2). And we have logδ α = k(a2 − a1). It
remains only to push α down into F 〈a1, a2〉

Let β be the product of all the distinct (F, C, a1, a2)-conjugates of α. Then
β ∈ dcl(F, C, a1, a2) and logδ(β) = nk(a2−a1) where n ≥ 1 is the number of distinct
conjugates. Write β = h(c) where h(z) ∈ F 〈a1, a2〉(z) and c is a tuple of constants.
Then c is a solution to logδ h(z) = nk(a2 − a1), and so by Lemma 3.10 there must
be a solution with co-ordinates in F 〈a1, a2〉alg ∩ C, say c′. So h(c′) ∈ F 〈a1, a2〉alg
and logδ(h(c′)) = nk(a2 − a1). Now, letting w be the product of the F 〈a1, a2〉-
conjugates of h(c′), then w ∈ F 〈a1, a2〉 and logδ(w) = mnk(a2 − a1) where m ≥ 1
is the number of distinct F 〈a1, a2〉-conjugates of h(c′). That is, w along with the
nonzero integer mnk witnesses the truth of the proposition. �

Theorem 5.3. Suppose F is an algebraically closed differential field and p ∈ S1(F )
is a minimal C-internal type whose binding group is 2-dimensional. If log−1δ (p) is
almost C-internal then it splits.

Proof. Our strategy is to show that for some nonzero integer k and some δ-rational
function h over F , if a |= p then ka + logδ h(a) ∈ F . From this a splitting would

follow: Let u |= log−1δ (p) with a = logδ(u). Set w1 :=
1

h(a)
and w2 := ukh(a).

Then uk = w1w2, w1 ∈ F 〈a〉, and logδ(w2) = ka + logδ h(a) ∈ F , witnessing the
splitting of log−1δ (p).

Since the binding group G := AutF (p/C) is 2-dimensional, it follows from
Fact 3.8 that there is a definable field structure, say K, on p(U), induced by a
definable bijection with C, and that with respect to this field structure the action of
G is that of Gm(K)nGa(K) acting by affine linear transformations. Note that the
action is 2-transitive. Hence, in particular, if a1 6= a2 realise p then (a1, a2) |= p(2).

Fix (a1, a2) |= p(2). By Proposition 5.2 there exist a nonzero integer k and δ-
rational function g(x, y) over F such that logδ g(a1, a2) = k(a2 − a1). Replacing

g(x, y) by
g(x, y)

g(y, x)
, and k by 2k, we may assume that g(a1, a2) = g(a2, a1)−1.

Consider now the element σ ∈ G which is the affine linear transformation that
translates by “a2− a1” – here the translation and subtraction is in the sense of the
field K. Note that σ(a1) = a2. Extend (a1, a2) to an infinite sequence by setting
a`+1 := σ`a1 for all ` ≥ 1. Note that as the elements in this sequence are all distinct
(as a1 6= a2), we have that (ai, aj) |= p(2) for all i 6= j. For notational convenience,
let us write gi,j := g(ai, aj). In particular, for all ` > 2, g1,2g2,`g`,1 is a constant
since it has logarithmic derivative zero.

We claim that in fact g1,2g2,`g`,1 = ±1. Observe that g1,2g2,3 · · · g`−1,`g`,1 ∈ C
for all ` > 2 as well. Hence it is fixed by σ and we get

g1,2g2,3 · · · g`−1,`g`,1 = σ(g1,2g2,3 · · · g`−1,`g`,1)

= g2,3g3,4 · · · g`,`+1g`+1,2

and so, dividing by g2,3 · · · g`−1,`, we get g1,2g`,1 = g`,`+1g`+1,2, and so,

(2) g1,2g2,`g`,1 = g2,`g`,`+1g`+1,2.
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On the other hand, let τ ∈ G be the affine linear transformation

“x 7→ −x+ `a2 − (`− 2)a1”

where again the linear operations here are in the sense of the field K. Then we see
that τ swaps a1 with a`+1, and swaps a2 with a`. So applying τ to the constant
g1,2g2,`g`,1 we get g1,2g2,`g`,1 = g`+1,`g`,2g2,`+1, and recalling that gi,j = g−1j,i we
deduce that

(3) g1,2g2,`g`,1 = (g2,`g`,`+1g`+1,2)−1

Equations (2) and (3) together imply that g1,2g2,`g`,1 = g1,2g2,`g
−1
`,1 , so that

g1,2g2,`g`,1 = ±1

for all ` > 2, as desired.
We may assume that g1,2g2,`g`,1 = 1 for infinitely many ` > 2, as the other case

can be handled similarly. That is, infinitely many realisations of p satisfy

g(a1, a2)g(a2, x)g(x, a1) = 1.

By minimality, the generic realisation over F 〈a1, a2〉 satisfies it too. That is, re-
naming a3, if we take (a1, a2, a3) |= p(3) then g(a1, a2)g(a2, a3)g(a3, a1) = 1.

Since g(a3, a1)−1 = g(a1, a3), we get that g(a1, a2) =
g(a1, a3)

g(a2, a3)
. Now, p being

minimal and almost C-internal, it is of order one, and hence, for i = 1, 2, we can
write g(ai, a3) = Hi(a3, δa3) where Hi(y, z) is a rational function over F 〈ai〉. That
is, (a3, δa3) is a solution to the algebraic equation

(4) g(a1, a2) =
H1(y, z)

H2(y, z)

over F 〈a1, a2〉. The algebraic locus of (a3, δa3) over F is a plane curve C, and
it agrees with the algebraic locus over F 〈a1, a2〉 (as a3 is generic over F 〈a1, a2〉).
Hence all but finitely many points on C are solutions to (4). In particular, as
F is algebraically closed and C is defined over F , there is an F -point of C, say
(u, v), satisfying (4). Writing Hi(u, v) = hi(ai) for some δ-rational function hi

over F , we have that g(a1, a2) =
h1(a1)

h2(a2)
. By total indiscernibility we have also

g(a2, a1) =
h1(a2)

h2(a1)
. But then,

g(a1, a2)2 = g(a1, a2)g(a2, a1)−1

=
h1(a1)h2(a1)

h2(a2)h1(a2)
.

Letting h = h1h2 and taking logarithmic derivatives we get

2k(a2 − a1) = logδ h(a1)− logδ h(a2),

and hence 2ka2 + logδ h(a2) = 2ka1 + logδ h(a1). As a1, a2 are independent over F ,
this element must be in F . That is, 2ka+ logδ h(a) ∈ F for all a |= p. As explained
in the first paragraph of the proof, this implies that log−1δ (p) splits. �

The following example shows that Theorem 5.3 is not vacuous.
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Example 5.4. Let F = Q(t)alg where δt = 1. Consider δx = tx + 1 and let p be
the generic type of this equation over F . Then p is a minimal C-internal type whose
binding group is 2-dimensional.

Proof. Any equation of the form δx = ax + b with a, b ∈ F , being an (inhomoge-
neous) linear equation of order 1, has generic type minimal and C-internal. Now, if
the equation has no solution in F , its binding group will be the semidirect product
of the binding group of the associated linear homogeneous equation δx = ax with
Ga(C). Indeed, see [9, §5.4] for a direct computation, but it also follows from dif-
ferential Galois theory – see for example the proof of Proposition 2.1 of [2]. In our
case, the homogeneous equation δx = tx has binding group Gm(C). So it suffices to
show that δx = tx+ 1 has no solutions in F , as then AutF (p/C) = Gm(C)nGa(C).

Suppose γ ∈ F is a solution. Let ε be the sum of the conjugates of γ over Qalg(t).
Then ε = f(t) for some rational function f over Qalg, and f ′(t) = tf(t)+`. Writing

f(t) = P (t)
Q(t) with P,Q ∈ Qalg[t] coprime, a straightforward degree computation

shows that Q must be nonconstant. On the other hand, computing f ′(t)
f(t) yields

P ′(t)

P (t)
− Q′(t)

Q(t)
= t+ `

Q(t)

P (t)
.

But this is impossible as every root of Q is a (simple) pole of the left-hand side but
not a pole of the right. �

5.2. The dimension 1 case. In this section we focus on when the binding group
is of dimension 1. Under the additional assumption that it is not an elliptic curve,
we are able to show that log−1δ (p) being almost C-internal does imply that it splits.
This is Theorem 5.8 below. Actually, we work in the slightly more general setting
where we drop the assumption that p is C-internal and instead impose a condition,
labelled (∗) in 5.8, which amounts to saying that p is interalgebraic with a C-internal
type whose binding group is either Ga(C) or Gm(C). This increased generality will
be used in our intended application, namely for the proof of Theorem B in Section 6.

We begin with the following elementary fact about polynomial algebra.

Lemma 5.5. Suppose F is a field and g(x, y) ∈ F (x, y) is nonzero. Let ĝ(x, y) :=

g(x, x + y) and write ĝ(x, y) =

∑m
i=0 αi(y)xi∑n
i=0 βi(y)xi

with α0, . . . , αm, β0, . . . , βn ∈ F (y)

and both αm(y) and βn(y) nonzero. If x1, x2, x3 are indeterminates and u1 :=
x2 − x1, u2 := x3 − x2, u3 := x1 − x3, then

g(x1, x2)g(x2, x3)g(x3, x1) =
αm(u1)αm(u2)αm(u3)

(
x3m1 + P (x1)

)
βn(u1)βn(u2)βn(u3)

(
x3n1 +Q(x1)

)
where P (x) and Q(x) are polynomials over F (u1, u2, u3) of degree strictly less than
3m and 3n respectively.

Proof. We first claim that g(x1, x2) =
αm(u1)

(
xm1 + P1(x1)

)
βn(u1)

(
xn1 +Q1(x1)

) where P1(x) and

Q1(x) are polynomials over F (u1) of degree strictly less than m and n respectively.



18 RUIZHANG JIN AND RAHIM MOOSA

Indeed,

g(x1, x2) = g(x1, x1 + u1)

= ĝ(x1, u1)

=
αm(u1)

(
xm1 +

∑m−1
i=0

αi(u1)
αm(u1)

xi1
)

βn(u1)
(
xn1 +

∑n−1
i=0

βi(u1)
βn(u1)

xi1
) .

Next we claim that g(x2, x3) =
αm(u2)

(
xm1 + P2(x1)

)
βn(u2)

(
xn1 +Q2(x1)

) where P2(x) and Q2(x)

are polynomials over F (u1, u2) of degree strictly less than m and n respectively.
Indeed,

g(x2, x3) = g(x1 + u1, x1 + u1 + u2)

= ĝ(x1 + u1, u2)

=
αm(u2)

(
(x1 + u1)m +

∑m−1
i=0

αi(u2)
αm(u2)

(x1 + u1)i
)

βn(u2)
(
(x1 + u1)n +

∑n−1
i=0

βi(u2)
βn(u2)

(x1 + u1)i
) .

The second claim follows by noting that (x1 + u1)i is of the form xi1 +α(x1) where
α(x) is a polynomial over F (u1) of degree < i.

Thirdly, we claim that g(x3, x1) =
αm(u3)

(
xm1 + P3(x1)

)
βn(u3)

(
xn1 +Q3(x1)

) where P3(x) and Q3(x)

are polynomials over F (u1, u2, u3) of degree strictly less than m and n respectively.
Indeed,

g(x3, x1) = g(x1 − u3, x1)

= ĝ(x1 − u3, u3)

= gm(u3)
(
(x1 − u3)m +

m−1∑
i=0

gi(u3)

gm(u3)
(x1 − u3)i

)
and we finish as in the second claim.

Multiplying the three proven identities together yields the Lemma. �

The following is the multiplicative analogue of the above lemma.

Lemma 5.6. Suppose F is a field and g(x, y) ∈ F (x, y) is nonzero. Let ĝ(x, y) :=

g(x, xy) and write ĝ(x, y) =

∑m
i=0 αi(y)xi∑n
i=0 βi(y)xi

with α0, . . . , αm, β0, . . . , βn ∈ F (y) and

both αm(y) and βn(y) nonzero. If x1, x2, x3 are indeterminates and u1 := x2

x1
, u2 :=

x3

x2
, u3 := x1

x3
, then

g(x1, x2)g(x2, x3)g(x3, x1) =
αm(u1)αm(u2)αm(u3)

um1
um3

(
x3m1 + P (x1)

)
βn(u1)βn(u2)βn(u3)

un1
un3

(
x3n1 +Q(x1)

)
where P (x) and Q(x) are polynomials over F (u1, u2, u3) of degree strictly less than
3m and 3n respectively.
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Proof. The analogous claims are:

g(x1, x2) =
αm(u1)

(
xm1 + P1(x1)

)
βn(u1)

(
xn1 +Q1(x1)

)
g(x2, x3) =

αm(u2)
(
xm1 u

m
1 + P2(x1)

)
βn(u2)

(
xn1u

n
1 +Q2(x1)

)
g(x3, x1) =

αm(u3)
(xm1
um3

+ P3(x1)
)

βn(u3)
(xn1
un3

+Q3(x1)
)

We leave the proofs, which are similar to those of Lemma 5.5, to the reader. �

Returning to our differential-algebraic context, we obtain the following main
technical result of this section.

Proposition 5.7. Let F be an algebraically closed differential field and γ ∈ F
such that the formula δx = γ has no realisations in F . Suppose there exist rational
functions g ∈ F (x, y) and f ∈ F (x), and a nonzero integer k, such that for b1, b2
independent realisation of δx = γ over F ,

logδ g(b1, b2) = k
(
f(b2)− f(b1)

)
.

Then there exist a rational function h ∈ F (y) and a nonzero integer `, such that

`kf(b)− logδ h(b) ∈ F
whenever δb = γ.

The same result holds for the formula logδ x = γ in place of δx = γ.

Proof. Suppose q is the generic type of δx = γ. Note that q is minimal, C-internal,
and weakly C-orthogonal. Let (b1, b2, b3) |= q(3). Our assumption on g implies that
g(b1, b2)g(b2, b3)g(b3, b2) has logarithmic derivative zero and hence is a constant.
Our first goal is to modifying g so that g(b1, b2)g(b2, b3)g(b3, b1) = 1.

Note that b1, b2, b3 are algebraic indeterminates over F , as are u1 := b2−b1, u2 :=
b3 − b2, u3 := b1 − b3. Applying Lemma 5.5 we get that

g(b1, b2)g(b2, b3)g(b3, b1) =
αm(u1)αm(u2)αm(u3)

(
b3m1 + P (b1)

)
βn(u1)βn(u2)βn(u3)

(
b3n1 +Q(b1)

)
where P (x) and Q(x) are polynomials over F (u1, u2, u3) of degree strictly less than
3m and 3n, respectively. But note that u1, u2, u3 ∈ C as they are differences
of elements having the same derivative. It follows from the above identity that(
b3m1 + P (b1)

)(
b3n1 +Q(b1)

) ∈ dcl(F, C). The fact that q is weakly orthogonal to C means that

b1 /∈ acl(F, C), and so the only possibility is that m = n and

(
b3m1 + P (b1)

)(
b3n1 +Q(b1)

) = 1.

We therefore conclude that

g(b1, b2)g(b2, b3)g(b3, b1) =
αm(u1)αm(u2)αm(u3)

βm(u1)βm(u2)βm(u3)

Since αm
βm

is a rational function over F we can write αm(y)
βm(y) = θ(e, y) where θ is a

rational function over F ∩ C and e is a tuple from F . We therefore have

(5) g(b1, b2)g(b2, b3)g(b3, b1) = θ(e, u1)θ(e, u2)θ(e, u3).
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On the other hand, we claim that

(6) g(b1, b2)g(b2, b3)g(b3, b1) ∈ F δ(b1, b2, b3)alg.

Indeed, note that g(b1, b2)g(b2, b3)g(b3, b1) ∈ F (b1, b2, b3)∩C. Now, F (b1, b2, b3)∩C
is a transcendence degree at most two extension of F (b1)∩C since F (b1, b2, b3)/F (b1)
is of transcendence degree two. But u1 and u3 are algebraically independent over
F (b1) and contained in F (b1, b2, b3) ∩ C. Hence

g(b1, b2)g(b2, b3)g(b3, b1) ∈ acl(F (b1) ∩ C, u1, u3) ⊆ acl(F (b1) ∩ C, b1, b2, b3).

Finally, as q is weakly orthogonal to C, F (b1) ∩ C = F ∩ C.
From (5) and (6) we get that the formula φ(z) given by

g(b1, b2)g(b2, b3)g(b3, b1) = θ(z, u1)θ(z, u2)θ(z, u3)

is in the Lring-type of e over F δ(b1, b2, b3)alg where F δ := F ∩ C. As (b1, b2, b3) is
of transcendence degree 3 over F , we have that F δ(b1, b2, b3)alg is linearly disjoint
from F over the algebraically closed field F δ. Since e is a tuple from F , the formula
φ(z) must have realisation in F δ, say ẽ. So each θ(ẽ, ui) ∈ C and

g(b1, b2)

θ(ẽ, u1)

g(b2, b3)

θ(ẽ, u2)

g(b3, b1)

θ(ẽ, u3)
= 1

Let g̃(x, y) :=
g(x, y)

θ(ẽ, y − x)
. Then we have that g̃ is a rational function over F ,

logδ g̃(b1, b2) = logδ g(b1, b2) = k
(
f(b2)− f(b1)

)
, and g̃(b1, b2)g̃(b2, b3)g̃(b3, b1) = 1.

That is, replacing g by g̃, we can now assume that g(b1, b2)g(b2, b3)g(b3, b1) = 1.
Next we modify g and k so as to be able to assume that g(b1, b2)−1 = g(b2, b1). By

total indiscernibility of (b2, b3) over F (b1) we have that g(b1, b3)g(b3, b2)g(b2, b1) = 1

also. Hence, letting g̃(x, y) :=
g(x, y)

g(y, x)
we retain the fact that g̃(b1, b2)g̃(b2, b3)g̃(b3, b1) =

1 but now have g̃(b1, b2)g̃(b2, b1) = 1. Moreover, indiscernibility of (b1, b2) over F
implies that logδ g̃(b1, b2) = 2k

(
f(b2) − f(b1)

)
. So replacing g with g̃ and k with

2k, we obtain the desired property that g(b1, b2)−1 = g(b2, b1).

It follows that g(b1, b2) =
g(b3, b2)

g(b3, b1)
. Since b3 is transcendental over F (b1, b2),

the equation g(b1, b2) =
g(x, b2)

g(x, b1)
has cofinitely many realisations. In particular it

is realised in F , say by e ∈ F . Hence h(y) := g(e, y) is a rational function over F

and g(b1, b2) =
h(b2)

h(b1)
. It follows that

k
(
f(b2)− f(b1)

)
= logδ g(b1, b2) = logδ h(b2)− logδ h(b1)

so that kf(b2)− logδ h(b2) = kf(b1)− logδ h(b1). Since b1 and b2 are independent
over F this forces kf(b)− logδ h(b) ∈ F for all b |= q, as desired.

The other case, when q is the generic type of logδ x = d, is proved similarly using
Lemma 5.6 rather than 5.5. We leave the details to the reader. �

The following theorem was obtained originally, and independently, by the first
author in his PhD thesis [9, §5].

Theorem 5.8. Suppose F is an algebraically closed differential field and p ∈ S1(F )
is a weakly C-orthogonal minimal type satisfying
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(∗) For a |= p there is b ∈ F 〈a〉 \ F such that either δb ∈ F or logδ b ∈ F .

If log−1δ (p) is almost C-internal then it splits.

Remark 5.9. If log−1δ (p) is almost C-internal then so is p. So by Lemma 3.6 p
is interalgebraic with a C-internal type p′. Condition (∗) says that AutF (p′/C) is
either Ga(C) or Gm(C). That is, the binding group is of dimension 1 but is not an
elliptic curve.

Proof. Fix b is as in (∗) and let q := tp(b/F ). Note that q is weakly C-orthogonal.
On the other hand, as any two realisations of q either differ by a constant or
one is a constant multiple of the other, q(2) is not weakly C-orthogonal. Since
a ∈ acl(F, b) by minimality, p(2) is also not weakly orthogonal to C. In particular,
p(3) isn’t, and Proposition 5.2 applies. That is, assuming log−1δ (p) is almost C-
internal, and fixing (a1, a2) |= p(2), we get w ∈ F 〈a1, a2〉 and nonzero integer k
such that logδ w = k(a2 − a1).

Let b1, b2 be such that (a1b1, a2b2) is a Morley sequence in tp(ab/F ). Note that
if in fact a ∈ dcl(F, b) then we would have ai = f(bi) and w = g(b1, b2) for some f
and g, and we could apply Proposition 5.7 directly. But as it is, we have to first
deal with the conjugates of a.

Write w = α(a1, a2) for some δ-rational function α over F . Let {ai,1, . . . , ai,m}
be the set of (F, bi)-conjugates of ai, for i = 1, 2. In particular, we have a δ-
rational function f(x) over F such that

∑m
r=1 ai,r = f(bi). (Note that f does

not depend on i = 1, 2 as by automorphisms the same function will work.) Also,∏m
r=1

∏m
s=1 α(a1,r, a2,s) = g(b1, b2) for some δ-rational function g(x, y) over F . And

we have that

logδ g(b1, b2) = logδ

(
m∏
r=1

m∏
s=1

α(a1,r, a2,s)

)

= k

(
m∑
s=1

a2,s −
m∑
r=1

a1,r

)
= k

(
f(b2)− f(b1)

)
.

The second equality above uses that for any r, s ∈ {1, . . . ,m}, the pair (a1,r, a2,s)

realises p(2) and hence logδ α(a1,r, a2,s) = k(a2,s − a1,r). Indeed, independence
follows from the fact that each ai,r is algebraic over F and bi, and b1 is independent
of b2 over F . In any case, we see that Proposition 5.7 applies. Hence, there exist a
rational function h over F and a nonzero integer ` such that logδ h(b) = `kf(b)− e
for some e ∈ F .

Consider, now,

∏m
s=1 α(a1, a2,s)

`

h(b2)
. Note that this is in F 〈a1〉(c) for some con-

stant c. Indeed, it is clearly in F 〈a1, b2〉, but b2 is an additive or multiplicative
translate of b1 by a constant and b1 ∈ F 〈a1〉. So we can write this element as
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β(a1, c) where β ∈ F 〈x〉(z). Now compute

`kma1 + logδ
(
β(a1, c)

)
= `kma1 + `

(
m∑
s=1

logδ α(a1, a2,s)

)
− logδ h(b2)

= `kma1 + `k

(
m∑
s=1

(a2,s − a1)

)
− `kf(b2) + e

= e

∈ F.

By Lemma 3.10 we can find c̃ ∈ F 〈a1〉 ∩ C such that `kma1 + logδ
(
β(a1, c̃)

)
= e.

But by weak C-orthogonality, F 〈a1〉 ∩ C = F δ. So, θ(x) := β(x, c̃) is over F and we
have that na1 + logδ θ(a1) ∈ F for n := `km.

From this, as in the case of Theorem 5.3, a splitting follows: Let u |= log−1δ (p)

with a = logδ(u). Set w1 :=
1

θ(a)
and w2 := unθ(a). Then un = w1w2, w1 ∈ F 〈a〉,

and logδ(w2) = na+ logδ θ(a) ∈ F . �

Example 5.10. That Theorem 5.8 is not vacuous is witnessed for example by
taking p to be the generic type of δx = x2 over F := Qalg. Then p is minimal
and weakly C-orthogonal, and if a |= p then b := 1

a satisfies δb = −1 ∈ F . So

condition (∗) holds. We argued in the Introduction that in this case log−1δ (p) is
C-internal (and that it splits).

Another example would be to take the formula δx = x(x− 1) instead. If a |= p
then this time b := a−1

a has the property that logδ b = 1 ∈ F , and so again (∗) holds

but in the other, multiplicative, way. One can show that in this case too log−1δ (p)
is C-internal (and that it splits).

5.3. The dimension 0 case.

Theorem 5.11. Suppose F is an algebraically closed differential field and p ∈
S1(F ) is a minimal type that is not weakly orthogonal to C. If log−1δ (p) is almost
C-internal then it splits.

Proof. Let (a1, a2, a3) |= p(3). Since p(3) is not weakly orthogonal to C, if log−1δ (p)
is almost C-internal then by Proposition 5.2 there is w ∈ F 〈a1, a2〉 and a nonzero
integer k such that logδ w = k(a2 − a1). Write w = g(a1, a2) for some δ-rational
function g(x, y). So logδ g(a1, a3)+ka1 = logδ g(a2, a3)+ka2. That is, a3 realises the
formula φ(z) over F 〈a1, a2〉 given by logδ g(a1, z)+ka1 = logδ g(a2, z)+ka2. Since p
is of order one (being minimal and nonorthogonal to C) it is the generic type of some
strongly minimal set D over F . As a3 is generic in D over F 〈a1, a2〉, we have that
cofinitely many points of D realise φ(z). But as p is not even weakly C-orthogonal,
it cannot be isolated. Hence D(F ) is infinite. Let e be an F -point of D that
realises φ(z). Then, setting h(x) := g(x, e), we have that h is δ-rational over F and
logδ h(a1)+ka1 = logδ h(a2)+ka2. Since a1 and a2 are independent over F , we have
that logδ h(a) + ka ∈ F for all a |= p. From this, as we have seen twice before, the

splitting of log−1δ (p) follows: For u |= log−1δ (p) with a = logδ(u), set w1 :=
1

h(a)
and

w2 := ukh(a). Then uk = w1w2, w1 ∈ F 〈a〉, and logδ(w2) = ka+logδ h(a) ∈ F . �
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Example 5.12. We give an example of a type satisfying the assumptions of The-
orem 5.11. Consider again the formula δx = x2 but this time let p be the generic
type over F := Q(t)alg where δt = 1. Then p is not weakly C-orthogonal, as wit-
nessed by the fact that 1

a + t ∈ C for a |= p. But it is still the case that log−1δ (p) is
C-internal (and splits).

6. The proofs of Theorems A and B

We put things together and deduce our main theorems.

Theorem A. Suppose F is an algebraically closed differential field and f ∈ F (x) is
such that the generic type p ∈ S1(F ) of δx = f(x) is C-internal with binding group
not of dimension 3. Then log−1δ (p) is almost C-internal if and only if it splits.

Proof. We have already observed in Section 2, when introducing splitting, that if
p is (almost) C-internal and log−1δ (p) splits then log−1δ (p) is almost C-internal. For

the converse, assume log−1δ (p) is almost C-internal. Since p is minimal, Fact 3.8
implies that dim AutF (p/C) ≤ 3.

If AutF (p/C) is 0-dimensional then p is not weakly C-orthogonal and Theo-
rem 5.11 applies, telling us that log−1δ (p) splits.

If AutF (p/C) is 1-dimensional then it is Ga(C) or Gm(C) or E(C) for some elliptic
surve E over the constants. We first note that the last case is impossible. Indeed,
it would imply that p(U) is definably isomorphic to E(C) over some extension K of
the base field F . In particular, taking a to realise the nonforking extension of p to K
and taking e to be a generic point of E(C) over K, we would have K〈a〉 = K〈e〉.
But K〈a〉 = K(a) as δa = f(a), and this is a genus 0 function field over K as a
is a transcendental singleton. Whereas K〈e〉 = K(e) as e is a tuple of constants,
and K(e) being the rational function field of the elliptic curve is of genus 1. So,
AutF (p/C) is either Ga(C) or Gm(C). By Lemma 4.1, condition (∗) of Theorem 5.8
is satisfied, and that theorem yields the splitting of log−1δ (p).

Finally, if AutF (p/C) is 2-dimensional then Theorem 5.3 applies and tells us that
log−1δ (p) splits. �

We specialise to constant parameters and obtain the following application.

Theorem B. Suppose F is an algebraically closed field of constants and f ∈ F (x).

The rational vector field defined by

{
y′ = xy
x′ = f(x)

}
is almost internal to the constants

if and only if the following conditions on f are satisfied:

(i) f 6= 0, and

(ii)
1

f
=

d

dx
(g) or

1

f
=
c ddx (g)

g
for some c ∈ F and g ∈ F (x), and

(iii)
kx− e
f

=
d
dx (h)

h
for some nonzero k ∈ Z, e ∈ F and h ∈ F (x).

Proof. Outside of y = 0 the given vector field corresponds to the second order
differential equation δ (logδ y) = f (logδ y). This is the equation for log−1δ (D) where
D ⊆ A1 is defined by δx = f(x). The vector field being almost internal to the
constants is therefore equivalent to log−1δ (D) being almost C-internal. Note that if

f = 0 then D = C and log−1δ (C) is well known to not be almost C-internal. Hence,
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it suffices to assume f 6= 0 and show that log−1δ (D) is almost C-internal if and only
if (ii) and (iii) hold.

Assume (ii) and (iii) hold. Condition (ii) already ensures that D is almost C-
internal, see [13, Theorem 2.8]. We show that log−1δ (D) is also almost C-internal.

Let u ∈ log−1δ (D) and set a := logδ u. If a ∈ F then tp(u/F ) is C-internal as
logδ has cosets of Gm(C) as its fibres. So we may assume a /∈ F , and in particular
the rational functions f and h are defined and nonzero at a.

Let w1 := h(a). Since a ∈ D, tp(a/F ), and hence tp(w1/F ), is almost C-internal.

Let w2 :=
uk

h(a)
. We compute that

logδ w2 = ka− logδ h(a)

= ka−

(
d
dx (h)(a)δ(a)

h(a)

)
as h is over constant parameters

= ka−

(
d
dx (h)(a)f(a)

h(a)

)
as a ∈ D

= ka−
(
ka− e
f(a)

f(a)

)
by (iii)

= e

and so logδ w2 ∈ F . Hence tp(w2/F ) is C-internal.
Since uk = w1w2, we have that tp(u/F ) is almost C-internal, as desired.
For the converse, assume that log−1δ (D) is almost C-internal. In particular, D is

nonorthogonal to C. This means that after passing to a differentially closed field
K extending F , which we may assume has F as its field of constants, and letting
a ∈ D be generic over K (i.e., not in K), it will be the case that K(a) has new
constants – that is constants not in F . Now, Rosenlicht’s theorem [17, Proposition
2], tells us exactly that condition (ii) holds.

Let p ∈ S1(F ) be the generic type of D. Using (ii), we show that p satisfies

condition (∗) of Theorem 5.8. Indeed, suppose
1

f
=
c ddx (g)

g
for some c ∈ F and

g ∈ F (x). Then we compute, that for a |= p,

logδ g(a) =
d
dx (g)(a)δ(a)

g(a)
as g is over constant parameters

=
d
dx (g)(a)

g(a)
f(a) as a ∈ D

=
1

cf(a)
f(a)

=
1

c
.

So b := g(a) satisfies logδ b ∈ F . If, on the other hand, (ii) takes the form of
1

f
=

d

dx
(g), a similar computation shows that δb ∈ F . Hence (∗) is satisfied.

Applying Theorem 5.8 or Theorem 5.11 to p, depending on whether p is weakly
C-orthogonal or not, we have that for u |= log−1δ (p), some integer power of u
factors in Gm as uk = w1w2 where w1 ∈ dcl(F, logδ u) and logδ w2 ∈ F . We have
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that k logδ u = logδ w1 + logδ w2. Let a := logδ u, and write w1 = h(a) for some
h ∈ F (x). (Note that as a ∈ D, dcl(F, a) = F (a).) Let e := logδ w2. Then,

ka− e
f(a)

=
k logδ u− logδ w2

δ(a)

=
logδ w1

δ(a)

=
d
dx (h)(a)δ(a)

h(a)δ(a)

=
d
dx (h)(a)

h(a)
.

Since a is a transcendental, we have that
kx− e
f

=
d
dx (h)

h
in F (x), as desired. �
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