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What follows is a write-up of some lectures I gave in the Fall of 2021 at the
Fields Institute in Toronto, as part of the Thematic Programme on Trends in Pure
and Applied Model Theory. The actual lectures were given in four 90 minute
instalments, but I present them here as six lectures because the material organised
itself better that way. I have taken other liberties as well: corrected errors, filled
gaps, and improved exposition.

The goal of this module was to give a quick introduction to the model theory
of differential fields that puts differential-algebraic geometry at the center. As
such, fundamental algebraic and model theoretic aspects of the subject, that would
normally form the core of such a course, are entirely omitted. Instead, I have tried
to keep my focus on the birational geometry of algebraic vector fields, and more
generally D-varieties in the sense of Buium [1]. Applications of model theory to
differential-algebraic geometry is an active area of research, and the approach I
have taken here is meant to both whet the student’s appetite and prepare them for
work in the subject.

The style of the lectures are rather informal, lacking in both rigour and detail.
While I make every attempt to explain the central ideas, I leave many proofs to
the student and I give essentially no references. Moreover, I am content to take as
black boxes many important theorems, especially when I have nothing to add to
their exposition as it already exists in the literature.

There are a number of resources out there on the model theory of differential
fields that the reader can consult for a more thorough, and more traditional, intro-
duction. Among them let me only mention Dave Marker’s very influential treatment
of the subject in [5], and Anand Pillay’s chapter in [2]. (It is maybe interesting
to note that the latter is based on another, much longer, course on differential
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fields held during another thematic programme at the Fields Institute some 25
years earlier.) These articles also contain the references that I have generally omit-
ted, coming, for example, from the differential algebra literature. There is very
little overlap between the lecture notes I am presenting here and either of these
precedents.

I am grateful to the Fields Institute for hosting what was, for me personally,
a very productive and stimulating programme. It was especially successful as an
early effort to return to normal in-person academic life and collaborative work.

1. From geometry to algebra to model theory

My goal in this first lecture is to describe how the classical geometry-algebra cor-
respondence gives rise to the model theory of differentially closed (and indeed dif-
ference closed) fields.

But first, as a review and to set the stage, let us consider the model theory
of pure algebraically closed fields from this approach. At its core, and speaking
very loosely, the geometry-algebra correspondence is between a geometric space
and the algebra of functions on the space. In particular, to affine n-space An over a
field k of characteristic zero we associate the polynomial ring k[x] in the n variables
x = (x1, . . . , xn), with coefficients in k. These we naturally view as functions on
An in the sense that we can evaluate a polynomial at any n-tuple from any field
extension of k. To an algebraic subvariety V ⊆ An over k we associate the co-
ordinate ring k[V ] = k[x]/I(V ), where I(V ) is the ideal of polynomials vanishing
on V . That is, we restrict the polynomials to functions on V , identifying polyno-
mials if they agree on V – or rather on V (K) for all field extensions K ⊇ k. So
the algebraic counterpart of the variety V is the finitely generated k-algebra k[V ],
which is an integral domain if V is irreducible. In fact, every finitely generated
integral k-algebra, R, arises in this way. Indeed, fixing generators a1, . . . , an ∈ R
we obtain a surjective k-algebra homomorphism ϕ : k[x] → R taking each xi to ai,
so that R is isomorphic to k[x]/ kerϕ, and letting V ⊆ An be the subvariety de-
termined by setting the polynomials in kerϕ to zero, we have exhibited R as the
co-ordinate ring of V . So, if you are interested in the geometry of (embedded)
irreducible affine algebraic varieties over k then you should study finitely generated
integral k-algebras. A model-theorist will, of course, do so in the natural language
Lk = {0, 1,+,−,×, (λr)r∈k} of k-algebras. Here λr denotes the unary function
symbol to be interpreted as sclar multiplication by r ∈ k. Being finitely gener-
ated is not axiomatisable, but we can at least consider the (universal) theory T
of integral k-algebras in this language. To better understand T we should look to
the existentially closed models: those M |= T with the property that whenever a
system of polynomial equations and inequations (i.e., a conjunction of atomic and
negated atomic formulas) with coefficients from M has a realisation in some model
of T extending M then it already has a realisation in M . The class of existentially
closed models of T is itself axiomatisable; given by the theory ACFk of algebraically
closed fields extending k. It is thus that the study of affine algebraic varieties over k
leads to the first order theory ACFk. Moreover, we recover the co-ordinate rings
we were originally interested in as precisely the finitely generated substructures of
the models of ACFk.
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The path we have just described, from geometry to algebra to model theory,
and then back again, is the template for the expansion of algebraic geometry that
we now study. We will add additional structure to the algebraic varieties that
we consider, right at the beginning of the above process, and then trace where this
leads to algebraically and model-theoretically. That additional structure is a vector
field. Namely, we are interested in algebraic varieties, V ⊆ An, equipped with a
polynomial function that picks out, for each point v ∈ V , a tangent vector to V
at v in An. Let’s make this precise:

Definition 1.1. Suppose V ⊆ An is an affine variety over k. By the tangent
bundle to V we mean the subvariety TV ⊆ A2n over k defined, in co-ordinates
x = (x1, . . . , xn) and y = (y1, . . . , yn), by

f(x) = 0
n∑

i=1

∂f

∂xi
yi = 0

for all f ∈ I(V ). The projection onto the x co-ordinates gives us a surjective
morphism π : TV → V .

An algebraic vector field on V is then a morphism s : V → TV over k which is
a section to π, that is, π ◦ s = idV . We will also sometimes refer to the pair (V, s)
as an algebraic vector field over k.

For any field extension K ⊇ k, and any point v ∈ V (K), the fibre of π : TV → V
over v is a linear subspace of An defined over the field k(v). Staring at the equations,
we see that it is in fact the familiar tangent space to V at v which we denote
by TvV . The algebraic vector field s : V → TV is given by s = (idV , s1, . . . , sn)
where s1, . . . sn ∈ k[V ] and we have that (s1(v), . . . , sn(v)) ∈ TvV (K).

I hope it is clear that algebraic vector fields are inherently of interest, and I will
make no effort to justify this claim. In any case, we will take them as our basic
geometric objects of study. Our first question is: what is the algebraic counterpart
to (V, s)? In other words, what algebraic structure does s induce on the co-ordinate
ring k[V ]? The answer (you will have guessed) is a derivation.

Definition 1.2. A derivation on a (commutative) ring R is a function δ : R → R
that is additive, namely satisfying δ(a+ b) = δ(a) + δ(b), and satisfies the Leibniz
rule δ(ab) = δ(a)b + aδ(b), for all a, b ∈ R. By the constants of (R, δ) we mean
Rδ := {a ∈ R : δ(a) = 0}.

Note that the constants Rδ form a subring. Assuming R is nontrivial we must
have that Rδ contains the integers: δ(1) = δ(1 · 1) = δ(1)1 + 1δ(1) = 2δ(1) forces
δ(1) = 0. Note also that if R is a k-algebra, then a derivation δ on R will be k-linear
if and only if k ⊆ Rδ. Indeed, k-linearity forces δ(λ) = δ(λ1) = λδ(1) = 0 for all
λ ∈ k, and conversely, k ⊆ Rδ implies δ(λa) = δ(λ)a+ λδ(a) = λδ(a) for all a ∈ R.

Proposition 1.3. Suppose V ⊆ An is a subvariety over k. If s = (idV , s1, . . . , sn)
is an algebraic vector field on V over k then there is a unique k-linear derivation
δs on k[V ] such that δs(xi + I(V )) = si for all i = 1, . . . , n.

Moreover, every k-linear derivation on k[V ] is of the form δs for some algebraic
vector field s on V over k.

Proof. First we define δs on the polynomial ring k[x]. Write each si = gi + I(V )
for some gi ∈ k[x]. Then there is a unique k-linear derivation on k[x] satisfying
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δs(xi) = gi. Indeed, uniqueness is clear because k-linearity and the Leibniz rule
ensure that a k-linear derivation on a k-algebra is determined by its action on
generators. For existence, I give you the formula and leave it to you to check that
it works:

(1) δsf :=

n∑
i=1

∂f

∂xi
gi

for each f ∈ k[x].
The next thing to observe is that I(V ) is a δs-ideal: it is closed under the action

of δs. Here we use that s : V → TV . Indeed, for every field extension K ⊇ k, and
every point v ∈ V (K), we have that s(v) ∈ TV (K), and hence

n∑
i=1

∂f

∂xi
(v)si(v) = 0

for all f ∈ I(V ). Since the above identity holds for all K-points of V as we range
over all field extensions K, and since si = gi + I(V ), we get that

n∑
i=1

∂f

∂xi
gi ∈ I(V ).

By (1), δsf ∈ I(V ) for all f ∈ I(V ), as desired.
So δs : k[x] → k[x] induces a k-linear derivation on k[x]/I(V ) = k[V ], which

we also denote by δs. This has the desired property of δs(xi + I(V )) = si for all
i = 1, . . . , n, by construction. Uniqueness follows as before.

Finally, for the “moreover” clause, suppose we begin with a k-linear derivation
δ on k[V ]. Write δ(xi + I(V )) =: si for all i = 1, . . . , n. Using k-linearity and the
Leibniz rule one verifies that for any f ∈ k[x], any K ⊇ k a field extension, and
any v ∈ V (K),

δ(f + I(V ))(v) =

n∑
i=1

∂f

∂xi
(v)si(v).

Applying this to f ∈ I(V ) we get that (s1(v), . . . , sn(v)) ∈ TvV (K). That is,
s := (idv s1, . . . , sn) is an algebraic vector field on V . That δ = δs is clear from
construction. □

We see therefore, using the geometry-algebra correspondence, that to study ir-
reducible algebraic vector fields we should consider the class of finitely generated
integral k-algebras equipped with a k-linear derivation. The natural language for
this is Lk,δ = {0, 1,+,−,×, (λr)r∈k, δ}. We still cannot express the property of
being finitely generated as a k-algebra, but we do have a universal theory, Tk,δ,
of integral k-algebras equipped with a k-linear derivation. It turns out that the
class of existentially closed models of Tk,δ is also elementary; its theory, that of
differentially closed fields which contain k and where the derivation vanishes on k,
is denoted by DCFk. Just as the study of algebraic varieties lead us to ACF, the
study of algebraic vector fields motivates the model-theoretic consideration of DCF.

But what about going back again? That is, how do we recover the differential co-
ordinate rings (k[V ], δs) of algebraic vector fields that we were originally interested
in? This time, studying the finitely generated substructures of models of DCFk

won’t do the trick as these co-ordinate rings are outright finitely generated as k-
algebras, and not just as differential k-algebras. Nevertheless, the differential rings
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(k[V ], δs) can be detected from DCFk, as the finite dimensional substructures of
models. More on this later.

In these lectures I will be focusing on DCF. However, while we have this template
set-up, let us consider one other variant breifly. Instead of expanding V ⊆ An

by an algebraic vector field, consider instead an algebraic dynamical system on
V , i.e., a dominant morphism ϕ : V → V over k. Recall that being dominant
means ϕ(V (K)) ⊆ V (K) is Zariski dense, for any (equivalently some) algebraically
closed field extension K ⊇ k. Again, I take for granted the intrinsic interest in
algebraic dynamical systems (V, ϕ). To understand the algebraic counterpart of this
geometric object we need to think about what ϕ induces on the co-ordinate k[V ].
Writing ϕ = (f1, . . . , fn) with f1, . . . , fn ∈ k[x], we obtain a k-linear endomorphism
ϕ∗ : k[V ] → k[V ] given by ϕ∗(g) = g(f1, . . . , fn). That is, viewing g as a function

on V , ϕ∗(g) is obtained by pre-composing with ϕ. In diagrams: V

ϕ∗(g)   A
AA

AA
AA

ϕ // V

g

��
A1

.

Indeed, the geometry-algebra correspondence is a functor and this is how it acts on
endomorphism. The fact that ϕ is dominant implies that ϕ∗ is injective: if ϕ∗(g) = 0
then g must vanish on the image of ϕ, which being Zariski dense forces g = 0. The
algebraic counterpart to (V, ϕ) is the difference k-algebra (k[V ], ϕ∗). And again, all
such arise in this way. That is, every injective k-linear endomorphism of k[V ] is of
the form ϕ∗ for some algebraic dynamical system ϕ on V over k. To study irreducible
affine algebraic dynamical systems over k is, therefore, to study finitely generated
integral k-algebras equipped with an injective k-linear endomorphism. The latter
are studied model theoretically by the universal theory Tk,σ, in the language Lk,σ =
{0, 1,+,−,×, (λ)r∈k, σ}, of integral k-algebras equipped with an injective k-linear
endomorphism. The existentially closed models of Tk,σ are axiomatisable, by the
theory ACFAk of difference closed fields extending (k, id). So, the same path leading
from varieties to ACF, and from algebraic vector fields to DCF, takes us from
algebraic dynamical systems to ACFA.

2. D-varieties

In the first lecture we worked exclusively over a fixed field k on which our derivations
were assumed to act trivially. This is the so-called autonomous situation. But the
constraint is somewhat artificial, at least form the model-theoretic point of view.
In any case, even if we are interested primarily in the autonomous case, we will
sometimes have to take base extensions to nontrivial differential fields in order
to see the full geometric picture. So, let us now fix a differential field (k, δ) of
characteristic zero.

Definition 2.1. Suppose V ⊆ An is an affine variety over k. By the prolongation
of V over (k, δ) we mean the subvariety τV ⊆ A2n over k defined, in co-ordinates
x = (x1, . . . , xn) and y = (y1, . . . , yn), by

f(x) = 0

fδ(x) +

n∑
i=1

∂f

∂xi
yi = 0
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for all f ∈ I(V ). Here fδ denotes the polynomial obtained form f by applying δ
to its coefficients. The projection onto the x co-ordinates gives us a surjective
morphism π : τV → V .

An affine D-variety over (k, δ) is a pair (V, s) where V ⊆ An is an affine variety
over k and s : V → τV is a morphism over k which is a section to π.

Prolongations are the appropriate modification of tangent bundles in the presence
of a derivation on the base field. In particular, if δ = 0 on k then τV = TV .
In general, for each v ∈ V , the fibre of the prolongation, τvV , is a coset in An

of the tangent space TvV . The point here is that when working in the possibly
nonautonomous case, the basic geometric objects of interest are D-varieties rather
than vector fields.

Where do the equations for the prolongation space come from? The key differential-
algebraic fact is the following elementary computation, the autonomous case of
which was implicit in the proof of Proposition 1.3.

Lemma 2.2. Suppose (R, δ) is a differential ring, f ∈ R[x] is a polynomial in
x = (x1, . . . , xn), and a = (a1, . . . , an) ∈ Rn. Then

δ(f(a)) = fδ(a) +

n∑
i=1

∂f

∂xi
(a)δ(ai).

Proof. We give a sketch, leaving the computations to the reader. First prove the
result, by induction on total degree, in the case when f is a monomial (and so, in
particular fδ = 0). Next, consider a polynomial with only one term, say f = bg
where g is a monomial and b ∈ R. The result follows for such f using the Leibniz
rule and the case of monomials. Finally, for the general case, note that all the
operators involved in the desired identity – namely f 7→ δ(f(a)), f 7→ ∂f

∂xj
(a) and

f 7→ fδ(a) – are additive in f . So, as every polynomial is a sum of polynomials of
the form already dealt with, the Lemma is proven. □

Corollary 2.3. Suppose (V, s) is a D-variety over (k, δ) and (K, δ) ⊇ (k, δ) is a
differential field extension. Then a 7→ (a, δ(a)) defines a map ∇ : V (K) → τV (K).

Proof. It suffices to show that fδ(a) +
∑n

i=1
∂f
∂xi

(a)δ(ai) = 0 for each f ∈ I(V ) ⊆
k[x] and a ∈ V (K). But, as f(a) = 0, and hence δ(f(a)) = 0, this is just Lemma 2.2
applied to (R, δ) = (K, δ). □

Now, the geometry-algebra correspondence yields a bijective correspondence be-
tween D-varieties over (k, δ) and finitely generated reduced k-algebras equipped
with a derivation extending δ. That is, we have the following generalisation of
Proposition 1.3.

Proposition 2.4. Suppose V ⊆ An a subvariety over k. If s = (idV , s1, . . . , sn)
is a D-variety structure on V over k then there is a unique derivation δs on k[V ]
extending δ on k such that δs(xi + I(V )) = si for all i = 1, . . . , n.

Moreover, every derivation on k[V ] extending δ on k is of the form δs for some
D-variety s on V over k.

Proof. The proof of Proposition 1.3 readily generalises to this nonautonomous set-
ting, and I leave the details to you. □

Fix a D-variety (V, s) over (k, δ).
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Definition 2.5. A D-subvariety of (V, s) is an algebraic subvariety W ⊆ V over k
such that s restricts to a D-variety structure on W . That is, s ↾W : W → τW .

It is worth thinking about what this means algebraically. We have a differential
structure δs on k[V ] induced by s, given by Proposition 2.4, and we have an ideal
I(W ) ⊆ k[V ] that defines the subvariety W .

Lemma 2.6. A subvariety W ⊆ V is a D-subvariety of (V, s) if and only if I(W )
is a δs-ideal of k[V ].

Proof. We are being a bit imprecise here. If V ⊆ An and x = (x1, . . . , xn) are
co-ordinates for affine n-space then I(W ) is an ideal of k[x] containing I(V ). But
these are in bijective correspondence with ideals of k[V ] = k[x]/I(V ), and it is in
this sense that we view I(W ) in k[V ].

Write s = (idV (s1, . . . , sn) and each si = gi + I(V ) for some gi ∈ k[x]. Suppose
f ∈ I(W ). Then, by the constructuion of δs and Lemma 2.2, we have

δs(f + I(V )) = fδ +

n∑
i=1

∂f

∂xi
fgi + I(V ).

So I(W ) is a δs-ideal if and only if the right-hand-side is in I(W ) for all f ∈ I(W ).
That is, we need to show that the following are equivalent:

(i) W is a D-subvariety,
(ii) for all f ∈ I(W ), K ⊇ k a field extension, and all a ∈ W (K),

fδ(a) +

n∑
i=1

∂f

∂xi
f(a)gi(a) = 0.

But, by definition τW is defined by fδ +
∑n

i=1
∂f
∂xi

fyi as f varies in I(W ), and the

gi define s. So (ii) is precisely expressing that s maps W to τW , which is what it
means to be a D-subvariety. □

Let us a say a word about base extension. Model-theoretically we are used to
passing to a larger parameter set without comment. But in algebraic geometry
it is more standard (and prudent) to distinguish notationally between the given
variety V over k and its base extension VK to a field extension K ⊇ k. The co-
ordinate ring of VK is the tensor product k[V ] ⊗k K, and the ideal of VK is the
extension ideal I(V )K[VK ]. So VK is just the variety V viewed as being over K
rather than k. Suppose, now, that (K, δ) ⊇ (k, δ) is a differential field extension.
Then prolongations commute with base extension: τ(VK) = (τV )K . This follows
from the fact (which we have not stated nor proved) that in the defining equations
of the prolongation of V , given in Definition 2.1, we could have restricted to any
fixed set of generators for I(V ) instead of ranging over all f ∈ I(V ). I leave this as
an exercise for you. It follows that (VK , sK) is naturally a D-variety over (K, δ).
We will usually continue the model-theoretic habit of dropping these subscripts,
and simply view (V, s) as a D-subvariety over (K, δ) as well. This allows us to use
terminology like “a D-subvariety of (V, s) over K” when what is really meant is a
D-subvariety of (VK , sK).
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3. Finite dimensional types

Now let us pass to a differentially closed field. These were discussed (motivated) in
the first lecture, but I will deviate slightly from the conventions established there.
We will use the simpler language Lδ := {0, 1,+,−,×, δ} of differential rings, rather
than, say, the language LQ,δ of differential Q-algebras. And instead of working with
the theory TQ,δ of integral Q-algebras equipped with a (necessarilly Q-linear) deriva-
tion, we consider the (still universal) Lδ-theory Tδ of differential integral domains
of characteristic zero. Note that if (R, δ) |= Tδ, and RQ denotes the localisation
at Z \ {0}, then δ extends uniquely to RQ and (RQ, δ) |= TQ,δ. So this change is
really very harmless. In particular, Tδ and TQ,δ have the “same” existentially closed
models. We denote the theory of these existentially closed models by DCF0, and
call it the the theory of differentially closed fields of characteristic zero. Note that
I never proved that the class of existentially closed models of Tδ (or TQ,δ for that
matter) is elementary; it is, but I forego all discussion of the axiomatisation here.
Instead we will use existential closedness directly whenever we want to establish any
properties of the models of DCF0. For example, let me point out that differentially
closed fields are algebraically closed:

Lemma 3.1. If (K, δ) |= DCF0 then K is an algebraically closed field.

Proof. Despite the terminology, we have not yet observed that K is a field. So let’s
do that first. To see that every nonzero a ∈ K is invertible, just apply existential
closedness to the formula ϕ(x) given by xa = 1. Indeed, the quotient rule – itself
an immediate consequence of the Leibniz rule – gives us a unique extension of δ
to the localisation of K at a, which thus yields a model of Tδ extending (K, δ) in
which ϕ(x) has a realisation. Hence ϕ(x) is already realised in (K, δ), as desired.

As similar approach gives that K is algebraically closed. Let K(a) be a simple
algebraic extension of K and f the minimal polynomial of a over K. The there is a
unique extension of δ to K(a). Indeed, uniqueness – which we don’t actually need

in this proof – is by Lemma 2.2 which dictates that δ(a) must equal − fδ(a)
f ′(a) . In any

case, existence takes a bit more work. First, view the derivation δ on K as being
K(a)-valued. Then use the freeness of the polynomial ring to extend δ to a deriva-

tion δ : K[x] → K(a) by setting δ(x) := − fδ(a)
f ′(a) . Then observe, using Lemma 2.2,

that δ(f) = 0. We thus obtain an induced derivation δ : K[x]/(f) → K(a). The
natural identification of K[x]/(f) with K(a) gives us our desired extension of (K, δ)
to (K(a), δ). The formula f(x) = 0 has a realisation in (K(a), δ) |= Tδ, and hence
by existential closedness, in (K, δ). This forces K(a) = K, and we have shown that
K is algebraically closed. □

My goal for the rest of this lecture is to show how D-varieties capture precisely
the finite dimensional fragment of DCF0. Let us fix from now on a sufficiently
saturated model (K, δ) |= DCF0. By convention all differential fields we consider
are differential subfields of K of cardinality strictly less than the level of saturation,
unless explicitly stated otherwise. (In fact, DCF0 is ω-stable and hence admits
saturated models of arbitrary large cardinality, so we can assume K is saturated
in its own cardinality.) Similarly all parameters sets are assume to be small unless
explicitly stated otherwise.

Fix a D-variety (V, s) over a differential field (k, δ).
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Definition 3.2. By a D-point of (V, s) we mean a point a ∈ V (K) such that
the singleton {a} is a D-subvariety of (V, s) over (K, δ). We denote the set of all
D-points by (V, s)♯.

Note that we are implicitly taking a base extension as discussed earlier; the
singleton {a} is really a D-subvariety of the base extension of (V, s) to (K, δ). In
order to preserve our convention that all parameters sets be small, we could instead
take the base extension of (V, s) to the differential field generated by a over k,
namely k⟨a⟩ := k(a, δa, δ2a, . . . ). In any case, we have the following characterisation
of (V, s)♯.

Lemma 3.3. (V, s)♯ = {a ∈ V (K) : s(a) = ∇(a)}.

Proof. The lemma follows immediately from the definitions once we observe that,
for any a ∈ V (K), the prolongation of {a}, viewed as a subvariety of V over
F := k⟨a⟩, is precisely {∇(a)}. And this can be checked directly: Suppose V ⊆ An

and a = (a1, . . . , an). Then the ideal of {a} is generated by the linear polynomials
x1 − a1, x2 − a2, . . . , xn − an in F [x1, . . . , xn]. So τ{a} ⊆ A2n is defined in the
variables (x, y) by the equations xj − aj = 0, for each j = 1, . . . , n, along with the

equation (xj − aj)
δ +

n∑
i=1

∂(xj − aj)

∂xi
yi = 0. But this latter is just yj − δ(aj) = 0.

So the prolongation of {a} is the singleton {(a1, . . . , an, δa1, . . . , δan) = ∇(a)}. □

It follows that (V, s)♯ is a k-definable set in (K, δ). Indeed, writing the section
as s = (idV , s1, . . . , sn), and each si = gi+ I(V ) for some g1, . . . , gn ∈ k[x], we have

that (V, s)♯ is defined by the formula (x ∈ V ) ∧
n∧

i=1

(
δxi = gi(x)

)
. Note that this

formula is of a particularly simple form. First of all, it is quantifier-freee. But this
is not surprising as in fact DCF0 admits quantifier elimination. Moreover, it is a
conjunction of δ-polynomial equations; namely polynomial equations over k in the
variables x, δx, δ2x, . . . . Such definable sets are called Kolchin closed in analogy
with the Zariski closed sets of algebraic geometry. In addition, (V, s)♯ is of order 1
in the sense that only the first derivative of the variables actually appear.

Next, assuming that V is irreducible, we associate to (V, s) a certain complete
type in (K, δ). Let p(x) be the collection of formulae over k asserting that x is a
D-point of (V, s) not contained in any proper subvariety of V over k.

I claim that p(x) is consistent. That is, given a proper subvariety W ⊊ V over k,
there is a D-point of (V, s) in U := V \W . Our assumption that V is irreducible
ensures that U is a dense Zariski open subset of V . As you might expect, we
need to use existential closedness of (K, δ) to show that there is a D-point in U ,
or indeed that there are any D-points of (V, s) at all. This is done as follows:
Using Proposition 2.4, let δs be the derivation on k[V ] extending δ on k that is
induced by s. Let a := x + I(V ) be the generators of k[V ] = k[x]/I(V ) coming
form the variables of the ambient polynomial ring. By definition of δs we have that
δs(ai) = si for all i = 1, . . . , n, in the differential ring (k[V ], δs). That is, a is a
realisation in (k[V ], δs) of the formula defining (V, s)♯. Moroever, a also realises
x /∈ W as I(W ) ⊋ I(V ) since W is a proper subvariety of V . That is, the formula
defining (V, s)♯ ∩ U has a realisation in (k[V ], δs). Now, as V is irreducible, k[V ]
is an integral domain, and hence (k[V ], δs) is a model of Tδ extending (k, δ). It
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follows by existential closedness that the formula defining (V, s)♯ ∩ U must have a
realisation in (K, δ), as desired.

Next, I claim that p(x) determines a complete type. Using the fact that DCF0

admits quantifier elimination (whose proof I also forego!), it suffices to prove that
if a |= p(x) then tpL(a, δa, δ

2a, . . . /k) is determined, where recall that L is just the
language of rings (as opposed to the language Lδ of differential rings). But as a
is a D-point of (V, s), the derivative δa is given by polynomials in a over k, and
hence so is δℓa for all ℓ ≥ 1 by Lemma 2.2. So tpL(a, δa, δ

2a, . . . /k) is determined
by tpL(a/k). By quantifer elimination in ACF0, this is in turn determined by
Z-loc(a/k), the Zariski locus of a over k; namely, the smallest Zariski closed subset
of V over k that contains a. But as p(x) ensures that a is not contained in any
proper sunbvariety of V over k, we must have that Z-loc(a/k) = V . So tpL(a/k) is
determined.

Definition 3.4. We call this p(x) the generic type of (V, s) over k. It is the type
asserting that x is a D-point of (V, s) and that the Zariski locus of x over k is V .
We call a realisation of p(x) a generic D-point of (V, s) over k.

We have thus associated a complete type to every irreducible D-variety. Not all
complete types arise in this way. To see this, let us introduce dimension for types
as follows:

Definition 3.5. Suppose (k, δ) is a differential field and p ∈ S(k) is a complete
type over k. By the dimension of p, denoted by dim(p), we mean the non-decreasing
sequence of non-negative integers

(tr.deg.(a/k), tr.deg.(a, δa/k), tr.deg.(a, δa, δ2a/k), . . . )

where a |= p. We also write this as dim(a/k). If this sequence eventually stabilises
then we say that p is finite dimensional and we write dim(p) = d where d is that
eventual value of the sequence.

Note that p is finite dimensional if and only if for some (equivalently any) a |= p
we have that the differential field k⟨a⟩ = k(a, δa, δ2a, . . . ) generated by a over k has
finite transcendence degree, and in that case dim(p) = tr.deg.(k⟨a⟩/k).

Lemma 3.6. If (V, s) is an irreducible D-variety over (k, δ) then its generic type
over k is finite dimensional and of dimension dimV .

Proof. If a is a generic D-point of (V, s) over k then tr.deg.(a/k) = dimV since
V = Z-loc(a/k). On the other hand, k(a, δa, . . . , δℓa) = k(a) for all ℓ ≥ 1 as a is aD-
point and hence δa is a polynomial in a over k. So dim(a/k) = (dimV,dimV, . . . ).

□

In fact, every finite dimensional type arises in this way. Well, at least up to inter-
definability. Here, we say that p, q ∈ S(k) are interdefinable if for all (equivalently
some) a |= p there is b |= q such that dcl(ka) = dcl(kb). Using quantifier-elimination
for DCF0 one can show that dcl(ka) = k⟨a⟩, and hence finite dimensionality is
an interdefinability invariant of complete types. But note that dimension itself
is not an interdefinability invariant: if a ∈ K is differentially-transcendental over
k in the sense that (a, δa, δ2a, . . . ) is an algebraically independent sequence then
dim(a/k) = (1, 2, 3, . . . ) while dim(a, δa/k) = (2, 3, 4, . . . ), though tp(a/k) and
tp(a, δa/k) are interdefinable.
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Theorem 3.7. Suppose (k, δ) is a differential field. Every finite dimensional com-
plete type over k is interdefinable with the generic type of an irreducible D-variety
over (k, δ).

Proof. I will give only a sketch, in the special case of 1-types, from which you will
see how to proceed in general and in detail. We are given a type p = tp(a/k)
where a ∈ K and k⟨a⟩ is of finite transcendence degree over k. It follows that, for
some ℓ ≥ 0, δℓa ∈ k(a, δa, . . . , δℓ−1a)alg. Let P be the minimal polynomial of δℓa
over k(a, δa, . . . , δℓ−1a). Since P (δℓa) = 0, differentiating both sides we get from
Lemma 2.2 that

0 = δ(P (δℓa)) = P δ(δℓa) + P ′(δℓa)δℓ+1a.

By minimality, P ′(δℓa) ̸= 0, and hence we get that

δℓ+1a = −P δ(δℓa)

P ′(δℓa)
= f(a, δa, . . . , δℓa)

for some rational function f ∈ k(x(0), x(1), . . . , x(ℓ)). Now let b := (a, δa, . . . , δℓa).
Then

∇(b) = (a, δa, . . . , δℓa, δa, δ2a, . . . , δℓ+1a) = (b, π1(b), π2(b), . . . , πℓ(b), f(b))

where the πi are the ith co-ordinate projections. That is, ∇(b) = s(b) where
s = (id, π1, . . . , πℓ, f). If we set V := Z-loc(b/k) \ pole(f) ⊆ Aℓ+1, then s : V → τV
is a regular section, b is a generic D-point of (V, s) over k, and tp(a/k) and tp(b/k)
are interdefinable. I am cheating, of course, because V is not a closed subvariety of
Aℓ+1, but by working with one more variable this can be remedied. □

The study of the birational geometry ofD-varieties thus coincides with the model
theory of the finite dimensional fragment of DCF0.

4. Stability and independence

I have omitted proofs of some of the most fundamental properties of DCF0; in
particular, that it exists (i.e., the fact that the existentially closed models of Tδ

form an elementary class) and that it admits quantifier elimination. This is largely
because you can find the proofs elsewhere, and I had nothing to add. In this lecture
I want to discuss some further model theoretic properties, around stability, and this
time I will give at least some proofs.

Before talking about stability, let me say a few words about the elimination of
imaginaries, another important property that DCF0 enjoys. This is the statement
that every definable set D has a code; that is, a finite tuple e such that for all
σ ∈ Aut(K, δ), σ(D) = D if and only if σ(e) = e. Equivalently, for some formula
ϕ(x, y), D = ϕ(K, e) but D ̸= ϕ(K, e′) for any e′ ̸= e. That is, a code for a definable
set is a kind of minimal and canonical parameter. Using quantifier elimination and
the noetherianity of the Kolchin topology (both facts not proved here), it is not
hard to reduce the verification that all definable sets have codes to showing that
all Kolchin closed sets have codes. Now, a Kolchin closed set is of the form

D = {a ∈ Kn : ∇ℓ(a) := (a, δa, δ2a, . . . , δℓa) ∈ V (K)}
for some ℓ ≥ 0 and some algebraic subvariety V ⊆ A(ℓ+1)n. Moreover, replacing V
by the Zariski closure of ∇ℓ(D), we may assume that ∇ℓ(D) is Zariski dense in V .
From algebraic geometry we know that V has a minimal field of definition, say L,
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that L is finitely generated, say L = Q(e), and that e is a code for V (K) in the pure
field structure K. I claim that e will in fact be a code for D in (K, δ). It is clear
that D is defined over e, and so it suffices to show that if σ ∈ Aut(K, δ) preserves D
then σ(e) = e. But as σ commutes with δ, if σ(D) = D then σ(∇ℓ(D)) = ∇ℓ(D),
and hence σ preserves the Zariski closure V , which in turn forces σ(e) = e.

Now let us pass to stability.

Theorem 4.1. DCF0 is ω-stable: there are only countably many types over count-
ably many parameters.

Proof. It suffices to count 1-types. Actually, the proof sketch I gave of Theorem 3.7
already suggests how to count the 1-types over a differential field (k, δ), and we
follow that suggestion now. First of all, there is a unique 1-type of a differentially
transcendental element over k; that is, of an element a ∈ K such that (a, δa, δ2a, . . . )
is an algebraically independent sequence over k. So it remains to count differentially
algebraic 1-types (namely those that are not differentially transcendental).

Suppose therefore that a ∈ K is differentially algebraic over k. Let ℓ ≥ 0 be
least such that δℓa ∈ k(a, δa, . . . , δℓ−1a)alg and let P (t) be the minimal polyno-
mial of δℓa over k(a, δa, . . . , δℓ−1a). After clearing denominators we can write
P = g(a, δa, . . . , δℓ−1a, t) where g ∈ k[x(0), x(1), . . . , x(ℓ), t]. I claim that tp(a/k)
is determined by the pair (ℓ, g). But before proving this let us observe that
k⟨a⟩ = k(a, δa, . . . , δℓa). Indeed, we saw in the proof of Theorem 3.7 that δℓa being
algebraic over k(a, δa, . . . , δℓ−1a) implies that δℓ+1a is contained in k(a, δa, . . . , δℓa).
In particular, δℓ+1a is algebraic over k(a, δa, . . . , δℓa) and hence

δℓ+2a ∈ k(a, δa, . . . , δℓ+1a) = k(a, δa, . . . , δℓa).

Iterating gives us the desired fact that k⟨a⟩ = k(a, δa, . . . , δℓa).
Suppose now that b ∈ K is differentially algebraic over k and gives rise to the

same data (ℓ, g). I want to show that tp(a/k) = tp(b/k). To do so, I will exhibit a
differential-field-isomorphism from k⟨a⟩ to k⟨b⟩ over k, that takes a to b, and this
will suffice by quantifier elimination. But we know that

k⟨a⟩ = k(a, δa, . . . , δℓa)

and
k⟨b⟩ = k(b, δa, . . . , δℓb).

So it suffices to exhibit a field-isomorphism α : k(a, δa, . . . , δℓa) → k(b, δb, . . . , δℓb),
over k, which satisfies α(δia) = δib for all i = 0, . . . , ℓ+1. (It is not a typo here that
we have to check all the way up to i = ℓ+ 1.) Indeed, I am using the fact, which I
leave to you to check, that if you have a field isomorphism between differential fields
which commutes with the derivation on the field-generators of the domain, then it
must be a differential-field-isomorphism. (Hint: This too rests on the infinitely
useful Lemma 2.2.)

First of all, tpL(a, δa, . . . , δ
ℓ−1a/k) = tpL(b, δb, . . . , δ

ℓ−1b/k) as it is the field-
type of an algebraically independent ℓ-tuple. So we have a field isomorphism
α : k(a, δa, . . . , δℓ−1a) → k(b, δb, . . . , δℓ−1b), over k, taking δia to δib for all i =
0, . . . , ℓ − 1. We want to extend α to δℓa. To do so, note that, by construction,
P = g(a, δa, . . . , δℓ−1a, t) is an irreducible polynomial over k(a, δa, . . . , δℓ−1a) of
which δℓa is a root. On the other hand, δℓb is a root of Q := g(b, δb, . . . , δℓ−1b, t),
and Q is the transform of P by α. So we can extend α to

α : k(a, δa, . . . , δℓa) → k(b, δb, . . . , δℓb)
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by sending δℓa to δℓb.
It remains only to check that α(δℓ+1a) = δℓ+1b. But this also follows from the

proof of Theorem 3.7, where we saw that δℓ+1a = −P δ(δℓa)
P ′(δℓa)

and δℓ+1b = −Qδ(δℓb)
Q′(δℓb)

.

I leave it to you to check that α takes P δ to Qδ and P ′ to Q′. Hence α takes δℓ+1a
to δℓ+1b, as desired.

We have proved that the differentially algebraic 1-type tp(a/k) is determined by
the pair (ℓ, g). If k is countable then there are only countably many possible such
pairs, and hence only countably many differentially algebraic 1-types over k (and
only one differentially transcendental 1-type). As every countable set of param-
eters is contained in a countable differential field (namely the differential field it
generates), it follows that over countably many parameters we have only countably
many complete 1-types. That is, DCF0 is ω-stable. □

What I like about the above proof is that it uses very little differential algebra.
In particular, somewhat unexpectedly, no use is made of the Ritt-Raudenbush basis
theorem which says that every radical differential ideal in a differential polynomial
ring over a differential field is finitely generated (as a radical differential ideal).
Differential algebra is a useful and beautiful subject, but it is interesting to note
how little of it one really needs to do model theory in DCF0.

Once we have ω-stability, the full machinery of geometric stability theory be-
comes available. In particular we have the good behaviour of Shelah’s nonforking
independence. I will not give the abstract definition of nonforking, but rather
specialise to what it means in DCF0.

Definition 4.2. Given a tuple a and subsets B ⊆ A of K, we say that a is in-
dependent from A over B, denoted by a |⌣

B

A, to mean that dim(a/dcl(A)) =

dim(a/dcl(B)). In this case we also say that tp(a/A) a does not fork over B or
that tp(a/A) is a nonforking extension of tp(a/B).

Recall that the dimension of a type over a differential field was defined in 3.5 as
a certain infinite sequence of nondecreasing integers, and it is as such that equality
is to be understood above. Namely, if F := dcl(A) and k := dcl(B), then a |⌣

B

A if

and only if tr.deg.(a, δa, . . . , δℓa/F ) = tr.deg.(a, δa, . . . , δℓa/k), for all ℓ ≥ 0. It is
also worth pointing out that this is equivalent to saying that k⟨a⟩ is algebraically
disjoint, in the sense of pure field theory, from F over k.

Maybe the best way to see that this agrees with Shelah’s nonforking is to prove
that it satisfies the usual desired properties (nontriviality, finite character, auto-
morphism invariance, symmetry, transitivity, existence of nonforking extensions,
uniqueness of nonforking extensions over algebraically closed sets), using the anal-
ogous properties for algebraic independence in pure fields, and then use the fact
that Shelah’s nonforking in stable theories is characterised among all abstract in-
dependence relations by these properties. But we do not go into that here.

How does this specialise to generic types of D-varieties (and hence, by Theo-
rem 3.7, to finite dimensional types)? Here is the simple answer:

Proposition 4.3. Suppose (V, s) is a D-variety over (k, δ) with V absolutely ir-
reducible1. Let a be a generic D-point of (V, s) over k. Then, for any differential
field extension F ⊇ k, a |⌣k

F if and only if a is a generic D-point of (V, s) over F .

1A variety is absolutely irreducible if its base extension to any field extension is irreducible.
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Proof. By Lemma 3.6, the dimension of the generic type of (V, s) over k is dimV ,
and so is the dimension of the generic type of (V, s) over F . (Note that we are
using absolute irreducibility here so that we can apply Lemma 3.6 to the base
extension of (V, s) to F , which remains irreducible.) This proves the right-to-left
direction. For the converse, assume a |⌣k

F . As we already know that a is a D-

point of (V, s), it remains to verify that the Zariski locus of a over F , say W , is
equal to V . But W is a Zariski closed subset of V over F and it is of dimension
tr.deg.(a/F ) = tr.deg.(a/k) = dimV . Hence, by the irreducibility of V over F , we
must have W = V . □

The assumption in the above proposition that V be absolutely irreducible may
seem a little unnatural. At the very least we should give a model-theoretic expla-
nation of absolute irreducibility:

Proposition 4.4. Suppose (V, s) is an irreducible D-variety over (k, δ). Then V
is absolutely irreducible if and only if the generic type of (V, s) over k is stationary:
it has a unique nonforking extension to every set containing k.

Proof. If V is absolutely irreducible, then by Proposition 4.3 the nonforking exten-
sion of its generic type, p, over k, to a set A ⊇ k, is precisely the generic type of
(V, s) over F := dcl(A). Conversely, suppose the generic type p of (V, s) over k is
stationary and let F := kalg. For absolute irreducibility it suffices to verify that V
is irreducible over F . Note that F is also a differential subfield of (K, δ), since, as
observed in the proof of Lemma 3.1, if a ∈ kalg with minimal polynomial f then

δ(a) = − fδ(a)
f ′(a) . Now, each irreducible component W of V over F is of dimension

dimV . I claim that it suffices to check that W is a D-subvariety of V over F .
Indeed, in that case the generic type of (W, s ↾W ) over F would be the nonforking
extension of p to F , by Proposition 4.3, and hence all irreducible components of V
over F would share a generic type, forcing V itself to be irreducible over F .

So we have reduced to showing that the irreducible components of V over F are
D-subvarieties. This is of independent interest. Recall, from algebraic geometry,
that the irreducible components of a variety correspond to the minimal prime ideals
containing the ideal of that variety. By Lemma 2.6, we need to show that those
minimal prime ideals are δs-ideals. This follows from the following fundamental
(but easy) fact of differential algebra: If (F, δ) is a differential field and R is a
finitely generated F -algebra equipped with a δ-ring structure extending (F, δ), and
I is a radical δ-ideal of R, then every minimal prime ideal containing I is also a
δ-ideal. To see this, let I = P1 ∩ · · · ∩Pℓ be the prime decomposition of I. We need
to observe that each of the Pj is a δ-ideal. That is, fixing j = 1, . . . , ℓ, and a ∈ Pj ,
we need to show that δ(a) ∈ Pj . For each r ̸= j choose br ∈ Pr \ Pj and let b be
the product of all the br’s. Then ab ∈ I, and hence δ(a)b+ aδ(b) = δ(ab) ∈ I ⊆ Pj .
Since a ∈ Pj this implies δ(a)b ∈ Pj . But by construction b /∈ Pj , and hence
δ(a) ∈ Pj as desired. □

5. Around the constants

By the field of constants we mean C := {a ∈ K : δ(a) = 0}. Note that C is the
set of D-points of the trivial vector field on the affine line; that is, C = (A1, 0)♯.
Here 0 here denotes the zero vector field on the affine line given by a 7→ (a, 0). It is
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also easy to verify that C is a subfield of K. Let us observe that it is algebraically
closed: If f(t) is the minimal polynomial over C of an element a ∈ K that is
algebraic over C, then by differentiating 0 = f(a) we get 0 = f ′(a)δ(a) as fδ = 0.
But f ′(a) ̸= 0 by minimality, so that we must have δ(a) = 0. This shows that C is
relatively algebraically closed in K. But we have seen that K is algebraically closed
(Lemma 3.1), and hence so is C.

Proposition 5.1. The constants form a stably embedded pure algebraically closed
field. That is, if D ⊆ Cn is definable in (K,∆) then it is definable in (C,+,×).

Proof. Note that for us “definable” means “definable with parameters”. So the first
step is to show that D is definable in (K,∆) with parameters from C. We will use
the fact (not proven in this course) that all types of a stable theory are definable.
Suppose D is defined by ϕ(a, y) where ϕ(x, y) is a Lδ-formula and a ∈ Km, and let
p(x) := tp(a/C). I use boldface here because p is not a proper type according to
our conventions where we are only to allow parameter sets that are of cardinality
less then the level of saturation. But it is OK, such global types are also definable.
In particular, we have a formula dp ϕ(y) over C such that ϕ(x, b) ∈ p if and only if
|= dp ϕ(b) for all b ∈ Cn. But this implies that, for all b ∈ Kn,

b ∈ D ⇐⇒ |= dp ϕ(b) ∧ (δb = 0)

which shows that D is definable with parameters in C.
Next, easy manipulations using quantifier elimination reduces us further to the

case when D is defined by a conjunction (δy = 0) ∧ (P (y, δy, . . . , δℓy) = 0) where
P is a polynomial with coefficients in C. But that formula is equivalent to

(δy = 0) ∧ (P (y, 0, . . . , 0) = 0),

and the latter defines a set which is clearly definable in (C,+,×). □

In this way, pure algebraic geometry lives definably in the finite dimensional
fragment of DCF0, precisely as the induced structure on the constants. (Notice
that this is saying something different, more meaningful, than that (K,∆) is an ex-
pansion of the pure algebraically closed field K.) The model theorist’s approach can
now be described as follows: Understand the fine structure of a finite dimensional
type by studying its relationship to the field of constants. In other words, study
differential-algebraic geometry in relation to the algebraic geometry living therein.

Such an approach will, of necessity, say nothing about those types that have
no definable relationship to the constants. Here we have to be careful about what
we might mean by “having no definable relation to the constants”, in particular
with respect to parameters. Consider, for example, the set D ⊆ K defined by the
equation δ(x) = 1. Note that D = (A1, 1)♯ where 1 here denotes the constant vector
field on the affine line given by a 7→ (a, 1). The elements of D are independent of
the constants over the empty set. Indeed, if d ∈ D and F ⊆ C is any subfield
then, as d /∈ F alg ⊆ C, dim(d/F ) = 1 = dim(d/Q). It follows that d |⌣F , which
expresses the fact that there are no nontrivial 0-definable relations between D and
C. On the other hand, if we fix a solution d0 ∈ D, and let k := Q⟨d0⟩, then D is
definably isomorphic to C over k as D = d0 + C. In fact, we have an isomorphism
of D-varieties (A1, 1) → (A1, 0) over k, given by translation by −d0. So parameters
matter very much, leading to the following two natural implementations of “having
no definable relation to the constants”.
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Definition 5.2. Suppose (k, δ) is a differential field and p ∈ S(k) is a complete
stationary type. We say that p is weakly orthogonal to C, denoted by p ⊥w C, to
mean that whenever a |= p and c is a tuple from C then a |⌣k

c. We say that
p is orthogonal to C, denoted p ⊥ C, if every nonforking extension of p is weakly
orthogonal to C.

That is, p ⊥ C means that for any B ⊇ k, any a |= p with a |⌣k
B, and any

tuple c from C, a |⌣B
c. For example, what follows from the above discussion is

that the type over Q of any solution to δ(x) = 1 is weakly C-orthogonal, but not
C-orthogonal. In fact, δ(x) = 1 fails orthogonality to the constants in a particularly
strong way:

Definition 5.3. Suppose (k, δ) is a differential field and p ∈ S(k) is a complete
stationary type. We say that p is (almost) C-internal if there is B ⊇ k, a |= p with
a |⌣k

B, and c a tuple from C, such that a ∈ dcl(Bc) (respectively, a ∈ acl(Bc)).

The type of any solution to δ(x) = 1, while being weakly C-orthogonal, is at the
same time C-internal.

Examples of C-orthogonality (or of non-almost-C-internality, for that matter) are
harder to verify as they require considering all possible extensions of parameters.
But examples do exist, even in order one: the type of any nonzero solution to
δ(x) = x

x+1 is orthogonal to the constants. Such equations were studied by Kolchin,

Rosenlicht, and Shelah; see Dave Marker’s treatment of the above equation in [5,
§II.6].

Orthogonality to C implements the idea of having essentially no definable relation
to the constants (even after passing to additional parameters), while almost C-
internality captures the opposite extreme of having a very significant definable
relation with the constants (after possibly adding parameters). There is, of course,
a lot of room in-between.

Specialising to finite dimensional types, let us give the geometric meaning of
C-orthogonality and almost C-internality for the generic types of D-varieties. To do
so we need a little more differential-algebraic geometry. The following notions are
very natural and I could have, probably should have, discussed them in the second
lecture.

Definition 5.4. Suppose (V1, s1) and (V2, s2) areD-varieties over a differential field
(k, δ). Then a D-rational map f : (V1, s1) → (V2, s2) is a rational map f : V1 → V2

over k such that τf ◦ s1 = s2 ◦ f . That is, the diagram

τV1
τf // τV2

V1

s1

OO

f // V2

s2

OO

of rational maps, commutes.

In the above definition I am using implicitly the fact that prolongation is a
functor, so that τf : τV1 → τV2 makes sense. When f is a morphism it is quite
clear how to define τf , namely: letting Γ ⊆ V1 × V2 be the subvariety given by
the graph of f , verify that τΓ ⊆ τ(V1 × V2) = τV1 × τV2 is in fact the graph of a
morphism from τV1 to τV2, and then define τf to be that morphism. It is not too
difficult to extend this construction to rational maps, but I leave the details to you.
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The following is a useful way to check when a rational map is D-rational:

Lemma 5.5. Suppose (Vi, si) are D-varieties over (k, δ) and f : V1 → V2 is a
rational map. Then the following are equivalent:

(i) f is D-rational,
(ii) f

(
(V1, s1)

♯ ∩ dom(f)
)
⊆ (V2, s2)

♯, and

(iii) f(a) ∈ (V2, s2)
♯ for some (equivalently any) generic D-point a of (V1, s1).

Proof. I leave it to you to check that the following diagram

τV1(K)
τf // τV2(K)

V1(K)

∇

OO

f // V2(K)

∇

OO

always commutes. From this, and the fact that ∇ agrees with si on (Vi, si)
♯, the

implication (i) =⇒ (ii) follows easily.
Note that if a is a generic D-point of (V1, s1) over k then it is Zariski-generic in

V1 over k, and hence the rational map f is defined at a. Hence, that (ii) implies
the “for any” version of (iii) is clear.

Now, assume (iii) holds of some generic D-point a. This implies that τf ◦ s1 and
s2 ◦ f agree on a. But a is Zariski-generic in dom(f) over k, and such agreement
is a Zariski closed condition over k. It follows that they agree on all of dom(f), as
required for (i). □

OK, now back to orthogonality and internality for finite dimensional types. Re-
call that the constants can be viewed as the set of D-points on the trivial vector
field (A1, 0). So, from the differential-algebraic geometric point of view, a natural
notion of “interaction” between a D-variety (V, s) and (A1, 0) would be the exis-
tence of a nonconstant D-rational map f : (V, s) → (A1, 0). By “nonconstant” here
we mean that f is not a constant function on V , that as an element of the rational
function field, k(V ), it is not in k. However, the fact that f is a D-rational map
to (A1, 0) does mean, exactly, that f is a constant of the derivation δs on k(V ).
(You should check this.) The constants of (k(V ), δs) are often called rational first
integrals for (V, s). In any case, here are the promised geometric characterisations:

Theorem 5.6. Suppose (V, s) is an absolutely irreducible D-variety over (k, δ) with
generic type p ∈ S(k). Then

(a) p is nonorthogonal to the constants if and only if there is a differential field
extension F ⊇ k and a nonconstant D-rational map f : (V, s) → (A1, 0)
over F ,

(b) p is almost internal to the constants if and only if there is a differential
field extension F ⊇ k and a D-rational map f : (V, s) → (AdimV , 0) over F
which is dominant and generically finite-to-one.

Proof. Let us consider the right-to-left direction of part (a). Fix a ∈ (V, s)♯ a
generic D-point over F . Then a |= p, and a |⌣k

F by Proposition 4.3. We have

f(a) ∈ (A1, 0)♯ = C. Since f is not constant on V , the Zariski locus of a over F ⟨f(a)⟩
is a proper subset of V , and hence a ̸ |⌣F

f(a), again by 4.3. This witnesses p ̸⊥ C.
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Note that the same proof also gives the right-to-left direction of part (b); indeed,
in that case f(a) ∈ CdimV and f being dominant and generically finite-to-one
witnesses that a ∈ acl(Ff(a)), which yeilds almost C-internality.

For the converse of part (a), let L ⊇ k be a differential field extension and c =
(c1, . . . , cm) a tuple from C such that a |⌣k

L and a ̸ |⌣L
c. That is, L and c witness

that p ̸⊥ C. (Note that by taking definable closures we can always assume that the
parameter extension witnessing nonorthogonality is a differential field extension.)
Moreover, suppose m is minimal such. So, if we set F = L(c1, . . . , cm−1), then
a |⌣k

F and a ̸ |⌣F
cm. As cm is a constant, its dimension over any differential field

is at most 1, and hence the fact that cm ̸ |⌣F
a implies that cm ∈ acl(Fa) \ acl(F ).

Let E be the finite orbit of cm under the action of the automorphisms of (K, δ) that
fix F and a pointwise. And let e be a code for E. (In a theory of fields, codes for
finite sets always exist.) So e ∈ dcl(Fa)\acl(F ). Moreover, as E ⊆ C, we have that
e is itself a tuple of constants, say e = (e1, . . . , eℓ). Re-indexing, we may assume
that e1 ∈ dcl(Fa) \ acl(F ). Note that dcl(Fa) = F (a) and a is Zariski-generic on
V over F , so that e1 = f(a) for some rational function f on V over F . That f
is nonconstant follows from the fact that e1 /∈ acl(F ). Since f(a) ∈ C = (A1, 0)♯,
Lemma 5.5 tells us that f is a D-rational map, as desired.

The left-to-right direction of part (b) is proved similarly. Let L ⊇ k and c =
(c1, . . . , cm) witness the almost C-internality of p so that a |⌣k

L and a ∈ acl(Lc).

Re-indexing we can find 0 ≤ ℓ < m such that (c1, . . . , cℓ) is an acl-basis for c
over La. Letting F = L(c1, . . . , cℓ), we have a |⌣k

F and a interalgebraic with

(cℓ+1, . . . , cm) over F . Let e be the code of the orbit of (cℓ+1, . . . , cm) over Fa so
that e ∈ dcl(Fa) and a ∈ acl(Fe). So e = f(a) where f is a generically finite-
to-one dominant rational map from V to W := Z-loc(e/F ). Exactly as before we
see that f : (V, s) → (W, 0) is D-rational. As dimW = dim(e/F ) = dim(a/F ) =
dim(a/k) = dimV , we can compose f with a finite-to-one co-ordinate projection
dominantly onto (AdimV , 0). □

6. The dichotomy

In this final lecture it is my intention to articulate the Zilber dichotomy as it is
manifest in DCF0, in terms of the birational geometry of D-varieties. I will not
prove anything here; neither the dichotomy itself, nor even that the geometric
formulation I give is equivalent to the usual model-theoretic formulation. The
former (a proof of the dichotomy) is certainly beyond the scope of these lectures,
while the latter I leave to the reader as it can be derived, with some work, using
the various translations between model theory and geometry that we have discussed
throughout these lectures.

The dichotomy will be a statement about D-varieties that are not “covered by
a family of proper infinite D-subvarieties”. More precisely:

Definition 6.1. Suppose (V, s) is an absolutely irreducible D-variety over (k, δ).
We say that (V, s) is simple2 if the following holds: for all irreducible D-varieties
(W, t) over (k, δ), and all proper irreducible D-subvarieties Z of (V ×W, s×t) over k,
if Z projects dominantly onto both V and W then dimZ = dimW .

2My terminology is inspired by the bimeromorphic geometry of compact complex manifolds,
where “simplicity” is used to describe the analogous property.
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Let me explain a little how to think about this in terms of covering families
of D-subvarieties. Given an irreducible D-variety (W, t) over k and an irreducible
D-subvarieties Z of (V ×W, s× t) over k projecting dominantly onto W , we view Z
as a family of D-subvarieties of (V, s) parametrised by (W, t) in the following way:
to each b ∈ (W, t)♯ we can associate the fibre

Zb := {x ∈ V : (x, b) ∈ Z}.

It is a D-subvariety of (V, s) over the differential field k(b); this uses that b is a
D-point, Z is a D-subvariety, and the co-ordinate projection is a D-morphism. It
is this family of D-subvarieties of (V, s), namely {Zb : b ∈ (W, t)♯}, that we have
in mind. By a generic member of this family, or a generic fibre, we mean a fibre
of the form Zb where b is a generic D-point of (W, t). Note that the irreducibility
of Z ensures that this generic fibre Zb is irreducible over k(b). If Z is a proper
subvariety of V ×W then the generic fibre Zb is a proper subvariety of V . We say
that (V, s) is generically covered by the family if Z projects dominantly onto V as
well. The reason for this terminology is that it implies (indeed, precisely says) that
if a is a generic D-point of (V, s) then a ∈ Zb for some (generic) D-point b of (W, t).
Note also that dimZ is the sum of dimW and the dimension of the generic fibre. In
particular, dimZ = dimW if and only if the generic fibre is finite. So Definition 6.1
is saying that (V, s) admits no generically covering family of D-subvarieties whose
generic members are infinite and proper.

Model-theoretically, (V, s) being simple is equivalent to the generic type of (V, s)
being minimal, that is, all its forking extensions are algebraic. While we do not
verify this here, let me say a few words that may be of use. First of all, one has
to convince oneself that the extra parameters needed to witness nonminimality can
always be taken to be themselves finite dimensional. So the generic D-points of
the (W, t) appearing in the definition of simple are the putative parameters for the
forking extensions. Secondly, if tp(a/k) is the generic type of (V, s) and tp(a/kb)
is a forking extension, with tp(b/k) the generic type of (W, t), then the Zariski
locus of (a, b) over k is a family of proper D-subvarieties of (V, s) parametrised by
(W, t) that generically covers (V, s). Moreover, the converse holds as well; every
such family gives rise to a forking extension. Beyond that, one only has to verify
that tp(a/kb) is algebraic if and only if the projection of Z-loc(a, b/k) onto W is
generically finite-to-one.

Every D-curve, by which I mean a D-variety (V, s) where dimV = 1, is simple.
This is because every proper subvariety of a curve is finite, let alone those that
come from generically covering families. But there are simple D-varieties of higher
dimension. Here is an example without proof: Consider the surface V ⊆ A3 defined
by the equation xz = 1 in co-ordinate variables (x, y, z), and let s be the section to
the tangent bundle given by s(x, y, z) = (x, y, z, y, yz,−yz2). Then (V, s) is simple.
Indeed, this D-variety is the order 2 differential equation xx′′ − x′ = 0 in disguise,
studied and shown to have minimal generic type by Poizat (see, for example, the
treatment in [5, §II.5]).

In fact, simple D-varieties are ubiquitous in all dimensions. Moreover, they are,
in some real but subtle sense that I will not go into here, the building blocks for all
D-varieties. Suffice it to say that they are very much worth understanding. The
Zilber dichotomy will tell us that they either come from pure algebraic geometry
or that they are geometrically very tame in a sense that we will now discuss.
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Definition 6.2. Suppose (V, s) is an absolutely irreducible D-variety over (k, δ).
A family Z of D-subvarieties of (V, s) parameterised by (W, t) is said to be rich if
the following conditions hold:

(i) for generic b ∈ (W, t)♯, Zb is absolutely irreducible, and
(ii) for generic a ∈ (V, s)♯ there are infinitely many distinct generic fibres Zb

that pass through a.

Here by “distinct generic fibres” I mean simply generic D-points b1, b2 of (W, t)
such that Zb1 ̸= Zb2 as subvarieties of V .

Note that in the case of a trivial vector field, every subvariety over constant
parameters is aD-subvariety. This is because the zero section takes every subvariety
to its tangent bundle, which, when we are over constant parameters, agrees with
the prolongation. So trivial vector fields are a natural place to look for rich families
of D-subvarieties, at least if the dimension is greater than 1. For example, in
(A2, 0), we have the family of lines y = mx + b, which defines a D-subvariety of
(A2, 0) × (A2, 0) in the variables (x, y,m, b), and hence a family of D-subvarieties
of (A2, 0) parameterises by (A2, 0). This family is rich because there are infinitely
many lines through each point in the plane.

What the above example also illustrates, is that while simple D-varieties (more
or less vaciously) admit no rich families of D-subvarieties, cartesian powers of a sim-
ple D-variety may: (A1, 0) is simple but (A2, 0) admits rich families of D-curves.
However, there are simple D-varieties all of whose cartesian powers admit no rich
families: the Kolchin equation x′ = x

x+1 and the Poizat equation xx′′ = x′, both of
which we have already mentioned, are examples in dimension 1 and dimension 2 re-
spectively. The absence of rich families in all cartesian powers is a strong structural
constraint on the differential-algebraic geometry of the D-variety.

The Zilber dichotomy states that (A1, 0) is essentially the only simple D-variety
that does not satisfy this strong structural constraint.

Theorem 6.3 (Zilber dichotomy in DCF0, geometric formulation). Suppose (V, s)
is a simple D-variety over (k, δ). Then either

(1) there is a generically finite to one D-rational map f : (V, s) → (A1, 0) over
some differential field extension of k, or

(2) whenever n ≥ 1 and X is an absolutely irreducible D-subvariety of (V n, sn)
over k that projects dominantly onto V in each co-ordinate, then X admits
no rich families.

For the model theorist who is not used to seeing the dichotomy described this
way, recall from Theorem 5.6(b) that case (1) corresponds to the generic type of
(V, s) being almost C-internal. (Because of simplicity, in this case we actually get
that dimV = 1.) Case (2) is equivalent to the generic type of (V, s) being 1-based,
though I have not said anything about that. In any case, this is the usual dichotomy
in DCF0, but presented as a theorem about the birational geometry of D-varieties.

More is known about case (2). It splits into two more cases (thus forming
the Zilber trichotomy); one coming from certain D-group structures on universal
vectorial extensions of simple abelian varieties that do not descend to the constants
(the Manin kernel case), and the other being when the cartesian powers of (V, s)
are truly devoid of any structure in that the absence of rich families is replaced by
the absence of any infinite families at all (the relationally trivial case). But that is
a story for another course.
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The Zilber dichotomy was first proved for DCF0 by Hrushovski and Sokolovic [3],
relying on the theory of Zariski geometries developed by Hrushovski and Zilber [4].
Later, a new simpler proof was found by Pillay and Ziegler [6] using differential jet
spaces, and having to do with the canonical base property, itself inspired by the
model theory of compact complex manifolds. But that too is a story for another
course.
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