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Abstract

One of the primary objects of study in model theory is definable sets. In many common theories, such as

the theory of R-modules, the theory of algebraically closed fields, and the theory of differentially closed fields,

we can often find a well behaved collection of "closed" definable sets, with respect to which all definable sets

can be expressed as finite boolean combinations. Equations and equational theories, introduced by Anand

Pillay and Gabriel Srour in 1984 are an abstraction of this useful concept.

1 Introduction

It is often the case in model theory that we can find a collection of "nice" definable sets, from which we
can construct all the other definable sets of the theory. Examples are the Zariski closed sets in ACF, the Kolchin
closed sets in DCF and positive primitive definable sets in the theory of R-modules. Equational theories, largely
due to Anand Pillay and Gabriel Srour in 1984, is one of the earliest attempts to isolate in what sense these sets
are "nice" and then abstract to a general model theoretic setting.

Loosely speaking, a formula is an "equation" if any collection of instances is equivalent to a finite subset
of those instances. A set will be "closed" if it is defined by an instance of an equation. And a theory, T, will be
called equational if every definable set can be expressed as a boolean combination of these "closed" sets.

There are three primary sources for this paper. The first is Closed Sets and Chain Conditions in Stable
Theories, the joint work by A. Pillay and G. Srour [5]. Their paper deals with many of the closure conditions
we’ll discuss later on, and shows where equational theories lie in terms of concepts like ω-stable theories and
one-based theories. Their work is considered as the primary reference for any study of equations and equational
theories. M. Junker’s A Note on Equational Theories contains many useful properties of equations and equational
theories [3]. It also clarifies the different notions of an "equational theory" that had been circulating until its
publication. Lastly, G. Srour’s The notion of Independence In Categories Of Algebraic Structures, Part II: S-
Minimal Extensions takes a non model theory approach to the notion of equations [9]. As such it is the most
abstract of this paper’s references. Together with Part I and Part III, [8] and [10], Srour explores the concept of
an equation in broad terms touching on category theory and universal algebra.

The layout for this paper is as follows. In Section 2 we will define equations, following up with many
examples. We will then investigate the basic properties of equations, and generalise the equation concept to sets
of formulas, rather than one formula at a time. Section 3 will deal with of the topological structure that equations
are endowed with. Section 4 will introduce the notion of an equational theory, and will explore a few examples
as well as some interesting results, culminating in a notion of independence based on "equational freeness".
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Model Theory Background

As is to be expected, a basic understanding of model theory is required to make sense of this paper. An
excellent reference is D. Marker’s Model Theory: An Introduction, [4]. For the majority of this paper, the first
four chapters and appendix A of Marker’s book will suffice as background knowledge.

By L, we mean a first order language. Per model theoretic convention, M,N ,⋯ will denote models of
a given theory. Correspondingly, M,N,⋯ will denote the domains of these models. Capital letters from the
beginning of the alphabet, like A,B,C,⋯, will represent subsets of domains of models.

Tuples of variables will be represented by later letters in the alphabet, like x = (x1,⋯, xn) and y. Tuples
of elements in a domain will use earlier letters, a, b,⋯. Ultimately, the context will make clear which is which.
By ∣x∣ we mean the length of the tuple. Although not often considered in mathematics, this paper will make use
of the unique 0-tuple. That is, the tuple of variables or elements which has length 0 (no variables or elements in
it).

When it comes to formulas we use greek letters, as is standard, like φ,ψ,χ,⋯. When we write a formula
with its tuple of variables we will often want to distinguish a particular partition of the variables with a semicolon,
φ(x; y). As M. Junker describes it, this is to distinguish between the so called "special variables", x, and the
"parameter variables", y. More often than not, the special variables will be denoted by x, or some variation
thereof.

Consider linear equations, a1x1 +a2x2 +⋯+anxn = 0, where the ais are particular constants. If we wanted
to generalize this equation to a formula we would make something like, φ(x; y) = (y1x1 + y2x2 +⋯ + ynxn = 0).
Here we keep the "special" nature of the xi’s, in that they are still the variables we are going to determine
solutions for. But now, rather than looking at one particular instance of a linear equation we can consider all of
them. By plugging in different tuples of elements for the y we can get many different linear equations and deal
with them all at once. The y tuple is the parameter variable. When we start to substitute in tuples of elements
we will drop the semicolon in favour of a comma to signal the distinction between the raw form of the formula
and an instance.

As we mentioned just now, and before in the abstract, the properties of equations we are going to investigate
come from the solution sets to the formula. If we are working in a model, M, of some theory, we denote by
φ(M,a), where a ∈M ∣y∣, the set of all tuples in M ∣x∣ that satisfy φ(x, a) inM. The LM -formula φ(x, a) is called
an instance of φ(x; y) while, φ(M,a) = {b ∈Mn ∣ M ∣= φ(b, a)} is called the solution set of this instance.

One of the aims of this paper is to present equations and equational theories as a natural object to look
at in mathematics. While equational theories are related to stable theories, which is a very important notion
in model theory, we wish our discussion to be more or less independent of stability theory; indeed we hope to
present equational theories as a warm-up toward stability. To this end no stability theory will be assumed on the
part of the reader.

Some Chain Conditions

To begin our investigation we introduce a few conditions involving set intersections and chains of sets
ordered by the ⊆ relation.

Definition 1.1. A family of sets, F , is said to have the descending intersection condition if every intersec-
tion of sets in F can be expressed as the intersection of a finite subset of those sets. That is, for any collection
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{Ai ∈ F ∣ i ∈ I}, we can find a finite subset I0 ⊆ I so that ∩i∈IAi = ∩i∈I0Ai. We often abbreviate "descending
intersection condition" to DIC.

A slightly stronger notion than the descending intersection condition is given by placing an upperbound
on the size of the finite subcollection our intersection reduces to.

Definition 1.2. Fix a natural number, n ∈ ω. A family of sets, F , is said to have the bounded descending
intersection condition with an upper bound of n if every intersection of sets in F can be expressed
as the intersection of a finite subset of those sets of size less than or equal to n. That is, for any collection
{Ai ∈ F ∣ i ∈ I}, we can find a subset I0 ⊆ I, with ∣I0∣ ≤ n so that ∩i∈IAi = ∩i∈I0Ai. We often abbreviate "bounded
descending intersection condition with an upper bound of n" to n-DIC.

It is rather clear, when comparing Defintion 1.1 and Defintion 1.2 that for any m,n ∈ ω with n < m,
n −DIC Ô⇒ m −DIC Ô⇒ DIC.

A closely related concept to the descending intersection condition is the descending chain condition.

Definition 1.3. A family of sets, F , is said to have the descending chain condition if it contains no infinite
proper descending chain of sets. That is, we cannot find a collection of sets, {Ai}i∈ω, with each Ai ∈ F , with the
property that A0 ⊋ A1 ⊋ A2 ⊋ A3 ⊋ ⋯. We often abbreviate "descending chain condition" to DCC.

Just as restricting the size of the intersection allowed us to strengthen the descending intersection condition,
we now restrict the length of chains to strengthen the descending chain condition.

Definition 1.4. Fix a natural number, n ∈ ω. A family of sets, F , is said to have the bounded descending
chain condition with an upper bound of n if it contains no proper descending chain of sets of size n+1. That
is, we cannot find a collection of sets, {A0,A1,⋯,An}, with each Ai ∈ F , with the property that A0 ⊋ A1 ⊋ ⋯ ⊋ An.
We often abbreviate "bounded descending chain condition with an upper bound of n" to n-DCC.

Again, it is clear, when comparing Defintion 1.3 and Defintion 1.4 that for any m,n ∈ ω with n < m,
n −DCC Ô⇒ m −DCC Ô⇒ DCC. As well, one can see from the definitions, that DIC Ô⇒ DCC.

Now that we have our conditions defined, we note a very simple fact. It is rather apparent from our
definitions and as such does not require a proof.

Fact 1.5. Suppose that F and G are families of sets with G ⊆ F . If F satisfies the DCC, DIC, n-DCC or n-DIC
then G satisfies the DCC, DIC, n-DCC or n-DIC respectively. This means that our conditions are preserved when
we take subfamilies.

Definition 1.6. Given a family of sets, F , we define the closure of F under finite intersections to be the
collection of all sets that can be formed from F using intersections, cl (F) = {∩ni=0Ai ∣ n ∈ ω, Ai ∈ F for all i < n}.

The following fact is simple to see from the definition.

Fact 1.7. Let F be any collection of sets.
(i) cl(cl(F)) = cl(F)
(ii) Suppose that G ⊆ F . Then cl(G) ⊆ cl(F).
(iii) Suppose that X ∈ cl(F), then there exists a finite subset G ⊂ F so that X ∈ cl(G).

Using the closure we can relate the DCC and DIC.
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Proposition 1.8. A family of sets, F , satisfies the DIC if and only if cl (F) satisfies the DCC.

Proof. (⇐) Let {ai ∣ i ∈ I} be a collection of sets in F . By the Well Ordering Property we may assume that I is
an ordinal number. For each i ∈ I define Bi to be ∩j≤iAj . Notice that each Bi ∈ cl(F) and that we have formed
a descending chain, B0 ⊇ B1 ⊇ B2 ⊇ ⋯. By the descending chain condition we can see that there are only finitely
many i ∈ I so that Bi−1 ⊋ Bi. Label them i1 < i2 < ⋯ < in. Additionly, let i0 = 0. We claim that ∩i∈IAi = ∩nj=0Aij .

Indeed, we start with Ai0 = A0 = B0 and by definition of the ij , for any 0 < k < i1 we know that Bk−1 = Bk.
Hence A0 = A0 ∩A1 = ⋯ = ∩k<i1Ak. It follows that Bi1 = Bi1−1 ∩Ai1 = B0 ∩Ai1 = Ai0 ∩Ai1 .

Now, suppose that Bik = ∩j≤kAij . By definition of the ij , for any ik < ` < ik+1 we know that B`−1 = B`.
Hence Bik = Bik ∩Aik+1 = ⋯ = Bik ⋂(∩ik<j<ik+1Aj). Thus, Bik+1 = Bik+1−1 ∩Aik+1 = Bik ∩Aik+1 = Ai0 ∩⋯ ∩Aik+1 .

By mathematical induction we have shown that Bin = ∩nj=0Aij . Finally, since in was the last index for
which Bi−1 ⊋ Bi we can see that for all k > in, we have Bin = Bk.

Thus, ∩i∈IAi = Bin ⋂(∩i∈I,i>inAi) ⊇ Bin ⋂(∩i∈I,i>inBi) = Bin ⋂(∩i∈I,i>inBin) = Bin = ∩nj=0Aij ⊇ ∩i∈IAi By
squeezing the result we have demonstrated that ∩i∈IAi = ∩nj=0Aij . So DCC for cl(F) ⇒DIC for F .

(⇒) Let {Ai}i∈ω be a descending chain of sets in cl(F), A0 ⊇ A1 ⊇ A2 ⊇ ⋯. Since each Ai ∈ cl(F) we
can find a finite number, ni, and sets, Aij , in F so that Ai = Ai0 ∩ Ai1 ∩ ⋯ ∩ Aini . Consider the collection
{Aij ∣ i ∈ ω, j ≤ ni}.

By the descending intersection condition we can find finitely many i, j, say i0, i1,⋯, in and j0, j1,⋯, jn, so
that ∩i∈ω

j≤ni
Aij = ∩nk=0Aikjk . Let ` =max{i0, i1,⋯, in}. We claim that this descending chain has length at most `.

Indeed, it suffices to prove that A` = Am for all m ≥ `. Because our sequence is a descending chain we
can see that for any k ∈ ω, Ak = ∩j≤kAj . By our maximal choice of ` we can see that ∩i∈ωAi = ∩i∈ω

j≤ni
Aij =

∩nk=0Aikjk = A`. Thus, for any m ≥ ` we have A` ⊇ Am ⊇ ∩i∈ωAi = A`. and hence A` = Am as desired. So
DIC for F ⇒DCC for cl(F).

Proposition 1.9. Let F be a family of sets. If cl (F) satisfies the n-DCC, for some n ∈ ω, then F satisfies the
n-DIC.

Proof. Let {ai ∣ i ∈ I} be a collection of sets in F . By the Well Ordering Property we may assume that I is an
ordinal number. For each i ∈ I define Bi to be ∩j≤iAj . Notice that each Bi ∈ cl(F) and that we have formed a
descending chain, B0 ⊇ B1 ⊇ B2 ⊇ ⋯. By the descending chain condition with upper bound n we can see that
there are only m many i ∈ I so that Bi−1 ⊋ Bi. Label them i1 < i2 < ⋯ < im, with m < n. Additionly, let i0 = 0.
We claim that ∩i∈IAi = ∩mj=0Aij .

Indeed, we start with Ai0 = A0 = B0 and by definition of the ij , for any 0 < k < i1 we know that Bk−1 = Bk.
Hence A0 = A0 ∩A1 = ⋯ = ∩k<i1Ak. It follows that Bi1 = Bi1−1 ∩Ai1 = B0 ∩Ai1 = Ai0 ∩Ai1 .

Now, suppose that Bik = ∩j≤kAij . By definition of the ij , for any ik < ` < ik+1 we know that B`−1 = B`.
Hence Bik = Bik ∩Aik+1 = ⋯ = Bik ⋂(∩ik<j<ik+1Aj). Thus, Bik+1 = Bik+1−1 ∩Aik+1 = Bik ∩Aik+1 = Ai0 ∩⋯ ∩Aik+1 .

By mathematical induction we have shown that Bim = ∩mj=0Aij . Finally, since im was the last index for
which Bi−1 ⊋ Bi we can see that for all k > im, we have Bin−1 = Bk.

Thus, ∩i∈IAi = Bim ⋂(∩i∈I,i>imAi) ⊇ Bim ⋂(∩i∈I,i>imBi) = Bim ⋂(∩i∈I,i>imBim) = Bim = ∩mj=0Aij ⊇ ∩i∈IAi
By squeezing the result we have demonstrated that ∩i∈IAi = ∩mj=0Aij . And since m < n, this is the intersection
of at most n many sets, we conclude that n −DCC for cl(F) ⇒ n −DIC for F .

Sadly, this property is highly nonreversible. We will now give an example of a family of sets which satisfies
1-DIC but which doesn’t satisfy n-DCC for any given n.
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Example 1.10. Fix a natural number n. Let F = { {0,1,⋯, i} ∣ i ≤ n}. Observe that since this collection is
totally ordered by containment, any intersection of a collection of sets in F is another set in F . Thus, cl (F) = F .

As was just remarked, F satisfies the bounded descending interesection condition with an upper bound of 1.
Indeed, take a collection of m sets in F , {0,1,⋯, j1}, {0,1,⋯, j2}, ⋯ {0,1,⋯, jm} and look at their intersection.
It is not hard to see that if j =min (j1, j2,⋯jm) then, ∩mi=1{0,1,⋯, ji} = {0,1,⋯, j}. So for any collection of sets
in F , their intersection can be expressed as the intersection of a subcollection of size 1.

Also note that F has a chain of length n+1. Namely, {0,1,⋯, n} ⊋ {0,1,⋯, n− 1} ⊋ ⋯ ⊋ {0,1} ⊋ {0}. So it
follows that F does not satisfy the bounded descending intersection condition with an upper bound of n.

Let us briefly summarize the implications we have demonstrated. For any fixed n ∈ ω,
n −DCC for cl(F) Ô⇒ n −DIC for F Ô⇒ DIC for F ⇐⇒ DCC for cl(F),

and for n <m ∈ ω,
n −DCC for cl(F) Ô⇒ m −DCC for cl(F) and n −DIC for F Ô⇒ m −DIC for F

2 Equations

In this section we will introduce the notion of an equation in model theory. In addition to introducing the
concept, we will display a wide range of examples, both equations and nonequations, to help cement the idea.
From there we will introduce some simple properties of equations to ease us into working with chain conditions
and to help us later on.

Fix a language, L, and a complete L-theory, T.

Definition 2.1. An L-formula, φ(x; y), where x = (x1,⋯, xn) and y = (y1,⋯, ym), is called an equation in x if
for all modelsM of T, the family of sets, {φ(M,a) ∣ a ∈Mm} satisfies the DIC.

Let us state some rather obvious results from the definition. First, observe that if our complete theory, T,
has a finite model then every L-formula is an equation, for any partition of its variables. This is because every
model of T must have a finite domain (since T is complete), and so each solution set of an instance of a formula
must be of finite size. The descending intersection condition is clear when each set in our collection is finite.

As a consequence, we only need to consider complete theories with infinite models, as the case for finite
models is uninteresting (everything is an equation!). We will proceed with this assumption unspoken.

Note as well, that if either x or y is the 0-tuple, then φ(x; y) is an equation in x. In the former case, all
solution sets are either the emptyset or the set containing the 0-tuple (we are working in M0). In the latter case,
there is only one instance of the equation. In particular all sentences are, trivially, equations.

A Litany Of Examples

In this subsection we will give some natural examples (and nonexamples) of equations.

Example 2.2. Consider any formula φ(x; y) with the property that for any modelM ∣= T and arbitrary a ∈M ∣y∣,
the set φ(M,a) is finite. Then φ(x; y) is an equation in x. Indeed, {φ(M,a) ∣ a ∈M ∣y∣} is a collection of finite
sets and the DIC is clear.

In particular, this shows that "x = y" is always an equation in x, as one would expect.

We now show that any equivalence relation is an equation.
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Example 2.3. Let φ(x; y) be an L-formula. Suppose that φ(x; y) defines an equivalence relation. That is, T
implies, ∀xφ(x,x), ∀x∀yφ(x, y) → φ(y, x) and ∀x∀y∀z (φ(x, y) ∧ φ(y, z)) → φ(x, z).

Let M ∣= T . We see for an arbitrary a, φ(M,a) is just the equivalence class of a in M ∣x∣. For any two
tuples a and b we know that either φ(M,a) = φ(M,b) or φ(M,a) ∩ φ(M,b) = ∅. From this it is clear that
{φ(M,a) ∣ a ∈M ∣x∣} satisfies the DIC.

For our next example, we need to recall a very important result in mathematics, Hilbert’s Basis Theorem.

Fact 2.4. Let R be a ring. If every ideal in R is finitely generated, then every ideal in R[x] is finitely generated.

Example 2.5. Let T be the theory of algebraically closed fields, in the language of rings, for some fixed charac-
teristic. That is, T = ACFp where p = 0 or p is a prime. Consider the formula φ(x; y) with x = (x1,⋯, xn) and
y = (y1,⋯ym), defined as p(x1,⋯, xn, y1,⋯ym) = 0, where p is a polynomial in x1,⋯xn, y1,⋯ym over the prime
field (Q in characteristic 0 and Fp in characteristic p > 0).

Let K be any algebraically closed field of characteristic p. For a given a ∈Km one can think of φ(x, a) as
a polynomial equation in x1,⋯, xn, where a is determining the coefficients of the polynomial. So φ(K,a) is just
the zero set of this polynomial in x1,⋯, xn.

Consider {ai}i∈I in Km. Then ∩i∈Iφ(K,ai) is just the intersection of all those zero sets. To prove that
φ is an equation it suffices to prove that any intersection of the zero sets of polynomials in K[x1,⋯xn] can be
represented as the intersection of only finitely many of those zero sets.

So now let us consider a collection of polynomials in K[x1,⋯xn], {pi(x)}i∈I . For a set of polynomi-
als, S, by V(S) we mean the intersection of all the zero sets of every polynomial in S. We first claim that
V ({pi(x)}i∈I) = V (⟨{pi(x)}i∈I⟩), where < S > represents the ideal in K[x1,⋯xn] generated by S.

For each i ∈ I, pi ∈ ⟨{pi(x)}i∈I⟩ so we see V ({pi(x)}i∈I) ⊇ V (⟨{pi(x)}i∈I⟩). Let q ∈ ⟨{pi(x)}i∈I⟩ be arbi-
trary. Then we can find pi1 ,⋯pik and f1,⋯fk ∈K[x1,⋯xn] so that q = Σkj=1fjpij . Suppose that t ∈ V ({pi(x)}i∈I).
Then q(t) = Σkj=1fj(t)pij(t) = Σkj=1fj(t)0 = 0. It follows that since q was arbitrary, V ({pi(x)}i∈I) ⊆ V (⟨{pi(x)}i∈I⟩)
and hence V ({pi(x)}i∈I) = V (⟨{pi(x)}i∈I⟩).

Now since ⟨{pi(x)}i∈I⟩ is an ideal in K[x1,⋯xn] it is finitely generated. This is by Hilbert’s Basis Theorem,
as K is a field (it only has K=<1> and {0} = <0> as ideals). So we can find q1,⋯, qk ∈ ⟨{pi(x)}i∈I⟩ so that
⟨{pi(x)}i∈I⟩ = ⟨{q1,⋯, qk}⟩.

Now, for each qj we can also find pij,1 ,⋯, pij,kj and fj,1,⋯, fk,kj ∈ K[x1,⋯xn] so that qj = Σ
kj
`=1fj,`pij,` .

Thus {q1,⋯, qk} ⊆ ⟨{pij,` ∣ 1 ≤ j ≤ k,1 ≤ ` ≤ kj}⟩. So ⟨{q1,⋯, qk}⟩ = ⟨{pij,` ∣ 1 ≤ j ≤ k,1 ≤ ` ≤ kj}⟩ and hence,
V ({pi(x)}i∈I) = V (⟨{pi(x)}i∈I⟩) = V (⟨{q1,⋯, qk}⟩) = V (⟨{pij,` ∣ 1 ≤ j ≤ k,1 ≤ ` ≤ kj}⟩)

which is a finite subset of the {pi}i∈I as desired. Thus, φ(x; y) is an equation in x.

Our next example comes from the model theory of R-modules and was part of the original motivation for
equational theories. We will begin by introducing the first order theory of modules.

Example 2.6. Let R be a ring with identity, 1R. Let L be the language of left R-modules. That is, the lanugage,
L = {0,+,−} ∪ {λr ∣ r ∈ R}. Let T be any theory that extends the theory of left R-modules. That is, T contains
the following sentences,

{∀a (a + 0 = a) ,∀a (−a + a = 0) ,∀a∀b (a + b = b + a) ,∀a∀b∀c ((a + b) + c = a + (b + c)) ,∀a (λ1R(a) = a)}
∪{∀a∀b (λr(a + b) = λr(a) + λr(b)) ∣ r ∈ R} ∪ {∀a (λr+s(a) = λr(a) + λs(a)) ∣ r, s ∈ R}

∪{∀a (λr×s(a) = λr(λs(a))) ∣ r, s ∈ R}
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It is not hard to see that all the atomic formulas in this language are equivalent, modulo T, to a formula
of the form λr1(x1) + λr2(x2) + ⋯λrn(xn) = 0. A formula φ(z) is called positive primitive if it is of the form,

∃w (∧nj=1γj(w, z))
with each γj(w, z) an atomic formula. We claim that for any partition (x; y) of z, φ(x; y) is an equation.

The proof relies on M. Ziegler’s paper on the model theory of modules, [11]. As he points out, each φ(M,a)
is either empty or a coset of the subgroup of M ∣x∣ defined by φ(M,0). So for any two tuples, a and b, the sets
φ(M, a) and φ(M, b) are either disjoint or coincident.

Like Example 2.3 we can now conclude that φ(x; y) is an equation in x.

In addition to showing that equations do exist, it is also important to demonstrate that there are formulas
which are not equations. Otherwise there would be no reason to investigate the properties of equations.

Example 2.7. Consider any formula φ(x; y) with the property that for any modelM ∣= T and arbitrary a ∈M ∣y∣,
the set φ(M,a) is cofinite. Additionally assume that ⋂a∈M ∣y∣ φ(M,a) = ∅. Then φ(x; y) is not an equation in x.
Indeed any finite subintersection of {φ(M,a) ∣ a ∈M ∣y∣} will be cofinite and hence nonempty.

In particular, the formula "x ≠ y" is never an equation in x.

While x ≠ y is not an equation, it is, rather obviously, the negation of an equation. As such it satisfies
the ascending union condition, which is the opposite of the descending intersection condition. That is, for any
{ai}i∈I we can find a finite subset {i1,⋯in} so that ∪i∈Iφ(M,ai) = ∪nj=1φ(M,aij). Had we wanted to, we could
have started with the ascending union condition in place of the descending intersection condition. These new
"equations" would essentially be representing the same information. That is, we would still have the basic
property that an infinite amount of information can be represented by a finite amount of information. The
reason we started with the DIC is that it was the condition that fell in line with equations that we already know
(polynomial equations, linear equations, etc).

The following example is of a formula which is neither an equation, nor the negation of an equation.

Example 2.8. Let us consider the formula φ(x; y) = φ(x1, x2; y1, y2) defined as x1 = y1 ∧ x2 ≠ y2.

Let M ∣= T . This formula has a nice visualisation. If we place all the elements of our
domain, M, onto axes, we can view the set φ(M,a, b) as the line x1 = a removing the point
(a, b).

Fix an element a ∈ M . Then we can see that our intersection ∩b∈Mφ(M,a, b), is just the empty set.
However, for any finite subset B ⊆ M , ∩b∈Bφ(M,a, b) is just the line x1 = a after removing only finitely many
points. Since ∣M ∣ is infinite we can see that φ cannot be an equation in (x1, x2).

Now we will show that ¬φ is not an equation in (x1, x2). A visualisation of ¬φ(M,a, b) is
pictured, it is the whole plane, removing the line x1 = a and adding the point (a, b) back in.

Fix an element b ∈M . Then we can see that our intersection ∩a∈M¬φ(M,a, b), is just the
line x2 = b. However, for any finite subset A ⊆M , ∩a∈A¬φ(M,a, b) will contain points which are
not on x2 = b (those whose x1 coordinate is not in A). Since A is arbitrary we can see that ¬φ
cannot be an equation in (x1, x2).

This example is a boolean combination of equations, namely x1 = y1 and x2 = y2. The following example
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gives us a formula which is not even a boolean combination of equations, though we will not prove this until
later.

Example 2.9. Let us consider the theory of dense linear orderings without endpoints, that is, T = Th ((Q,<))
and let us work in the model Q. Let φ(x; y) be defined as x < y.

Consider the sequence {ai}i∈ω where ai = 1
i+1 . Notice that φ(Q, ai) = {k ∣ k < 1

i+1}. So it is not hard to
see that, ∩i∈ωφ(Q, ai) = {k ∣ k ≤ 0}, which has no positive numbers in it. Suppose that we can find i1,⋯, in so
that ∩i∈ωφ(Q, ai) = ∩nj=1φ(Q, aij). Let i∗ = max(i1,⋯, in). Then ∩nj=1φ(Q, aij) = {k ∣ k < 1

i∗+1} which contains a
positive number, namely 1

i∗+2 . This is a contradiction. Thus, x < y is not an equation in x.
As well, we can see that ¬φ(x; y), given by x ≥ y, is also not an equation in x. Consider the sequence

{bi}i∈ω where bi = i. Notice that φ(Q, bi) = {k ∣ k ≥ i}. So it is not hard to see that, ∩i∈ωφ(Q, bi) = ∅. Suppose that
we can find i1,⋯, in so that ∩i∈ωφ(Q, bi) = ∩nj=1φ(Q, bij). Let i∗ =max(i1,⋯, in). Then ∩nj=1φ(Q, bij) = {k ∣ k ≥ i∗}
which is nonempty, namely it contains i∗. This is a contradiction. Thus, x ≥ y is not an equation in x.

For the moment, we have not developed enough of the theory to show why x < y is not equivalent to a
boolean combination of equations. However, by the end of the following subsection we will be able to demonstrate
this.

Basic Properties

This first proposition provides us with a useful equivalent characterisation of equations.

Proposition 2.10. Fix an L-formula φ(x; y), where x = (x1,⋯, xn) and y = (y1,⋯, ym). The following are
equivalent,

(i) φ(x; y) is an equation in x in T
(ii) For any infinite cardinal κ, for all κ saturated, strongly κ homogeneous modelsM of T, the family of

sets, {φ(M,a) ∣ a ∈Mm} satisfies the DIC.

Proof. (i) ⇒ (ii) Clear, since all κ saturated, strongly κ homogeneous modelsM of T are still models of T.
(ii) ⇒ (i) Fix N , a model of T. LetM be an elementary extension of N which is ∣N ∣ saturated and strongly ∣N ∣
homogeneous. Then the family of sets, {φ(M,a) ∣ a ∈Mm} satisfies the descending intersection condition.

Let J ⊆ Nm ⊆Mm. Then by the descending intersection condition, we can find a finite subset J0 ⊆ J such
that, ∩a∈Jφ(M,a) = ∩a∈J0φ(M,a). Now, since J ⊆ Nm and N ⪯M then for any a ∈ J and b ∈ Nn, N ∣= φ(b, a) if
and only ifM ∣= φ(b, a). Hence for any b ∈ Nn,

b ∈ ∩a∈Jφ(N,a) ⇐⇒ ∀a ∈ J , N ∣= φ(b;a) ⇐⇒ ∀a ∈ J ,M ∣= φ(b, a) ⇐⇒ b ∈ ∩a∈Jφ(M,a)
and so ∩a∈Jφ(N,a) = ∩a∈Jφ(M,a) ∩Nn. Likewise ∩a∈J0φ(N,a) = ∩a∈J0φ(M,a) ∩Nn.

Finally, since ∩a∈Jφ(M,a) = ∩a∈J0φ(M,a), we deduce that ∩a∈Jφ(N,a) = ∩a∈J0φ(N,a). Since J was
arbitrary, we have shown that the family of sets, {φ(N,a) ∣ a ∈ Nm} satisfies the descending intersection condition.

Since N was arbitrary, this concludes the proof.

The implication of this equivalence in definition means that we may now proceed to work in a κ saturated,
strongly κ homogeneous model,M, for "large enough" infinite cardinal κ. All parameter sets will be assumed to
be subsets of M of size < κ, and all models of T will be assumed to be elementary submodels ofM of size ≤ κ.
What we mean by" large enough" is that no matter what cardinals we run into later on in this paper, we may
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just assume that κ is larger. (Recall that, since T is complete, a κ saturated and strongly κ homogenous model
contains elementary embeddings of all models of T whose domains are of size less than or equal to κ.)

The next property shows the advantage of working in a κ saturated and strongly κ homogenous model.

Proposition 2.11. Let φ(x; y) be an equation.
(i) {φ(M,a) ∣ a ∈Mm} satisfies the DIC if and only if for some n ∈ ω, {φ(M,a) ∣ a ∈Mm} satisfies the n-DIC.
(ii) cl ({φ(M,a) ∣ a ∈Mm}) satisfies the DCC if and only if for some n ∈ ω, cl ({φ(M,a) ∣ a ∈Mm}) satisfies the
n-DCC.

Proof. We have previously demonstrated the (⇐) direction, and so we only need to show the (⇒) direction.
(i) Since {φ(M,a) ∣ a ∈ Mm} satisfies the DIC if and only if cl ({φ(M,a) ∣ a ∈Mm}) satisfies the DCC,

and we know that n −DCC ⇒ n −DIC ⇒DIC, it suffices to prove (ii).
(ii) Since n −DCC ⇒ DCC we just need to show that DCC ⇒ n −DCC for some n ∈ ω. Suppose that

for all n ∈ ω, cl ({φ(M,a) ∣ a ∈Mm}) does not satisfy the n-DCC. Then we can find a sequence {an,i}ni=0, so that,
φ(M,an,0) ⊋ φ(M,an,0) ∩ φ(M,an,1) ⊋ ⋯ ⊋ ∩ni=0φ(M,an,i) is a descending chain of length n+1.

Consider, for any k ∈ ω, the formula,
ψ0,k(y0) = ∃y1⋯∃yk⋀k−1i=0 ¬∀u (∧ij=0φ(u, yj) → ∧i+1j=0φ(u, yj))

For ψ0,k to be satisfied y0 must be some element b0 in some sequence {bi}i≤k with the property that
φ(M,b0) ⊋ φ(M,b0) ∩ φ(M,b1) ⊋ ⋯ ⊋ ∩ni=0φ(M,bi). Observe that if we let bi = ak,i then ψ0,k can be satisfied.
What’s more is that if ψ0,k is satisfied by b0 then we can see that ψ0,` is also satisfied by b0 for any ` ≤ k.

Let us consider the collection of formulas, p0(y0) = {ψ0,0(y0), ψ0,1(y0), ψ0,2(y0), ψ0,3(y0), ψ0,4(y0),⋯}. As
we just explained any finite subset of formulas of p0 is satisfiable, so p0 is a type over ∅. By sufficient saturation
of M we can find c0 so that M ∣= p0(c0). In this way we begin to construct our sequence {ci}i∈ω to make a
descending chain.

Suppose now that we have defined the first m terms in the sequence, ie {ci}i<m. Let us consider the
formula,

ψm,k(ym) = ∃ym+1⋯∃ym+k⋀m+k−1
i=0 ¬∀u (⋀min(m,i)j=0 φ(u, cj) ∧ ⋀ij=m φ(u, yj))

→ (⋀min(m,i+1)j=0 φ(u, cj) ∧ ⋀i+1j=m φ(u, yj))
which is a formula over {ci}i<m. First notice that, like before, ψm,k being satisfied means that ψm,` is also

satisfied for any ` ≤ k. In order to satisfy ψm,k, ym must be an element bm in some sequences {bi}i≤m+k where
φ(M,b0) ⊋ φ(M,b0) ∩ φ(M,b1) ⊋ ⋯ ⊋ ∩m+k

i=0 φ(M,bi) and bi = ci for all i < m. But we know such a sequence
exists, since by assumption cm−1 satisfies ψm−1,k+1.

Consider the set of fomulas, pm(ym) = {ψm,0(ym), ψm,1(ym), ψm,2(ym), ψm,3(ym), ψm,4(ym),⋯}. Since
ψm,k ⇒ ψm,k−1, any finite subset of formulas of pm is satisfiable, so pm is a type over {ci}i<m. By sufficient
saturation ofM we can find cm so thatM ∣= pm(cm).

By induction, we can find a sequence {ci}i∈ω so that for each k ∈ ω, ∩ki=0φ(M,ci) ⊋ ∩k+1i=0 φ(M,ci).
Thus, cl ({φ(M,a) ∣ a ∈Mm}) does not satisfy the DCC. But this is a contradiction! So we can see that if
cl ({φ(M,a) ∣ a ∈Mm}) satisfies the DCC, then is satisfies the n-DCC for some n ∈ ω.

Proposition 2.12. A formula φ(x; y) is an equation in x if and only if it is an equation in y.

Proof. First let n = ∣x∣ and m = ∣y∣. By the symmetry of this statement, it suffices to prove that if φ(x; y) is not
an equation in y, then it is not an equation in x. If φ(x; y) is not an equation in y, then, by Propositions 1.8 and
2.11, we can find an infinite sequence of n-tuples {ai}i∈ω in M

n
so that,
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φ(a0,M) ⊋ φ(a0,M) ∩ φ(a1,M) ⊋ φ(a0,M) ∩ φ(a1,M) ∩ φ(a2,M) ⊋ ⋯
So we can find a set of m-tuples {bi}i∈ω in M

m
such that for each i ∈ ω, bi ∈ (∩ij=0φ(aj ,M)) / (∩i+1j=0φ(aj ,M)). It

follows that aj ∈ φ(M,bi) for all j < i, and ai+1 /∈ φ(M,bi). So for each i ∈ ω, we can construct a descending chain
of length i,

φ(M,bi) ⊋ φ(M,bi) ∩ φ(M,bi−1) ⊋ φ(M,bi) ∩ φ(M,bi−1) ∩ φ(M,bi−2) ⊋ ⋯ ⊋ ∩ij=0φ(M,bj)
SinceM models arbitrarily long descending chains, it follows that for any k ∈ ω, cl ({φ(M,b) ∣ b ∈Mm}) cannot

satisfy the k-DCC. But then, by Proposition 2.11 this means that cl ({φ(M,b) ∣ b ∈Mm}) cannot satisfy the
DCC. So, by Proposition 1.8, {φ(M,b) ∣ b ∈Mm} cannot satisfy the DIC. Hence φ is not an equation in x.

What this shows us is that the property of a formula being an equation has only to do with the partition
of our variables, not our choice of x over y. In the same vein, the following proposition also deals with the
presentation of an equation in terms of its variables. Specifically, an equation is still an equation if you add
dummy variables to its presentation.

Proposition 2.13. Suppose that φ(x; y) is an equation in x. Suppose that x′ and y′ are tuples such that x ⊆ x′

and y ⊆ y′. Then considering φ as a formula in x′, y′, φ(x′; y′) is an equation in x′.

Proof. To make this proof easier, let us invent a notation where a′ ↾x means the restriction of the tuple to only
those elements corresponding to variables in x. That is, if x = (x2) and x′ = (x1, x2, x3), then (a1, a2, a3) ↾x= (a2).
Without loss of generality we will assume that x is an initial segment of x′.

Take any collection of tuples {bi}i∈I in M
∣y′∣

. Look at ∩i∈Iφ(M,bi). Since the extra variables in x′ have
no affect on φ it is not hard to see that φ(M,bi) = φ(M,bi ↾y) ×M

∣x′∣−∣x∣
. It follows that,

∩i∈Iφ(M,bi) = ∩i∈Iφ(M,bi ↾y) ×M
∣x′∣−∣x∣ = (∩i∈Iφ(M,bi ↾y)) ×M

∣x′∣−∣x∣

And since φ is an equation in x we can find a finite subset J so that ∩i∈Iφ(M,bi ↾y) = ∩i∈Jφ(M,bi ↾y). But then,
(∩i∈Iφ(M,bi ↾y)) ×M

∣x′∣−∣x∣ = (∩i∈Jφ(M,bi ↾y)) ×M
∣x′∣−∣x∣ = ∩i∈Jφ(M,bi ↾y) ×M

∣x′∣−∣x∣ = ∩i∈Jφ(M,bi)
And so we have found a finite subset J, so that ∩i∈Iφ(M,bi) = ∩i∈Jφ(M,bi). Hence, φ is an equation in x′.

We now show that equations do not have the "order property", which we first define.

Definition 2.14. Let ψ(x; y) be an L-formula. We say that ψ satisfies the order property if there existsM ∣= T
and sequences {ai}i∈ω, {bi}i∈ω so thatM ∣= ψ(ai, bj) if and only if i > j.

Proposition 2.15. Suppose that φ(x; y) is an equation. Then φ does not satisfy the order property.

Proof. Suppose, for a contradiction, that φ(x; y) satisfies the order property. This means that we can find
sequences {ai}i∈ω and {bi}i∈ω so thatM ∣= φ(ai, bj) if and only if i > j. We can see that ai ∈ φ(M,bj) if and only
if i > j. Let J ⊆ ω be a finite subset, then ai ∈ ∩j∈Jφ(M,bj) if and only if i >max(J).

Since φ is an equation in x we can find a finite subset J ⊆ ω so that ∩i∈ωφ(M,bi) = ∩j∈Jφ(M,bj). Let
i∗ =max(J) + 1. Then ai∗ ∈ ∩j∈Jφ(M,bj)/ ∩i∈ω φ(M,bi) which is a contradiction.

Not only do equations not satisfy the order property, but no boolean combination of equations does either.
Indeed this follows from Proposition 2.15 once we know the following fact (see Lemma 2.1 of [6]).

Fact 2.16. If ψ(x; y) and χ(x; z) don’t satisfy the order property, then neither do ψ∧χ(x; yz), ψ∨χ(x; yz), and
¬ψ(x; y).
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This allows us to conclude Example 2.9; that x < y in DLO is not equivalent to a boolean combination of
equations. Indeed any model of Th ((Q,<)) must contain a copy of (Q,<) and so it is not hard to see by taking
ai = bi = i, that the formula x < y satisfies the order property.

However, not all formulas which aren’t boolean combinations of formulas satisfy the order property. The
best example of which can be found in [2], where O. Beyersdorff demonstrates a theory which is stable but not
equational (to be defined later).

The last property we will exhibit in this subsection we will make use of later.

Proposition 2.17. Suppose that φ(x1, x2,⋯, xn; y) is an equation. Then φ(x2, x2,⋯, xn; y) is also an equation.

Proof. By Proposition 2.12 it suffices to prove that φ(x2, x2,⋯, xn; y) is an equation in y. Likewise we know that
φ(x1, x2,⋯, xn; y) is an equation in y. So then {φ(a1, a2,⋯, an,M) ∣ a ∈Mn} satisfies the DIC.

But since {φ(b1, b1,⋯, bn−1,M) ∣ b ∈ Mn−1} ⊆ {φ(a1, a2,⋯, an,M) ∣ a ∈ Mn}, it immediately follows that
{φ(b1, b1,⋯, bn−1,M) ∣ b ∈Mn−1} must also satisfy the DIC. Thus φ(x2, x2,⋯, xn; y) is an equation in y.

Equationality for Sets of Formulas

Now we take the time to generalise the notion of equationality from a property of a single formula, to a
property over a collection of formulas. To do this, we will go back to the basic definition involving the descending
intersection condition.

We begin by defining closures on collections of formulas. Just as cl was a closure of sets with respect to
the ∩ operation, the following three closures will be based on operations on formulas. Our first closure, cl∧ will
be the analog of cl to formulas. From there we will build up two other closures, each encompassing the previous
one(s).

Definition 2.18. Let F = {φi(x, yi) ∣ i ∈ I} be a collection of L-formulas which have exactly the tuple of variables
x in common.
We define the closure of F under finite conjunctions to be exactly what the name suggests,

cl∧(F ) = {φi1(x, yi1) ∧⋯ ∧ φin(x, yin) ∣ n ∈ ω, ij ∈ I, φij ∈ F}
We define the closure of F under finite positive boolean combinations to be the set of all formulas that
can be formed from F using conjunctions and disjunctions,

cl+(F ) = {⋁mj=1 (⋀
nj
k=1 φij,k(x, yij,k)) ∣m,nj ∈ ω, ij,k ∈ I, φij,k ∈ F}

cl+ gets its name because it doesn’t allow negation, only "positive" boolean operations. We can go further, extending
these boolean combinations to those that use any of the three operations, ∧,∨ and ¬. We define the closure of
F under finite boolean combinations to be,

clB(F ) = {⋁mj=1 (⋀
nj
k=1 φij,k(x, yij,k) ∧ ⋀

n′j
k=1 ¬φi′j,k(x, yi′j,k)) ∣m,nj , n′j ∈ ω, ij,k, i′j,k ∈ I, φij,k , φi′j,k ∈ F}

Like cl from the first section, we can see from the definitions above that cl∧, cl+ and clB are closure
operators.

Fact 2.19. Let F be any collection of formulas in a common tuple of variables, x.
(i) cl∧(cl∧(F )) = cl∧(F ), cl+(cl+(F )) = cl+(F ) and clB(clB(F )) = clB(F )
(ii) Suppose that G ⊆ F . Then cl∧(G) ⊆ cl∧(F ), cl+(G) ⊆ cl+(F ) and clB(G) ⊆ clB(F ).
(iii) Suppose that φ ∈ cl∧(F ) (respectively ∈ cl+(F ), ∈ clB(F )), then there exists a finite subset G ⊂ F so that
φ ∈ cl∧(G) (respectively ∈ cl+(G), ∈ clB(G)).
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Additionally, we can observe that F ⊆ cl∧(F ) ⊆ cl+(F ) ⊆ clB(F ). We can relate these new closures to our
previous cl and the chain conditions in the natural way, by extending these conditions to formulas, based on the
instances of those formulas.

Definition 2.20. Let F = {φi(x, yi) ∣ i ∈ I} be a set of formulas with a x common to each formula. F is said
to satisfy the descending intersection condition (respectively descending chain condition, descending
intersection condition with an upper bound of n, descending chain condition with an upper bound
of n) if the set {φi(M,bi) ∣ i ∈ I, bi ∈M

∣yi∣} satisfies the descending intersection condition (respectively descending
chain condition, descending intersection condition with an upper bound of n, descending chain condition with an
upper bound of n). As usual, we may choose to abbreviate to DIC (respectively DCC, n-DIC, n-DCC).

We now define the notion of a set of formulas behaving "like an equation".

Definition 2.21. A set of L-formulas, E, is said to be equational if E satisfies the DIC.

It is plain to see that "equational" is not a misnomer. Indeed, {φ(x; y)} is equational as a set of formulas
in x if and only if φ(x; y) is an equation in x. This next proposition is the analogue of Proposition 1.8.

Proposition 2.22. Let F be a collection of formulas in x. F is equational if and only if cl∧(F ) satisfies the
DCC.

Proof. F is equational if and only if {φ(M,b) ∣ φ(x; y) ∈ F, b ∈M ∣y∣} satisfies the DIC.
We know by Proposition 1.8 that {φ(M,b) ∣ φ(x; y) ∈ F, b ∈ M ∣y∣} satisfies the DIC if and only if

cl ({φ(M,b) ∣ φ(x; y) ∈ F, b ∈M ∣y∣}) satisfies the DCC. Expanding this out, we see that F is equational if and only

if {∩ni=0φi(M,bi) ∣ n ∈ ω,φi(x; yi) ∈ F, bi ∈M
∣yi∣ for 0 ≤ i ≤ n} satisfies the DCC. But this is just the definition of

cl∧(F ) satisfying the DCC.
So F is equational if and only if cl∧(F ) satisfies the DCC.

Proposition 2.23. Suppose that E is an equational set of L-formulas, then each element in E is an equation.

Proof. For any φ ∈ E, notice that {φ} ⊆ E. Since E has the DIC, then it follows that {φ} also has the DIC (since
any infinite intersection of instances from {φ} is also contained in E. As we noted before, {φ} satisfies the DIC
if and only if φ is an equation. Thus, φ must be an equation.

The converse is not true, in general, but it is true for a finite sets of formulas.

Proposition 2.24. Suppose that E is a finite collection of equations in x. Then E is equational.

Proof. Since E is finite, we have E = {φ1(x; y1),⋯, φn(x; yn)}. Let us take a collection {φi(M,ai)}i∈I of instances.
Each φi is one of the φj for some 1 ≤ j ≤ n. So let us partition our collection into n disjoint subcollections,
{φj(M,ai)}i∈Ij where i ∈ Ij if φi = φj .

We see that ∩i∈Iφi(M,ai) = ∩nj=1 ∩i∈Ij φj(M,ai). Now, since each φj is an equation, we can find a finite
subset Jj ⊆ Ij so that ∩i∈Ijφj(M,ai) = ∩i∈Jjφj(M,ai).

So then ∩i∈Iφi(M,ai) = ∩nj=1 ∩i∈Ij φj(M,ai) = ∩nj=1 ∩i∈Jj φj(M,ai) = ∩i∈∪nj=1Jjφi(M,ai). And since ∪nj=1Jj
is finite and I was arbitrary we can see that E satisfies the DIC. Thus, E is equational.

Hence, for a finite set of formulas, E, E is equational if and only if each formula in E is an equation. Here
we exhibit a counterexample where E is infinite.
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Example 2.25. Let L = {Rn ∣ n ∈ ω} and let T be the L-theory that says "Rn is an equivalence relation with
infinitely many equivalence classes, each of infinite size" and that "Rj splits each equivalence class of Ri into
two distinct equivalence classes of infinite size each whenever j > i". By Example 2.3 we know that each Ri is an
equation. We claim that {Ri(x; yi)}i∈ω is not equational.

Pick an element a ∈M . Consider the sequence of sets {Ri(M,a)}i∈ω. Since each Rj strictly refines Ri for
j > i, and a is constant, we can see that Ri(M,a) ⊋ Rj(M,a) for all j > i. Thus we see that this is an infinite
descending chain. So {Ri(x; yi)}i∈ω does not satisfy the DCC.

Since {Ri(x; yi)}i∈ω ⊆ cl∧({Ri(x; yi)}i∈ω) we conclude that cl∧({Ri(x; yi)}i∈ω) does not satisfy the DCC
and hence, by Proposition 2.22, {Ri(x; yi)}i∈ω cannot be equational.

Proposition 2.26. Suppose that E is an equational set of L-formulas, then cl+(E) is also equational.

Proof. It is clear from the definitions of cl∧ and cl+ that cl∧ (cl+(E)) = cl+(E). So we just need to show that
cl+(E) satisfies the DCC. Suppose not, then we can find a sequence {φi(x; yi)}i∈ω of equations in cl+(E) and
{ai}i∈ω so that φ0(M,a0) ⊋ φ1(M,a1) ⊋ φ2(M,a2) ⊋ ⋯. Our goal is now to construct an infinite descending chain
of cl∧(E)-definable sets.

To make this proof easier, let us recall our notation where a ↾x means the restriction of the tuple to only
those elements corresponding to variables in x (see Proposition 2.13).

Since φ0 ∈ cl+(E) we can write it as a disjunction of equations in cl∧(E). So we can express φ0 as,
φ0(x; y0) = ψ0(x; y00) ∨⋯ ∨ ψn0(x; y0n0

), where each ψk(x; y0k) ∈ cl∧(E).
It is not hard to see that we can find 0 ≤ j ≤ n0 so that there exists a sequence, {i0 < i1 < i2 < ⋯} ⊆ ω

with ψj(M,a0j) ⊋ ψj(M,a0j) ∩ φi0(M,ai0) ⊋ ψj(M,a0j) ∩ φi1(M,ai1) ⊋ ψj(M,a0j) ∩ φi2(M,ai2) ⊋ ⋯, where
a0j = a0 ↾y0j . Observe, also, that each ψj(x; y0j) ∧ φik(x; yik) belongs to cl+(E).

Define new equations, φ′k(x; y′k) = ψj(x; y0j) ∧ φik(x; yik) (which are in cl+(E)), where y′k = y0jyik . We
can see that φ′0(M,a0jai0) ⊋ φ′1(M,a0jai1) ⊋ φ′2(M,a0jai2) ⊋ ⋯, forms an infinite descending chain.

Since φ′0 ∈ cl+(E) we can write it as a disjunction of equations in cl∧(E). So we can express φ′0 as,
φ′0(x; y′0) = ψ′0(x; y′00) ∨⋯ ∨ ψ′n′0(x; y′0n′0

), where each ψ′k(x; y′0k) ∈ cl∧(E).
It is not hard to see that we can find 0 ≤ j′ ≤ n′0 so that there exist {i′0 < i′1 < i′2 < ⋯} ⊆ {ik}k∈ω with

ψ′j′(M,a0j′) ⊋ ψ′j′(M,a0j′) ∩ φ′i′0(M,a0jai′0) ⊋ ψ
′
j′(M,a0j′) ∩ φ′i′1(M,a0jai′1) ⊋ ψ

′
j′(M,a0j′) ∩ φ′i′2(M,a0jai′2) ⊋ ⋯,

where a0j′ = (a0ai0) ↾y′0j′ . Observe, also, that each ψj′(x; y′0j′) ∧ φ′i′
k
(x; y′i′

k
) belongs to cl+(E).

Define new equations, φ′′k(x; y′′k) = ψ′j′(x; y′0j′) ∧ φi′k(x; y′i′
k
) (which are in cl+(E)). We can repeat this

process indefinitely. In the end what we’ll get is a descending chain of sets defined by formulas which belong to
cl∧(E).

ψj(M,a0j) ⊋ ψ′j′(M,a0j′) ⊋ ψ′′j′′(M,a0j′′) ⊋ ⋯
Which of course is a contradiction, since E is equational. Thus cl+(E) is equational.

Corollary 2.27. Suppose that E is a collection of equations, then each formula in cl+(E) is an equation.

Proof. Let φ(x; y) ∈ cl+(E) be arbitrary. By Fact 2.19 (iii) we can find finitely many equations in E, {φ1,⋯, φn}
so that φ ∈ cl+({φ1,⋯, φn}). By Proposition 2.24, {φ1,⋯, φn} is equational. By Proposition 2.26 it follows that
cl+({φ1,⋯, φn}) is equational. By Proposition 2.23 it follows that each element of cl+({φ1,⋯, φn}) is an equation
in x. Thus φ is an equation in x.

Let us look at few examples of equational sets of equations.
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Example 2.28. In ACFp (p=0 or a prime), the collection of all polynomial equations is equational. Indeed, in
Example 2.5 we have shown that for any collection of polynomials, S, by Hilbert’s Basis Theorem, we can find a
finite subcollection S0 ⊆ S so that V (S) = V (S0). That is, every intersection of solution sets of polynomials can
be expressed by a finite subintersection.

So the set of all polynomials satisfies the DIC, and hence is equational.

Example 2.29. Fix a ring R (with identity) and let T be any complete theory extending the theory of R-modules.
Let us consider E the set of all positive primilitve formulas. Since a conjunction of positive primitive formulas is
again positive primitive, this boils down to whether E satisfies the DCC. That is, can we find a descending chain
of cosets of subgroups defined by positive primitive formulas?

Suppose that we have such an infinite descending chain. Notice that the subgroups of which they are cosets
must also form an infinite descending chain. So now we just need to determine whether or not there is an infinite
descending sequence of subgroups which are defined by positive primitive formulas.

As remarked by Ziegler, there is no infinite descending sequence of positive primitive definable subgroups
if and only if T is totally transcendental. (Theorem 2.1 in [11]). (Recall that a totally transcendental theory is
one in which every definable set has bounded Morley rank; see [4].) So the set of all positive primite formulas is
equational if and only if T is totally transcendental.

3 Srour Closed Sets

As before, we work with a fixed language, L, a complete L-theory, T, and a sufficiently κ saturated, strongly
κ homogeneous model,M ∣= T .

Definition 3.1. Let E be a collection of equations. We say that a definable set, X, is E-closed if it is definable
by an instance of an equation in E. That is, there exists φ(x; y) ∈ E, and a ∈M ∣y∣

so that X = φ(M,a). When E
is the set of all equations we will call these sets Srour closed.

We say that a set is E-constructible if it can be written as a boolean combination of E-closed sets. Again,
if E is the set of all equations, we will say Srour-constructible.

Note that every ∅-definable set is, vaccuously, Srour-closed.

Proposition 3.2. Let E be a collection of equations. Fix a natural number, n ∈ ω. The topology on M
n
generated

by the E-closed sets is the same as the topology generated by the cl+(E)-closed sets.

Proof. To prove this, it suffices to show that every cl+(E)-closed set is closed in the topology given by E. Let X
be an cl+(E)-closed set. Then we can find an equation φ ∈ cl+(E) and a, so that X = φ(M,a).

Now, since φ ∈ cl+(E) we can express it as a positive boolean combination of equations in E. That is, we
can find {ψij(x; yij)}n,nii=1,j=1 in E so that φ(x; y) = ⋁ni=1 (∧nij=1ψij(x; yij)). Hence, we can find tuples, aij so that
X = ⋁ni=1 (∧nij=1ψij(M,aij)) = ⋃ni=1 (∩nij=1ψij(M,aij)).

Now, each ψij(M,aij) is closed set in the topology given by E. Since a finite intersection of closed
sets is still closed, then ∩nij=1ψij(M,aij) is also closed. Since a finite union of closed sets is still closed, then

⋃ni=1 (∩nij=1ψij(M,aij)) is also closed. So it follows that X is closed.
Since X was arbitrary, we see the topology on M

n
given by E is the same as the one made by cl+(E).

Proposition 3.3. Let E be equational. A nonempty definable set X ⊊Mn
is closed in the topology generated by

the E-closed sets if and only if X is cl+(E)-closed.
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Proof. By Proposition 3.2 and the fact that cl+(E) is closed under finite disjunctions, it suffices to show that any
intersection of cl+(E)-closed sets is also cl+(E)-closed.

Let us take an intersection of cl+(E)-closed sets, ∩i∈Iφi(M,ai). Since E is equational then cl+(E) is also
equational, so we know that {φi(M,ai) ∣ i ∈ I} must satisfy the DIC. That is, we can find φ1,⋯, φn so that
∩i∈Iφi(M,ai) = ∩ni=1φi(M,ai).

But we can see that φ1 ∧ ⋯ ∧ φn ∈ cl+(E), so ∩ni=1φi(M,ai) is cl+(E)-closed. Hence ∩i∈Iφi(M,ai) is
cl+(E)-closed.

Now, let us exhibit a few examples of these topologies. To start off, let us look at the topology which x = y
generates, as it is the bare minimum topology we can generate.

Example 3.4. Let E = cl+({x = y}). Take any φ(x1,⋯xn; y1,⋯, ym). We can view it in disjuntive normal form,
φ(x1,⋯xn; y1,⋯, ym) = ⋁kj=1(xij,1 = y`j,1 ∧ ⋯ ∧ xij,kj = y`j,kj ). Now, given a tuple, a ∈ M ∣y∣

we can see that each

clause (xij,1 = a`j,1 ∧⋯ ∧ xij,kj = a`j,kj ) defines a fibre of a coordinate projection on M
∣x∣
. So φ(M,a) is a finite

union of such coordinate subspaces.
It is not hard to see that each coordinate subspace can be defined by an instance of some formula in E. So

the topology generated by "x = y" is just the topology whose closed sets are finite unions of fibres of coordinate
projections.

The "= topology" is actually a subtopology of the following, Zariski topology, from algebraic geometry.
The Zariski topology is the topology generated by polynomial equations.

Example 3.5. Let T be ACFp (p = 0 or prime). Let E be the set of all polynomial equations as described in
Example 2.5. As we remarked in Example 2.28, E is equational. Applying Proposition 3.3 we see that the closed
sets in the topology generated by the E-closed sets are exactly the cl+(E)-closed sets. Since E = cl+(E) we see
that these are exactly the Zariski closed sets.

Example 3.6. Let T be any complete theory extending the theory of R-modules, for a fixed ring R (with identity).
Let E be the set of all positive primitive formulas. As we have noted previously (in Example 2.6), the solution
sets of a positive primitive formula are just cosets of the subgroup of M

n
defined by that same positive primitive

formula (φ(M,0)). So rather obviously, the topology generated by the positive primitive formulas on M
n
is just

the topology generated by all the cosets of the positive primitive subgroups of M
n
.

As we noted in Example 2.29, we know that there exists no infinite descending chain of positive primitive
definable cosets if and only if T is totally transcendental. So we can conclude that the topology onM

n
is Noetherian

if and only if T is totally transcendental.

The following is a rather remarkable proposition, which says that if a set is a-definable and is defined by
an instance of an equation, then it can be defined as a a-instance of an equation.

Proposition 3.7. Let ψ(x, y) be an arbitrary formula, and a be an arbitrary tuple with ∣a∣ = ∣y∣. Suppose that
X = ψ(M,a) and {f(X) ∣ f ∈ Aut(M)} satisfies the DIC. Then we can find an equation, φ(x, y), so that
X = φ(M,a). In particular, any A-definable Srour-closed set is an A-instance of an equation.

Proof. Since we know that {f(X) ∣ f ∈ Aut(M)} satisfies the DIC we can find some n ∈ ω so that cl ({f(X) ∣ f ∈ Aut(M)})
satisfies the n-DCC. Observe, by saturation, that Y = ψ(M,b) is a conjugate of X if and only if b and a have the
same type over ∅.
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Let p(y) = tp(a). Since we cannot have a descending chain of intersections of conjugates of length n+1,
we see the set,

p(y0) ∪ p(y1) ∪ ⋯ ∪ p(yn) ∪ {¬(∀u ∧i−1j=0 ψ(u, yj) → ∧ij=0ψ(u, yj)) ∣ 0 < i ≤ n}
is inconsistent. So it follows that we can find a finite subset Φ(y) of p(y) such that

Φ(y0)∪⋯∪Φ(yn) ∣= ¬⋀ni=1 (¬(∀u ∧i−1j=0 ψ(u, yj) → ∧ij=0ψ(u, yj))). Since Φ(y) is finite we can define the L-formula,
δ(y) ∶= ⋀{χ(y) ∣ χ(y) ∈ Φ(y)}. We claim that φ(x, y) ∶= ψ(x, y) ∧ δ(y) has the desired properties.

Observe that since δ(y) ∈ tp(a), X = φ(M,a). Indeed, for any b withM ∣= δ(b), then φ(M,b) = ψ(M,b).
For the rest, φ(M,b) = ∅. So it remains to show that φ is an equation in x. If not, then we could find b0,⋯, bn so
that φ(M,b0) ⊋ φ(M,b0) ∩ φ(M,b1) ⊋ ⋯ ⊋ ⋂ni=0 φ(M,bi) ≠ ∅. Note thatM ∣= δ(bi) for each 0 ≤ i ≤ n, so this can
also be seen as a descending chain of ψ-definable sets, ψ(M,b0) ⊋ ψ(M,b0) ∩ ψ(M,b1) ⊋ ⋯ ⊋ ⋂ni=0 ψ(M,bi) ≠ ∅.
By construction, though, {δ(yi)}ni=0 ∣= ¬⋀ni=1 (¬(∀u ∧i−1j=0 ψ(u, yj) → ∧ij=0ψ(u, yj))), which is a contradiction.

So we conclude that φ is indeed an equation, and this finishes our proof.

Corollary 3.8. A definable set X ⊆ M
n

is Srour-closed if and only if {f(X) ∣ f ∈ Aut(M)} satisfies the
descending intersection condition.

Proof. (⇒) Since X is Srour-closed, we can find an equation φ(x; y) in x, with ∣x∣ = n, and a ∈ M ∣y∣
so that

X = φ(M,a). Let f ∈ Aut(M). Then f(X) = φ(M,f(a)). We see that f(a) ∈M ∣y∣ and so {f(X) ∣ f ∈ Aut(M)}
is a subset of {φ(M,b) ∣ b ∈M ∣y∣}. It follows that since φ is an equation in x then {f(X) ∣ f ∈ Aut(M)} satisfies
the DIC.

(⇐) Suppose that {f(X) ∣ f ∈ Aut(M)} satisfies the DIC. Since X is definable we can find a formula
ψ(x; y), with ∣x∣ = n, and a ∈M ∣y∣

so that X = ψ(M,a). By Proposition 3.7 it follows that we can find an equation
φ(x, y) in x, so that X = φ(M,a). Thus X is Srour closed.

We conclude this section with a useful lemma on E-constructible sets.

Lemma 3.9. Fix a set of equations, E, such that cl+(E). Let P be a property of definable sets satisfying:
(i) If X ⊆ Y are definable sets satisfying property P, then Y /X satisfies P as well.
(ii) If X ⊆ Y are definable sets, with X satisfying P and Y is an E-closed set, then there is an E-closed set Z
satisfying P so that X ⊆ Z ⊆ Y .

Then any E-constructible set with property P is a boolean combination of E-closed sets that also satisfy
property P.

Proof. We will make use of the following fact, a proof of which can be found in [3],
(i) A difference chain is a sequence of sets C0,C1,⋯,Ch written as C0/C1/⋯/Ch, which

abbbreviates the set defined as C0/ (C1/ (⋯/ (Ch−1/Ch))). We call the number h the
length of the difference chain.

(ii) Let F be a collection of sets which is closed under finite unions and finite intersections.
Then any boolean combination of sets in F can be expressed as a difference chain of
sets in F .

Suppose that X is an E-constructible set satisfying P. Since E = cl+(E) then it is not hard to see that the
collection of all E-closed sets is closed under finite unions and finite intersections. So we can represent X by a
difference chain. Let X = C0/C1/⋯/Ch for E-closed sets C0,⋯,Ch. We prove by induction on h that X can be
written as a boolean combination of E-closed sets satisfying P. Notice that X ⊆ C0, so by condition (ii) we can
find an E-closed set C ′

0 which satisfies property P and X ⊆ C ′
0 ⊆ C0.

18



If h = 0, then we see by squeezing that X = C ′
0 and so X can be written as a boolean combination of

E-closed sets satisfying P.
If h > 0, then by letting C ′

i = C ′
0 ∩ Ci we can see that X = C ′

0/C ′
1/⋯/C ′

h. Since X and C ′
0 satisfy P we

can see by condition (i) that C ′
0/X = C ′

1/⋯/C ′
h satisfies P. C ′

1/⋯/C ′
h is an E-constructible set satisfying P, so by

induction we can write C ′
1/⋯/C ′

h as a boolean combination of E-closed sets satisfying P, and hence we can write
X as a boolean combination of E-closed sets satisfying P.

Incidently, one might expect a more natural second condition, like,
(ii)′ If X is a definable set satisfying P, then the E-closure of X satisfies P.

where the E-closure of X is the intersection of all the E-closed sets containing X. The problem with this,
however, is that the "E-closure" of X, may not be an E-closed set!

That said, when E is equational and E = cl+(E) then it is not hard to see that the intersection of a
collection E-closed sets is also E-closed. In that case, (ii) and (ii)′ are now equivalent statements. Indeed, if we
have (ii)′, then for any E-closed Y containing X, we know that the E-closure of X lies between X and Y and
satisfies P. So (ii)′ ⇒ (ii). Conversely, since E is equational, the E-closure of X is E-closed. So then (ii) tell us
there is an E-closed set between X and the E-closure of X which satisfies P. But the only E-closed set between X
and its E-closure is the E-closure of X. Thus the E-closure of X must satisfy P. Hence (ii) ⇒ (ii)′.

The main use of the previous lemma will be in the following subsection. However, we take the time now
to illustrate another use of Lemma 3.9. This result deals with ∅-definable equivalence relations.

Proposition 3.10. Let R be a ∅-definable equivalence relation on M
n
. Any R-saturated Srour-constructible set

in M
n
can be written as a boolean combination of R-saturated Srour-closed sets in M

n
.

Proof. Recall that a set is R-saturated if it is a union of R-equivalence classes.
Once we apply Lemma 3.9 we are done. So it remains to show that the property P = "is R-saturated"

satisfies conditions (i) and (ii) of the lemma.
(i) If X ⊆ Y are definable sets and both are R-saturated, then it is fairly evident that Y /X is also

R-saturated. Indeed, Y /X must be the union of the R-equivalence classes that are in Y but not in X.
(ii) Suppose that X is R-saturated. Let Y be a Srour-closed set containing X. Let Z be the union of all

the R-equivalence classes which are fully contained in Y. Clearly X ⊆ Z ⊆ Y , so it remains to show that Z is
Srour-closed. By Corollary 3.8 it suffices to show that the conjugates of Z satisfy the descending intersection
condition.

First, let us define a new function, R, on definable sets, where WR is the union of all the R-equivalence
classes which are fully contained in W. Thus, Z = Y R. It is not difficult to see that R commutes with automor-
phisms and intersections, just by definition.

Look at {fi}i∈I with each fi ∈ Aut(M). Then, ∩i∈Ifi(Z) = ∩i∈Ifi(Y R) = ∩i∈Ifi(Y )R = (∩i∈Ifi(Y ))R.
Since Y is Srour-closed we know that we can find a finite subset J of I so that ∩i∈Ifi(Y ) = ∩i∈Jfi(Y ). Thus
(∩i∈Ifi(Y ))R = (∩i∈Jfi(Y ))R = ∩i∈Jfi(Y )R = ∩i∈Jfi(Y R). So we can see that ∩i∈Ifi(Z) = ∩i∈Jfi(Z) and Z is
Srour-closed.

This concludes the proof.
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4 Equational Theories

Equational Theories

Definition 4.1. For a set of equations, E, we say that T is n-E-equational if every L-formula ψ(x; y) with
∣x∣ = n is equivalent, in T, to a boolean combination of equations in x from E. That is, for each ψ(x; y) we can
find collections {φij(x; y)}n,nii=1,j=1 and {φ′ij(x; y)}n,n

′
i

i=1,j=1, of equations in x belonging to E, so that

M ∣= ∀x∀y (ψ(x; y) ↔ ⋁ni=1 (⋀nij=1 φij(x; y) ∧ ⋀n
′
i

j=1 ¬φ′ij(x; y)))
We say T is E-equational if it is n-E-equational for all n ∈ ω. When E is the set of all equations in T,

we drop the prefix and just say n-equational and equational.

Notice that vaccuously every theory is 0-equational. That is because every formula φ(x; y) with ∣x∣ = 0 is
an equation. Let us take some time now to illustrate examples of theories that are equational. Our first example
takes us back to equivalence relations.

Example 4.2. Let L = {E} and let T be any complete L-theory that says E is an equivalence relation with
infinitely many equivalence classes and infinitely many elements in each class. We claim that this theory is
equational.

It is well-known that T admits quantifier elimination. As such, every formula is equivalent, modulo T, to
a boolean combination of formulas of the form E(x, y) and x = y.

We have previously shown (Example 2.2 and 2.3) that each of these atomic formulas are equations, so we
conclude that any formula is equivalent to a boolean combination of equations. Thus T is equational.

The next example shows that the theory of R-modules is equational. To make our lives easier and to avoid
a very lengthy side proof, we now quote the positive primitive elimination of quantifiers result, proven by W.
Baur in [1].

Fact 4.3. Fix a ring R (with identity). Every formula in the language of R-modules is equivalent, relative to the
theory of R-modules, to a boolean combination of positive primitive formulas.

Example 4.4. Fix a ring R (with identity), and let T be any complete theory extending the theory of R-modules.
Then T is equational.

Let φ(x; y) be an arbitrary formula in the language of R-modules. By Baur’s positive primitive elimination
of quantifiers we can find a finite number of positive primitive formulas so that φ(x; y) is logically equivalent to
a boolean combination of them. But we showed in Example 2.6 that positive primitive formulas are all equations.

Since φ was arbitrary we conclude that T is equational.

There are several other examples of equational theories. In [8], G. Srour shows that the theory of al-
gebraically closed fields (for a fixed characteristic) as well as differentially closed fields of characteristic 0 are
both equational. For a prime, p, Srour goes on to show that the theory of radical differentially closed fields of
characteristic p is also equational.

As before, we can use the theory of dense linear orderings without endpoints as a counterexample. In this
case, we can see that Th(Q,<) is not equational.

Example 4.5. Let T = Th(Q,<) and let n be a fixed positive natural number. Consider the formula φ(x; y) where
∣x∣ = n and ∣y∣ = 1, defined as x1 < y1. By taking sequences {ai}i∈ω and {bi}i∈ω, given by ai = (i,0,0,⋯,0), and
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bi = (i), we can see that φ satisfies the order property. But then we know that φ cannot be expressed as a boolean
combination of equations.

Since n was arbitrary, we can see that T is not n-equational for any positive n.

From the definition we can immediately note two things. If T is n-E-equational and E ⊆ E′, then T is
n-E′-equational. As well, by simply applying Proposition 2.17 we see that if T is n-equational for some natural
number n ∈ ω, then for any natural number m < n, T is m-equational.

Many properties in model theory, like saturation and stability, while appearing to be a property concerning
n-tuples, can actually be checked by only considering 1-tuples. One would expect equationality to have this
property. However, this is currently an open question: for 0 <m < n does m-equational imply n-equational?

This next theorem, which appears as Proposition 2.9 in [3], restates equationality in terms of Srour-closed
sets.

Theorem 4.6. Fix n ∈ ω. Then T is n-equational if and only if every definable set in M
n
is Srour constructible.

Proof. (⇒) Suppose T is n-equational. Let X be a definable set in M
n
. Then we can find an L-formula ψ(x; y),

with ∣x∣ = n and a so that X = φ(M,a). But since T is n-equational, we can find equations, {φij(x; y)}n,nii=1,j=1 and

{φ′ij(x; y)}n,n
′
i

i=1,j=1, in x so that ψ(x; y) is logically equivalent, in T, to ⋁ni=1 (⋀nij=1 φij(x, y) ∧ ⋀
n′i
j=1 ¬φ′ij(x, y)).

It follows that,
X = ⋃ni=1 (⋂nij=1 φij(M,a) ∩ ⋂n

′
i

j=1 (M/φ′ij(M,a)))
But we observe that each of the φ∗∗∗(M,a) sets is Srour-closed, hence X is Srour-constructible as desired.
(⇐) First, fix a tuple, a inM, and let us consider the property P = "to be an a-definable set". A definable

set, X, has this property if we can find an L-formula, ψ(x; y) so that X = ψ(M,a). We claim that P satisfies
the conditions of Lemma 3.9. Suppose the Y and X are both a-definable, by, say, formulas ψ and χ respectively.
Then we can see that Y /X is a-defined by the formula φ(x; y) ∶= ψ(x; y) ∧ ¬χ(x; y).

Next suppose that X is a-definable and X ⊆ Y , with Y a Srour-closed set, say defined by an instance of
equation φ(x; y). Let Z = ∩{φ(M,b) ∣ X ⊆ φ(M,b)}. Observe that X ⊆ Z ⊆ Y . By the DIC, we can see that Z is
defined by a conjunction of instances of φ. By Proposition 2.23, this conjunction must be an equation, and so Z
is Srour-closed. In addition, we can see that Z is a-invariant. That is, X, and hence Z by definition, is fixed by
any automorphism that fixes a, and so, by saturation, Z is a-definable.

So by Lemma 3.9 it follows that if X is a-definable and Srour-constructible then X can be written as a
boolean combination of a-definable Srour-closed sets. Furthermore, by Proposition 3.7, we may assume that these
sets are given by a-instances of equations (that is, of the form φ(M,a) for some equation φ).

It follows from our assumption that all definable sets are Srour-closed, if φ(x; y) is an arbitrary L-formula
with ∣x∣ = n then for each a ∈M ∣y∣

we can find an L-formula, βa(x; y), which is a boolean combination of equations,
and φ(M,a) = βa(M,a).

Let us consider the collection of L-formulas, p(z) = {¬(∀xφ(x, z) ↔ βa(x, z)) ∣ a ∈ M ∣y∣}. Suppose that
it were satisfiable. Then we could find b ∈ M ∣y∣

so that for all a ∈ M ∣y∣
, φ(M,b) ≠ βa(M,b). But by definition,

φ(M,b) = βb(M,b)! This is a contradiction, so it follows that we can find some finite collection of the {βa}a∈M ∣y∣ ,
which we rename, β1, β2,⋯, βm, such that for all a, φ(M,a) is equal to one of the βi(M,a).

Consider the formulas, δi(x; y) ∶= ∀u (φ(u; y) ↔ βi(u; y)). We can see that δi(x; y) is trivially an equation
in x. One can easily see thatM ∣= ∀x∀y (φ(x; y) ↔ (⋁mi=1(βi(x; y) ∧ δi(x; y)))). So φ is logically equivalent to a
boolean combination of equations.

Since φ was arbitrary this concludes the proof.
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Corollary 4.7. T is equational if and only if every definable set is Srour constructible.

Definition 4.8. Let E be a set of equations. Let p(x) be a type over A. We define the E-part of p to be the type
over A defined, pE(x) = {ψ(x, a) ∈ p ∣ for some φ(x; y) ∈ E,and m from M,M ∣= ∀xφ(x,m) ↔ ψ(x, a)}. That
is, it is the collection of all formulas in p that are equivalent (modulo T) to an instance of an equation in E.

If p = tp(a/A) we may choose to write tpE(a/A) instead of pE(x).

It is not hard to see some immediate facts from this definition, such as E commutes with automorphisms
(f(p)E = f(pE)) and E commutes with restrictions ((q ↾ A)E = qE ↾ A). Also, pE = ∪φ∈Ep{φ}.

Proposition 4.9. If E is the set of all equations, then {φ(x, a) ∈ p ∣ φ(x; y) ∈ E} ∣= pE(x).

Proof. Let ψ(x, a) ∈ pE(x). Then we can find some equation φ(x; z) and some m so that ψ(M,a) = φ(M,m). We
can see that ψ(M,a) is Srour-closed, and so by applying Proposition 3.7 we can find an equation φ′(x; y) ∈ E so
that ψ(M,a) = φ′(M,a). Thus φ′(x;a) ∈ p and φ′(x;a) ∣= ψ(x, a). Moreover, {φ(x, a) ∈ p ∣ φ(x; y) ∈ E} ∣= ψ(x, a)

Since ψ(x, a) was arbitrary, we conclude that {φ(x, a) ∈ p ∣ φ(x; y) ∈ E} ∣= pE(x).

Proposition 4.10. Suppose that E is equational and E = cl∧(E). Then for any complete type p there is a formula
ψp(x) ∈ pE(x) such that ψp(x) ∣= pE(x)

Proof. Since E is equational, E satisfies the DIC. By Definition 2.20 we know that E satisfies the DIC if and only
if {φ(M,a) ∣ φ(x; y) ∈ E,a ∈M ∣y∣} satisfies the DIC.

By definition of pE , for each ψ(x) ∈ pE we can an equation φψ(x, yψ) ∈ E andmψ so that ψ(x) is equivalent
inM to φψ(x,mψ).

So let us consider ∩ψφψ(M,mψ). By the descending intersection condition, we can find ψ1,⋯, ψk so that
∩ψφψ(M,mψ) = ∩kj=1φψj(M,mψj).

It follows that for any a ∈Mn
,M ∣= ∧kj=1φψj(a,mψj) if and only ifM ∣= φψ(a,mψ) for all ψ ∈ pE .

Let ψp(x) = ψ1(x) ∧ ⋯ ∧ ψk(x). By completeness of p, ψp(x) ∈ p. We can see that ψp(x) is equivalent in
M to ∧kj=1φψj(x,mψj). So by the definition of each φψ, for any a ∈M

n
,M ∣= ψp(a) if and only ifM ∣= ψ(a) for

all ψ ∈ pE .
Since ψp(x) is equivalent inM to ∧kj=1φψj(x,mψj) and ∧kj=1φψj(x, yψj) ∈ E (since E = cl∧(E)) it follows

that ψp(x) ∈ pE(x).

Proposition 4.11. Suppose that our theory, T, is E-equational. Then for any two complete types p, q ∈ S(A),
pE = qE if and only if p = q.

Proof. (⇐) Is clear.
(⇒) By symmetry it suffices to show that p ⊆ q. Take ψ(x, a) ∈ p, where a ∈ A. Since T is equational we

can find equations {φij(x; y)}n,nii=1,j=1 and {φ′ij(x; y)}n,n
′
i

i=1,j=1, in x in E so that ψ(x; y) is logically equivalent in T

to ⋁ni=1 (⋀nij=1 φij(x, y) ∧ ⋀
n′i
j=1 ¬φ′ij(x, y)).

Since ψ(x, a) ∈ p by completeness of p we have that for some i and all j, φij(x, a) ∈ p and φ′ij(x, a) /∈ p. As
φij(x, a) is an A-instance of an equation, φij(x, a) ∈ pE = qE ⊆ q.

Suppose that for some j, φ′ij(x, a) ∈ q. Then, since it is equivalent to an instance of an equation in E
(namely itself), it follows that φ′ij(x, a) ∈ qE . But φ′ij(x, a) /∈ p ⊇ pE = qE . Contradiction! So φ′ij(x, a) /∈ q.

Then we can see that ⋀nij=1 φij(x, a) ∧ ⋀
n′i
j=1 ¬φ′ij(x, a) ∈ q and so ⋁ni=1 (⋀nij=1 φij(x, a) ∧ ⋀

n′i
j=1 ¬φ′ij(x, a)) ∈ q.

By completeness of q we conclude that ψ(x, a) ∈ q.
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Equationally Free Extensions

The bulk of these next two subsections is due to G. Srour in his papers, [9], [10]. While Srour’s papers
take the viewpoint of categories and universal algebra, many of his proofs and concepts become much simpler in
the realm of first order model theory. Readers are urged to read Srour’s paper if they wish to see the broadest
possible exploration of what an equation is.

Definition 4.12. Let E be a set of equations and A ⊆ B. Let p ∈ S(A) and q ∈ S(B) with p ⊆ q. Then q is an
E-equationally free extension of p to B if for any q′ ∈ S(B) extending p, qE ⊇ (q′)E implies qE = (q′)E.

E-equationally free extensions are extensions which have a minimal E-part.

Theorem 4.13. Suppose that E = cl+(E) is a set of equations. Let p be a complete type over A. Let B ⊇ A and
let q be a complete type over B with qE ⊇ pE. Then we can find an E-equationally free extension q′ of p to B, so
that qE ⊇ (q′)E.

Proof. The first step is to find an extension of p to B, r′, so that qE ⊇ (r′)E . Let us consider the set,
r∗ ∶= p ∪ {¬ψ(x, b) ∣ ψ(x; y) L-formula, b ∈ B,ψ(x, b) /∈ qE , but equivalent to an instance of an equation in E}

Suppose r∗ is inconsistent. Then we can find ψ1(x, b1),⋯, ψn(x, bn) /∈ qE so that p ∣= ⋁ni=1 ψi(x, bi). We
have φψi(x, yψi) ∈ E and mψi so that ψi(x, bi) is equivalent in M to φψi(x,mψi). Then ⋁ni=1 φψi(x, yψi) is an
equation in x belonging to E.

For any automorphism f ∈ AutA(M), p ∣= ⋁ni=1 φψi(x, f(mψi)). Since ⋁ni=1 φψi(x, yψi) is an equation,
we can find a finite set {mi,j}n,ki=1,j=1 so that ⋂kj=1 (⋃ni=1 φψi(M,mi,j)) = ⋂f∈AutA(M) (⋃

n
i=1 φψi(M,f(mψi))). In

particular, ⋂kj=1 (⋃ni=1 φψi(M,mi,j)) is invariant under any automorphism that fixes A.
By the saturation of our model, M, we can find an L-formula ψ(x; y) and a tuple a from A so that

⋂kj=1 (⋃ni=1 φψi(M,mi,j)) = ψ(M,a). By completeness of p, ψ(x, a) ∈ p, and hence ψ(x, a) ∈ pE ⊆ qE ⊆ q. So then
we see that q ∣= ⋁ni=1 ψi(x, bi) and by completeness of q, we can find k so that ψk(x, bk) ∈ q. But this contradicts
our assumption that ψk(x, bk) /∈ qE .

Thus r∗ is consistent, and we can extend it to some r′ ∈ S(B). Note that by construction, r′ ⊇ p and
qE ⊇ (r′)E .

Next, let us consider the set R = {r ∈ S(B) ∣ r ⊇ p, qE ⊇ rE}. R contains r′, so we know it is nonempty.
We can put a natural partial order on R by saying r1 ≤R r2 if and only if rE1 ⊆ rE2 . Let {rβ}β<α be a descending
chain in (R,≤R) (where α is an ordinal). That is, for all γ < β < α we have rEγ ≤R rEβ . Define the collection of
formulas,
r∗∗ ∶= p∪{¬ψ(x, b) ∣ ψ an L-formula, b ∈ B,ψ(x, b) /∈ ∩β<αrEβ , but equivalent to an instance of an equation in E}

We claim that r∗∗ is consistent. It suffices to show for any finite set {¬ψ1(x, b1),⋯,¬ψn(x, bn)}, that
p ∪ {¬ψ1(x, b1),⋯,¬ψn(x, bn)} is consistent.

Since there are only finitely many of the ψis, we can find β < α so that each ψi(x, bi) /∈ rβ . But by
completeness of rβ is follows that ¬ψi(x, bi) ∈ rβ . And since each of the rγ extends p it follows that p ∪
{¬ψ1(x, b1),⋯,¬ψn(x, bn)} is consistent. So r∗∗ is consistent.

Extend r∗∗ to a complete type over B, say r. We claim that r ≤R rβ for any β < α. Indeed, suppose that
ψ(x, b) /∈ rEβ .Then ¬ψ(x, b) ∈ r∗∗ ⊆ r. Since r is consistent, we can see that ψ(x, b) /∈ r and hence ψ(x, b) /∈ rE .
Thus r is a lower bound of {rβ}β<α.

Since every descending chain has a lower bound in R, by Zorn’s Lemma, R contains a minimal element, say
q′. Since (q′)E is a minimal E-part then q′ is an equationally free extension of p, and qE ⊇ (q′)E as desired.
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We now move on to a very important result. The following theorem shows that E-equationally freeness is
transitive.

Theorem 4.14. Suppose E = cl+(E) is a set of equations. Let A ⊆ B ⊆ C. Suppose p ∈ S(A), q ∈ S(B) and
r ∈ S(C) and p ⊆ q ⊆ r. Then r is an E-equationally free extension of p if and only if q is an E-equationally free
extension of p and r is an E-equationally free extension of q.

Proof. (⇐) Suppose that there is r1 ∈ S(C) where r1 ⊇ p and rE ⊇ rE1 . We can see qE = (r ↾ B)E ⊇ (r1 ↾ B)E .
Since r1 ⊇ p we can see that r1 ↾ B ⊇ p. Since q is an E-equationally free extension of p it follows that
qE = (r1 ↾ B)E .

Now, since rE1 ⊇ qE , by Theorem 4.13, we can find r2 ∈ S(C) so that r2 ⊇ q and rE1 ⊇ rE2 . But then
rE ⊇ rE1 ⊇ rE2 , and by minimality of rE with regards to qE it follows that rE = rE2 . So by squeezing, we conclude
that rE = rE1 .

(⇒) First we show that r is an E-equationally free extension of q. Suppose that there is a complete type
r1 ∈ S(C) so that r1 ⊇ q and rE ⊇ rE1 . Then r1 ⊇ p and so by E-equational freeness of r we can see that rE1 = rE .
So r is an E-equationally free extension of q.

Now we demonstrate that q is an E-equationally free extension of p. Suppose that there is a complete type
q1 ∈ S(B) so that q1 ⊇ p and qE ⊇ qE1 . Now, since rE ⊇ qE ⊇ qE1 , by Theorem 4.13 we can find an E-equationally
free extension, r1, of q1 to C such that rE ⊇ rE1 . Since, p ⊆ q1 ⊆ r1, by minimality of rE we can see that rE = rE1 .
Then qE = (r ↾ B)E = (r1 ↾ B)E = qE1 . So it follows that q is an E-equationally free extension of p.

We can define a notion of independence based on equationally free extensions.

Definition 4.15. Let E be a set of equations. Given a tuple, a and sets A and B, we say that a is E-equationally
independent of B over A, if tp(a/A∪B) is an E-equationally free extension of tp(a/A). We will use the notation,
a⫝
A

EB, to denote E-equational independence.

This next result summarizes some of the first properties of this notion of independence.

Theorem 4.16. Let E be a set of equations closed under finite conjunctions and disjunctions. Then E-equational
independence, ⫝E , satisfies the following five properties,

(i) (Existence) For any a, A and B, there exists a′ such that tp(a′/A) = tp(a/A) and a′⫝
A

EB.

(ii) (Transitivity) If A ⊆ B ⊆ C are sets, then a⫝
A

EC if and only if a⫝
A

EB and a⫝
B

EC.

(iii) (Finite Character) a⫝
A

EB if and only if a⫝
A

EB0 for all finite subsets B0 ⊆ B.

(iv) (Invariance) If a⫝
A

EB then for any automorphism of M , f, f(a) ⫝
f(A)

Ef(B).

(v) (Local Character) For any a and B, there exists A ⊆ B such that ∣A∣ ≤ ∣T ∣ and a⫝
A

EB

Proof of Existence. This is just Theorem 4.13.

Proof of Transitivity. This is just Theorem 4.14.

Proof of Finite Character. One direction is clear from Transitivity. So it remains to show that if a⫝
A

EB0 for all

finite subsets B0 ⊆ B then a⫝
A

EB.

Suppose that p is a complete type over B extending tp(a/A) such that tpE(a/B) ⊇ pE . By definition,
we need to show that tpE(a/B) = pE . Take an arbitrary ψ(x) ∈ tpE(a/B). ψ(x) is an LB-formula, and we can

24



see that ψ(x) must be an LB0 -formula for some finite subset B0 ⊆ B. We can restrict to A ∪ B0 and see that
tpE(a/A ∪B0) ⊇ (p ↾ A ∪B0)E . By our assumption that a⫝

A

EB0, it follows that tpE(a/A ∪B0) = (p ↾ A ∪B0)E .

By definition of B0, ψ(x) ∈ tpE(a/A ∪B0) = (p ↾ A ∪B0)E ⊆ pE .
So it follows that tpE(a/B) ⊆ pE . Thus tpE(a/B) = pE and since p was arbitrary we conclude that

a⫝
A

EB.

Proof of Invariance. Suppose that a⫝
A

EB, but f(a) /⫝
f(A)

Ef(B) for some automorphism, f. Then we can find a

complete type p ∈ S(f(A ∪B)) with tp(f(a)/f(A)) ⊆ p and pE ⊊ tpE(f(a)/f(A ∪B)).
Since f is an automorphism, f−1(p) is a complete type over A∪B and f−1(p)E = f−1 (pE) ⊊ tpE(a/A∪B).

But then tp(a/A ∪ B) is not an E-equationally free extension of tp(a/A) (as its E-part is not minimal). This
contradicts our assumption that a⫝

A

EB.

Thus for any automorphism, f, we have f(a) ⫝
f(A)

Ef(B).

Proof of Local Character. Let φ(x; y) ∈ E be an arbitrary equation in x. Let us consider tpcl
+({φ})(a/B). For each

φ ∈ E we know that cl+({φ}) is equational, so we can apply Proposition 4.10. Thus, we can find an LB-formula,
ψφ(x) ∈ tpcl+({φ})(a/B) so that ψφ(x) ∣= tpcl+({φ})(a/B).

Since ψφ is an LB-formula we can find a finite subset Bφ ⊆ B so that ψφ is an LBφ -formula. Let A = ∪φ∈EBφ
be our candidate for a⫝

A

EB. We need to show that for any complete type over B, p, extending tp(a/A), with

tpE(a/B) ⊇ pE , that tpE(a/B) = pE .
Let p be any complete type in B, extending tp(a/A) with pE ⊆ tpE(a/B). By our construction of A, we

know for each φ ∈ E, that ψφ(x) ∈ tp(a/A) and hence ψφ(x) ∈ p. We know that ψφ(x) ∣= tpcl+({φ})(a/B), so by
completeness, tpcl

+({φ})(a/B) ⊆ p. By definition of the E-part we can see that tpE(a/B) = ∪φ∈Etpcl
+({φ})(a/B) ⊆ p.

So we conclude that tpE(a/B) ⊆ pE and hence, tpE(a/B) = pE . Thus tp(a/B) is an E-equationally free extension
of tp(a/A).

It remains to show that ∣A∣ ≤ ∣T ∣. Note that T is infinite, and since T is complete we know that for each
equation φ ∈ E we can find either ∃x∃yφ(x; y) or ¬∃x∃yφ(x; y) in T. Thus, ∣E∣ ≤ ∣T ∣. Since A = ∪φ∈EBφ and each
Bφ was finite, we can see that ∣A∣ ≤ ∣E∣ × ℵ0 ≤ ∣T ∣ × ℵ0 = ∣T ∣, as required.

If T is E-equational one can show that ⫝E satisfies these two additional properties:

(Symmetry) For all a, b, A, a⫝
A

Eb⇒ b⫝
A

Ea.

(Stationarity Over Models) IfM ∣= T and B ⊇M then every type over M has a unique
E-equationally free extension to B.

These two properties are much harder to prove. One way to do so is to show that ⫝E agrees with Shelah’s

nonforking independence in stable theories [7]. This is the route taken by Pillay and Srour in their paper, [5],
however such a proof is beyond the scope of this paper.

5 Finale and Acknowledgements

Equational theories still have several unanswered questions. One which we’ve mentioned before is "Does
being 1-equational imply being equational?" Other questions that M. Junker asks in [3], which we have not
covered are, "Is every theory interpretable in an equational theory itself equational?" and "Is the reduct of an
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equational theory also equational?" Thus, there is still a good deal of work and research left for equational
theories.

Uncountably many thanks to my advisor, Professor Rahim Moosa, for many hours of guidance and patience
as I made my way through the beginnings of model theory all the way to the study of equations and equational
theories. Without his help and kindness I would not have completed this paper.

Thanks to Pantelis Eleftheriou for agreeing to be the secondary reader for this paper. Lastly, thanks, to
my officemates, Nikita Nikolaev and Yui Nishizawa with whom I had many fruitful discussions about the language
and design of this paper.
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