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Summary

We survey and explain some recent work at the intersection of model
theory and bimeromorphic geometry (classification of compact complex
manifolds). Included here are the essential saturation of the many-sorted
structure C of Kähler manifolds, the conjectural role of hyperkähler man-
ifolds in the description of strongly minimal sets in C, and Campana’s
work on the isotriviality of hyperkähler families and its connection with
the nonmultidimensionality conjecture.

1 Introduction

The aim of this paper is to discuss in some detail the relationship between
ideas from model theory (classification theory, geometric stability the-
ory) and those from bimeromorphic geometry (classification of compact
complex manifolds), with reference to current research. Earlier work
along these lines is in [17], [18], [21], [22], [23], [14], [15], [16], [1]. We
will also take the opportunity here to describe for model-theorists some
of the basic tools of complex differential geometry, as well as summarise
important notions, facts and theorems such as the Hodge decomposition,
and local Torelli.

Zilber [26] observed some time ago that if a compact complex manifold
M is considered naturally as a first order structure (with predicates for
analytic subsets of M , M × M , etc.) then Th(M) has finite Morley
rank. The same holds if we consider the category A of compact complex
(possibly singular) spaces as a many-sorted first order structure. This
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observation of Zilber was closely related, historically, to the work on
Zariski structures and geometries by Hrushovski and Zilber [11].

There is a rich general theory of theories of finite Morley rank, en-
compassing both Shelah’s work on classification theory (classifying first
order theories and their models) as well as the more self-consciously ge-
ometric theory of 1-basedness (modularity), definable groups, definable
automorphism groups, etc . . . It turns out that Th(A) witnesses most of
the richness of this theory. Among the main points of the current article
is that notions belonging to the Shelah theory such as nonorthogonality
and nonmultidimensionality, have a very clear geometric content, and
are connected with things such as “variation of Hodge structure”.

The class of compact Kähler manifolds has been identified as an im-
portant rather well-behaved class of compact complex manifolds, where
there is a better chance of classification. The first author [16] observed
that such manifolds can to all intents and purposes be treated as satu-
rated structures (inside which one can apply the compactness theorem).
We give some more details in section 3, explaining the role of the Kähler
condition.

The category of compact Kähler manifolds (or rather compact com-
plex analytic spaces that are holomorphic images of compact Kähler
manifolds) is a “full reduct” of the many-sorted structure A. We call
it C. In [21] it was pointed out how, from work of Lieberman, one can
see that Th(A) is about as complicated as it can be from the point of
view of Shelah’s theory (it has the DOP). We have conjectured on the
other hand that Th(C) is rather tame. Th(C) could not be uncount-
ably categorical (unidimensional), but we believe it to be the next best
thing, nonmultidimensional. The description of U -rank 1 types (equiva-
lently simple compact complex manifolds) in Th(C) which are trivial is
still open, and it is conjectured that they are closely related to so-called
irreducible hyperkähler manifolds. As we explain in section 5, an isotriv-
iality result for families of hyperkähler manifolds in C, due to Campana,
represents some confirmation of the nonmultdimensionality of Th(C).

We now give a brief survey of the model theory of compact com-
plex manifolds, continuing in a sense [19]. There are several published
survey-type articles, such as [15] and [17], to which the interested reader
is referred for more details. We assume familiarity with the notion of a
complex manifold M . An analytic subset X of M is a subset X such
that for each a ∈ M there is an an open neighbourhood U of a in M

such that X ∩ U is the common zero-set of a finite set of holomorphic
functions on U . A compact complex manifold M is viewed as a first or-
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der structure by equipping it with predicates for all the analytic subsets
of M and its cartesian powers. The fundamental fact observed by Zilber
is that the theory of this first order structure has quantifier elimination
and has finite Morley rank. We can of course consider the collection of
all compact complex manifolds (up to biholomorphism) and view it is a
many-sorted first order structure (predicates for all analytic subsets of
cartesian products of sorts) which again has QE and finite Morley rank
(sort by sort). The same holds for the larger class of compact complex
analytic spaces. A compact complex analytic space is (a compact topo-
logical space) locally modelled on zero-sets of finitely many holomorphic
functions on open domains in Cn with of course biholomorphic transition
maps. We have the notion of an analytic subset of X and its cartesian
powers, and we obtain thereby a first order structure as before. As above
we let A denote the many-sorted structure of compact complex analytic
spaces, and we let L denote its language. (A complex analytic space is
usually presented as a ringed space, where the rings may be nonreduced.
We refer to [15] for more discussion of this. In any case by a complex
variety we will mean a reduced and irreducible complex analytic space.)

If X is a compact complex variety and a ∈ X, then {a} is an analytic
subset of X, and hence is essentially named by a constant. So really A
has names for all elements (of all sorts). Let A′ be a saturated elemen-
tary extension of A. If S is a sort in A, we let S′ be the corresponding
sort in A′. For example, (P1)′ denotes the projective line over a suitable
elementary extension C′ of C.

Among the basic facts connecting definability and geometry are:
(i) For X, Y sorts in A the definable maps from X to Y are precisely

the piecewise meromorphic maps.
(ii) If p(x) is a complete type of Th(A) then p is the generic type (over

A) of a unique compact complex variety X. That is, p(x) is axiomatised
by “x ∈ X ′ but x /∈ Y ′ for any proper analytic subset Y ⊂ X”.

(iii) If a, b are tuples from A′ with tp(a) the generic type of X and
tp(b) the generic type of Y , then dcl(a) = dcl(b) iff X and Y are bimero-
morphic.

(iv) Suppose a, b are tuples from A′, and tp(a/b) is stationary. Then
there are compact complex varieties X, Y and a meromorphic dominant
map f : X → Y whose fibres over a non-empty Zariski open subset of Y

are irreducible, and such that: ab is a generic point (realizes the generic
type) of X, b is a generic point of Y , and (in A′) f(ab) = b. So tp(a/b) is
the “generic type” of the “generic fibre” Xb of f : X → Y . We consider
definable sets such as Xb as “nonstandard” analytic subsets of X”.



170 R. Moosa and A. Pillay

Algebraic geometry lives in A on the sort P1. Any irreducible complex
quasi-projective algebraic variety V has a compactification V̄ which will
be a compact complex variety living as a sort in A, and biholomorphic
with a closed subvariety of Pn

1 for some n > 0. The variety V will be a
Zariski open, hence definable, subset of V̄ .

A compact complex variety X is said to be Moishezon if X is bimero-
morphic with a complex projective algebraic variety. This is equivalent
to X being internal to the sort P1, and also equivalent to a generic point
a of X being in the definable closure of elements from (P1)′. The expres-
sion “algebraic” is sometimes used in place of Moishezon. We extend
naturally this notion to nonstandard analytic sets as well as definable
sets and stationary types in A′. The “strong conjecture” from [19] then
holds in A′ in the more explicit form: if (Yz : z ∈ Z) is a normal-
ized family of definable subsets of a definable set X, then for a ∈ X,
Za = {z ∈ Z : a is generic on Yz} is Moishezon (namely generically
internal to (P1)′). This result was derived in [18] from a theorem due
independently to Campana and Fujiki.

In [21] it was shown that any strongly minimal modular group defin-
able in A is definably isomorphic to a complex torus. An appropriate
generalization to strongly minimal modular groups in A′ was obtained
in [1].

More details on the classification of strongly minimal sets (or more
generally types of U -rank 1) in Th(C) will appear in section 5.

2 Preliminaries on complex forms

We give in this section a brief review of the basic theory of complex-
valued differential forms. The reader may consult [8] or [25] for a more
detailed treatment of this material.

Suppose X is an n-dimensional complex manifold. By a coordinate
system (z, U) on X we mean an open set U ⊂ X and a homeomorphism
z from U to an open ball in Cn. Composing with the coordinate projec-
tions we obtain complex coordinates zi : U → C for i = 1, . . . , n, which
we decompose into real and imaginary parts as zi = xi + iyi.

Fix a coordinate system (z, U) on X and a point x ∈ U . Let TX,x

denote the (real) tangent space of X at x. Viewed as the space of R-
linear derivations on real-valued smooth functions at x, we have that{

∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂y1
, . . . ,

∂

∂yn

}
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forms an R-basis for TX,x. But the complex manifold structure on
X gives TX,x also an n-dimensional complex vector space structure,
which can be described as follows. Let TX,C,x := TX,x ⊗ C denote the
complexification of the real tangent space. We have a decomposition
TX,C,x = T 1,0

X,x ⊕ T 0,1
X,x where T 1,0

X,x is the complex subspace generated by{
∂

∂zi
:=

∂

∂xi
− i

∂

∂yi

∣∣∣∣ i = 1, . . . , n

}
and T 0,1

X,x is generated by{
∂

∂zi
:=

∂

∂xi
+ i

∂

∂yi

∣∣∣∣ i = 1, . . . , n

}
.

If we view TX,C,x as the space of C-linear derivations on complex-valued
smooth functions at x, then T 1,0

X,x corresponds to those that vanish on
all the anti-holomorphic functions (functions whose complex conjugates
are holomorphic at x). In any case, T 1,0

X,x is called the holomorphic tan-
gent space of X at x. The natural inclusion TX,x ⊂ TX,C,x followed
by the projection TX,C,x → T 1,0

X,x produces an R-linear isomorphism be-
tween the real tangent space and the holomorphic tangent space. This
isomorphism makes TX,x canonically into a complex vector space.

Despite our presentation, the above constructions do not depend on
the coordinates and extend globally: We have the complexification of the
(real) tangent bundle TX,C := TX⊗C, and a decomposition into complex
vector subbundles, TX,C = T 1,0

X ⊕T 0,1
X , whereby the holomorphic tangent

bundle T 1,0
X is naturally isomorphic as a real vector bundle with TX . It

is with respect to this isomorphism that we treat TX as a complex vector
bundle.

A complex-valued differential k-form (or just a k-form) at x ∈ X is
an alternating k-ary R-multilinear map φ : TX,x × · · · × TX,x → C.
The complex vector space of all k-forms at x is denoted by F k

X,C,x.
The real differential k-forms, F k

X,R,x, are exactly those forms in F k
X,C,x

that are real-valued. So F k
X,C,x = F k

X,R,x ⊗ C. In particular, F 1
X,C,x =

HomR(TX,x, R) ⊗ C is the complexification of the real cotangent space
at x. Hence, in a coordinate system (z, U) about x, if we let

{dx1, . . . , dxn, dy1, . . . , dyn}

be the dual basis to
{

∂
∂x1

, . . . , ∂
∂xn

, ∂
∂y1

, . . . , ∂
∂yn

}
for HomR(TX,x, R),

then

dzi := dxi + idyi,
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dzi := dxi − idyi

for i = 1, . . . , n, form a C-basis for F 1
X,C,x.

Now F k
X,C,x is the kth exterior power of F 1

X,C,x. Given I = (i1, . . . , ip)
an increasing sequence of numbers between 1 and n, let dzI be the p-form
dzi1 ∧ · · · ∧ dzip . Similarly, let dzI := dzi1 ∧ · · · ∧ dzip . Then

{dzI ∧ dzJ | I = (i1, . . . , ip), J = (j1, . . . , jq), p + q = k}

is a C-basis for F k
X,C,x. This gives us a natural decomposition

F k
X,C,x =

⊕
p+q=k

F p,q
X,x

where F p,q
X,x is generated by the forms dzI ∧ dzJ where I = (i1, . . . , ip)

and J = (j1, . . . , jq) are increasing sequences of numbers between 1 and
n. The complex vector subspaces F p,q

X,x can also be more intrinsically
described as made up of those k-forms φ such that

φ(cv1, . . . , cvn) = cpcqφ(v1, . . . , vn)

for all v1, . . . , vk ∈ TX,x and c ∈ C. Such forms are said to be of type
(p, q).

Once again, these constructions extend globally to X and we have
complex vector bundles F k

X,C =
⊕

p+q=k F p,q
X,C. For U ⊆ X an open set,

by a complex k form on U we mean a smooth section to the bundle
F k

X,C over the set U . Similarly for forms of type (p, q) on U . We denote
by Ak and Ap,q the sheaves on X of smooth sections to F k

X,C and F p,q
X,C

respectively. So Ak(U) is the space of all complex k-forms on U while
Ap,q(U) is the space of all complex forms of type (p, q) on U . Given a
coordinate system (z, U) on X, a k-form ω ∈ Ak(U) can be expressed
as ω =

∑
|I|+|J|=k fIJdzI ∧ dzJ where fIJ : U → C are smooth. Note

that dzi and dzi are being viewed here as 1-forms on U . By convention,
A0 is the sheaf of C-valued smooth functions.

The exterior derivative map d : Ak(U) → Ak+1(U) is defined by

d

 ∑
|I|+|J|=k

fIJdzI ∧ dzJ

 =
∑

|I|+|J|=k

dfIJ ∧ dzI ∧ dzJ

where for any smooth function f : U → C, df ∈ A1(U) is given by

df :=
n∑

i=1

∂f

∂zi
dzi +

n∑
i=1

∂f

∂zi
dzi.
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If we define ∂f :=
∑n

i=1
∂f
∂zi

dzi and ∂f =
∑n

i=1
∂f
∂zi

dzi, and then extend
these maps so that ∂ : Ap,q(U) → Ap+1,q(U) is given by

∂
(∑

fIJdzI ∧ dzJ

)
=

∑
∂fIJ ∧ dzI ∧ dzJ

and ∂ : Ap,q(U) → Ap,q+1(U) is given by

∂
(∑

fIJdzI ∧ dzJ

)
=

∑
∂fIJ ∧ dzI ∧ dzJ ;

then we see that d = ∂ + ∂.
One can show that d, ∂, and ∂ are all independent of the coordinate

system and extend to sheaf maps on Ak and Ap,q as the case may be.
Moreover,

• d, ∂, ∂ are C-linear;
• d ◦ d = 0, ∂ ◦ ∂ = 0, and ∂ ◦ ∂ = 0; and,
• d(φ) = dφ, ∂(φ) = ∂φ, and ∂(φ) = ∂φ.

We say that ω ∈ Ak(X) is d-closed if dω = 0, and d-exact if ω = dφ

for some φ ∈ Ak−1(X). Since d ◦ d = 0 the exact forms are closed. The
De Rham cohomology groups are the complex vector spaces

Hk
DR(X) :=

{d-closed k-forms}
{d-exact k-forms}

.

We can relate this cohomology to the classical singular cohomology
(which we assume the reader is familiar with) by integration: Given
a complex form ω ∈ Ak(X) and a k-simplex

φ : ∆k :=

{
(t1, . . . , tk+1) ∈ [0, 1]k+1

∣∣∣ k+1∑
i=1

ti = 1

}
−→ X,

it makes sense to consider
∫

φ
ω :=

∫
∆k

φ∗ω ∈ C. Every complex k-
form thereby determines a homomorphism from the free abelian group
generated by the k-simplices (i.e., the group of singular k-chains) to
the complex numbers. We restrict this homomorphism to the singular
k-cycles (those chains whose boundary is zero), and denote it by∫

ω : {k-cycles on X} −→ C.

If ω is d-closed then
∫

ω vanishes on boundaries by Stokes’ theorem, and
hence

∫
ω induces a complex-valued homomorphism on the singular ho-

mology group Hk(X) = k-cycles in X
k-boundaries in X . Moreover, by Stokes’ theorem
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again,
∫

ω = 0 if ω is d-exact. So ω 7→
∫

ω induces a homomorphism

Hk
DR(X) −→ HomZ

(
Hk(U), C

)
= Hk

sing(X, C)

where Hk
sing(X, C) is the singular cohomology group with complex coef-

ficients.

De Rham’s Theorem (cf. Section 4.3.2 of [25]). The above homomor-
phism is an isomorphism: Hk

DR(X) ∼= Hk
sing(X, C).

3 Saturation and Kähler manifolds

One obstacle to the application of model-theoretic methods to compact
complex manifolds is that the structure A is not saturated; for example,
every element of every sort of A is ∅-definable. However, for some sorts
this can be seen to be an accident of the language of analytic sets in which
we are working: Suppose V is a complex projective algebraic variety
viewed as a compact complex manifold and consider the structure

V := (V ;PA | A ⊂ V n is a subvariety over Q, n ≥ 0)

where there is a predicate for every subvariety of every cartesian power
of V defined over the rationals. It is not hard to see that V is saturated
(it is ω1-compact in a countable language). Moreover, Chow’s theorem
says that every complex analytic subset of projective space is complex
algebraic, and hence a subset of a cartesian power of V is definable in
A if and only if it is definable (with parameters) in V. That is, with
respect to the sort V , the lack of saturation in A is a result of working
in too large (and redundant) a language. This property was formalised
in [16] as follows.

Definition 3.1 A compact complex variety X is essentially saturated if
there exists a countable sublanguage of the language of A, L0, such that
every subset of a cartesian power of X that is definable in A is already
definable (with parameters) in the reduct of A to L0.

The structure induced on X by such a reduct will be saturated.
It turns out that essential saturation, while motivated by internal

model-theoretic considerations, has significant geometric content. The
purpose of this section is to describe this geometric significance and to
show in particular that compact Kähler manifolds are essentially satu-
rated.
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We will make use of Barlet’s construction of the space of compact
cycles of a complex variety. For X any complex variety and n a natural
number, a (holomorphic) n-cycle of X is a (formal) finite linear combina-
tion Z =

∑
i niZi where the Zi’s are distinct n-dimensional irreducible

compact analytic subsets of X, and each ni is a positive integer called
the multiplicity of the component Zi.1 By |Z| we mean the underlying
set or support of Z, namely

⋃
i Zi. We denote the set of all n-cycles of X

by Bn(X), and the set of all cycles of X by B(X) :=
⋃

n Bn(X). In [2]
Barlet endowed B(X) with a natural structure of a reduced complex
analytic space. If for s ∈ Bn(X) we let Zs denote the cycle represented
by s, then the set {(s, x) : s ∈ Bn(X), x ∈ |Zs|} is an analytic subset
of Bn(X) × X. Equipped with this complex structure, B(X) is called
the Barlet space of X. When X is a projective variety the Barlet space
coincides with the Chow scheme.

An cycle is called irreducible if it has only one component and that
component is of multiplicity 1. In [6] it is shown that

B∗(X) := {s ∈ B(X) : Zs is irreducible}

is a Zariski open subset of B(X). An irreducible component of B(X) is
prime if it has nonempty intersection with B∗(X). Suppose S is a prime
component of the Barlet space and set

GS := {(s, x) : s ∈ S, x ∈ |Zs|}.

Then GS is an irreducible analytic subset of S ×X and, if π : GS → S

denotes the projection map, the general fibres of π are reduced and
irreducible. We call GS the graph of (the family of cycles parametrised)
by S.

Fact 3.2 (cf. Theorem 3.3 of [16]). A compact complex variety X is
essentially saturated if and only if every prime component of B(Xm) is
compact for all m ≥ 0.

One direction of 3.2 is straightforward: If every prime component of
B(Xm) is compact, then they are all sorts in A and their graphs are
definable in A. Consider the sublanguage L0 of the language of A made
up of predicates for the graphs GS as S ranges over all prime components
of B(Xm) for all m ≥ 0. Then L0 is countable because the Barlet space
has countably many irreducible components (this actually follows from

1 We hope the context will ensure that holomorphic n-cycles will not be confused
with the singular n-cycles of singular homo logy discussed in the previous section.
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Lieberman’s Theorem 3.6 below). Every irreducible analytic subset of
Xm, as it forms an irreducible cycle, is a fibre of GS for some such S, and
hence is L0-definable. By quantifier elimination for A, it follows that
every A-definable subset of every cartesian power of X is L0-definable.
So X is essentially saturated. The converse makes use of Hironaka’s
flattening theorem and the universal property of the Barlet space.2

It is in determining whether a given component of the Barlet space is
compact that Kähler geometry intervenes. We review the fundamentals
of this theory now, and suggest [25] for further details.

Suppose X is a complex manifold. A hermitian metric h on X assigns
to each point x ∈ X a positive definite hermitian form hx on the tangent
space TX,x. That is, hx : TX,x × TX,x → C satisfies:

(i) hx(−, w) is C-linear for all w ∈ TX,x,
(ii) hx(v, w) = hx(w, v) for all v, w ∈ TX,x, and
(iii) hx(v, v) > 0 for all nonzero v ∈ TX,x.

Note that hx is R-bilinear and that hx(v,−) is C-antilinear for all v ∈
TX,x. Moreover this assignment should be smooth: Given a coordinate
system (z, U) on X, a hermitian metric is represented on U by

h =
n∑

i,j=1

hijdzi ⊗ dzj

where hij : U → C are smooth functions and dzi⊗dzj is the map taking
a pair of tangent vectors (v, w) to the complex number dzi(v)dzj(w).

A hermitian metric encodes both a riemannian and a symplectic struc-
ture on X. The real part of h, Re(hx) : TX,x × TX,x → R, is posi-
tive definite, symmetric, and R-bilinear. That is, Re(h) is a rieman-
nian metric on X. On the other hand, the imaginary part, Im(hx) :
TX,x × TX,x → R, is an alternating R-bilinear map. So Im(h) is a
real 2-form on X. Moreover, if in a coordinate system (z, U) we have
h =

∑n
i,j=1 hijdzi ⊗ dzj , then a straightforward calculation shows that

Im(h) = − i
2

∑n
i,j=1 hijdzi ∧ dzj . So as a complex 2-form on X, Im(h) is

of type (1, 1).
The assignment h 7→ − Im(h) is a bijection between hermitian metrics

and positive real 2-forms of type (1, 1) on X. We call ω := − Im(h) the
Kähler form associated to h. A hermitian metric is a Kähler metric if

2 Actually, this is done in [16] with restricted Douady spaces (the complex analytic
analogue of the Hilbert scheme) rather than Barlet spaces. However, it is routine
to see that the argument works for Barlet spaces as well.
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its Kähler form is d-closed. A complex manifold is a Kähler manifold if
it admits a Kähler metric.

Example 3.3 The standard Kähler metric on Cn is
∑n

i=1 dzi ⊗ dzi.

Example 3.4 Every complex manifold admits a hermitian metric (but
not necessarily a Kähler one). Indeed, given any complex manifold X, a
cover U = (zι, Uι)ι∈I by coordinate systems, and a partition of unity ρ =
(ρι)ι∈I subordinate to U , h :=

∑
ι∈I ρι

(∑n
i=1 dzι

i ⊗ dzι
i

)
is a hermitian

metric on X.

Example 3.5 (Fubini-Study) Let [z0; . . . ; zn] be complex homogeneous
coordinates for Pn. For each i = 0, . . . , n let Ui be the affine open set
defined by zi 6= 0. Let Fi : Ui → R be the smooth function given by
log

(
|z0|2+···+|zn|2

|zi|2

)
. Then i∂∂Fi ∈ F 1,1

X (Ui) is real-valued. Moreover,

for all j = 0, . . . , n, i∂∂Fi agrees with i∂∂Fj on Ui ∩ Uj . Hence, the
locally defined forms i∂∂F0, . . . , i∂∂Fn patch together and determine a
global complex 2-form on Pn. It is real-valued, of type (1, 1), and d-
closed. The associated Kähler metric is called the Fubini-Study metric
on Pn.

Suppose h is a hermitian metric on X. There is strong interaction
between the Kähler form ω and the riemannian metric Re(h). This is
encapsulated in Wirtinger’s formula for the volume of compact subman-
ifolds of X. When we speak of the volume of a submanifold of X with
respect to h, denoted by volh, we actually mean the riemannian volume
with respect to Re(h).

Wirtinger’s Formula (cf. Section 3.1 of [25]). If Z ⊂ X is a compact
complex submanifold of dimension k, then

volh(Z) =
∫

Z

ωk

where ωk = ω ∧ · · · ∧ ω is the kth exterior power of ω.

Note that Z is of real-dimension 2k and ωk is a real 2k-form on X,
and hence it makes sense to integrate ωk along Z. If X = Pn and h is the
Fubini-Study metric of Example 3.5, then for any algebraic subvariety
Z ⊆ Pn, volh(Z) is the degree of Z.

For possibly singular complex analytic subsets Z ⊂ X (irreducible,
compact, dimension k), Wirtinger’s formula can serve as the definition
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of volume; it agrees with the volume of the regular locus of Z. More
generally, if Z =

∑
i niZi is a k-cycle of X, then the volume of Z with

respect to h is volh(Z) :=
∑

i ni volh(Zi).
Taking volumes of cycles induces a function volh : B(X) → R given

by

volh(s) := volh(Zs).

The link between hermitian geometry and saturation comes from the
following striking fact.

Theorem 3.6 (Lieberman [13]) Suppose X is a compact complex man-
ifold equipped with a hermitian metric h, and W is a subset of Bk(X).
Then W is relatively compact in Bk(X) if and only if volh is bounded
on W .

Sketch of proof. Wirtinger’s formula tells us that volh is computed by
integrating ωk over the fibres of a morphism.3 It follows that volh is
continuous on Bk(X) and hence is bounded on any relatively compact
subset.

The converse relies on Barlet’s original method of constructing the
cycle space. We content ourselves with a sketch of the ideas involved.
First, let K(X) denote the space of closed subsets of X equipped with
the Hausdorff metric topology. So given closed subsets A,B ⊂ X,

dist(A,B) :=
1
2

[max{disth(A, b) : b ∈ B}+ max{disth(a,B) : a ∈ A}] .

Now suppose W ⊂ B(X) is a subset on which volh is bounded. Given
a sequence (si : i ∈ N) of points in W we need to find a convergent
subsequence. Consider the sequence (|Zsi

| : i ∈ N) of points in K(X).
Since X is compact, so is K(X), and hence there exists a subsequence
(|Zsi

| : i ∈ I) which converges in the Hausdorff metric topology to a
closed set A ⊂ X. Since volh(|Zsi |) is bounded on this sequence, a
theorem of Bishop’s [5] implies that A is in fact complex analytic. Now,
by Barlet’s construction, the topology on B(X) is closely related to the
Hausdorff topology on K(X). In particular, it follows from the fact that
(|Zsi

| : i ∈ I) converges in the Hausdorff topology to a complex analytic
subset A ⊂ X, that some subsequence of (si : i ∈ I) converges to a point
t ∈ B(X) with |Zt| = A. In particular, (si : i ∈ N) has a convergent
subsequence. Hence W is relatively compact.

3 To be more precise, given a component S of Bk(X), one considers the universal
cycle ZS on S ×X whose fibre at s ∈ S is the cycle Zs. Then integrating ωk over
the fibres of ZS → S gives us volh on S.
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Corollary 3.7 (Lieberman [13]) If X is a compact Kähler manifold
then the prime components of B(X) are compact.

Sketch of proof. Let h be a Kähler metric on X. The d-closedness of
the Kähler form ω = − Im(h) will imply by Wirtinger’s formula that
volh is constant on the components of the Barlet space. We sketch the
argument for this here, following Proposition 4.1 of Fujiki [9]. Fix a
prime component S of Bk(X). By continuity of volh, we need only show
that for sufficiently general points s, t ∈ S, volh(Zs) = volh(Zt). Let
GS ⊂ S × X be the graph of the cycles parametrised by S, and let
πX : GS → X and πS : GS → S be the natural projections. We work
with a prime component so that for general s, t ∈ S, the fibres of GS

over s and t are the reduced and irreducible complex analytic subsets
Zs and Zt. Now let I be a piecewise real analytic curve in S connecting
s and t. For the sake of convenience, let us assume that there is only
one piece: so we have a real analytic embedding h : [0, 1] → S with
h(0) = s, h(1) = t and I = h

(
[0, 1]

)
. Consider the semianalytic set

R := π−1
S (I) ⊂ GS . Given the appropriate orientation we see that the

boundary ∂R of R in GS is π−1
S (s)− π−1

S (t). Note that πX restricts to
an isomorphism between π−1

S (s) and Zs (and similarly for π−1
S (t) and

Zt). Also, if π∗
X(ωk) is the pull-back of ωk to GS , then dπ∗

X(ωk) = 0
since dω = 0. Using a semianalytic version of Stokes’ theorem (see, for
example, Herrera [10]), we compute

0 =
∫

R

dπ∗
X(ωk)

=
∫

∂R

π∗
X(ωk)

=
∫

π−1
S (s)

π∗
X(ωk)−

∫
π−1

S (t)

π∗
X(ωk)

=
∫

Zs

ωk −
∫

Zt

ωk

= volh(Zs)− volh(Zt),

We have shown that volh is constant on S, and hence S is compact
by Theorem 3.6.

If X is Kähler then so is Xm for all m > 0. Hence, from Corollary 3.7
and Fact 3.2 we obtain:

Corollary 3.8 Every compact Kähler manifold is essentially saturated.
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A complex variety is said to be of Kähler-type if it is the holomorphic
image of a compact Kähler manifold. The class of all complex varieties of
Kähler-type is denoted by C, and was introduced by Fujiki [9]. This class
is preserved under cartesian products and bimeromorphic equivalence.
Many of the results for compact Kähler manifolds discussed above extend
to complex varieties of Kähler-type. In particular, Kähler-type varieties
are essentially saturated (see Lemma 2.5 of [16] for how this follows from
Corollary 3.8 above), and their Barlet spaces have compact components
which are themselves again of Kähler-type.

Model-theoretically we can therefore view C as a many-sorted struc-
ture in the language where there is a predicate for each GS as S ranges
over all prime components of the Barlet space of each cartesian product
of sorts. We call this the Barlet language.4 Note that every analytic
subset of every cartesian product of Kähler-type varieties is definable
(with parameters) in this language, and so we are really looking at the
full induced structure on C from A. Moreover, when studying the mod-
els of Th(C), we may treat C as a “universal domain” in the sense that
we may restrict ourselves to definable sets and types in C itself. This
is for the following reason: Fix some definable set F in an elementary
extension C′. So there will be some sort X of C such that F is a definable
subset of the nonstandard X ′. Essential saturation implies that there
is a countable sublanguage L0 such that X|L0 is saturated and every
definable subset of Xn in A is already definable in X|L0 (with parame-
ters). In particular, F is definable in X|L0 over some parameters, say b,
in X ′. The L0-type of b is realised in X, by say b0. Let F0 be defined
in X ′|L0 over b0 in the same way as F is defined over b. Then in X ′|L0

there is an automorphism taking F to F0. So in so far as any structural
properties of F are concerned we may assume it is L0-definable over X.
But as X|L0 is a saturated elementary substructure of X ′|L0 , the first
order properties of F are then witnessed by F ∩X. The latter is now a
definable set in C. The same kind of argument works also with types.

We can also work, somewhat more canonically, as follows: In any given
situation we will be interested in at most countably many Kähler-type
varieties, (Xi : i ∈ N), at once. We then consider the smallest (count-
able) subcollection X of sorts from C containing the Xi’s and closed
under taking prime components of Barlet spaces of cartesian products
of sorts in X . We view X as a multi-sorted structure in the language
where there is a predicate for each GS as S ranges over all such prime

4 This is in analogy with the Douady language from Definition 4.3 of [16].
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components of the Barlet spaces. We call this the Barlet language of
(Xi : i ∈ N). Then X is saturated (2ω-saturated and of cardinality 2ω),
ω-stable, and every analytic subset of every cartesian product of sorts in
X is definable in X . Moreover, after possibly naming countably many
constants, X has elimination of imaginaries (cf. Lemma 4.5 of [16]).
When working with Kähler-type varieties we will in general pass to such
countable reducts of C without saying so explicitly, and it is in this way
that we treat C as a universal domain for Th(C).

4 Holomorphic forms on Kähler manifolds

In section 2 we defined the De Rham cohomology groups on any complex
manifold X by

Hk
DR(X) :=

{d-closed k-forms on X}
{d-exact k-forms on X}

.

There are also cohomology groups of forms coming from the operators
∂ : Ap,q(X) → Ap,q+1(X). Since ∂ ◦ ∂ = 0, the ∂-exact forms are ∂-
closed. The Dolbeaut cohomology groups are the complex vector spaces

Hp,q(X) :=
{∂-closed forms of type (p, q)}
{∂-exact forms of type (p, q)}

.

We denoted by hp,q(X) the dimension of Hp,q(X).
A fundamental result about Kähler manifolds is the following fact:

Hodge decomposition (cf. Section 6.1 of [25]). If X is a compact
Kähler manifold then Hp,q(X) is isomorphic to the subspace of Hp+q

DR (X)
made up of those classes that are represented by d-closed forms of type
(p, q). Moreover, under these isomorphisms,

Hk
DR(X) ∼=

⊕
p+q=k

Hp,q(X).

A consequence of Hodge decomposition is that complex conjugation,
which takes forms of type (p, q) to forms of type (q, p), induces an isomor-
phism between Hp,q(X) and Hq,p(X). In particular, hp,q(X) = hq,p(X).
So for X compact Kähler and k odd, dimC Hk

DR(X) – which is called the
kth Betti number of X – is always even.

For any complex manifold X, given an open set U ⊂ X, a form
ω ∈ Ap,0(U) is called a holomorphic p-form on U if ∂ω = 0. The sheaf
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of holomorphic p-forms on X is denoted Ωp. Since there can be no non-
trivial ∂-exact forms of type (p, 0), the holomorphic p-forms make up
the (p, 0)th Dolbeaut cohomology group – that is, Hp,0(X) = Ωp(X).
In terms of local coordinates a holomorphic p-form is just a form ω =∑

|I|=p fIdzI where each fI : U → C is holomorphic. A straightforward
calculation shows that holomorphic forms are also d-closed.

If X has dimension n, then Ωn is locally of rank 1. The corresponding
complex line bundle is called the canonical bundle of X, denoted by KX .
The triviality of KX is then equivalent to the existence of a nowhere
zero global holomorphic n-form on X. For X Kähler, this is precisely
the condition for X to be a Calabi-Yau manifold.

Holomorphic 2-forms will play an important role for us. Being of type
(2, 0), a holomorphic 2-form ω ∈ Ω2(X) determines a C-bilinear map
ωx : TX,x × TX,x → C for each x ∈ X. Hence it induces a C-linear map
from TX,x to HomC(TX,x, C) = Ω1

x. To say that ω is non-degenerate at
x is to say that this map is an isomorphism.

Definition 4.1 An irreducible hyperkähler manifold (also called irre-
ducible symplectic) is a compact Kähler manifold X such that (i) X

is simply connected and (ii) Ω2(X) is spanned by an everywhere non-
degenerate holomorphic 2-form.

The basic properties of irreducible hyperkähler manifolds can be found
in Section 1 of [12]. Such properties include: dim(X) is even, h2,0(X) =
h0,2(X) = 1, and KX is trivial. (The latter is because, if φ is a
holomorphic 2-form on X witnessing the hyperkähler condition, and
dim(X) = 2r then φr is an everywhere nonzero holomorphic 2r-form
on X.) For surfaces, condition (ii) in Definition 4.1 is equivalent to the
triviality of KX . The so-called K3 surfaces are precisely the irreducible
hyperkähler manifolds which have dimension 2. K3 surfaces have been
widely studied since their introduction by Weil. A considerable amount
of information on them can be found in [3]. Irreducible hyperkähler
manifolds are now widely studied as higher-dimensional generalizations
of K3 surfaces. We will see in the next section the (conjectured) role
of K3 surfaces and higher dimensional irreducible hyperkählers in the
model theory of Kähler manifolds.

Given a complex manifold X, a cohomology class [ω] ∈ Hk
DR(X) is

called integral if under the identification

Hk
DR(X) = Hk

sing(X, C) = Hk
sing(X, Z)⊗ C,
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[ω] is contained in Hk
sing(X, Z)⊗ 1. Equivalently, the map γ 7→

∫
γ

ω on
real k-cycles is integer-valued. Similarly, [ω] is rational if it is contained
in Hk

sing(X, Z)⊗Q under the above identification.5

Definition 4.2 A Hodge manifold is a compact complex manifold which
admits a hermitian metric h whose associated Kähler form ω – which
recall is a real 2-form of type (1, 1) – is d-closed and [ω] is integral.

In particular, a Hodge manifold is Kähler.
For example, Pn(C) is a Hodge manifold. Indeed, if ω ∈ A1,1(Pn)

is the Kähler form associated to the Fubini-Study metric (see Exam-
ple 3.5), and we view P1 as a real 2-cycle in Pn, then

∫
P1

ω = π. Since
the (class of) P1 generates H2(Pn), [ 1

π ω] ∈ H2
DR(Pn) is integral. It

follows that every projective algebraic manifold is Hodge. A famous
theorem of Kodaira (sometimes called Kodaira’s embedding theorem)
says the converse:

Kodaira’s Embedding Theorem. Every Hodge manifold is (biholo-
morphic to) a projective algebraic manifold.

A consequence of Kodaira’s theorem relevant for us is:

Corollary 4.3 Any compact Kähler manifold with no nonzero global
holomorphic 2-forms is projective.

Sketch of proof. If 0 = Ω2(X) = H2,0(X) then also H0,2(X) = 0. By
Hodge decomposition it follows that H2

DR(X) = H1,1(X). Now let

H1,1(X, R) := {[ω] : ω is real, d-closed, type(1, 1)}.

Then the set

C := {[ω] ∈ H1,1(X, R) : ω corresponds to a Kähler metric}

is open in H1,1(X, R) – the argument being that a small deformation of
a Kähler metric is Kähler. As X is Kähler, C 6= ∅. On the other hand,
as H1,1(X) = H2

DR(X), we have that H1,1(X, R) = H2
sing(X, Z)⊗R, and

hence C must contain an element of H2
sing(X, Z)⊗Q. Taking a suitable

5 We have chosen not to go through the definitions of sheaf cohomology, but for those
familiar with it, Hk

sing(X, Z) coincides with Hk(X, Z), the kth sheaf cohomology

group of X with coefficients in the constant sheaf Z. Likewise for Q, R, or C in
place of Z. In fact for Kähler manifolds, the Dolbeaut cohomology group Hp,q(X)
coincides with Hq(X, Ωp). In any case, the integral classes can be described as
those in Hk(X, Z) and the rational ones as those in Hk(X, Q).
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integral multiple, we obtain an integral class in C. Thus X is a Hodge
manifold, and so projective by Kodaira’s embedding theorem.

In fact we will require rather a relative version, proved in a similar
fashion, and attributed in [7] to Claire Voisin:

Corollary 4.4 Suppose that f : X → S is a fibration in C, and the
generic fibre of f is not projective, then there exists a global holomorphic
2-form ω ∈ Ω2(X) whose restriction ωa to a generic fibre Xa is a nonzero
global holomorphic 2-form on Xa.

5 Stability theory and Kähler manifolds

In this section we will discuss some outstanding problems concerning the
model theory (or rather stability theory) of Th(C). One concerns identi-
fying (up to nonorthogonality, or even some finer equivalence relation),
the trivial U -rank 1 types. The second is the conjecture that Th(C) is
nonmultidimensional. As we shall see the problems are closely related.

Because of the results in section 3, and as discussed at the end of that
section, we may treat C as a universal domain for Th(C). The main use of
this is the existence of generic points: given countably many parameters
A from C, and a Kähler-type variety X, there exist points in X that
are not contained in any proper analytic subsets of X defined over A in
the Barlet language of X. The fact that we need not pass to elementary
extensions in order to find such generic points makes the model-theoretic
study of Th(C) much more accessible than that of Th(A).

In [19] strongly minimal sets were discussed as “building blocks” for
structures of finite Morley rank. In fact one needs a slightly more general
notion, that of a stationary type of U -rank 1, sometimes also called a
minimal type. Let us assume for now that T is a stable theory, and we
work in a saturated model M̄ . A complete (nonalgebraic) type p(x) ∈
S(A) is minimal or stationary of U -rank 1 if for any B ⊇ A, p has a
unique extension to a nonalgebraic complete type over B. Equivalently
any (relatively) definable subset of the set of realizations of p is finite or
cofinite. If X is a strongly minimal set defined over A, and p(x) ∈ S(A)
is the “generic” type of X, then p(x) is minimal. However not every
minimal type comes from a strongly minimal set. For example take T to
be the theory with infinitely many disjoint infinite unary predicates Pi

(and nothing else), and take p to be the complete type over ∅ axiomatized
by {¬Pi(x) : i < ω}. We discussed the notion of modularity of a definable
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set X in [19]. The original definition was that X is modular if for all
tuples a, b of elements of X, a is independent from b over acl(a)∩ acl(b)
(together with a fixed set of parameters over which X is defined), where
acl is computed in M̄ eq. The same definition makes sense with a type-
definable set (such as the set of realizations of a complete type) in place of
X. So we obtain in particular the notion of a modular minimal type. The
minimal type p(x) ∈ S(A) is said to be trivial if whenever a, b1, . . . , bn

are realizations of p and a ∈ acl(A, b1, . . . , bn) then a ∈ acl(A, bi) for
some i. Triviality implies modularity (for minimal types). On the other
hand, if p is a modular nontrivial type then p(x) is nonorthogonal (see
below or [19]) to a minimal type q which is the generic type of a definable
group G. Assuming the ambient theory to be totally transcendental, G

will be strongly minimal, so p will also come from a strongly minimal set.
Under the same assumption (ambient theory is totally transcendental),
any nonmodular minimal type will come from a strongly minimal set.
So a divergence between strongly minimal sets and minimal types is only
possible for trivial types.

Let us apply these notions to Th(C). Those compact complex varieties
in C whose generic type is minimal are precisely the so-called simple
complex varieties. The formal definition is that a compact complex
variety X in C is simple if it is irreducible and if a is a generic point of
X (over some set of definition) then there is no analytic subvariety Y of
X containing a with 0 < dim(Y ) < dim(X). (There is an appropriate
definition not mentioning generic points, and hence also applicable to
all compact complex varieties.) We are allowing the possibility that
dim(X) = 1, although sometimes this case is formally excluded in the
definition of simplicity. In fact, all compact complex curves are simple.
Moreover, a projective algebraic variety is simple if and only if it is of
dimension 1. If X is simple we may sometimes say “X is modular,
trivial, etc.” if its generic type has that property.

Example 5.1 Given a 2n-dimensional lattice Λ ≤ Cn, the quotient
T = Cn/Λ inherits the structure of an n-dimensional compact Kähler
manifold. Such manifolds are called complex tori. The additive group
structure on Cn induces a compact complex Lie group structure on T .
If the lattice is chosen sufficiently generally – namely the real and imag-
inary parts of a Z-basis for Λ form an algebraically independent set over
Q – then it is a fact that T has no proper infinite complex analytic
subsets, and hence is strongly minimal.
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A complex torus which is algebraic (bimeromorphic with an algebraic
variety) is a certain kind of complex algebraic group: an abelian vari-
ety. So the only strongly minimal algebraic complex tori are the elliptic
curves, that is the 1-dimensional abelian varieties.

If p and q are the generic types of X and Y respectively, then p

is nonorthogonal to q (we might say X is nonorthogonal to Y ) if and
only if there is a proper analytic subvariety Z ⊂ X × Y projecting
onto both X and Y . Note that if p and q are minimal then Z must be a
correspondence: the projections Z → X and Z → Y are both generically
finite-to-one.

Fact 5.2 Let p(x) be a minimal type over C. Let X be the compact
complex variety whose generic type is p. Then either:

(i) p is nonmodular in which case X is an algebraic curve,
(ii) p is modular, nontrivial, in which case X is nonorthogonal to (i.e.

in correspondence with) a strongly minimal complex nonalgebraic torus
(necessarily of dimension > 1), or

(iii) p is trivial, and dim(X) > 1.

Proof. This is proved in [22] for the more general case of A. We give a
slightly different argument here.

From the truth of the strong conjecture (cf. [19]) for A one deduces
that if p is nonmodular then X is nonorthogonal to a simple algebraic
variety Y . Y has to be of dimension 1. Simplicity implies that X is also
of dimension 1, and so, by the Riemann existence theorem, an algebraic
curve.

If p is modular and nontrivial, then as remarked above, up to non-
orthogonality p is the generic type of a strongly minimal (modular) group
G. It is proved in [22] that any such group is definably isomorphic to a
(strongly minimal) complex torus T . If T had dimension 1 then by the
Riemann existence theorem it would be algebraic, so not modular.

Likewise in the trivial case, X could not be an algebraic curve so has
dimension > 1.

So the classification or description of simple trivial compact complex
varieties in C remains. Various model-theoretic conjectures have been
made in earlier papers: for example that they are strongly minimal, or
even that they must be ω-categorical when equipped with their canonical
Barlet language (see section 3).

To understand the simple trivial compact surfaces we look to the
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classification of compact complex surfaces carried out by Kodaira in a
series of papers in the 1960’s, extending the Enriques classification of
algebraic surfaces. An account of Kodaira’s work appears in [3]. In
particular Table 10 in Chapter VI there is rather useful. From it we can
deduce:

Proposition 5.3 Let X be a simple trivial compact complex variety of
dimension 2 which is in the class C. Then X is bimeromorphic to a K3
surface. Expressed otherwise, a stationary trivial minimal type in C of
dimension 2 is, up to interdefinability, the generic type of a K3 surface.

Proof. The classification of Kodaira gives a certain finite collection of
(abstractly defined) classes, such that every compact surface has a “min-
imal model” in exactly one of the classes, in particular is bimeromorphic
to something in one of the classes. Suppose X is a simple trivial sur-
face in C. Then X has algebraic dimension 0 (namely X does not map
holomorphically onto any algebraic variety of dimension > 0), X is not
a complex torus, and X has first Betti number even. Moreover these
properties also hold of any Y bimeromorphic to X. By looking at Table
10, Chapter VI of [3], the only possibility for a minimal model of X is
to be a K3 surface.

Among K3 surfaces are (i) smooth surfaces of degree 4 in P3, and (ii)
Kummer surfaces. A Kummer surface is something obtained from a 2-
dimensional complex torus by first quotienting by the map
x 7→ −x and then taking a minimal resolution. See Chapter VIII of
[3] for more details. In particular there are algebraic K3 surfaces, and
there are simple K3 surfaces which are not trivial. However there do
exist K3 surfaces of algebraic dimension 0 (that is, which do not map
onto any algebraic variety) and which are not Kummer, and these will
be simple and trivial (see [17]). On the other hand all K3 surfaces are
diffeomorphic (that is, isomorphic as real differentiable manifolds), and
in fact they were first defined by Weil precisely as compact complex
analytic surfaces diffeomorphic to a smooth quartic surface in P3.

It is conceivable, and consistent with the examples, that the natural
analogue of Proposition 5.1 holds for higher dimensions:

Conjecture I. Any simple trivial compact complex variety in C which
is bimeromorphic to (or at least in correspondence with) an irreducible
hyperkähler manifold. Equivalently any trivial minimal type in C is
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nonorthogonal to the generic type of some irreducible hyperkähler man-
ifold.

Note that any irreducible hyperkähler manifold has even dimension.
Also, as with the special case of K3 surfaces, there are (irreducible)
hyperkählers of any even dimension which are algebraic (and hence not
trivial).

Let us now pass to the stability-theoretic notion of nonmultidimen-
sionality. We start with an arbitrary complete (possibly many-sorted)
stable theory T , and work in a saturated model M̄ of T . Let p(x) ∈ S(A),
q(y) ∈ S(B) be stationary types (over small subsets A,B of M̄). Then
p is said to be nonorthogonal to q if there is C ⊇ A∪B and realizations
a of p, and b of q, such that: (i) a is independent from C over A, and b

is independent from C over B, and (ii) a forks with b over C.
A stationary type p(x) ∈ S(A) is said to be nonorthogonal to a set of

parameters B if p is nonorthogonal to some complete type over acl(B).
The theory T is said to be nonmultidimensional if every stationary non-
algebraic type p(x) ∈ S(A), is nonorthogonal to ∅. An equivalent char-
acterization is:

(?) Whenever p(x, a) is a stationary nonalgebraic type (with domain
enumerated by the possibly infinite tuple a), and stp(a′) = stp(a),
then p(x, a) is nonorthogonal to p(x, a′).

Remark 5.4 If T happens to be superstable, then it suffices that (?)
holds for p(x, a) regular, and moreover we may assume that a is a finite
tuple. If moreover T has finite rank (meaning every finitary type has
finite U -rank), then it suffices for (?) to hold for types p(x, a) of U -rank
1.

A stronger condition than nonmultidimensionality is unidimensional-
ity which says that any two stationary nonalgebraic types are nonorthog-
onal. This is equivalent to T having exactly one model of cardinality
κ for all κ > |T |. Nonmultidimensionality was also introduced by She-
lah [24] in connection with classifying and counting models. For to-
tally transcendental T (namely every formula has ordinal valued Morley
rank), T is nonmultidimensional if and only if there is some fixed cardi-
nal µ0 (which will be at most |T |) such that essentially the models of T

are naturally in one-one correspondence with sequences (κα : α < µ0)
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of cardinals. When µ0 is finite, T is called finite-dimensional. Alterna-
tively (for T superstable of finite rank) this means that there are only
finitely many stationary U -rank 1 types up to nonorthogonality.

Remark 5.5 (cf. [20]) Suppose that T is superstable of finite rank and
nonmultidimensional. Suppose moreover that T is one-sorted and that
every stationary type of U -rank 1 is nonorthogonal to a type of Morley
rank 1. Then T is finite-dimensional.

The following conjecture was formulated (by Thomas Scanlon and the
second author) around 2000-2001. They also pointed out (in [21]) that
it fails for Th(A).

Conjecture II. Th(C) is nonmultidimensional.

Let p(x, a) be a stationary type in C realized by b say (where a is a
finite tuple). Then stp(a, b) is the generic type of a compact complex
variety X, stp(a) is the generic type of a compact complex variety S and
the map (x, y) → x gives a dominant meromorphic map f from X to
S, and tp(a/b) is the generic type of the irreducible fibre Xa. Without
changing p(x, a) we may assume that X and S are manifolds and that f

is a holomorphic submersion (so that the generic fibre of f is a manifold
also). The requirement that for another realization a′ of stp(a), p(x, a)
and p(x, a′) are nonorthogonal, becomes: for a′ another generic point of
S, there is some proper analytic subset Z of Xa×Xa′ which projects onto
both Xa and Xa′ . So by (?) above, we obtain the following reasonably
geometric account or interpretation of the nonmultidimensionality of
Th(C): for any fibration f : X → S in C, any two generic fibres have the
feature that there is a proper analytic subset of their product, projecting
onto each factor. By Remark 5.4, we may restrict to the case where the
generic fibre Xa is simple. So we obtain:

Remark 5.6 Conjecture II is equivalent to: Whenever f : X → S is
a fibration in C with generic fibre a simple compact complex manifold,
then f is weakly isotrivial in the sense that for any generic fibres Xs,
Xs′ , there is a correspondence between Xs and Xs′ .

Of course there are other stronger conditions than weak isotriviality
which a fibration f : X → S may satisfy, for example that any two
generic fibres are bimeromorphic or even that any two generic fibres
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are biholomorphic. If the latter is satisfied we will call the fibration
isotrivial.

Let us begin a discussion of Conjecture II. Let f : X → S be a
fibration in C with simple generic fibre Xs. By 5.2, Xs is either (i) an
algebraic curve, (ii) a simple nonalgebraic complex torus, or (iii) has
trivial generic type. In case (i), we obtain weak isotriviality (as any
two algebraic curves project generically finite-to-one onto P1). So we
are reduced to cases (ii) and (iii). Special cases of case (ii) are proved
by Campana [7]. Assuming the truth of Conjecture I, case (iii) is also
proved in [7]. An exposition of this work is one of the purposes of this
paper and appears in the next section.

For now, we end this section with a few additional remarks on isotriv-
iality.

Remark 5.7 Let f : X → S be a fibration in C. If f is locally trivial
in the sense that for some nonempty open subset U of S, XU is biholo-
morphic to U × Y over U for some compact complex variety Y , then f

is isotrivial.

Proof. By Baire category, we can find s1, s2 ∈ U which are mutually
generic. So Xs1 is isomorphic to Xs2 by assumption. But tp(s1, s2) is
uniquely determined by the mutually genericity of s1, s2. Hence for any
mutually generic s1, s2 ∈ S, Xs1 is isomorphic to Xs2 . Now given generic
s1, s2 ∈ S, choose s ∈ S generic over {s1, s2}. So Xs is isomorphic to
each of Xs1 , Xs2 .

Remark 5.8 Suppose that f : X → S is a fibration in C whose generic
fibre Xs is a simple nonalgebraic complex torus. Suppose moreover that
any (some) two mutually generic fibres Xs, Xs′ are nonorthogonal. Then
any two generic fibres are isomorphic (as complex tori).

Proof. Fix two mutually generic fibres Xs and X ′
s. These are both locally

modular strongly minimal groups. Hence nonorthogonality implies that
there is a strongly minimal subgroup C of Xs × Xs′ projecting onto
both factors, and this induces an isogeny from Xs′ onto Xs, and thus an
isomorphism (of complex tori) between Xs′/As′ and Xs for some finite
subgroup As′ of Xs′ . Note that As′ is acl(s′)-definable. Now let s1, s2

be generic points of S. Let s′ ∈ S be generic over {s1, s2}. So there is
an isomorphism f1 between Xs′/As′ and Xs1 (for some finite, so acl(s′)-
definable subgroup of Xs′) with Xs1 . As s1 and s2 have the same type
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over acl(s′), we obtain an isomorphism f2 between Xs′/As′ and Xs2 .
Thus Xs1 and Xs2 are isomorphic.

6 Local Torelli and the isotriviality theorem

In this section we state and sketch the proof of a recent result of Cam-
pana [7], which was motivated by and partially resolves the nonmultidi-
mensionality conjecture for C discussed in the previous section.

Suppose Y is a compact Kähler manifold and consider a deformation
f : X → S – that is, f is a proper holomorphic submersion between
complex manifolds X and S and there is a point o ∈ S such that Xo = Y .
For s near o, Xs will be a compact Kähler manifold (see Theorem 9.23
of [25]). Diffeomorphically, f is locally trivial: there exists an open
neighbourhood U ⊆ S of o such that XU is diffeomorphic to U ×Y over
U . Letting u be this diffeomorphism we have the commuting diagram:

U × Y

""FF
FF

FF
FF

F
u

diffeo
// XU

fU~~||
||

||
||

U

For each s ∈ U , the diffeomorphism us : Y → Xs induces an isomor-
phism of singular cohomology groups, and hence by De Rham’s Theo-
rem, of the De Rham cohomology groups. In particular, we obtain a
group isomorphism, ûs : H2

DR(Xs) → H2
DR(Y ). From our discussion of

De Rham’s theorem in Section 2 it is not hard to see that, under the
identification

H2
DR(Y ) = H2

sing(Y, C) = HomC (H2(Y ), C) ,

the isomorphism ûs : H2
DR(Xs) → H2

DR(Y ) is given by

[ω] 7−→
(

[γ] 7→
∫

γ

u∗sω

)
where ω is a d-closed 2-form on Xs and and γ is a real 2-cycle on Y .

Since u may not be biholomorphic, ûs does not necessarily respect the
Hodge decomposition of H2

DR(Xs) and H2
DR(Y ). Indeed, one measure of

how far u is from being a biholomorphic trivialisation is the period map
of Y for holomorphic 2-forms (with respect to the deformation f):

p : U → Grass
(
H2

DR(Y )
)

which assigns to each s ∈ U the subspace ûs

(
H2,0(Xs)

)
. Recall that for
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any complex manifold M , H2,0(M) is just the space Ω2(M) of global
holomorphic 2-forms on M .

Note that if u is a biholomorphism then the period map is constant
on U since for all s ∈ U ûs

(
H2,0(Xs)

)
= H2,0(Y ).

Definition 6.1 Suppose Y is a compact Kähler manifold. We say that
Y satisfies local Torelli for holomorphic 2-forms if the following holds:
given any deformation f : X → S of Y with a local diffeomorphic
trivialisation u : U × Y → XU , if the corresponding period map is
constant on U then u is in fact a biholomorphic trivialisation.

Example 6.2 Complex tori and irreducible hyperkähler manifolds all
satisfy local Torelli for holomorphic 2-forms. (See Theorem 5(b) of [4]
for the case of irreducible hyperkähler manifolds.)

We can now state the isotriviality theorem we are interested in.

Theorem 6.3 (Campana [7]) Suppose f : X → S is a fibration where
X and S are compact Kähler manifolds. Assume that for a ∈ S generic,
(i) Xa is not projective, (ii) dimC Ω2(Xa) = 1, and (iii) Xa satisfies
local Torelli for holomorphic 2-forms. Then f is isotrivial.

Sketch of proof. From condition (i) and Corollary 4.4 there exists a global
holomorphic 2-form ω ∈ Ω2(X) whose restriction ωa to the generic fibre
Xa is a nonzero global holomorphic 2-form on Xa. Moreover by condition
(ii), ωa spans Ω2(Xa).

Let U be an open neighbourhood of a such that there is a diffeo-
morphic trivialisation u : U × Xa → XU over U . We show that the
corresponding period map p : U → Grass

(
H2

DR(Xa)
)

is constant on U .
By local Torelli this will imply that u is biholomorphic and hence, by
Remark 5.7, f is isotrivial.

For any s ∈ U let ûs : H2
DR(Xs) → H2

DR(Xa) be the isomorphism in-
duced by u and discussed above. We need to show that ûs

(
H2,0(Xs)

)
=

ût

(
H2,0(Xt)

)
for all s, t ∈ U . But, shrinking U if necessary, H2,0(Xs) =

Ω2(Xs) is spanned by the restriction ωs of ω to Xs, for all s ∈ U . Hence
it suffices to show that ûs(ωs) = ût(ωt) for all s, t ∈ U .

Now fix a real 2-cycle γ on Xa. Viewing ûs(ωs) and ût(ωt) as elements
of HomC

(
H2(Xa), C

)
= H2

DR(Xa) we compute(
ûs(ωs)− ût(ωt)

)
[γ] =

∫
γ

u∗sωs −
∫

γ

u∗t ωt =
∫

us◦γ

ωs −
∫

ut◦γ

ωt.
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Here us ◦ γ and ut ◦ γ are 2-cycles on Xs and Xt respectively. Viewed
as 2-cycles on X we have∫

us◦γ

ωs −
∫

ut◦γ

ωt =
∫

(us◦γ−ut◦γ)

ω.

But (us ◦γ−ut ◦γ) is the boundary of some 3-cycle λ on X. By Stokes’,∫
(us◦γ−ut◦γ)

ω =
∫

λ
dω. Since holomorphic forms are d-closed it follows

that (
ûs(ωs)− ût(ωt)

)
[γ] = 0

for all 2-cycles γ on Xa. That is, ûs(ωs) = ût(ωt) for all s, t ∈ U . So the
period map is constant on U and f is isotrivial.

Remark 6.4 The hypotheses of Theorem 6.3 are valid in the following
cases:
(a) The generic fibre Xa is irreducible hyperkähler and nonprojective,
(b) The generic fibre Xa is a simple complex torus of dimension 2.

Proof. We have already mentioned that complex tori and irreducible hy-
perkähler satisfy local Torelli for holomorphic 2-forms. Nonprojectivity
is assumed in (a) and follows for (b) by the fact that the only simple
projective varieties are curves. Finally, dimC Ω2(Xa) = 1 is true of irre-
ducible hyperkähler manifolds by definition, and true of simple complex
tori of dimension 2 by the fact that dimension 2 forces dimC Ω2(Xa) to
be at most 1 while nonprojectivity forces it to be at least 1.

Let us return to the nonmultidimensionality conjecture (Conjecture
II) from section 5, bearing in mind the equivalence stated in Remark
5.6.

Corollary 6.5 The nonmultidimensionality conjecture holds in Th(C)
for surfaces. In other words if p(x) is a minimal type of dimension 1 or
2 over some model of Th(C) then p is nonorthogonal to ∅.

Proof. As discussed at the end of section 3 we may work in C itself. Let
p(x) = tp(b/a) for a, b from C and b a generic point of an a-definable
simple compact complex manifold Xa of dimension 1 or 2. We have
already pointed out that in the case of dimension 1 (i.e. of projective
curves), Xa is nonorthogonal to Xa′ whenever stp(a) = stp(a′). So as-
sume Xa is a simple compact complex surface. It is then not projective.
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By Fact 5.2 and Proposition 5.3, we may assume that Xa is either a
2-dimensional simple complex torus, or a nonprojective K3 surface. So
by Theorem 6.3 and Remark 6.4, Xa is biholomorphic to Xa′ whenever
stp(a) = stp(a′). Hence tp(b/a) is nonorthogonal to ∅.

Condition (ii) of Theorem 6.3 seems rather strong, and indeed, Cam-
pana works with the following weaker condition: A rational Hodge sub-
structure of H2

DR(Xa) is a C-vector subspace V such that V i,j = V j,i

where V i,j := V ∩Hi,j(Xa), and V = VQ ⊗ C where

VQ := V ∩H2
sing(Xa, Q).

Campana says that Xa is irreducible in weight 2 if for any rational Hodge
substructure V ⊆ H2

DR(Xa), either V 2,0 = 0 or V 2,0 = H2,0(Xa). By
a theorem of Deligne, the image of H2

DR(X) in H2
DR(Xa) under the re-

striction map is a rational Hodge substructure. Hence, the above proof
of Theorem 6.3 works if condition (ii) is replaced by the irreducibility of
Xa in weight 2. Campana proves that the “general” torus of dimension
≥ 3 is irreducible in weight 2. Apparently it is open whether any simple
nonalgebraic torus is irreducible in weight 2. This together with Conjec-
ture I (that any simple trivial compact Kähler manifold is nonorthogonal
to an irreducible hyperkahler manifold) are the remaining obstacles to
the nonmultidimensionality conjecture for C.
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